JPH035004A - Method for rolling reduction of unsolidified slab - Google Patents

Method for rolling reduction of unsolidified slab

Info

Publication number
JPH035004A
JPH035004A JP13768789A JP13768789A JPH035004A JP H035004 A JPH035004 A JP H035004A JP 13768789 A JP13768789 A JP 13768789A JP 13768789 A JP13768789 A JP 13768789A JP H035004 A JPH035004 A JP H035004A
Authority
JP
Japan
Prior art keywords
slab
unsolidified
rolling
rolls
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13768789A
Other languages
Japanese (ja)
Inventor
Teruo Kono
河野 輝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13768789A priority Critical patent/JPH035004A/en
Publication of JPH035004A publication Critical patent/JPH035004A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/224Edge rolling of flat products

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To roll down an unsolidified slab at a high draft by using cross rolls for rolling reduction rolls inclusive of the rolling reduction rolls on the uppermost stream side. CONSTITUTION:The thin slab 8 which is continuously cast by a twin belt caster 3 and has the unsolidified layers remained therein is drawn by pinch rolls 6 and is rolled down by a thickness rolling reduction roll train 5A crossed in the same direction; thereafter, the slab section is molded to a rectangular section by a caliber edger rolls 11 and is drawn out by pinch rolls 6 via a guide roller train 5B. The elongation of the shell by the rolling reduction is decreased in this way and the rolling reduction of the unsolidified slab at the high draft is executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ツイン・ベルトキャスタ等の薄鋳片連続鋳造
機で鋳造された薄鋳片および通常固定モールド型連続鋳
造鋳片をその鋳片内部が未凝固状態のまま厚み圧下を行
う未凝固鋳片圧下方法に関し、さらに詳しく言えば、鋳
片の表面割れを防止し、内部割れの増加を抑えて、高圧
下率未凝固鋳片圧下を実現する方法に関するものである
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to thin cast slabs cast with a thin slab continuous casting machine such as a twin belt caster, and normally fixed mold continuous cast slabs. Regarding the unsolidified slab reduction method in which thickness reduction is performed while the inside is in an unsolidified state, more specifically, it is possible to prevent surface cracking of the slab, suppress the increase in internal cracks, and achieve high reduction rate unsolidified slab reduction. It is about how to achieve this.

(従来の技術) 通常、厚み1.5〜5mmの熱延鋼帯を製造する場合、
まず、連続鋳造設備で厚み200〜300 mm、幅1
000〜2QOOmm程度の鋳片を製造し、この鋳片を
連続鋳造ライン内で長さ10m程度に切断する。切断さ
れた鋳片は、熱延工程まで搬送され、加熱炉で所定の温
度(1050〜1200’C)にまで加熱された後、数
台の粗圧延機で連続圧延またはレバース圧延を施すこと
により、厚み30〜50mm程度に圧延され、さらに6
〜7スタンドの連続仕上圧延機で厚み1゜5〜5mmの
熱延鋼帯に仕上げられている。
(Prior art) Usually, when producing a hot rolled steel strip with a thickness of 1.5 to 5 mm,
First, continuous casting equipment is used to create a mold with a thickness of 200 to 300 mm and a width of 1 mm.
A slab of about 000 to 2QOOmm is produced, and this slab is cut into a length of about 10 m in a continuous casting line. The cut slabs are transported to the hot rolling process, heated to a predetermined temperature (1050 to 1200'C) in a heating furnace, and then subjected to continuous rolling or reverse rolling using several rough rolling mills. , rolled to a thickness of about 30 to 50 mm, and then rolled to a thickness of about 6
A hot-rolled steel strip with a thickness of 1.5 to 5 mm is finished using a continuous finishing mill with ~7 stands.

また近年、通常の連続鋳造とは異なるツイン・ベルトキ
ャスタ等の薄鋳片の連続鋳造技術の開発により、従来の
数分の1の厚み(40〜80mm)の薄鋳片が製造され
るようになった。その結果、上記熱延鋼帯を製造する場
合、従来の熱延粗圧延工程は必要なくなり、薄鋳片を直
接に熱延仕」二圧延工程に供給することができ、設備費
の低減に大きな効果をもたらした。
In addition, in recent years, with the development of continuous casting technology for thin slabs, such as twin belt casters, which is different from normal continuous casting, thin slabs with a thickness (40 to 80 mm) that is a fraction of the conventional thickness can be manufactured. became. As a result, when manufacturing the hot-rolled steel strip mentioned above, the conventional hot-rolling and rough-rolling process is no longer necessary, and the thin slab can be directly supplied to the hot-rolling process, which greatly reduces equipment costs. It brought about an effect.

