JPS63171255A - Non-solidified rolling method - Google Patents

Non-solidified rolling method

Info

Publication number
JPS63171255A
JPS63171255A JP294787A JP294787A JPS63171255A JP S63171255 A JPS63171255 A JP S63171255A JP 294787 A JP294787 A JP 294787A JP 294787 A JP294787 A JP 294787A JP S63171255 A JPS63171255 A JP S63171255A
Authority
JP
Japan
Prior art keywords
rolling
slab
thickness
reduction
cast slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP294787A
Other languages
Japanese (ja)
Inventor
Tamotsu Sasaki
保 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP294787A priority Critical patent/JPS63171255A/en
Publication of JPS63171255A publication Critical patent/JPS63171255A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands

Abstract

PURPOSE:To prevent the development of crack on surface of a cast slab by rolling the corner part of a cast slab by rolls having caliver groove arranged vertically to a thickness rolling-reduction roll before executing rolling-reduction for thickness of the thin cast slab in a non-solidified rolling method. CONSTITUTION:At the time of non-solidified rolling, in the downstream side of a twin-belt caster 3, a cast slab support roll line 4, a non-driving caliber edger roll 11, a non-driving thickness rolling-reduction roll line 5A, a guide roller line 5B and a pinch rolls 6 are in order arranged. The thin cast slab 8, which is continuously cast by the twin-belt caster 3 and remains non-solidified zone in the inside, is drawn by the pinch rolls 6, and the corner parts 9A of the cast slab are rolling reduced by the caliber-edger rolls 11. In this way, the cast slab cross section is made to convex shape and at the time of succeeding rolling-reduction for thickness, the bending deformation of the shell 9A in the end part of width side is facilitated and the non-solidified rolling under high pressure to prevent the crack developed in the upper and lower face shells 9A at the time of the rolling-reduction for thickness can be executed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、ツイン・ベルトキャスタ等の″fit鋳片連
続鋳造機で鋳造された薄鋳片を、その鋳片内部が未凝固
状態のまま厚み圧下を行う未凝固圧延方法に関し、さら
に詳しく言えば、薄鋳片の表面割れを防止し、内部割れ
の増加を抑えて、高圧下未凝固圧延を実現する圧延方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention is directed to a thin slab cast by a "fit continuous caster" such as a twin belt caster, in which the inside of the slab is in an unsolidified state. The present invention relates to an unsolidified rolling method that performs thickness reduction, and more specifically, to a rolling method that prevents surface cracking of thin slabs, suppresses an increase in internal cracks, and realizes high reduction unsolidified rolling.

(ロ)従来技術 通常、厚み1.5〜5uの熱延鋼帯を製造する場合、ま
ず、連続鋳造設備で厚み200〜300in、幅100
0〜2000m1+程度の鋳片を製造し、この鋳片を連
続鋳造ライン内で長さ10z程度に切断する。切断され
た鋳片は、熱延工程まで搬送され、加熱炉で所定の温度
(1050〜1200℃)まで加熱された後、数台の粗
圧延機で連続圧延またはレバース圧延を施すことにより
、厚み30〜50zm程度に圧延され、さらに6〜7ス
タンドの連続仕上圧延機で厚み1.5〜5J11の熱延
鋼帯に仕上げられている。
(b) Prior art Normally, when producing a hot rolled steel strip with a thickness of 1.5 to 5 μm, first, continuous casting equipment is used to produce a hot rolled steel strip with a thickness of 200 to 300 inches and a width of 100 mm.
A slab of approximately 0 to 2000 m1+ is produced, and this slab is cut into a length of approximately 10z in a continuous casting line. The cut slabs are transported to the hot rolling process, heated in a heating furnace to a predetermined temperature (1050 to 1200°C), and then subjected to continuous rolling or reverse rolling with several rough rolling mills to reduce the thickness. It is rolled to about 30 to 50 zm, and then finished into a hot rolled steel strip with a thickness of 1.5 to 5 J11 using a continuous finishing mill with 6 to 7 stands.

