JPS59113964A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPS59113964A
JPS59113964A JP22391282A JP22391282A JPS59113964A JP S59113964 A JPS59113964 A JP S59113964A JP 22391282 A JP22391282 A JP 22391282A JP 22391282 A JP22391282 A JP 22391282A JP S59113964 A JPS59113964 A JP S59113964A
Authority
JP
Japan
Prior art keywords
straightening
shell
continuous casting
surface temperature
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22391282A
Other languages
Japanese (ja)
Other versions
JPS6234458B2 (en
Inventor
Hiromu Fujii
博務 藤井
Tetsuo Ohashi
大橋 徹郎
Kosaku Ozawa
小澤 浩作
Yasuo Takeda
武田 安夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22391282A priority Critical patent/JPS59113964A/en
Publication of JPS59113964A publication Critical patent/JPS59113964A/en
Publication of JPS6234458B2 publication Critical patent/JPS6234458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce a high-temp. defectless billet which can be immediately hot-rolled without passing the billet through a heating stage by making the surface temp. of the shell in the stage of straightening the billet lower on the top of bending than the bottom and making the shell on the short side higher than the top. CONSTITUTION:The shell surface temp. on the top side where tensile stress is generated is made lower than the shell surface temp. on the bottom side where compressive stress is generated to relieve the tensile stress of the top shell and to join the top and bottom shells in the stage of straightening of an unsolidified billet in a multipoint straightening and curving type continuous casting machine having a low machine height. The surface temp. of the shell on the short side where stress is transmitted is made higher than the surface temp. on the top shell to induce positively the shearing deformation of the shell on the short side and to accelerate further the relieving of the above-mentioned tensile strain, whereby the generation of internal crack is prevented and the defectless billet is obtd. The straightening started and completed by the above-mentioned method and further the high temp. defectless billet is handed over to a hot rolling stage with the recuperation of the unsolidified molten steel.

Description

【発明の詳細な説明】 本発明は、鉄鋼製造プロセスにお〜・て熱間圧延機と連
続鋳造機を加熱工程を通すことなく直結するプロセスに
必要な高温無欠陥鋳片を鋳造する連続鋳造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a continuous casting method for casting high-temperature defect-free slabs necessary for a process in which a hot rolling mill and a continuous casting machine are directly connected without going through a heating process in the steel manufacturing process. It is about the method.

近年、鉄鋼業において連続鋳造機(以下連鋳機と略す)
の発達は著しいが、その反面連鋳機への要求も極めて大
きい。その中でも近年のエネルギ価格の高騰から来る省
エネルギーへの要求【ま著しい。將に連鋳−圧延プロセ
スにお〜・てit、連鋳機と圧延設備との直結化による
省エネルギーニーズは特に大きい。
In recent years, continuous casting machines (hereinafter referred to as continuous casting machines) have been used in the steel industry.
The development of continuous casting machines has been remarkable, but on the other hand, the demands on continuous casting machines are also extremely large. Among these, the demand for energy conservation due to the recent rise in energy prices is significant. Especially in the continuous casting-rolling process, there is a particularly great need for energy saving by directly connecting the continuous casting machine and rolling equipment.

鉄鋼業において、従来の連鋳−圧延プロセスをま、大別
して第13図(al 、 (bl 、 (C1に示す3
プロセスにわけられる。第13図1a)に示すプロセス
は以前より広く鉄鋼業において実施されていた。また第
13図(bl 5− に示すホットチャージプロセスは近年鉄鋼業界において
、その著しい省エネルギー性より、・次第に実用化され
つつある。しかし第13図(C1に示す直接圧延プロセ
スについては、加熱工程が省略され、かつその際に必要
とされるエネルギーが皆無となるのみならず、加熱設備
を設置する必要がないことから、そのメリットは大きく
、その開発が切望されている。
In the steel industry, the conventional continuous casting-rolling process can be roughly divided into three types shown in Figure 13 (al, (bl, (C1)).
Divided into processes. The process shown in Figure 13 la) has been widely practiced in the steel industry for some time. In addition, the hot charging process shown in Figure 13 (bl 5-) has been gradually put into practical use in the steel industry in recent years due to its remarkable energy saving properties.However, in the direct rolling process shown in Figure 13 (C1), the heating process Not only does this eliminate the need for energy, but also there is no need to install heating equipment, so its benefits are great, and its development is eagerly awaited.

第13図(C1に示す直接圧延プロセスでは、連鋳機は
高生産性(高速鋳造)が要求されると共に連鋳機で鋳造
された鋳片は無欠陥であり、更に連鋳機機端で高温であ
ることが必須条件となる。
In the direct rolling process shown in Figure 13 (C1), the continuous caster is required to have high productivity (high-speed casting), and the slabs cast by the continuous caster are defect-free, and furthermore, the continuous caster has no defects. A high temperature is an essential condition.

一方連続鋳造機は、大別して垂直型、湾曲型、垂直部を
有した湾曲型、水平型がある。現在主流をなす型式であ
り最も多く採用されているのが湾曲型連続鋳造機である
On the other hand, continuous casting machines can be roughly divided into vertical types, curved types, curved types with a vertical section, and horizontal types. The currently mainstream type and most commonly used is the curved continuous casting machine.

この湾曲型連続鋳造機は、第1図に示す如く湾曲鋳型1
から出た湾曲鋳片2をロール3により円弧状に導びき、
ロール4により真直に曲げ矯正し。
This curved continuous casting machine has a curved mold 1 as shown in Fig. 1.
The curved slab 2 that comes out of is guided into an arc shape by rolls 3,
The roll 4 straightens the bend.

鋳造を行なうものである。It is used for casting.

 6− この湾曲型連続鋳造機で生産性(鋳造能率)を高めるた
めには鋳造速度を速くする必要があり、鋳造速度が速く
なればなる程、曲げ矯正の際に連鋳鋳片内部に未凝固相
が存在することは避けられない。
6- In order to increase productivity (casting efficiency) with this curved continuous casting machine, it is necessary to increase the casting speed. The presence of a solidified phase is inevitable.

また、高温鋳片を得るためには、鋳型直下から少なくと
も曲げ矯正点までの鋳片への注水による2次冷却条件を
緩冷にし、かつ曲げ矯正完了点の直後位置で注水を完了
し、未凝固復熱させる必要がある。
In addition, in order to obtain high-temperature slabs, the conditions for secondary cooling by injecting water into the slab from directly below the mold to at least the bending straightening point are slow cooling, and the water injection is completed immediately after the bending straightening completion point, so that the It is necessary to solidify and reheat.

更に、湾曲型連続鋳造機の機高は、湾曲半径によって制
約される。機高が高いと溶鋼静圧が大きくなる。溶鋼静
圧が大きくなると、鋳片の内部割れ発生の原因となる鋳
片のバルジング量が大きくなる。
Furthermore, the machine height of a curved continuous casting machine is restricted by the radius of curvature. When the machine height is high, the static pressure of molten steel increases. When the static pressure of molten steel increases, the amount of bulging of the slab increases, which causes internal cracking of the slab.

この湾曲型連続鋳造機における円弧半径Rは3〜13m
の範囲で種々のものがあるが、それぞれ一長一短がある
。即ち円弧半径Rを大きくすると、機高Hが高くなり、
高い溶鋼静圧のためにロール3.3間でのバルジング量
が大きくなり、このバルジングをロール3で矯正する際
に凝固界面に引張歪を生じることになり、内部割れが発
生する。
The arc radius R of this curved continuous casting machine is 3 to 13 m.
There are various types within this range, each with their own advantages and disadvantages. That is, when the arc radius R is increased, the machine height H becomes higher,
Due to the high static pressure of the molten steel, the amount of bulging between the rolls 3.3 becomes large, and when this bulging is corrected by the rolls 3, tensile strain is generated at the solidification interface, causing internal cracks.