さらに、仕上圧延工程を簡略化するためには、さらに薄
い鋳片を製造する必要がある。しかし、上記の薄鋳片連
続鋳造技術では、幅変更の必要性から給湯方法が制限さ
れ、さらに薄い鋳片を連続鋳造した場合には、この給湯
方法との関係で鋳片表面品質が劣化するという問題があ
った。
Furthermore, in order to simplify the finish rolling process, it is necessary to manufacture thinner slabs. However, with the above-mentioned continuous thin slab casting technology, the necessity to change the width limits the hot water supply method, and furthermore, when thin slabs are continuously cast, the surface quality of the slab deteriorates due to this hot water supply method. There was a problem.

そこで、薄鋳片連続鋳造では、通常の連続鋳片番こくら
べて高速で連続鋳造が可能であるという利点を生かして
、左右エツジの板厚差(ウェツジ量)を低減し、より薄
い熱延鋼帯用素材を製造する方法が考えられている。
Therefore, continuous casting of thin slabs takes advantage of the fact that continuous casting is possible at a higher speed than normal continuous slab casting, and reduces the thickness difference (wedge amount) between the left and right edges, resulting in thinner hot-rolled slabs. A method of manufacturing a material for steel strip has been considered.

例えば、第3図に示すように、ツインベルト式連続鋳造
機(ツイン・ヘルドキャスタ)3にあっては、取鍋1か
らの溶湯7はタンデイツシュ2を経て注入され、次いで
該ツイン・ヘルドキャスタ3の下流側にサポートロール
列4を経て水平ロールを配列した圧下ロール列5^とガ
イドロール列5Bとから成る圧下装置5を設置し、内部
に未凝固部を有する薄鋳片8を連続的に圧下することに
より、薄い熱延用鋼帯としている。この熱延用鋼帯はピ
ンチロール6を経て装置より取り出される。
For example, as shown in FIG. 3, in a twin belt continuous casting machine (twin held caster) 3, molten metal 7 from a ladle 1 is injected through the tundish 2, and then the twin held caster 3 A rolling device 5 consisting of a rolling roll row 5^ in which horizontal rolls are arranged via a support roll row 4 and a guide roll row 5B is installed on the downstream side of the support roll row 4, and a rolling down device 5 consisting of a rolling roll row 5^ having horizontal rolls arranged therein and a guide roll row 5B is installed, and a thin slab 8 having an unsolidified portion inside is continuously rolled. By rolling it down, it is made into a thin steel strip for hot rolling. This hot rolling steel strip is taken out from the apparatus via pinch rolls 6.

この方法は、第4図(a)に示すように、内部に未凝固
部7を有する薄鋳片8を、圧下装置5の圧下ロール列5
Aに配した圧下ロール10で圧下した後でも未凝固部7
が残存するように、未凝固鋳片圧下(以下、単に「未凝
固圧下」ともいう)を行う方法である。したがって、実
際に圧下ロール10で圧下される部分は第4図(b)に
示すように、幅端部のシェル9Aのみで、鋳片上下面の
シェル9Bの大部分は第4図(C)に示すように曲げ変
形を受けるだけであり、従来の熱間圧延に比べて、未凝
固圧下時の圧下荷重およびトルクは非常に小さくなる。
In this method, as shown in FIG.
Even after rolling down with the rolling down roll 10 arranged at A, the unsolidified portion 7
This is a method in which unsolidified slab reduction (hereinafter also simply referred to as "unsolidified reduction") is performed so that . Therefore, the part that is actually rolled down by the rolling roll 10 is only the shell 9A at the width end, as shown in FIG. As shown, it only undergoes bending deformation, and the rolling load and torque during unsolidified rolling are much smaller than in conventional hot rolling.

したがって、凝固完了後に圧延を行う熱延設備にくらべ
て、未凝固圧下設備は所要動力が非常に小さく、小型の
設備となり、非常に安価な厚み圧下設備である。例えば
、第3図に示すローラ・チーフル用の数本のロールとそ
のロールの上下ロール開度(ロール・ギャップ)を調整
する装置を用いて、圧下装置5の下流側に設置したピン
チロール6で軽圧下を行いながら鋳片を引抜くことによ
って、未凝固鋳片圧下を実施できる。
Therefore, compared to hot rolling equipment that performs rolling after completion of solidification, unsolidified rolling equipment requires much less power, is a small equipment, and is a very inexpensive thickness rolling equipment. For example, the pinch roll 6 installed downstream of the rolling down device 5 can be used with several rolls shown in FIG. By pulling out the slab while performing light rolling, rolling of the unsolidified slab can be carried out.