ところで、近年、通常の連続鋳造とは異なるツイン・ベ
ルトキャスタ等の薄鋳片の連続鋳造技術の開発により、
従来の数分の1の厚み(40〜80zz)の薄鋳片が製
造されるようになった。その結果、上記熱延鋼帯を製造
する場合、従来の熱延粗圧延工程は必要なくなり、薄鋳
片を直接に熱延仕上圧延工程に供給することができ、設
備費の低減に大きな効果をもたらした。
By the way, in recent years, with the development of continuous casting technology for thin slabs such as twin belt casters, which is different from normal continuous casting,
Thin slabs with a thickness (40 to 80 zz) that is a fraction of the conventional thickness are now being manufactured. As a result, when manufacturing the above-mentioned hot-rolled steel strip, the conventional hot-rolling rough-rolling process is no longer necessary, and the thin slab can be directly supplied to the hot-rolling finish-rolling process, which has a significant effect on reducing equipment costs. Brought.

さらに、仕上圧延工程を簡略化するためには、さらに薄
い鋳′片を製造する必要がある。しかし、上記の薄鋳片
連続鋳造技術では、幅変更の必要性から給湯方法が制限
され、さらに薄い鋳片を連続鋳造した場合には、この給
湯方法の関係で鋳片表面品質が劣化するという問題があ
った。
Furthermore, in order to simplify the finish rolling process, it is necessary to manufacture thinner slabs. However, with the continuous thin slab casting technology described above, the hot water supply method is limited due to the need to change the width, and furthermore, when thin slabs are continuously cast, the surface quality of the slab deteriorates due to this hot water supply method. There was a problem.

そこで、本出願人は、薄鋳片連続鋳造では、通常の連続
鋳片にくらべて高速で連続鋳造が可能でに水平ロールを
配列した圧下装置5を設置し、内部に未凝固部を有する
薄鋳片8を連続的に圧下することにより、左右エツジの
板厚差(ウェツジ量)を低減し、より薄い熱延鋼帯用素
材を製造する方法および装置について、特開昭60−8
7904号公報および特願昭61−14044号で開示
した。
Therefore, in the continuous casting of thin slabs, the present applicant has installed a reduction device 5 equipped with horizontal rolls, which enables continuous casting at a higher speed than normal continuous slabs, and has developed a method for continuously casting thin slabs with unsolidified parts inside. Japanese Patent Laid-Open No. 60-8 discloses a method and apparatus for manufacturing a thinner material for hot-rolled steel strip by reducing the thickness difference (wedge amount) between the left and right edges by continuously rolling down the slab 8.
This was disclosed in Publication No. 7904 and Japanese Patent Application No. 14044/1983.

この方法は、第4図(a)に示すように、内部に未凝固
部7を有する薄鋳片8を、圧下装置5の圧下ゾーン5八
に配した圧下ロール10で圧下した後でも未凝固部7が
残存するように、未凝固圧延を行う方法である。したが
って、実際に圧下ロール10で圧下される部分は第4図
(11)に示すように、幅端部のシェル9^のみで、鋳
片上下面のシェル9Bの大部分は第4図(c)に示すよ
うに曲げ変形を受けるだけであり、従来の熱間圧延にく
らべて、未凝固圧延時の圧延荷重およびトルクは非常に
小さくなる。
In this method, as shown in FIG. 4(a), even after a thin slab 8 having an unsolidified portion 7 is rolled down by a rolling roll 10 disposed in a rolling zone 58 of a rolling device 5, no solidified part 7 remains. This is a method of performing unsolidified rolling so that portion 7 remains. Therefore, the part that is actually rolled down by the rolling roll 10 is only the shell 9^ at the width end, as shown in Figure 4 (11), and most of the shell 9B on the upper and lower surfaces of the slab is rolled down as shown in Figure 4 (c). As shown in the figure, the rolling force and torque during unsolidified rolling are extremely small compared to conventional hot rolling.