そのため二次冷却帯での冷却強度を強めるか、或は分割
ロールを使用し、ロールピッチを小さくする必要がある
。しかしながら、冷却強度を強めると内部割れは防止で
きるが未凝固曲げ矯正にならず、直送圧延プロセスを実
現する高温鋳片を得ることができない。一方、理論的に
は多分割ロールを使用し、ロールピッチを小さくすれば
内部割れのない高温鋳片を得ることができるが、実際に
は鋳片案内ロールのメインテナンスの問題があり、安定
的に高温無欠陥鋳片を得ることが不可能である。
Therefore, it is necessary to increase the cooling intensity in the secondary cooling zone or to use split rolls to reduce the roll pitch. However, if the cooling strength is increased, internal cracks can be prevented, but unsolidified bending cannot be straightened, and a high-temperature slab that can be used in the direct rolling process cannot be obtained. On the other hand, theoretically it is possible to obtain high-temperature slabs without internal cracks by using multi-segmented rolls and reducing the roll pitch, but in reality, there are problems with the maintenance of slab guide rolls, resulting in stable slabs. It is impossible to obtain high-temperature defect-free slabs.

例えば連続鋳造によって得られる鋳片に内部割れを生起
させないために採られている従来の技術手段としては、
バルジング歪、矯正歪を減少させるという観点から鋳型
以降における鋳片を支持し案内するロールピッチを稠密
にしてバルジング量を小さくし、以ってバルジング歪を
小ならしめるという手段が採られている。また2次冷却
帯部における冷却を強冷却(注水比1. Ol/に9以
上)として凝固殻の熱間強度の向上を計っている。
For example, conventional technical measures taken to prevent internal cracks from occurring in slabs obtained by continuous casting include:
From the viewpoint of reducing bulging strain and corrective strain, measures have been taken to make the pitch of rolls that support and guide the slab after the mold denser to reduce the amount of bulging, thereby reducing bulging strain. In addition, the cooling in the secondary cooling zone is performed as strong cooling (water injection ratio of 1.0 to 9 or more) in order to improve the hot strength of the solidified shell.

現在、殆んどの湾曲型連続鋳造機による連続鋳造機にお
いては、未凝固曲げ矯正が行なわれており、例えば円弧
半径R;10〜13m、鋳造速度;0.7〜2.c) 
m7m= 、稠密ロール配置、スプレー冷却といった諸
元で連続鋳造が行なわれている。この一般的な諸元をも
つ湾曲型連続鋳造機で溶鋼を鋳造すると、曲げ矯正点は
メニスカス位置から15.7〜20.4mの位置になる
。このときの曲げ矯正点における鋳片の表面温度は70
0〜900℃であり、凝固殻厚さは約80〜120 m
m (推定)である。ちなみに鋳片の断面寸法が250
龍、幅1800 mmである場合、鋳片厚さ方向に関し
て70〜90%が凝固殻で占められる。この状態で鋳片
の曲げ矯正を行なうと、現在の高度の技術レベル下でも
内部割れが発生してしまう。
Currently, in most continuous casting machines using curved continuous casting machines, unsolidified bend straightening is performed, for example, arc radius R: 10 to 13 m, casting speed: 0.7 to 2. c)
Continuous casting is carried out with specifications such as m7m, dense roll arrangement, and spray cooling. When molten steel is cast with a curved continuous casting machine having these general specifications, the bending straightening point will be located 15.7 to 20.4 m from the meniscus position. At this time, the surface temperature of the slab at the bend straightening point was 70
The temperature is 0~900℃, and the solidified shell thickness is about 80~120 m.
m (estimated). By the way, the cross-sectional dimension of the slab is 250.
When the width of the slab is 1800 mm, 70 to 90% of the slab thickness is occupied by the solidified shell. If the slab is bent and straightened in this state, internal cracks will occur even under today's advanced technology.

一方、円弧半径Rを小さくすると、機高Hが低くなり、
溶鋼静圧が小さくなり、鋳片を支持するロールの負荷が
軽減され、ロール径が細くなり、 9− 円弧半径Rの大きな高槻高の連続鋳造機に比較し、より
ロールピッチを小さくすることが可能となり、ロール間
バルジング量を小さくできる。そのため高速、緩冷却、
未凝固矯正、復熱による高温鋳片を得るのに、鋳片支持
案内ロールのメインテナンス性、装置費等も加味して総
合的に判断して、より適しているわけである。
On the other hand, if the arc radius R is made smaller, the machine height H will be lowered,
The static pressure of the molten steel is reduced, the load on the rolls supporting the slab is reduced, the roll diameter is reduced, and the roll pitch can be made smaller compared to Takatsuki's continuous casting machine with a large arc radius R. This makes it possible to reduce the amount of bulging between rolls. Therefore, high speed, slow cooling,
This method is more suitable for obtaining high-temperature slabs through unsolidified straightening and reheating when comprehensively judged by taking into consideration the maintainability of the slab support guide rolls, equipment costs, etc.

ところが未凝固鋳片をまっすぐに矯正する段階での円弧
内側のシェルの引張歪が増大することになる。即ち第2
図に示す如く未凝固相6を有し、矢印10の方向へ鋳造
される際に曲げ矯正を受ける場合、曲げの中立軸7に対
して長さの短いシェル8が長さの長いシェル9の圧縮変
形に伴って生じるものであり、円弧半径が小さくなる程
、この曲げ矯正歪は大きくなるわけである。
However, at the stage of straightening the unsolidified slab, the tensile strain of the shell inside the arc increases. That is, the second
As shown in the figure, when the shell 8 has an unsolidified phase 6 and undergoes bending straightening during casting in the direction of the arrow 10, the shell 8 having a shorter length with respect to the neutral axis 7 of bending is the shell 9 having a longer length. This bending correction strain occurs as a result of compressive deformation, and the smaller the radius of the arc, the larger this bending correction strain becomes.

この矯正歪を緩和する方法としては、■矯正点を多点に
して、矯正歪を分散させる方法、並びに■矯正点(多点
矯正の場合は矯正帯)以前の部分に駆動ロールを設置し
て凝固シェルを押し込み、矯正点(又は矯正帯)以降の
駆動ロール群により10− 制動力を加えることにより、上面シェルに発生する引張
歪を相殺又は緩和する、いわゆる圧縮鋳造による方法が
ある。
Methods for alleviating this correction distortion include: ① Using multiple correction points to disperse the correction distortion; and ③ Installing a drive roll in the area before the correction point (or correction band in the case of multi-point correction). There is a method using so-called compression casting in which the tensile strain generated in the upper shell is offset or alleviated by pushing the solidified shell and applying a braking force by a group of drive rolls after the straightening point (or straightening zone).

ところが矯正点を多点にして矯正型を分散させる多点矯
正型の湾曲型連続鋳造機においては、多点矯正帯長に制
限があり、その結果として矯正点数にも制限が生じるこ
とになる。即ち、多点矯正の湾曲型連続鋳造機において
、n番目の矯正に伴う矯正型εnは次式で表わされる。
However, in a multi-point straightening curved continuous casting machine that uses multiple straightening points and disperses straightening molds, there is a limit to the length of the multi-point straightening band, and as a result, there is a limit to the number of straightening points. That is, in a multi-point straightening curved continuous casting machine, the straightening type εn associated with the n-th straightening is expressed by the following equation.

上記式に於て、D:鋳片厚、S;シェル厚、Rn−1p
n番目の矯正点の前までの円弧半径、Rn ; n番目
矯正点後の円弧半径である。
In the above formula, D: slab thickness, S: shell thickness, Rn-1p
The arc radius before the nth correction point, Rn; The arc radius after the nth correction point.

ここで説明の簡略化のため鋳型からの基準円弧Roから
1回の矯正を行うことを考える。第3図において、点A
と点BでRoからR+(>Ro)に曲げ戻す場合を考え
ると、鋳型により近いA点の方が、即ち水平とのなす角
度θがより小さい時の方が、最終矯正後での機高HがΔ
Hだけ高くなる。
Here, to simplify the explanation, it will be considered that one correction is performed from the reference arc Ro from the mold. In Figure 3, point A
Considering the case of bending back from Ro to R+ (>Ro) at point B, point A is closer to the mold, that is, when the angle θ with the horizontal is smaller, the machine height after final straightening is lower. H is Δ
Only H becomes higher.