(発明が解決しようとする課B) しかしながら、第3図に示すような水平ロールを配列し
た圧下装置5を用いて高圧下率の未凝固鋳片圧下を実施
した場合、鋳片の上下面のシェル9B (第4図(a)
)に割れが発生し、鋳片品質の劣化またはシェル9Bが
破れて内部の溶鋼が流れ出すブレイクアウトが生じる。
(Problem B to be solved by the invention) However, when rolling down an unsolidified slab at a high reduction rate using a rolling down device 5 having horizontal rolls arranged as shown in FIG. Shell 9B (Figure 4(a)
) cracks occur in the slab, resulting in deterioration in slab quality or a breakout in which the shell 9B ruptures and the molten steel inside flows out.

そのため、事実上、未凝固圧下は圧下率10%程度に限
定される。
Therefore, in reality, the unsolidified reduction is limited to a reduction ratio of about 10%.

ここで、未凝固鋳片圧下における鋳片の変形挙動を第4
図(a)〜(C)を用いて説明する。
Here, the deformation behavior of the slab under the pressure of the unsolidified slab is determined by the fourth method.
This will be explained using Figures (a) to (C).

まず、第4図(a)に示すように、未凝固鋳片の内部に
は、未凝固部7が存在するために、この鋳片を圧下ロー
ル10で厚み圧下した場合、幅端部のシェル9Aのみが
圧縮変形され、鋳片長さ方向に伸びることになる(第4
図(b))。
First, as shown in FIG. 4(a), since there is an unsolidified part 7 inside the unsolidified slab, when this slab is reduced in thickness with the reduction roll 10, the shell at the width end Only 9A is compressively deformed and extends in the longitudinal direction of the slab (the fourth
Figure (b)).

これに対し、鋳片上下面の大部分のシェル9Bは第4図
(C)に示すように、圧下ロール10による圧縮変形は
受けず、曲げられるだけであり、鋳片長さ方向への伸び
変形は幅端部のシェル9^の伸びによりシェル9Bに生
じる鋳片長さ方向の引張応力により引き起される。この
ため、未凝固鋳片圧下での圧下率を大きくとると、鋳片
上下面のシェル9Bに生じる引張応力が増大し、幅中央
部のシェル9Bに幅方向の割れが発生する。
On the other hand, as shown in FIG. 4(C), most of the shells 9B on the upper and lower surfaces of the slab are not compressed and deformed by the reduction roll 10, but are only bent, and are not subjected to elongation deformation in the longitudinal direction of the slab. This is caused by tensile stress in the longitudinal direction of the slab generated in the shell 9B due to the elongation of the shell 9^ at the width end. For this reason, if the rolling reduction rate of the unsolidified slab is increased, the tensile stress generated in the shell 9B on the upper and lower surfaces of the slab increases, and cracks in the width direction occur in the shell 9B at the center of the width.

したがって、第3図に示すような水平ロールを配列した
圧下装置5では、鋳片上下面のシェル9Bの割れ発生に
より、それほど大きな圧下率が取れないので、所望の薄
鋳片が得られず熱延仕上圧延設備の簡略化に大きな効果
をもたらすには至らなかった。
Therefore, with the rolling down device 5 having horizontal rolls arranged as shown in Fig. 3, it is not possible to achieve a very large rolling reduction due to the occurrence of cracks in the shell 9B on the upper and lower surfaces of the slab. This did not result in a significant effect on the simplification of finishing rolling equipment.

よって、本発明の目的は、特に薄鋳片連続鋳造機により
鋳造された薄鋳片を鋳片内部が未凝固状態で厚み圧下を
行う未凝固圧下において、鋳片表面の割れ発生を起こさ
ずに鋳片内部割れの増加を防止し、高圧下率で未凝固鋳
片圧下を実施する方法を提供することにあり、これによ
り熱延仕上圧延設備の簡素化を図り、安価な熱延鋼帯の
製造を実現する方法を提供することである。
Therefore, it is an object of the present invention to reduce the thickness of a thin slab cast by a continuous thin slab casting machine, without causing cracks on the surface of the slab, especially during unsolidified reduction in which the thickness of the slab is reduced while the inside of the slab is in an unsolidified state. The objective is to provide a method for reducing the unsolidified slab at a high reduction rate while preventing an increase in internal cracks in the slab. The purpose is to provide a method for realizing manufacturing.