したがって、凝固完了後に圧延を行う熱延設備にくらべ
て、未凝固圧延設備は圧延動力が非常に小さく、小型の
設備となり、非常に安価な厚み圧下設備である0例えば
、第3図に示すローラ・テーブル用の数本のロールとそ
のロールの上下ロール開度(ロール・ギャップ)を調整
する装置を用いて、圧下装置5の下流側に設置したビン
チロール6で軽圧下を行いながら鋳片を引抜くことによ
って、未凝固圧延を実施できる。
Therefore, compared to hot rolling equipment that performs rolling after completion of solidification, unsolidified rolling equipment has very low rolling power and is a small equipment, and is very inexpensive thickness reduction equipment.・Using several table rolls and a device that adjusts the upper and lower roll openings (roll gaps) of the rolls, the slab is lightly rolled down with the Vinci roll 6 installed downstream of the rolling down device 5. Unsolidified rolling can be performed by drawing.

(ハ)発明が解決しようとする問題点 第3図に示すような水平ロールを配列した圧下装置5を
用いて高圧下率の未凝固圧延を実施した場合、鋳片の上
下面のシェル9B(第4図(a))に割れが発生し、鋳
片晶質の劣化またはシェル9Bが破れて内部の溶精が流
れ出すブレイクアウトが生じる。そのため、事実上、未
凝固圧延は圧下率で20%程度が限度とされていた。
(c) Problems to be Solved by the Invention When performing unsolidified rolling at a high reduction rate using a rolling device 5 having horizontal rolls arranged as shown in FIG. Cracks occur as shown in FIG. 4(a), deterioration of the crystalline quality of the slab, or a breakout in which the shell 9B is torn and the molten metal inside flows out. Therefore, in reality, the rolling reduction ratio of unsolidified rolling was limited to about 20%.

未凝固圧延における鋳片の変形挙動を第4図を用いて説
明する。第4図(、)に示すように、未凝固鋳片の内部
には、未凝固層7が存在するために、この鋳片を圧下ロ
ール10で厚み圧下した場合、幅端部のシェル9^のみ
が圧縮変形され、圧延方向に伸びることになる(第4図
(b))。
The deformation behavior of a slab during unsolidified rolling will be explained using FIG. 4. As shown in FIG. 4(,), since there is an unsolidified layer 7 inside the unsolidified slab, when this slab is reduced in thickness with the reduction roll 10, the shell 9 at the width end portion Only that portion is compressively deformed and elongated in the rolling direction (Fig. 4(b)).

これに対し、鋳片上下面の大部分のシェル9Bは第4図
(e)に示すように、圧下ロール10による圧縮変形は
受けず、曲げられるだけであり、圧延方向への伸び変形
は幅端部のシェル9^の伸びによりシェル9Bに生じる
圧延方向の引張応力により引き起される。このため、未
凝固圧延での圧下率を大きくとると、鋳片上下面のシェ
ル9Bに生じる引張応力が増大し、幅中央部のシェル9
Bに幅方向の割れが発生する。
On the other hand, as shown in FIG. 4(e), most of the shell 9B on the upper and lower surfaces of the slab is not compressed and deformed by the reduction roll 10, but is only bent, and the elongation deformation in the rolling direction occurs at the width end. This is caused by tensile stress in the rolling direction generated in the shell 9B due to the elongation of the shell 9^. Therefore, if the rolling reduction ratio in unsolidified rolling is increased, the tensile stress generated in the shell 9B on the upper and lower surfaces of the slab will increase, and the shell 9B at the center of the width will increase.
A crack occurs in the width direction in B.

したがって、第3図に示すような水平ロールを配列した
圧下装置5では、鋳片上下面のシェル9Bの割れ発生に
より、それほど大きな圧下率が取れず、熱延仕上圧延設
備の簡略化に大きな効果をもたらすほどではなかった。
Therefore, with the rolling down device 5 having horizontal rolls arranged as shown in FIG. 3, it is not possible to obtain a very large rolling reduction due to the occurrence of cracks in the shells 9B on the upper and lower surfaces of the slab, and this has a great effect on simplifying the hot rolling finishing equipment. It wasn't enough to bring about that.