実際の場合は、2点以上の多点になるのであるが現象は
同じであり、鋳型に近い位置から矯正を開始すればする
程、機高が高くなり、バルジング量の緩和が困難となり
バルジング歪が大きくなり、また前記歪式からも明らか
な如くシェル厚Sの影響もあり、シェル厚Sが大きい程
、矯正型は小さくなる。従ってバルジング歪、矯正型の
減少による内部割れ防止の観点からは、出来る限り角度
θの大きな点から矯正を行なうことが望ましい。
In actual cases, there will be multiple points (two or more), but the phenomenon is the same: the closer you start straightening to the mold, the higher the machine height becomes, making it more difficult to reduce the amount of bulging, resulting in bulging distortion. As is clear from the above distortion equation, there is also an influence of the shell thickness S, and the larger the shell thickness S, the smaller the correction mold becomes. Therefore, from the viewpoint of preventing internal cracks due to bulging distortion and reduction of the correction die, it is desirable to carry out correction from a point where the angle θ is as large as possible.

一方、当然のことながら角度θは9o0より小さく、従
って矯正帯長も、基準円弧R8、連続鋳造機の高さHが
決まれば、はぼ決定され、静圧をささえるロール径が決
まれば、その矯正帯内へ組み込めるロール本数が決まり
、矯正点数も決定されることになる。即ち、湾曲型連続
鋳造機の円弧半径Rが小さくなればなる程、矯正型が増
大するにもかかわらず、矯正点数もそれ程多くとれず、
例えば機高が3.5m程度の湾曲型連続鋳造機であれば
、高々15点矯正ぐらいである。
On the other hand, as a matter of course, the angle θ is smaller than 9o0, so the length of the straightening band is determined once the reference arc R8 and the height H of the continuous casting machine are determined, and once the roll diameter that supports static pressure is determined, the length of the straightening band is determined. The number of rolls that can be incorporated into the correction band is determined, and the number of correction points is also determined. In other words, as the arc radius R of the curved continuous casting machine becomes smaller, the number of correction points cannot be increased, even though the number of correction molds increases.
For example, a curved continuous casting machine with a machine height of about 3.5 m requires about 15 points of straightening at most.

ところがこのような矯正点数は、Q、 l mm程度の
ロール位置管理により初めて得られるもので、設計図面
上でのみ考えられるものである。実際の場合には、ロー
ルアンイメントの基準位置からのずれがあり、最高の技
術を駆使し管理を厳格忙しても、Q、 5 am以下の
ミスロールアライメント量は不可避である。従って、有
効な矯正点の数は著しく減少することになり、例えば後
述する如く基準円弧半径3m、矯正点数15点にしたに
もがかわらず、鋳片厚250朋、鋳造速度1.5m/m
、注水比0、5 l 7kgの鋳造条件では内部割れの
ない鋳片が得られなかった。なお、基準円弧半径をより
大きくした場合、機高を無視すれば矯正帯長並び矯正点
数は増すことができるが、前述した如く基準円弧半径の
小さい場合に比較し機高増大の程度が大きくなり、機高
が増大して低機高の湾曲型連続鋳造機になり得ない。
However, such a number of correction points can only be obtained by controlling the roll position on the order of Q, l mm, and can only be considered on design drawings. In actual cases, there is a deviation from the reference position of roll alignment, and even if the best technology is used and strict management is carried out, a misroll alignment amount of Q, 5 am or less is unavoidable. Therefore, the number of effective straightening points is significantly reduced. For example, as described later, although the standard arc radius is 3 m and the number of straightening points is 15, the slab thickness is 250 mm and the casting speed is 1.5 m/m.
, A slab without internal cracks could not be obtained under the casting conditions of water injection ratio of 0, 5 liters and 7 kg. In addition, when the standard arc radius is made larger, the length of the straightening belt and the number of straightening points can be increased if the machine height is ignored, but as mentioned above, the degree of increase in the machine height is greater than when the standard arc radius is small. , the machine height increases, making it impossible to create a curved continuous casting machine with a low machine height.

ところで本発明者等の後述する検討結果によれば、後述
するように直接圧延プロセス即ち直接圧延を可能とし、
かつ高生産性を前提とした場合、連続鋳造機の機端での
鋳片断面平均温度は、118013− ℃程度以上必要であり、現状でのロール支持機構から算
定すると連続鋳造機の基準円弧半径6m以下、機高的6
.5m以下が望ましいことがわかった。
By the way, according to the study results described later by the present inventors, it is possible to perform a direct rolling process, that is, direct rolling, as described later.
And assuming high productivity, the average temperature of the slab cross section at the end of the continuous casting machine needs to be about 118013-℃ or higher, and calculated from the current roll support mechanism, the standard arc radius of the continuous casting machine 6m or less, machine height 6
.. It was found that a distance of 5 m or less is desirable.

一方機高の最小については、現状の湾曲型スラブ連続鋳
造機で、高品質のスラブを得るとすると、浸漬型のパウ
ダーキャスティングが前提となることから鋳型と浸漬ノ
ズルの取り合いの関係から、基準円弧半径ROは250
 ynyn厚鋳片では3.0m以上である必要があり、
従って機高H(≧RO)は、3.0m以上となる。
On the other hand, regarding the minimum machine height, if we are to obtain high-quality slabs using the current curved continuous slab casting machine, immersion type powder casting is a prerequisite. Radius RO is 250
For ynyn thick slabs, the length must be 3.0m or more,
Therefore, the machine height H (≧RO) is 3.0 m or more.

また前述した圧縮鋳造についても、小円弧、多点矯正型
の低機高湾曲型連続鋳造機(以下、ローヘッド連鋳機と
略す)に適用する場合、次のような問題がある。
The above-described compression casting also has the following problems when applied to a small arc, multi-point straightening, low machine height curved continuous casting machine (hereinafter abbreviated as a low-head continuous casting machine).

第4図は、ローヘッド連続鋳造機と大円弧一点矯正型の
高機高湾曲型連続鋳造機(以下ハイヘッド連鋳機と略す
)のプロフィルを併記したもので。
Figure 4 shows the profiles of a low-head continuous casting machine and a large-arc, single-point straightening, high-machine, high-curve continuous casting machine (hereinafter referred to as the "high-head continuous casting machine").

Aは駆動ロール配設不能域、Bは押込駆動ロール配設可
能域、Cは水平ブレーキ帯、Dは多点矯正帯、Eは矯正
点を示す。即ちローヘッド連鋳機で14− は、第4図に示す如く、矯正帯りに所要圧縮力を発生す
るための単一円弧部の駆動発生帯Bが十分にとれないし
、駆動力発生域Bでの静圧が、・・イヘッド連鋳機に比
べて小さいため、駆動力ロール1本当りの発生駆動力が
小さくなり、十分な矯正歪緩和効果が得られない。
A indicates an area in which a driving roll cannot be installed, B indicates an area in which a pushing drive roll can be installed, C indicates a horizontal brake zone, D indicates a multi-point correction zone, and E indicates a correction point. In other words, with the low head continuous casting machine 14-1, as shown in Fig. 4, the drive generation band B of the single circular arc portion to generate the required compressive force in the straightening band cannot be sufficiently secured, and the drive force generation area B is not large enough. Since the static pressure is smaller than that of the I-head continuous casting machine, the driving force generated per driving force roll is small, and a sufficient correction strain relaxation effect cannot be obtained.

事実基準円弧半径5mR,15点矯正での圧縮鋳造(c
pc有)により第5図に示す如く、矯正帯後段での歪の
軽減がはかれたが、矯正帯前段での歪の軽減はできず、
鋳片厚250闘、鋳造速度1、57717mの条件で圧
縮鋳造を行なったが、内部割れを皆無にすることはでき
なかった。なお第5図の縦軸の総合歪は矯正歪、バルジ
ング歪、ミスロール歪を合計した総合歪である。
Fact-based arc radius 5mR, compression casting with 15 points correction (c
As shown in Fig. 5, the distortion at the rear stage of the orthodontic belt was reduced by using the method (with PC), but the distortion at the front stage of the orthodontic belt could not be reduced.
Compression casting was carried out under the conditions of slab thickness 250 mm, casting speed 1, and 57717 m, but it was not possible to completely eliminate internal cracks. The total strain on the vertical axis in FIG. 5 is the total strain of corrective strain, bulging strain, and misroll strain.