(課題を解決するだめの手段) ここに、本発明は、例えば薄鋳片連続鋳造機により鋳造
された薄鋳片に、鋳片内部が凝固完了をする前に厚み圧
下を行い、がっ圧下完了後も鋳片内部に未凝固層を残存
させる未凝固鋳片圧下において、少なくとも最上流側の
圧下ロールを含む圧下ロールにクロスロールを用いるこ
とを特徴とする未凝固鋳片の圧下方法である。
(Means for Solving the Problem) Here, the present invention reduces the thickness of a thin slab cast by a continuous thin slab casting machine, for example, before the inside of the slab is completely solidified, and A method for rolling down an unsolidified slab, characterized in that cross rolls are used for the rolling down rolls including at least the most upstream rolling roll in unsolidified slab rolling that leaves an unsolidified layer inside the slab even after completion. .

本発明の好適態様によれば、上記の未凝固圧下後の鋳片
幅端部を厚み圧下ロールに対して垂直に配置された孔型
エツジヤロールで幅圧下を行うようにしてもよい。
According to a preferred embodiment of the present invention, the width end portion of the slab after the above-mentioned unsolidified reduction may be subjected to width reduction using a grooved edger roll disposed perpendicularly to the thickness reduction roll.

また、別の面からは、本発明は、上述の未凝固鋳片圧下
方法を採用する薄鋳片がらの熱延用綱帯の製造方法であ
る。
In addition, from another aspect, the present invention is a method for manufacturing a hot-rolling steel strip made of thin cast slabs, which employs the above-mentioned unsolidified slab rolling method.

(作用) 本発明にかかる未凝固鋳片圧下方法ではクロスロールを
用いて未凝固鋳片の菱形変形を与えるごとにより幅端部
のシェルの曲げ変形を容易にし、厚み圧下時の幅端部の
シェルの鋳片長さ方向伸びを低減させ、第4図に示すよ
うな鋳片の上下面シェル9Bに生じる鋳片長さ方向引張
応力を低減し、上下面シェル9Bに生じる割れを防止し
、高圧下未凝固圧下を可能としている。
(Function) In the unsolidified slab reduction method according to the present invention, each time the unsolidified slab is deformed into a diamond shape using cross rolls, the bending deformation of the shell at the width end is facilitated. It reduces the elongation of the shell in the longitudinal direction of the slab, reduces the tensile stress in the longitudinal direction of the slab that occurs in the upper and lower shells 9B of the slab as shown in Fig. 4, prevents cracks that occur in the upper and lower shells 9B, and This enables unsolidified pressure reduction.

さらに鋳片の断面形状を矩形化する必要があるときには
、厚み圧下後に孔型ロールエツジヤで鋳片幅端部を圧下
成形する。
Furthermore, when it is necessary to make the cross-sectional shape of the slab rectangular, after the thickness reduction, the width end portion of the slab is rolled down using a grooved roll edger.

ここで、「クロスロール」と称しているのは通常の2段
水平圧延機の一種で上下ロールを水平面内で互いに0〜
4°程度クロス(スキュー)させたものである。このク
ロスロールは最近熱間圧延機仕上スタンドへ板クラウン
制御用に適用されており、この場合4段圧延機のバック
アップロールとワークロールをペアとして上下各ペアを
互いにクロスさせるいわゆるペアクロス圧延機が知られ
ている。日本塑性加工学会誌「塑性と加工」第28巻第
321号1067〜1074頁参照。
What is called "cross roll" here is a type of normal two-high horizontal rolling mill, in which the upper and lower rolls are mutually moved in the horizontal plane from zero to zero.
They are crossed (skewed) by about 4 degrees. These cross rolls have recently been applied to finishing stands of hot rolling mills to control plate crowns, and in this case, a so-called pair cross rolling mill is known in which the backup roll and work roll of a four-high rolling mill are paired and the upper and lower pairs cross each other. It is being See Journal of the Japan Society for Plasticity Processing, "Plasticity and Processing", Vol. 28, No. 321, pp. 1067-1074.

このクロス圧延の特徴の一つとして圧延材上下面で板幅
方向への剪断力が上下面で互いに逆方向に働き圧下材断
面が菱形変形する。通常、この菱形変形は圧延材として
好ましくないので例えば熱延仕上スタンド列ではクロス
方向を各スタンドで順次逆方向とすることにより、この
菱形変形を防ぐことができる。
One of the characteristics of this cross rolling is that shear forces in the width direction of the rolled material act in opposite directions on the upper and lower surfaces of the rolled material, causing the cross section of the rolled material to deform into a diamond shape. Normally, this rhombic deformation is not desirable for rolled materials, so for example, in a row of hot rolling finishing stands, this rhombic deformation can be prevented by sequentially setting the cross direction in the opposite direction for each stand.