本発明は、特にrin片連続鋳造機により鋳造された薄
鋳片を鋳片内部が未凝固状態で厚み圧下を行う未凝固圧
延において、鋳片表面の割れ発生を起さずに鋳片内部割
れの増加を防止し、高圧下率で未凝固圧延を実施する方
法を得ることにあり、これにより熱延仕上圧延設備の簡
素化を図り、安価な熱延鋼帯の製造を実現することを目
的としている。
In particular, the present invention is capable of causing internal cracks in the slab without causing cracks on the slab surface during unsolidified rolling in which the thickness of a thin slab cast by a continuous rin slab casting machine is reduced while the inside of the slab is in an unsolidified state. The purpose of this invention is to obtain a method for performing unsolidified rolling at a high reduction rate while preventing an increase in the amount of steel. It is said that

(ニ)問題点を解決するための手段 本発明の未凝固圧延方法は、 薄鋳片連続鋳造機により鋳造された薄鋳片を、鋳片内部
が凝固完了をする前に厚み圧下を行いかつ圧下完了後も
鋳片内部に未凝固層を残存させる未凝固圧延において、
厚み圧下前に厚み圧下ロールに対して垂直に配置された
カリバ溝を有するロールで鋳片コーナ部を圧延すること
によって、上記問題点を解決している。
(d) Means for Solving Problems The unsolidified rolling method of the present invention involves reducing the thickness of a thin slab cast by a continuous thin slab casting machine before the inside of the slab is completely solidified. In unsolidified rolling, where an unsolidified layer remains inside the slab even after rolling is completed,
The above problem is solved by rolling the corner portion of the slab with a roll having a caliber groove arranged perpendicularly to the thickness reduction roll before the thickness reduction.

(ホ)作  用 本発明の未凝固圧延方法では、カリバ・エツジヤ・ロー
ルで鋳片コーナをエツジング圧延することで、鋳片断面
を凸形状にし、続いて行う厚み圧下時に幅端部のシェル
の曲げ変形を容易にし、厚み圧下時の幅端部のシェルの
圧延方向伸びを低減させ、鋳片の上下面シェル9Bに生
じる圧延方向引張応力を低減し、上下面シェル9に生じ
る割れを防止し、高圧下未凝固圧延を可能としている。
(E) Function In the unsolidified rolling method of the present invention, the corner of the slab is edge-rolled using a Caliba edger roll to make the cross section of the slab convex, and during the subsequent thickness reduction, the shell at the width end is It facilitates bending deformation, reduces the elongation in the rolling direction of the shell at the width end during thickness reduction, reduces the tensile stress in the rolling direction that occurs in the upper and lower shells 9B of the slab, and prevents cracks that occur in the upper and lower shells 9. , which enables unsolidified rolling under high pressure.

さらに、鋳片幅の変更に対しては、カリバ・エツジヤ・
ロールの開度変更で対応でき、また、未凝固圧下量、シ
ェル厚鋳片厚等の未凝固圧延条件の変化により生じる上
下面シェル9Bの割れ防止のためのR適鋳片コーナ圧下
量の変化に対してもカリバ・エツジヤ・ロールの開度調
整により対応でき、未凝固圧延時の効果的な割れ防止が
可能である。
Furthermore, for changes in slab width, Kariba Etsujia
This can be handled by changing the opening of the rolls, and also changes in the R suitable slab corner reduction amount to prevent cracking of the upper and lower shells 9B caused by changes in unsolidified rolling conditions such as unsolidified reduction amount, shell thickness, slab thickness, etc. This can be dealt with by adjusting the opening of the Caliba Edger roll, making it possible to effectively prevent cracking during unsolidified rolling.

(へ)実施例 第1図および第2図を参照して、本発明の未凝固圧延方
法の実施例について説明する。第1図は本発明の方法を
実施する設備のv1略説明図である。
(f) Example An example of the unsolidified rolling method of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a v1 schematic illustration of equipment for carrying out the method of the invention.

第1図において、第3図と同一の番号は同一の装置、機
器を表す。
In FIG. 1, the same numbers as in FIG. 3 represent the same devices and equipment.