以上述べてきたように、ローヘッド連鋳機により連続鋳
造しても、更にローヘッド連鋳機で圧縮鋳造しても、直
接圧延プロセスを実現する内部割れがなくかつ高温の鋳
片を得ることができず、しかも元々ハイヘッド連続鋳造
機においては、前述した如くロール間バルジングによる
歪のために直接圧延プロセスを実現する内部割れがなく
、かつ高温の鋳片を得られないので、前記ローヘッド連
鋳機において、新たな技術手段による矯正歪の緩和をは
かる必要がある。
As mentioned above, it is possible to obtain high-temperature slabs without internal cracks that enable the direct rolling process by continuous casting using a low-head continuous caster or by compression casting using a low-head continuous caster. Moreover, as mentioned above, in high-head continuous casting machines, there is no internal cracking to realize the direct rolling process due to the distortion caused by bulging between the rolls, and high-temperature slabs cannot be obtained. , it is necessary to try to alleviate the correction distortion by new technical means.

本発明は矯正時の鋳片上下面シェルならびに短辺シェル
の温度を適正にすることにより、上面シェルの引張歪の
緩和を促進し、内部割れのない鋳片を得るものである。
The present invention promotes relaxation of tensile strain in the upper shell by adjusting the temperatures of the upper and lower shells of the slab and the short side shells during straightening, thereby obtaining a slab without internal cracks.

従来、矯正時に上面シェルの温度を下面シェルの温度よ
りも下げることによりシェル強度を増大させ、引張歪量
を小さくし、曲げ矯正に基づく内部割れの防止を図るこ
とは、特開昭52−52126号公報、特開昭55−5
115号公報等に示されるが、これら公報の実施例に示
されている如く、円弧半径が10.5m、一点矯正型の
・・イヘッド連続鋳造機の場合であり、後述する如く基
準円弧半径3〜6m、多点矯正型の機高6.5m以下の
ローヘッド連続鋳造機で、円弧内側シェル表面温度を8
50℃、円弧外側シェル表面温度を1000111:に
しただけでは内部割れを防止することができなかつた。
Conventionally, it has been proposed in Japanese Patent Application Laid-Open No. 52-52126 to increase the shell strength, reduce the amount of tensile strain, and prevent internal cracks due to bending straightening by lowering the temperature of the upper shell than that of the lower shell during straightening. No. Publication, JP-A-55-5
115, etc., but as shown in the examples of these publications, the arc radius is 10.5 m, and it is a one-point straightening type I-head continuous casting machine, and as described later, the standard arc radius is 3. ~6m, multi-point straightening type low head continuous casting machine with a machine height of 6.5m or less, the inner shell surface temperature of the arc is 8.
It was not possible to prevent internal cracks only by setting the arc outer shell surface temperature to 50° C. and 1000111:.

即ちローヘッド連続鋳造機の場合、円弧内側と外側シェ
ルの温度差の条件のみでは内部割れが発生することが判
明した。
That is, in the case of a low-head continuous casting machine, it has been found that internal cracks occur only under the condition of a temperature difference between the inner arc and the outer shell.

本発明は、上面シェルと下面シェルとを継ぎ、矯正に伴
なう応力の伝達を行なっている短辺の挙動について解析
し、短辺シェルの温度を上面シェルの温度よりも高くす
ることにより、短辺シェルの剪断変形を積極的に起させ
ることができ、上面シェルの引張歪を緩和するという新
知見にもとずきなされたものである。
The present invention analyzes the behavior of the short side that connects the top shell and the bottom shell and transmits stress due to straightening, and by making the temperature of the short side shell higher than the temperature of the top shell, This was based on the new knowledge that it is possible to actively cause shear deformation of the short side shell, thereby alleviating the tensile strain of the top shell.

本発明の要旨は次の通りである。The gist of the invention is as follows.

(1)低機高の多点矯正湾曲型連続鋳造機で未凝固相を
有する湾曲鋳片を曲げ矯正する連続鋳造方法において、
未凝固鋳片の曲げ矯正時に引張応力の生じる側のシェル
表面温度を、圧縮応力の生じる側のシェル表面温度より
も低くすると共に、短辺シェルの表面温度を、上記引張
応力の生じる側のシェル表面温度よりも高くして曲げ矯
正を開始し曲げ矯正を完了することを特徴とする連続鋳
造方法。
(1) In a continuous casting method for bending and straightening a curved slab having an unsolidified phase using a multi-point straightening curved continuous casting machine with a low machine height,
When straightening the bend of an unsolidified slab, the surface temperature of the shell on the side where tensile stress occurs is lower than the surface temperature of the shell on the side where compressive stress occurs, and the surface temperature of the short side shell is lowered to lower the surface temperature of the shell on the side where tensile stress occurs. A continuous casting method characterized by starting and completing bend straightening at a temperature higher than the surface temperature.

17− (2)低機高の多点矯正湾曲型連続鋳造機で未凝固相を
有する湾曲鋳片を曲げ矯正する連続鋳造方法において、
未凝固鋳片の曲げ矯正時に引張応力の生じる側のシェル
表面温度を圧縮応力の生じる側のシェル表面温度よりも
低くすると共に短辺シェルの表面温度を上記引張応力の
生じる側のシェル表面温度よりも高くして曲げ矯正を開
始し曲げ矯正を完了し、かつ未凝固復熱することを特徴
とする連続鋳造方法。
17- (2) In a continuous casting method for bending and straightening a curved slab having an unsolidified phase using a multi-point straightening curved continuous casting machine with a low machine height,
When straightening the bend of an unsolidified slab, the surface temperature of the shell on the side where tensile stress is generated is lower than the surface temperature of the shell on the side where compressive stress is generated, and the surface temperature of the short side shell is lower than the surface temperature of the shell on the side where tensile stress is generated. A continuous casting method characterized in that bending straightening is started by raising the temperature to a higher level, the bending straightening is completed, and unsolidified heat is recuperated.

(3)機高6.5m以下の多点矯正湾曲型連続鋳造機で
1.5 m/min以上の高速鋳造速度下にて未凝固相
を有する湾曲鋳片を曲げ矯正する連続鋳造方法において
、未凝固相を有する鋳片の曲げ矯正時に引張応力の生じ
る側(内側)の(上面)シェルの表面温度TL、圧縮応
力の生じる側(外側)の(下面)シェルの表面温度TF
、短辺シェルの表面温度’rsO間に下記(1) 、 
(2) 、 (3) 、 (4)式の関係を維持して曲
げ矯正を開始し、曲げ矯正を完了し、かつ矯正完了点で
の上記表面温度TL及びTFを800℃以上とし未凝固
復熱するこ18− とを特徴とする特許請求の範囲1項記載の連続鋳造方法
(3) In a continuous casting method of bending and straightening a curved slab having an unsolidified phase at a high casting speed of 1.5 m/min or more using a multi-point straightening curved continuous casting machine with a machine height of 6.5 m or less, Surface temperature TL of the (top) shell on the (inner) side where tensile stress occurs during bending straightening of a slab having an unsolidified phase; Surface temperature TF of the (bottom) shell on the (outside) side where compressive stress occurs
, the following (1) between the surface temperature 'rsO of the short side shell,
(2), (3), (4) maintain the relationships of equations, start the bending straightening, complete the bending straightening, and set the surface temperatures TL and TF at the point of completion of straightening to 800°C or higher to recover the unsolidified state. 18. The continuous casting method according to claim 1, further comprising: heating.