このクロスロールばロール軸を駆動することが望ましい
が、非駆動でもその菱形変形発生の効果は得られる。
Although it is desirable to drive the roll shaft of this cross roll, the effect of generating diamond-shaped deformation can be obtained even if the roll shaft is not driven.

またクロス角度(上下ロールの交叉角度)を大きくする
ほど菱形変形発生効果は大きくなるが、この場合上下ロ
ールギャッププロフィルがロールバレル中心でギャップ
が狭く、その両側で広くなる。いわゆる凸クラウンロー
ルとなりこれが大きすぎると圧下鋳片の断面が幅方向に
中門(マイナスクラウン)となる。この対策としてはロ
ールに初期クラウンとして凹形となるようにロールを研
削しておけばよい。
Furthermore, as the cross angle (crossing angle of the upper and lower rolls) increases, the diamond-shaped deformation generation effect increases, but in this case, the upper and lower roll gap profile has a narrow gap at the center of the roll barrel and widens on both sides thereof. This results in a so-called convex crown roll, and if this roll is too large, the cross section of the rolled slab becomes a middle gate (minus crown) in the width direction. As a countermeasure against this problem, the roll may be ground so as to have a concave shape as an initial crown.

このクロスロールの適用位置については少なくとも最上
流側の厚み圧下ロールに適用することが必要である。な
ぜなら、最上流側はどシェル厚が薄く鋳片厚が厚いため
、クロスロールによる鋳片断面の菱形変形発生効果が大
きいこと、またこの最上流側の厚み圧下ロールに通常の
平行ロールを用いるとシェルに割れの発生する危険が大
きいことになる。
Regarding the application position of this cross roll, it is necessary to apply it to at least the thickness reduction roll on the most upstream side. This is because the shell thickness on the most upstream side is thinner and the slab thickness is thicker, so the cross rolls have a greater effect of generating diamond-shaped deformation in the cross section of the slab. There is a great risk that the shell will crack.

さらに下流側の圧下ロールについてはクロスロール適用
が望ましいが、仮に通常の平行ロールであってもその前
の段階である程度の菱形断面となっていれば、菱形変形
が助長されるという効果があり必ずしもクロスロールで
ある必要はない。
Furthermore, it is desirable to apply cross rolls to the downstream roll-down rolls, but even if the rolls are normal parallel rolls, if they have a certain rhombic cross section in the previous stage, this will have the effect of promoting rhombic deformation, so this is not necessarily the case. It doesn't have to be a cross roll.

なお、鋳片そのものの形状をはじめから菱形形状で鋳込
むという方法も考えられるが、この場合鋳造機の構造が
複雑になること、また鋳片の均一な冷却が困難となり局
部的な冷却ムラが生じ割れが発生する等の問題が生ずる
It is also possible to cast the slab itself in a rhombic shape from the beginning, but in this case, the structure of the casting machine becomes complicated, and it becomes difficult to cool the slab uniformly, resulting in localized uneven cooling. Problems such as cracking and cracking occur.

幅端部の成形には孔型エツジヤロール11を使用しても
よく、それによれば鋳片断面を矩形に成形加工すること
ができる。
A grooved edger roll 11 may be used to form the width end portions, thereby making it possible to form the slab into a rectangular cross section.

実施例 第1図および第2図を参照して、本発明の未凝固鋳片圧
下方法の実施例について説明する。
Embodiment An embodiment of the unsolidified slab rolling down method of the present invention will be described with reference to FIGS. 1 and 2.

第1図は本発明の方法を実施する設備の概略説明図であ
る。第1図において、第3図と同一の参照番号は同一の
装置、機器を表す。
FIG. 1 is a schematic illustration of equipment for carrying out the method of the present invention. In FIG. 1, the same reference numbers as in FIG. 3 represent the same devices and equipment.

本実施例においては、ツイン・ベルトキャスタ3の下流
側に鋳片サポート・ロール列4、厚み圧下ロール列5八
、孔型エツジヤ・ロール11、ガイド・ローラ列5B、
ピンチロール6を順次設置して成る連続鋳造ラインを使
用して熱延用鋼帯の製造を行う。
In this embodiment, on the downstream side of the twin belt caster 3, a slab support roll row 4, a thickness reduction roll row 58, a groove edger roll 11, a guide roller row 5B,
A continuous casting line in which pinch rolls 6 are sequentially installed is used to manufacture a hot rolling steel strip.