本実施例においては、ツイン・ベルトキャスタ3の下流
側に鋳片サポート・ロール列4、非駆動力リバ・エツジ
ヤ・ロール11、非駆動厚み圧下ロール列5^、ガイド
・ローラ列5B、ピンチロール6を順次設置する。ツイ
ン・ベルトキャスタ3により連続鋳造された内部に未凝
固層を残す薄鋳片8は、ピンチロール6で引き抜かれカ
リバ・エツジヤ・ロール11で鋳片コーナ部が第2図(
a)に示すように圧下され、その後、厚み圧下ロール列
5八で未凝固圧延を受ける。
In this embodiment, on the downstream side of the twin belt caster 3, there is a slab support roll row 4, a non-driving force lever edger roll 11, a non-driving thickness reduction roll row 5^, a guide roller row 5B, and a pinch roll. 6 will be installed one after another. The thin slab 8, which is continuously cast by the twin belt caster 3 and which leaves an unsolidified layer inside, is pulled out by the pinch rolls 6, and the corner part of the slab is removed by the Caliba Edger roll 11 (see Fig. 2).
It is rolled down as shown in a), and then subjected to unsolidified rolling by a thickness rolling roll row 58.

例えば、第1表に示すような鋳造条件で、圧下率40%
の未凝固圧延を行った場合における本発明の詳細な説明
する。
For example, under the casting conditions shown in Table 1, the reduction rate is 40%.
The present invention will be described in detail in the case where unsolidified rolling is performed.

第  1  表 本実施例では、第2図に示すように、カリバ・エツジヤ
・ロール11のカリバ角θ=35°、カリバ底直径D=
701x、カリバ深さDc=40mm、カリバ底長さL
 −26xyzとした。また、圧下ロール列5^は、直
径100zzのロールを180+vピツチで6列配置し
た装置を用いた。エツジヤ開度E c= 60611と
し、各圧下ロール10の圧下量Δh−3,3ivとした
Table 1 In this embodiment, as shown in FIG.
701x, caliber depth Dc=40mm, caliber bottom length L
-26xyz. Further, as the reduction roll row 5^, an apparatus was used in which six rows of rolls each having a diameter of 100 zz were arranged at a pitch of 180+v. The edger opening degree E c was set to 60611, and the rolling reduction amount of each rolling roll 10 was set to Δh-3.3iv.

さらに、未凝固圧延終了時、すなわち圧下ロール列5^
の出側での鋳片上下面のシェル9Bの目標シェル厚みh
s=13〜14xmとなるように鋳片の冷却を制御した
Furthermore, at the end of unsolidified rolling, that is, the reduction roll row 5^
The target shell thickness h of the shell 9B on the upper and lower surfaces of the slab at the exit side of
Cooling of the slab was controlled so that s=13 to 14xm.

本未凝固圧延後の鋳片幅中央部の圧延方向伸び、すなわ
ち、鋳片上下面のシェル9Bの伸び゛を測定したところ
、未凝固圧延前の鋳片長さに対して、1.2%伸び歪が
生じていた。また、鋳片の上下面には、特に問題となる
ような表面割れは観察されなかった。
When we measured the elongation in the rolling direction of the center of the slab width after this unsolidified rolling, that is, the elongation of the shell 9B on the upper and lower surfaces of the slab, we found that the elongation strain was 1.2% with respect to the length of the slab before unsolidified rolling. was occurring. Moreover, no particularly problematic surface cracks were observed on the upper and lower surfaces of the slab.

一方、上記未凝固圧延と同一条件で、カリバ・エツジヤ
・ロール11による鋳片コーナを圧延しない場合では、
鋳片上下面のシェル9Bの伸び歪は、2.6、%となり
鋳片の上下表面には最大深さ約51、長さ約50yg+
の割れが観察され、本発明による表面割れ防止効果が確
認できた。
On the other hand, in the case where the corner of the slab is not rolled by the Caliba Edger Roll 11 under the same conditions as the above-mentioned unsolidified rolling,
The elongation strain of shell 9B on the upper and lower surfaces of the slab is 2.6%, and the upper and lower surfaces of the slab have a maximum depth of approximately 51 mm and a length of approximately 50 yg+.
Cracks were observed, confirming the effect of the present invention on preventing surface cracks.