1000℃≧TL≧700℃    ・・・・・・(1
)Tp (= Tt、+ΔT)41100℃  ・・・
・・・(2)1100℃−’pt )ΔT≧60℃+、
(’rL−soo℃) ・・・・・・(3)1100℃
+−’(Tt−800℃))Ts≧1000℃+L(T
L−800℃)3 ・・・・・・(4) (4)機高6.5m以下の多点矯正湾曲型連続鋳造機で
1.5m/m−以上の高速鋳造速度下にて未凝固相を有
する湾曲鋳片を曲げ矯正する連続鋳造方法において、未
凝固相を有する鋳片の曲げ矯正時に引張応力の生じる側
(内側)の(上面)シェルの表面温度TL、圧縮応力の
生じる側(外側)の(下面)シェルの表面温度TF、短
辺シェルの表面温度T2O間に下記(]) 、 (2)
 、 (3) 、 (4)式の関係を維持して曲げ矯正
を開始し曲げ矯正を完了し、かつ矯正完了点での表面温
度TL及びTFを800℃以上とし、未凝固復熱するこ
とを特徴とする特許請求の範囲1項記載の連続鋳造方法
1000℃≧TL≧700℃ (1
)Tp (= Tt, +ΔT)41100℃...
...(2) 1100℃-'pt)ΔT≧60℃+,
('rL-soo℃) ・・・・・・(3) 1100℃
+-'(Tt-800℃))Ts≧1000℃+L(T
L-800℃) 3 ...... (4) (4) Unsolidified under a high-speed casting speed of 1.5 m/m or more in a multi-point straightening curved continuous casting machine with a machine height of 6.5 m or less In a continuous casting method for bending and straightening a curved slab having an unsolidified phase, the surface temperature TL of the shell on the side (inside) where tensile stress occurs (inside) (top surface), the side where compressive stress occurs ( Below (]) , (2)
, (3) and (4), start and complete the bending straightening while maintaining the relationships in equations (4), and set the surface temperatures TL and TF at the straightening completion point to 800°C or higher, and perform unsolidified reheating. A continuous casting method according to claim 1, characterized in that:

1000℃≧TL≧700℃     ・・・・・・(
1)Tp (= Tt、+Δ’i’)41100℃  
 ・・・・・・(2)200℃+±(’rL−soo℃
)≧ΔT)60℃十−!−(TL−800℃)5 ・・・・・・(3) 1100℃十−M(TL−800℃)4TS≧1000
℃+−u(TL−soo℃)3 ・・・・・・(4) (5)機高6.5m以下の多点矯正湾曲型連続鋳造機で
l、 5 yl 7m1n以上の高速鋳造速度下にて未
凝固相を有する湾曲鋳片を曲げ矯正する連続鋳造方法に
おいて、未凝固相を有する鋳片の曲げ矯正時に引張応力
の生じる側(内側)の(上面)シェルの表面温度TL、
圧縮応力の生じる側(外側)の(下面)シェルの表面温
度TF、短辺シェルの表面温度’rsO間に下記(1)
 、(2) 、 (3) 、 (4)式の関係を維持し
て曲げ矯正を開始し、曲げ矯正を完了し、かつ矯正完了
点での表面温度TL及びTFを800℃以上とし、未凝
固復熱することを特徴とする特許請求の範囲1項記載の
連続鋳造方法。
1000℃≧TL≧700℃ ・・・・・・(
1) Tp (= Tt, +Δ'i') 41100°C
・・・・・・(2) 200℃+±('rL-soo℃
) ≧ ΔT) 60°C 10-! -(TL-800℃)5 ・・・・・・(3) 1100℃10-M(TL-800℃)4TS≧1000
℃+-u (TL-soo℃) 3 ...... (4) (5) Multi-point straightening curved continuous casting machine with a machine height of 6.5 m or less under high-speed casting speed of 1, 5 yl 7 ml or more. In a continuous casting method for bending and straightening a curved slab having an unsolidified phase, the surface temperature TL of the (top) shell on the side (inner side) where tensile stress occurs during bending straightening of the slab having an unsolidified phase,
Below (1) between the surface temperature TF of the (lower surface) shell on the side where compressive stress occurs (outside) and the surface temperature 'rsO of the shorter side shell.
, (2), (3), and (4), the bending straightening is started, the bending straightening is completed, and the surface temperatures TL and TF at the point where the straightening is completed are set to 800°C or higher, and the unsolidified state is maintained. The continuous casting method according to claim 1, characterized in that heat is recuperated.

1000℃≧TL≧880℃    ・・・・・・(1
)Tp (= Tt+ΔT)41100℃   ・・・
・・・・(2)1100℃背L)ΔT≧60℃+−!−
(TL−800℃) ・・・・・・(3)1100℃+
−’(Tt−soo℃)≧’r5≧1000℃+−’(
Tt、−800℃)3 ・・・・・・(4) 以下本発明の連続鋳造方法について詳細に説明する。ま
ず短辺シェルの温度による上面シェルの引張歪緩和の原
理について説明する。
1000℃≧TL≧880℃・・・・・・(1
)Tp (= Tt+ΔT)41100℃...
...(2) 1100℃back L)ΔT≧60℃+-! −
(TL-800℃) ・・・・・・(3) 1100℃+
-'(Tt-soo℃)≧'r5≧1000℃+-'(
Tt, -800°C) 3 (4) The continuous casting method of the present invention will be explained in detail below. First, the principle of relaxation of tensile strain in the top shell due to the temperature of the short side shell will be explained.

第6図に示す短辺14は、上、下面の応力のつり合いを
保ってはいるが、単に応力を伝達するものとしてのみ従
来とらまえられており、曲げ矯正を一次元的に理解され
ていた。ところが第6図に示す如く曲げ矯正を3次元的
にみると矢印11の方向に鋳造され、この時点で矯正を
受けると、上面シェル12には15.15’で示される
引張応力が作用し、21− 下面シェル13に16.16’で示される圧縮応力が作
用するわけであるが、この際上面シェルには17゜17
′で示される上面シェル120幅を狭めようとする変形
と下面シェル13の幅を拡げようとする18゜18′で
示される変形が生じることになる。この場合この変形を
阻害する可能性があるのが短辺である。即ち短辺には、
この結果として第7図に示す如く、19.19’で示さ
れる鋳造方向の剪断変形と20.20’で示される巾方
向の剪断変形が生じることになるが、短辺シェルの温度
が上面シェルや下面シェルに比べて低い場合は、シェル
剛性が大きくなりこの変形を起こしにくくする。その結
果として第6図の15.15’及び1.6 、16”で
示される引張。
Although the short side 14 shown in Fig. 6 maintains the balance of stress on the upper and lower surfaces, it has traditionally been viewed as merely transmitting stress, and bending correction has been understood in a one-dimensional manner. . However, as shown in FIG. 6, when looking at the bending straightening three-dimensionally, the casting is performed in the direction of the arrow 11, and when straightening is performed at this point, a tensile stress indicated by 15.15' acts on the upper shell 12. 21- A compressive stress indicated by 16.16' acts on the lower shell 13, but at this time, the upper shell has a stress of 17°17
A deformation that attempts to narrow the width of the upper shell 120, indicated by 18°, and a deformation that attempts to widen the width of the lower shell 13, indicated by 18°18', occur. In this case, it is the short sides that may inhibit this deformation. That is, on the short side,
As a result, as shown in Fig. 7, shear deformation in the casting direction shown at 19.19' and shear deformation in the width direction shown at 20.20' occur, but the temperature of the short side shell is higher than that of the upper surface shell. If the stiffness is lower than that of the lower shell, the shell stiffness increases and this deformation becomes difficult to occur. The resulting tensions are shown at 15.15' and 1.6, 16'' in FIG.

圧縮の応力が大きくなり、上面側の引張応力に基づく引
張歪により、割れが発生することになるわけである。
The compressive stress increases and cracks occur due to tensile strain based on the tensile stress on the upper surface side.