まず、ツイン・ベルトキャスタ3により連続鋳造され、
内部に未凝固層を残す薄鋳片8は、ピンチロール6で引
き抜かれ同一方向ヘクロスさせた厚み圧下ロール列5A
で圧下された後、孔型エツジヤロール11で鋳片断面を
矩形に成形加工し、ガイド・ローラ列5Bを経てピンチ
ロール6により引き出される。
First, it was continuously cast using twin belt casters 3,
The thin slab 8 that leaves an unsolidified layer inside is pulled out by the pinch rolls 6 and passed through the thickness reduction roll row 5A, which is crossed in the same direction.
After being rolled down, the slab is shaped into a rectangular cross section by a grooved edger roll 11, and is pulled out by a pinch roll 6 through a guide roller row 5B.

圧下ロール列5Aでの薄鋳片8の変形の様子を第2図(
a)および(b)に略式で示す。
Figure 2 shows the deformation of the thin slab 8 in the reduction roll row 5A.
It is shown schematically in a) and (b).

図中、クロスロール圧下により発生する剪断力1 は、黒矢印で示すように上下面のシェル9B−1,9B
2で反対方向となり、薄鋳片8は全体として菱形変形す
る。このような変形は、前述のようにクロスロールの方
向を順に反対方向に配置することにより、あるいは孔型
エツジヤロールを配置して成形加工することにより矩形
化してもよい。
In the figure, the shearing force 1 generated by the cross roll reduction is applied to the upper and lower shells 9B-1 and 9B, as shown by the black arrows.
2, the direction is opposite, and the thin slab 8 is deformed into a diamond shape as a whole. Such deformation may be achieved by arranging cross rolls in opposite directions in order as described above, or by arranging and forming grooved edge rolls into a rectangular shape.

次に、第1図に示す上述のような装置を使用して、第1
表に示すような鋳造条件で、圧下率40%の未凝固圧延
を行った場合における本発明の詳細な説明する。
Next, using the apparatus as described above and shown in FIG.
The present invention will be described in detail in the case where unsolidified rolling is performed at a rolling reduction of 40% under the casting conditions shown in the table.

第1表 2 本実施例では厚み圧下ロールは直径300 mmのロー
ルをクロス角 (交叉角)2°で3列(3スタンド)配
置した。各ロールはイニシャルロールクラウンとして直
径あたり−0,3mm(中門プロフィル)の放物線状に
研削し非駆動とした。厚み圧下量は初期鋳片厚50mm
から出側鋳片厚30mmまでの20mmであり、第1ス
タンドで5mm、第2、第3スタンド各7.5 mmの
圧下を行った。
Table 1 2 In this example, the thickness reduction rolls were arranged in three rows (three stands) with rolls having a diameter of 300 mm at a cross angle of 2°. Each roll was ground into a parabolic shape with a diameter of -0.3 mm (middle profile) as an initial roll crown and was not driven. Thickness reduction amount is initial slab thickness 50mm
The slab thickness was 20 mm from 30 mm to the exit side, and the reduction was performed by 5 mm in the first stand and 7.5 mm each in the second and third stands.

さらに、未凝固圧延終了時、すなわち圧下ロール列5^
の出側での鋳片上下面のシェル9Bの目標シェル厚みh
s = 13〜14mmとなるように鋳片の冷却を制御
した。
Furthermore, at the end of unsolidified rolling, that is, the reduction roll row 5^
The target shell thickness h of the shell 9B on the upper and lower surfaces of the slab at the exit side of
Cooling of the slab was controlled so that s = 13 to 14 mm.

未凝固鋳片圧下後の鋳片幅中央部の圧延方向伸び、すな
わち、鋳片上下面のシェル9Bの伸びを測定したところ
、未凝固圧延前の鋳片長さに対して、0.8%の伸び歪
が生じていた。また、鋳片の上下面には、特に問題とな
るような表面割れは観察されなかった。
When we measured the elongation in the rolling direction of the center of the width of the slab after rolling the unsolidified slab, that is, the elongation of the shell 9B on the top and bottom surfaces of the slab, we found that the elongation was 0.8% with respect to the length of the slab before unsolidified rolling. Distortion had occurred. Moreover, no particularly problematic surface cracks were observed on the upper and lower surfaces of the slab.

一方、上記未凝固圧延と同一条件で、厚み圧下ロールの
クロス角を00とした通常圧下ロールの場合では、鋳片
上下面のシェル9Bの伸び歪は、2゜6%となり鋳片の
上下表面には最大深さ5’mm、長さ約50mmの割れ
が観察され、本発明による表面割れ防止効果が確認でき
た。
On the other hand, under the same conditions as the unsolidified rolling described above, in the case of normal reduction rolls with the cross angle of the thickness reduction rolls set to 00, the elongation strain of shell 9B on the upper and lower surfaces of the slab is 2°6%, and the strain on the upper and lower surfaces of the slab is Cracks with a maximum depth of 5'mm and a length of about 50mm were observed, confirming the surface cracking prevention effect of the present invention.