上述した本発明による表面割れ防止効果について第2図
を参照して説明する。前述したように、未凝固圧延時の
鋳片上下面の割れは、幅端部のシェル9^の圧下による
圧延方向伸びにより上下面のシェル9Bに引張応力が働
くことにより生じる。
The effect of preventing surface cracking according to the present invention described above will be explained with reference to FIG. 2. As described above, cracks on the upper and lower surfaces of the slab during unsolidified rolling are caused by tensile stress acting on the upper and lower shells 9B due to elongation in the rolling direction due to reduction of the width end shells 9^.

したがって、圧下によるシェル9^の伸びを低減すれば
、シェル9Bに作用する引張応力を減少させ、割れ発生
を防止できる。本発明では、厚み圧下前に鋳片コーナ部
を圧延し、鋳片断面形状を変化させることにより、厚み
圧下時のシェル9^の伸び低減を図っている。
Therefore, by reducing the elongation of the shell 9^ due to rolling, the tensile stress acting on the shell 9B can be reduced and cracking can be prevented. In the present invention, the elongation of the shell 9^ during thickness reduction is reduced by rolling the slab corner portions and changing the cross-sectional shape of the slab before thickness reduction.

2図6)に示すように、鋳片コーナ部を圧下すると、通
常の熱延鋼帯におけるエツジング圧延のように鋳片はほ
とんど伸びず、鋳片コーナ部の圧延されたメタルは幅方
向に流れ、第2図(b)のように鋳片断面はドッグ・ボ
ーン形状となる。このときの鋳片厚は第2図(b)に示
すように、H,>Ho>H,となり、このような断面形
状の鋳片を厚み圧下した場合、厚み圧下ロールには、鋳
片厚が厚い部分から接触するため、厚み圧下初期では、
シェル9^には、曲げ力が加わる。厚み圧下が進むにつ
れて、シェル9Δには厚み方向の圧下刃も作用するため
、本発明の未凝固圧延法ではシェル9^は曲げ変形と圧
延により厚みが減少する。したがって、従来の未凝固圧
延方法にくらべると、厚み圧下によるシェル9^の圧延
方向伸びは小さくなり、別れ発生が防止できる。
As shown in Fig. 2), when the corner of a slab is rolled down, the slab hardly elongates as in the edging rolling of a normal hot-rolled steel strip, and the rolled metal at the corner of the slab flows in the width direction. As shown in FIG. 2(b), the cross section of the slab has a dog-bone shape. The thickness of the slab at this time is H,>Ho>H, as shown in Figure 2(b), and when a slab with such a cross-sectional shape is reduced in thickness, the thickness reduction roll has a thickness of H,>Ho>H. At the initial stage of thickness reduction, because the contact starts from the thicker part,
A bending force is applied to the shell 9^. As the thickness reduction progresses, a reduction blade in the thickness direction also acts on the shell 9Δ, so in the unsolidified rolling method of the present invention, the thickness of the shell 9^ decreases due to bending deformation and rolling. Therefore, compared to the conventional unsolidified rolling method, the elongation of the shell 9^ in the rolling direction due to thickness reduction is reduced, and the occurrence of separation can be prevented.

例えば、厚み圧下が、シェル9^の曲げ変形のみで進行
した場合、シェル9^の伸びはOとなり、シェル9Bの
割れは防止できる。しかし、第2図(e)に示すシェル
9^の9^^部分には大きな引張応力が作用するため、
9^^部分に割れが発生する。
For example, when the thickness reduction progresses only by bending deformation of the shell 9^, the elongation of the shell 9^ becomes O, and cracking of the shell 9B can be prevented. However, since a large tensile stress acts on the 9^^ part of the shell 9^ shown in Fig. 2(e),
A crack occurs at the 9^^ part.

このため、厚み圧下時にシェル9^に作用する曲げ力を
調整する必要がある。
Therefore, it is necessary to adjust the bending force acting on the shell 9^ during thickness reduction.