本発明においては、上記現象に留意し、上下面冷却差を
とるとともに、短辺シェルの温度を上面シェルのそれよ
りも上げてやり、第7図の19 、19 ’及び20.
20’で示される剪断変形をより小さな応22− 力で生じさせることにより、第6図の15.15’の引
張応力を小さくし、内部割れのない高温鋳片を得ること
を可能にしたものである。
In the present invention, taking the above phenomenon into consideration, we take a cooling difference between the upper and lower surfaces, and raise the temperature of the short side shell more than that of the upper shell.
By generating the shear deformation shown at 20' with a smaller stress, the tensile stress at 15.15' in Figure 6 can be reduced, making it possible to obtain a high-temperature slab without internal cracks. It is.

一般に短辺部は、その形状から2方向(厚み方向及び幅
方向)より冷却されるため、他の上、下面シェルに比較
して、一般に短辺シェルの温度が低くなり、剛性が大き
くなっており、剪断変形が生じにくくなっている。
Because the short side is generally cooled in two directions (thickness direction and width direction) due to its shape, the temperature of the short side shell is generally lower and its rigidity is greater than that of the other upper and lower shells. This makes it difficult for shear deformation to occur.

本発明では、短辺の温度を上げ、鋳片ム面に平行な面で
の剪断変形を促進しようとするものであり、短辺温度ア
ップの方法としては種々のものが考えられる。例えば鋳
片幅よりも若干狭い幅に水切板を設けたり、エアーカー
テンを実施したり、幅方向に複数のノズルが設置されて
いる場合は、鋳片幅に応じて鋳片端部のノズルの冷却水
を切る方法などが挙げられる。
In the present invention, the temperature of the short side is increased to promote shearing deformation in a plane parallel to the slab surface, and various methods can be considered for increasing the temperature of the short side. For example, if a drain plate is installed at a width slightly narrower than the slab width, an air curtain is installed, or multiple nozzles are installed in the width direction, the nozzle at the end of the slab is cooled according to the width of the slab. Examples include methods for draining water.

本発明を実施例により、より具体的に説明する。The present invention will be explained in more detail with reference to Examples.

基本円弧が3mでメニスカス下3mから7mの区間(4
m区間)で15点連続多点矯正を行なう機高3.5mの
連続鋳造機において、メニスカス下2mから7mの区間
にわたって、第8図に示すような水切板21をロール2
2の間の鋳片端面より125mm位置に設置し、ノズル
23からの冷却水を遮断した場合と水切板21を設置し
ない場合で、鋼種;中炭Al!−8tキルド鋼、鋳片サ
イズ、’250mm厚×1500朋幅、鋳造速度; 1
.5 m/min、注水比;0.3〜0.5137に9
の条件にて鋳造を行ない内部割れの発生の有無を調査し
た。
The basic arc is 3m and the section from 3m below the meniscus to 7m (4
In a continuous casting machine with a machine height of 3.5 m that performs continuous multi-point correction at 15 points in a section (m section), a draining plate 21 as shown in FIG.
Steel type: medium-coal Al! -8t killed steel, slab size, 250mm thickness x 1500mm width, casting speed; 1
.. 5 m/min, water injection ratio: 0.3 to 0.5137 to 9
Casting was carried out under these conditions and the occurrence of internal cracks was investigated.

第9図(al、(blは、その結果を矯正借入側の鋳片
の上面(内面、5面)表面温度と上、下面(内。
Figure 9 (al, (bl) shows the surface temperature of the upper surface (inner surface, 5th surface) of the slab on the straightened side and the upper and lower surfaces (inner surface).

外面、L・ 2面)表面温度差により整理し図示したも
のである。また第10図はその時の矯正借入側における
鋳片の上面(内面、5面)表面温度と短辺表面温度の関
係を、水切板設置の有無をパラメーターとして図示した
ものである。
The figures are organized and illustrated according to the surface temperature difference (outer surface, L/2 surface). Further, FIG. 10 shows the relationship between the surface temperature of the upper surface (inner surface, 5th surface) and the surface temperature of the shorter side of the slab on the straightening borrowing side at that time, using the presence or absence of a drain plate as a parameter.

今矯正帯入側の鋳片の上面(内面、5面)表面温度をT
L、下面(外面、2面)表面温度をTF、上、下(内、
外面、L、2面)表面温度差をΔT(−Tp  Tt、
 )とすると、水切板を設置した場合、内部割れなしの
鋳片を得る矯正借入側の表面温度差条件は、第9図から
、700℃M Tt、 l−1100℃。
Now, the surface temperature of the upper surface (inner surface, 5th surface) of the slab on the side where the straightening belt is entered is T.
L, lower surface (outer surface, 2nd surface) surface temperature TF, upper, lower (inner,
The surface temperature difference (outer surface, L, 2 surfaces) is expressed as ΔT (-Tp Tt,
), when a drain plate is installed, the surface temperature difference conditions on the straightening borrow side to obtain slabs without internal cracks are 700°C M Tt, l-1100°C from Fig. 9.

TF≦1100℃の範囲においては、次の通りとなる。In the range of TF≦1100°C, the following is true.

700℃4Tt、!x1oo℃ TF≦1100℃ ΔT = TF −’rL ΔT≧60℃十丁(Tt −soo℃)また、水切板を
設置しない場合は次の通りとなる。
700℃4Tt! x1oo°C TF≦1100°C ΔT = TF −'rL ΔT≧60°C 10°C (Tt −soo°C) In addition, when no draining board is installed, the following will occur.

700℃≦TL41100℃ TF〈1100℃ ΔT = TF −TL ΔT≧200℃+” (Tt −800℃)なお矯正借
入側の表面温度TF、TLの最大値は、ロール間バルジ
ングによる内部割れ発生防止の観点から決まり、矯正借
入側では約1100℃以下にする必要がある。
700℃≦TL41100℃ TF〈1100℃ ΔT = TF −TL ΔT≧200℃+” (Tt −800℃) The maximum values of the surface temperature TF and TL on the straightening side are determined to prevent the occurrence of internal cracks due to bulging between the rolls. It is determined from this point of view, and on the correction borrowing side, it is necessary to keep the temperature below about 1100 degrees Celsius.

また矯正借入側の表面温度Tp + TLの最小値は、
直接圧延プロセスにおける圧延プロセスで要求される鋳
片圧延温度、この圧延温度により決まる連25− 鋳機機端での鋳片断面平均温度、この機端での断面平均
温度から決る矯正完了点(矯正帯出側)での鋳片表面温
度、矯正帯内での冷却条件(鋳片の復熱の有無、復熱量
の場合の復熱量、復熱無しの場合の冷却量)で決まり、
後述するように必要機端温度1180℃で、例えば矯正
帯復熱なしでは、矯正借入側で(800℃十矯正帯矯正
温度℃)以上にする必要がある。
In addition, the minimum value of the surface temperature Tp + TL on the straightening borrow side is:
The slab rolling temperature required in the rolling process in the direct rolling process, which is determined by this rolling temperature. It is determined by the surface temperature of the slab at the strip exit side), the cooling conditions in the straightening zone (whether or not the slab is recuperated, the amount of recuperation if it is the amount of recuperation, and the amount of cooling if there is no recuperation).
As will be described later, when the required machine end temperature is 1180° C., for example, without straightening zone reheating, it is necessary to raise the temperature at the straightening borrowing side to 800° C. + straightening zone straightening temperature C. or higher.

一方、第10図に示す如く、水切板の設置の有無により
、矯正開始点(矯正借入側)の短辺表面温度Tsは大き
く変化し、設置した場合、矯正により引張歪の生じる鋳
片上面(内面、5面)の表面温度TLよりも、100〜
300℃高くなるのに対して、設置しない場合は、10
0〜250℃程度低くなる。
On the other hand, as shown in Fig. 10, the short side surface temperature Ts at the straightening start point (straightening borrowing side) changes greatly depending on whether or not a drain plate is installed. 100~ than the surface temperature TL of the inner surface, 5th surface)
The temperature will rise by 300℃, whereas if it is not installed, the temperature will rise by 10℃.
The temperature decreases by about 0 to 250°C.