上述した本発明による表面割れ防止効果について第2図
を参照して説明する。前述したように、未凝固鋳片圧下
時の鋳片上下面の割れは、幅端部のシェル9への圧下に
よる鋳片長さ方向伸びにより上下面のシェル9Bに引張
応力が働くことにより生じる。したがって、圧下による
シェル9^の伸びを低減すれば、シェル9Bに作用する
引張応力を減少させ、割れ発生を防止できる。本発明で
は、第2図(a)、(b)に示すように、クロスロール
圧下により表裏面に互いに逆向きの幅方向剪断力が作用
するため圧下後の断面が菱形変形しシェル9Aは単に曲
げられるだけで長さ方向の伸びはほとんど生じない。特
にこの効果はシェル厚が薄いほど顕著となる。
The effect of preventing surface cracking according to the present invention described above will be explained with reference to FIG. 2. As described above, cracks on the upper and lower surfaces of the unsolidified slab during rolling down occur due to tensile stress acting on the upper and lower shells 9B due to elongation in the longitudinal direction of the slab due to rolling down of the shell 9 at the width end. Therefore, by reducing the elongation of the shell 9^ due to rolling, the tensile stress acting on the shell 9B can be reduced and cracking can be prevented. In the present invention, as shown in FIGS. 2(a) and 2(b), cross-roll rolling causes opposite width direction shearing forces to act on the front and back surfaces, so that the cross section after rolling is deformed into a diamond shape, and the shell 9A is simply It is only bent, with almost no elongation in the length direction. In particular, this effect becomes more pronounced as the shell thickness becomes thinner.

したがって、従来の未凝固鋳片圧下方法にくらべると、
厚み圧下によるシェル9への鋳片長さ方向伸びは小さく
なり、割れ発生が防止できる。
Therefore, compared to the conventional unsolidified slab reduction method,
The longitudinal elongation of the slab into the shell 9 due to thickness reduction is reduced, and cracking can be prevented.

例えば、厚み圧下が、シェル9Aの曲げ変形のみで進行
した場合、シェル箱の伸びはOとなり、シェル9Bの割
れは防止できる。
For example, when the thickness reduction progresses only by bending deformation of the shell 9A, the elongation of the shell box becomes O, and cracking of the shell 9B can be prevented.

(発明の効果) 以上説明したように、本発明にかかる未凝固鋳片圧下方
法は、シェルの圧下による伸びを低減することが可能で
ある。したがって、従来の未凝固鋳片圧下方法にくらべ
て高圧下率の未凝固圧下を実現できる。
(Effects of the Invention) As explained above, the unsolidified slab rolling down method according to the present invention can reduce elongation due to shell rolling. Therefore, it is possible to realize unsolidified slab reduction with a higher reduction rate than in the conventional unsolidified cast slab rolling down method.

本発明の未凝固鋳片圧下方法は、従来の固定モールド型
連続鋳造機で鋳造される比較的厚い鋳片の未凝固圧延に
も適用が可能である。
The unsolidified slab rolling method of the present invention can also be applied to unsolidified rolling of relatively thick slabs cast with a conventional fixed mold continuous casting machine.

本発明の未凝固鋳片圧下方法によれば、高圧下率の圧下
が可能であるため、熱間圧延工程を簡略化でき、安価な
熱延綱帯の製造が可能となる。
According to the unsolidified slab rolling method of the present invention, rolling at a high rolling reduction rate is possible, so the hot rolling process can be simplified and inexpensive hot rolled steel strips can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかかる未凝固鋳片圧下方法を実施例
する設備の概略説明図: 第2図(a)、(b)は、本発明の未凝固鋳片圧下方法
の説明図: 第3図は、従来の未凝固鋳片圧下方法を実施する設備の
概略説明図;および 第4図(a)、[有])、(C)は、それぞれ未凝固圧
下時の割れ発生原因の説明図である。 1:取鍋      2:クンディッシュ3:ツイン・
ベルトキャスタ 4:鋳片サポート・ロール列 5:未凝固圧下装置 5A:厚み圧下ロール列 5Bニガイド・ローラ列6:
ピンチローラ    7:溶湯
Fig. 1 is a schematic explanatory diagram of equipment implementing the unsolidified slab rolling down method according to the present invention; Figures 2 (a) and (b) are explanatory diagrams of the unsolidified slab rolling down method of the present invention: Figure 3 is a schematic explanatory diagram of equipment for carrying out the conventional unsolidified slab rolling method; and Figures 4 (a), [Yes]) and (C) respectively show the causes of cracking during unsolidified slab rolling. It is an explanatory diagram. 1: Ladle 2: Kundish 3: Twin
Belt caster 4: Slab support roll row 5: Unsolidified reduction device 5A: Thickness reduction roll row 5B guide roller row 6:
Pinch roller 7: Molten metal