本発明の方法によれば、カリバ・エツジヤ・ロールの開
度を調整し、鋳片コーナ部の圧下量を制御することによ
り、上記曲げ力を変化させることができ、鋳片厚、幅、
シェル厚、厚み圧下量等未凝固圧延条件が変化しても、
割れ防止が可能である。
According to the method of the present invention, the above bending force can be changed by adjusting the opening degree of the Caliba edger roll and controlling the amount of reduction of the corner portion of the slab.
Even if unsolidified rolling conditions such as shell thickness and thickness reduction change,
It is possible to prevent cracking.

(ト)効  果 以上説明したように、本発明の未凝固圧延方法は、シェ
ルの圧下による伸びを低減することが可能である。した
がって、従来の未凝固圧延にくらべて高圧下率の未凝固
圧延を実現できる。ところで、本発明の未凝固圧延方法
は、従来の連続鋳造機で鋳造される鋳片の未凝固圧延に
も適用が可能である。また、鋳片コーナ・エツジング圧
延による割れ防止効果を高めるためには、カリバ・エツ
ジヤ・ロールをさらに厚み圧下ロール間に増設すればよ
い。
(g) Effects As explained above, the unsolidified rolling method of the present invention can reduce elongation due to reduction of the shell. Therefore, it is possible to realize unsolidified rolling with a higher reduction ratio than conventional unsolidified rolling. By the way, the unsolidified rolling method of the present invention can also be applied to unsolidified rolling of slabs cast by conventional continuous casting machines. In addition, in order to enhance the effect of preventing cracks caused by corner edge rolling of the slab, additional Caliba edge rolls may be installed between the thickness reduction rolls.

本発明の未凝固圧延方法によれば、高圧下率の圧延が可
能であるため、熱間圧延工程を簡略化でき、安価な熱延
鋼帯の製造が可能となる。
According to the unsolidified rolling method of the present invention, rolling at a high reduction rate is possible, so the hot rolling process can be simplified and a hot rolled steel strip can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の未凝固圧延方法を実施する設備の概略
説明図。第2図は本発明の未凝固圧延方法の説明図、第
3図は従来の未凝固圧延方法を火傷 施する設置の概略説明図。第4図は未凝固圧延時の割れ
発生原因の説明図。 1:取鍋        2:溶湯槽 3:ツイン・ベルトキャスタ 4:鋳片サポート・ロール列 5:未凝固圧下装置 5八:厚み圧下ロール列 5B=ガイド・ローラ列 6:ピンチロール    7:溶湯 8:鋳片        9^、911ニジエル10:
厚み圧下ロール 11:カリバ・エツジヤ・ロール 特許出願人  住友金属工業株式会社 (外5名)
FIG. 1 is a schematic explanatory diagram of equipment for carrying out the unsolidified rolling method of the present invention. FIG. 2 is an explanatory diagram of the unsolidified rolling method of the present invention, and FIG. 3 is a schematic explanatory diagram of the installation of the conventional unsolidified rolling method for applying burns. FIG. 4 is an explanatory diagram of the cause of cracking during unsolidified rolling. 1: Ladle 2: Molten metal tank 3: Twin belt casters 4: Slab support roll row 5: Unsolidified reduction device 5 8: Thickness reduction roll row 5B = Guide roller row 6: Pinch roll 7: Molten metal 8: Slab 9^, 911 Nigiel 10:
Thickness reduction roll 11: Kariba Etsuya Roll Patent applicant Sumitomo Metal Industries, Ltd. (5 others)

Claims (1)

【特許請求の範囲】[Claims] 薄鋳片連続鋳造機により鋳造された薄鋳片を、鋳片内部
が凝固完了をする前に厚み圧下を行いかつ圧下完了後も
鋳片内部に未凝固層を残存させる未凝固圧延において、
厚み圧下前に厚み圧下ロールに対して垂直に配置された
カリバ溝を有するロールで鋳片コーナ部を圧延すること
を特徴とした未凝固圧延方法。
In unsolidified rolling, a thin slab cast by a continuous thin slab casting machine is reduced in thickness before the inside of the slab is completely solidified, and an unsolidified layer remains inside the slab even after the reduction is completed.
An unsolidified rolling method characterized in that, before thickness reduction, a corner portion of a slab is rolled with a roll having a caliber groove arranged perpendicularly to a thickness reduction roll.
JP294787A 1987-01-09 1987-01-09 Non-solidified rolling method Pending JPS63171255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP294787A JPS63171255A (en) 1987-01-09 1987-01-09 Non-solidified rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP294787A JPS63171255A (en) 1987-01-09 1987-01-09 Non-solidified rolling method