詳しくは、矯正借入側の鋳片の上面(内側、L側)表面
温度をTL、短辺表面温度をTsとすると、水切板を設
置した場合、表面温度TLと表面温度TSとの間には、
第10図から、700℃4TL≦1100℃、TF≦1
100℃の範囲において、次の関係が成立する。
In detail, if the surface temperature of the upper surface (inner side, L side) of the slab on the straightening side is TL, and the short side surface temperature is Ts, then when a drain plate is installed, there is a difference between the surface temperature TL and the surface temperature TS. ,
From Figure 10, 700℃4TL≦1100℃, TF≦1
In the range of 100°C, the following relationship holds true.

26− 1000℃+ス(Tt、−800℃)〈TS≦1100
℃十丁(’rL−soo℃)3 ’r3 min = 1000℃十−(Tt、 −80
0℃)TS max =1100℃+−(Tt、 −s
oo℃)Ts min ’;;= ’r5 = TS 
maxまた水切板を設置しない場合は次の関係となる。
26- 1000℃+S (Tt, -800℃)〈TS≦1100
°C tenth ('rL-soo °C)3'r3 min = 1000 °C ten-(Tt, -80
0℃)TS max =1100℃+-(Tt, -s
oo℃)Ts min';;='r5=TS
maxAlso, if no draining board is installed, the following relationship will apply.

600℃+’−(Tt−800℃) 4 ’l”s≦7
00℃+百(TL−800℃)Ts min = 60
0℃十暑(TL800℃)Ts max = 700℃
+−’(TL−800℃)TSmin≦TS4 T S
 m a x第9,10図から、水切板を設置せず短辺
シェルを強冷して、矯正借入側で短辺シェル温度を、上
面(内面、L面)表面温度よりも下げてしまう。
600℃+'-(Tt-800℃) 4'l"s≦7
00℃+100(TL-800℃) Ts min = 60
0°C ten heat (TL800°C) Ts max = 700°C
+-'(TL-800℃)TSmin≦TS4TS
From Figures 9 and 10, the short side shell is strongly cooled without installing a drain plate, and the short side shell temperature on the straightening side is lowered than the upper surface (inner surface, L surface) surface temperature.

いいかえると矯正借入側で短辺表面温度Tsが上面(内
面、L面)表面温度Tt (700℃4TL≦1100
℃)に対して600℃千百(TL−800℃)≦TS≦
700℃十互(TL−800℃)の関係になってしまう
と、内部割れのない無欠陥鋳片を得るための矯正借入側
における上、下面(内、外面、L、F面)温度差条件は
ΔT≧200℃+−7−(TL−800℃)となり、一
方、上面(内面、L面)表面温度TLは700℃≦TL
≦1100℃、下面(外面、F面)表面温度TFは、T
F≦1100℃で制約され、かつΔT−TF  TLで
あるから上記温度差条件を満足し、かつ上面・下面(内
、外面、L、F面)温度制約を満足する上面(内面、L
面)表面温度TLは700℃≦TL4880℃の範囲と
なる。
In other words, on the straightening borrow side, the short side surface temperature Ts is the upper surface (inner surface, L surface) surface temperature Tt (700℃4TL≦1100
℃) to 600℃ 1,000 (TL-800℃)≦TS≦
If the relationship is 700°C ten mutually (TL - 800°C), the temperature difference conditions for the upper and lower surfaces (inner, outer, L, F surfaces) on the straightening borrow side will be necessary to obtain defect-free slabs without internal cracks. is ΔT≧200℃+−7−(TL−800℃), and on the other hand, the upper surface (inner surface, L surface) surface temperature TL is 700℃≦TL.
≦1100℃, lower surface (outer surface, F surface) surface temperature TF is T
Since F≦1100℃ and ΔT-TF TL, the upper surface (inner surface, L
Surface) The surface temperature TL is in the range of 700°C≦TL4880°C.

温度差条件並びに上面(内面、L面)温度条件は、11
00℃−TL≧ΔT≧200℃+、(TL−800℃)
The temperature difference conditions and upper surface (inner surface, L surface) temperature conditions are 11
00℃-TL≧ΔT≧200℃+, (TL-800℃)
.

700℃≦TL≦880℃となり、第9図(blに示す
A−B−C点で囲まれた狭い条件範囲に制限される。
700°C≦TL≦880°C, and the condition is limited to a narrow range of conditions surrounded by points A-B-C shown in FIG. 9 (bl).

一方、第9,10図から水切板を設置して、短辺シェル
を緩冷して、矯正借入側で短辺シェル温度を上面(内面
、L面)シェル温度よりも上げる、いいかえると矯正借
入側で、短辺表面温度TSを、上面(内面、L面)表面
温度TL(700℃≦Tt、<Ts!1100℃+a 
(Tt  soo℃)の関係に維持すると、内部割れの
ない無欠陥鋳片を得るための矯正借入側における上、下
面(内、外面、L、F面)温度差条件は、ΔT≧60℃
+百(TL−800℃)となり、一方上面(内面、L面
)表面温度TLは700℃4TL≦1100℃、下面(
外面、F面)表面温度TFはTF≦1100℃で制約さ
れ、かつΔT=TF−TLであるから、上記温度差条件
並びに上記各面温度条件を満足する上面(内面、L面)
表面温度TLは、700℃イTL41000℃の範囲と
なる。
On the other hand, as shown in Figures 9 and 10, a drain plate is installed to slowly cool the short side shell and raise the short side shell temperature on the straightening side to be higher than the upper surface (inner surface, L side) shell temperature. On the side, the short side surface temperature TS is changed from the top surface (inner surface, L surface) surface temperature TL (700℃≦Tt, <Ts!1100℃+a
(Tt soo℃), the temperature difference condition for the upper and lower surfaces (inner, outer, L, F surfaces) on the straightening borrow side to obtain a defect-free slab without internal cracks is ΔT≧60℃
+100 (TL - 800℃), while the surface temperature TL of the upper surface (inner surface, L surface) is 700℃4TL≦1100℃, and the lower surface (
Since the surface temperature TF (outer surface, F surface) is restricted to TF≦1100°C and ΔT=TF−TL, the upper surface (inner surface, L surface) satisfies the above temperature difference condition and each surface temperature condition above.
The surface temperature TL is in the range of 700°C to 41000°C.

即ち、内部割れのない無欠陥鋳片を得るための矯正借入
側における上記温度差条件並びに上面温度条件は、11
00℃−TL≧ΔT≧60℃千百(Tt−SOO℃)、
700℃4 Tt 41ooo℃となり、第9図(bl
に示すA−D−E点で囲まれた広い条件範囲に拡大され
る。
That is, the above temperature difference conditions and upper surface temperature conditions on the straightening borrow side to obtain a defect-free slab without internal cracks are as follows:
00℃-TL≧ΔT≧60℃1100 (Tt-SOO℃),
700℃4Tt 41ooo℃, Figure 9 (bl
The condition is expanded to a wide range of conditions surrounded by points A-D-E shown in FIG.

更に第9,10図より、水切板を設置し短辺シエ29− ルを緩冷して短辺シェル温度を上面(内面、L面)表面
温度よりも上げる、いいかえると、矯正借入側で短辺表
面温度Tsを上面(内面、L面)表面温度TL(700
℃〈TL61100℃)に対して、1000℃十’(T
l−800℃)4Ts!1100℃十”(TL−800
℃)3 の関係を維持することにより、水切板を設置せず、短辺
シェルを強冷して短辺シェル温度を上面(内面、L面)
表面温度よりも下げてしまう、換言すると矯正借入側で
短辺表面温度Tsが上面(内面。
Furthermore, from Figures 9 and 10, a drain plate is installed and the short side shell is slowly cooled to raise the short side shell temperature higher than the upper surface (inner surface, L surface) surface temperature. The side surface temperature Ts is the upper surface (inner surface, L surface) surface temperature TL (700
℃〈TL61100℃), 1000℃ 10' (T
l-800℃)4Ts! 1100℃ 10” (TL-800
℃) By maintaining the relationship of 3, the short side shell is strongly cooled without installing a drain plate, and the short side shell temperature is adjusted to the upper surface (inner surface, L surface).
In other words, the short side surface temperature Ts on the straightening side is lower than the surface temperature.