Claims (2)

【特許請求の範囲】[Claims] (1)連続鋳造機により鋳造された鋳片に鋳片内部が凝
固完了する前に厚み圧下を行い、かつ圧下完了後も鋳片
内部に未凝固層を残存させる未凝固鋳片圧下方法におい
て、少なくとも最上流側の圧下ロールを含む圧下ロール
にクロスロールを用いることを特徴とする未凝固鋳片圧
下方法。
(1) In an unsolidified slab reduction method in which thickness reduction is performed on a slab cast by a continuous casting machine before the inside of the slab completes solidification, and an unsolidified layer remains inside the slab even after the rolling is completed, A method for rolling down an unsolidified slab, characterized in that cross rolls are used for the rolling down rolls including at least the most upstream rolling roll.
(2)クロスロールを用いた未凝固鋳片圧下後の鋳片幅
端部の厚み圧下ロールに対して垂直に配置された孔型ロ
ールエッジャで幅圧下を行うことを特徴とする請求項1
記載の未凝固鋳片圧下方法。
(2) Width reduction is carried out using a slotted roll edger arranged perpendicularly to the thickness reduction roll at the width end of the slab after the unsolidified slab is rolled down using cross rolls.
The unsolidified slab reduction method described.
JP13768789A 1989-05-31 1989-05-31 Method for rolling reduction of unsolidified slab Pending JPH035004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13768789A JPH035004A (en) 1989-05-31 1989-05-31 Method for rolling reduction of unsolidified slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13768789A JPH035004A (en) 1989-05-31 1989-05-31 Method for rolling reduction of unsolidified slab

Publications (1)

Publication Number Publication Date
JPH035004A true JPH035004A (en) 1991-01-10

Family

ID=15204461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13768789A Pending JPH035004A (en) 1989-05-31 1989-05-31 Method for rolling reduction of unsolidified slab

Country Status (1)

Country Link
JP (1) JPH035004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351040A (en) * 1999-06-11 2000-12-19 Natl Res Inst For Metals Simultaneous multiaxis pressing method and its device, manufacture of super fine grained ferritic steel, and super fine grained ferritic slab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351040A (en) * 1999-06-11 2000-12-19 Natl Res Inst For Metals Simultaneous multiaxis pressing method and its device, manufacture of super fine grained ferritic steel, and super fine grained ferritic slab

Similar Documents

Publication Publication Date Title
US5303766A (en) Apparatus and method for the manufacture of hot-rolled steel
KR101204479B1 (en) Process and plant for manufacturing steel plates without interruption
RU2530609C2 (en) Method of rail rolling, device for rail rolling and rail thus made
JP3139402B2 (en) Unsolidified rolling method of slab
JP6947268B2 (en) Manufacturing method of hat-shaped steel sheet pile
JPH0761488B2 (en) Manufacturing method and equipment for hot strip
JPH035004A (en) Method for rolling reduction of unsolidified slab
JPS63171255A (en) Non-solidified rolling method
JPH0327843A (en) Method for uniformly and rapidly cooling continuous cast strip in width direction
JPS63171254A (en) Non-solidified rolling method
JPH0596304A (en) Method for rolling angle steel having unequal side and unequal thickness
JP6089795B2 (en) Apparatus and method for manufacturing a differential thickness steel plate having a taper thickness difference in the plate width direction
JP3212256B2 (en) Continuous hot rolling of billets
JPS6141643B2 (en)
JP6747256B2 (en) Method for manufacturing H-section steel
JPS60148602A (en) Rolling method by edger
JPH069688B2 (en) Tandem rolling mill
JP3356024B2 (en) Hot rolled steel strip manufacturing method
JPS59113964A (en) Continuous casting method
JPH0513721B2 (en)
JPH0141402B2 (en)
JP2021164926A (en) Method for rolling thick steel plate and method for producing the thick steel plate
JPS62270257A (en) Apparatus for producing continuously rulled stock for metal sheet
JP2023113156A (en) Method for manufacturing hat-shaped steel sheet pile
JPH10277602A (en) Rolling line for rolling flat bar