Publications (1)

Publication Number Publication Date
JPS63171255A true JPS63171255A (en) 1988-07-15

Family

ID=11543565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP294787A Pending JPS63171255A (en) 1987-01-09 1987-01-09 Non-solidified rolling method

Country Status (1)

Country Link
JP (1) JPS63171255A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036902A (en) * 1989-03-18 1991-08-06 Sms Schloemann-Siemag Aktiengesellschaft Continuous casting plant for casting beam blanks
US5366001A (en) * 1991-10-30 1994-11-22 Mannesmann Aktiengesellschaft Method of manufacturing rolled material from oxygen-free copper
WO1997000747A1 (en) * 1995-06-21 1997-01-09 Sumitomo Metal Industries, Ltd. Continuous casting of thin cast pieces
CN108339955A (en) * 2018-01-22 2018-07-31 上海东震冶金工程技术有限公司 Strand arc chord angle molding machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036902A (en) * 1989-03-18 1991-08-06 Sms Schloemann-Siemag Aktiengesellschaft Continuous casting plant for casting beam blanks
US5366001A (en) * 1991-10-30 1994-11-22 Mannesmann Aktiengesellschaft Method of manufacturing rolled material from oxygen-free copper
WO1997000747A1 (en) * 1995-06-21 1997-01-09 Sumitomo Metal Industries, Ltd. Continuous casting of thin cast pieces
US5871040A (en) * 1995-06-21 1999-02-16 Sumitomo Metal Industries, Ltd. Process for continuously casting thin slabs
CN108339955A (en) * 2018-01-22 2018-07-31 上海东震冶金工程技术有限公司 Strand arc chord angle molding machine
CN108339955B (en) * 2018-01-22 2019-10-22 上海东震冶金工程技术有限公司 Slab arc chord angle molding machine

Similar Documents

Publication Publication Date Title
EP0504999B1 (en) Apparatus and method for the manufacture of hot-rolled steel
JP5371421B2 (en) Processes and systems for producing metal strips and sheets without disrupting continuity during continuous casting and rolling
KR101204479B1 (en) Process and plant for manufacturing steel plates without interruption
US8381384B2 (en) Shaped direct chill aluminum ingot
JP6947268B2 (en) Manufacturing method of hat-shaped steel sheet pile
JPH0761488B2 (en) Manufacturing method and equipment for hot strip
JPS63171255A (en) Non-solidified rolling method
JPH0327843A (en) Method for uniformly and rapidly cooling continuous cast strip in width direction
JPS63171254A (en) Non-solidified rolling method
JP3090183B2 (en) Austenitic stainless steel thin cast slab and method for producing the same
JPH035004A (en) Method for rolling reduction of unsolidified slab
JP7356016B2 (en) Method for rolling rectangular cross-section steel billets, continuous casting and rolling equipment, and rolling equipment
JPH09136145A (en) Method for working recessed parts on peripheral surface for continuously casting cast strip
JP7460894B2 (en) HOT-ROLLED STEEL SHEET MANUFACTURING METHOD AND HOT-ROLLED STEEL SHEET MANUFACTURING APPARATUS
JP2604315B2 (en) Hot coil manufacturing method
WO2013046347A1 (en) Hot rolling equipment
JPH0890166A (en) Continuous casting apparatus and method therefor
JPH07100594A (en) Twin roll type continuous casting method and apparatus thereof
WO2013046345A1 (en) Hot rolling facility
JPH03169457A (en) Short wall mold in strip continuous casting machine
JPH0735551B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPS5849321B2 (en) Metal slab width rolling method
JPS62270257A (en) Apparatus for producing continuously rulled stock for metal sheet
JPH09108787A (en) Thin cast slab and production thereof
JP3356024B2 (en) Hot rolled steel strip manufacturing method