L面)表面温度TLに対して、600℃十百(Tt、−
800℃) 4 ’p s ! 7 Q Q℃十”(T
t−800℃)の関係となる場合に比較して、内部割れ
を防止するために最低必要な矯正借入側における上、下
面(内・外面、L、F面)温度差ΔT(二Tp −Tt
 )を、 TL=(’rL−soo℃)からΔT−60
℃十”(Ti、−800℃)に減少できる。
L side) 600℃100 (Tt, -
800℃) 4'ps! 7 Q Q℃10” (T
t - 800℃), the minimum required temperature difference ΔT (2 Tp - Tt
), TL=('rL-soo℃) to ΔT-60
The temperature can be reduced to 10" (Ti, -800°C).

例えば、水切板を設置しなくても内部割れのない鋳片を
得ることができた実施条件における上面(内面、L面)
表面温度TLの最小値700℃では30− ΔTを175℃から40℃に、最大値880℃では22
0℃から76℃に減少できる。また温度TL=800℃
では、ΔTを200℃から60℃に減少できる。これは
矯正借入側で短辺シェル温度を上面シェル温度よりも高
く維持することにより、上面シェルに生じる引張歪が有
効に緩和されることを示している。
For example, the upper surface (inner surface, L surface) under the implementation conditions in which slabs without internal cracks could be obtained without installing a drain plate.
At the minimum surface temperature TL of 700°C, 30-ΔT is changed from 175°C to 40°C, and at the maximum value of 880°C, it is 22
It can be reduced from 0°C to 76°C. Also, temperature TL = 800℃
In this case, ΔT can be reduced from 200°C to 60°C. This shows that by maintaining the short side shell temperature higher than the top shell temperature on the straightening side, the tensile strain generated in the top shell can be effectively alleviated.

上記の如く水切板により短辺シェルを緩冷し、矯正借入
側で短辺シェル温度を上面シェル温度よりも高めること
により、上面(内面、L面)と下面(外面、2面)との
間につける温度差を減少することができ、操業上のバラ
ツキを吸収して安定的に無欠陥鋳片を確保できる。例え
ば水切板を設置しない場合、高温鋳片を得るべく取り得
る上面(内面、L面)表面温度の最大値880℃とする
と、下面温度Tp=1100℃、温度差ΔT=220℃
を維持しなければ内部割れ発生を防止できず、例えば操
業上Tpが1100℃を超えたり、TLが880℃を超
えて温度差ΔTが220℃以下となると内部割れが発生
してしまう。
As described above, by slowly cooling the short side shell with the drain plate and raising the short side shell temperature higher than the top shell temperature on the straightening borrowing side, the gap between the upper surface (inner surface, L surface) and the lower surface (outer surface, 2nd surface) It is possible to reduce the temperature difference between the two, absorb operational variations, and stably ensure defect-free slabs. For example, if a drain plate is not installed, and the maximum surface temperature of the upper surface (inner surface, L surface) that can be taken to obtain a high-temperature slab is 880°C, the lower surface temperature Tp = 1100°C, and the temperature difference ΔT = 220°C.
The occurrence of internal cracks cannot be prevented unless the temperature is maintained. For example, if Tp exceeds 1100°C during operation, or if TL exceeds 880°C and the temperature difference ΔT becomes 220°C or less, internal cracks will occur.

一方水切板を設置した場合には、TL−880℃一定な
らばTFが1100〜956℃(ΔT=220〜76℃
)の範囲でバラツキを生じても内部割れのない、無欠陥
鋳片が得られる。また例えばTLが700〜900℃(
或は800〜900℃)の範囲でバラツキが生じ、かつ
ΔTが80〜175℃(或は60〜200℃)の範囲で
バラツキが生じても確実に無欠陥鋳片を得ることができ
る。
On the other hand, when a drain plate is installed, if TL - 880℃ is constant, TF is 1100 to 956℃ (ΔT = 220 to 76℃
) Defect-free cast slabs without internal cracks can be obtained even if variations occur within the range. For example, TL is 700 to 900℃ (
Or, even if variations occur in the range of 800 to 900°C) and variations in ΔT occur in the range of 80 to 175°C (or 60 to 200°C), defect-free slabs can be reliably obtained.

更に、上記の如く水切板により短辺シェルを緩冷し、矯
正借入側での短辺シェル温度を、上面シェル温度よりも
高めることにより、上面(内面、L面)と下面(外面、
2面)との間につける温度差を減少することができ、前
述の如く操業上のバラツキを吸収して安定的に無欠陥鋳
片を得ることができるのみならず、上面(内面、L面)
シェルの表面温度をより高くすることができ、この結果
としてより高温の無欠陥鋳片(スラブ)を得ることが可
能となり、直送圧延プロセスにおける圧延プロセス側の
圧延条件の緩和になる。
Furthermore, as described above, by slowly cooling the short side shell with the drain plate and raising the short side shell temperature on the straightening borrow side higher than the upper surface shell temperature, the upper surface (inner surface, L surface) and lower surface (outer surface,
It is possible to reduce the temperature difference between the upper surface (inner surface, )
The surface temperature of the shell can be made higher, and as a result, it becomes possible to obtain a defect-free slab at a higher temperature, and the rolling conditions on the rolling process side in the direct rolling process are relaxed.

即ち、前述した如く矯正借入側の下面(外面、2面)表
面温度TFは、ロール間バルジングによる内部割れ発生
防止の観点から約1100℃以下にする必要があり、水
切板のない場合には、上面(内面、L面)表面温度TL
の最大値は約880℃であるが、水切板を設置した場合
には、約too。
That is, as mentioned above, the surface temperature TF of the lower surface (outer surface, 2nd surface) on the straightening borrow side needs to be approximately 1100°C or less from the viewpoint of preventing internal cracks due to inter-roll bulging, and if there is no drain plate, Top surface (inner surface, L surface) surface temperature TL
The maximum value of is about 880 degrees Celsius, but when a drain plate is installed, it is about too much.

℃にすることができる。℃.

詳しくは、水切板を設置した場合には、水切板のない場
合に、無欠陥鋳片を得ることが不可能であり、かつ高温
鋳片を得る上で好ましい高温度条件域即ち、第9図(b
)に示す、C−F−E点で囲まれた温度条件範囲〔88
0℃4Tt、≦1000tl:、1100tlニーTL
≧ΔT)60℃+s (Tt−800℃)、TF(=T
L+ΔT)!1xoo℃〕でもって無欠陥鋳片を得るこ
とができる。
Specifically, when a drain plate is installed, it is impossible to obtain a defect-free slab without a drain plate, and the high temperature condition range that is preferable for obtaining a high-temperature slab is shown in Fig. 9. (b
), the temperature condition range surrounded by points C-F-E [88
0℃4Tt, ≦1000tl:, 1100tl knee TL
≧ΔT)60℃+s (Tt-800℃), TF(=T
L+ΔT)! A defect-free slab can be obtained at a temperature of 1xoo°C].

以上は、基準円弧3m、機高3.5m、矯正帯長4mの
小円弧、多点矯正型の低機高、湾曲型連続鋳造機におけ
る鋳造結果を、矯正借入側の鋳片表面温度条件と内部割
れ発生の有無との関係を整理し、説明したものであるが
、矯正帯内の冷却条件によって、矯正借入側の鋳片の上
面、下面、短辺表面温度は、矯正帯内並びに矯正帯出側
で変化す33− る。
The above describes the casting results of a small arc with a standard arc of 3 m, a machine height of 3.5 m, a straightening band length of 4 m, a multi-point straightening type low machine height, and a curved continuous casting machine, and the slab surface temperature conditions on the straightening side. The relationship between the occurrence of internal cracks and the occurrence of internal cracks has been summarized and explained. Depending on the cooling conditions within the straightening zone, the surface temperature of the upper surface, lower surface, and short side of the cast slab on the straightening side will vary depending on the temperature within the straightening zone and the temperature outside the straightening zone. It changes on the side.

例えば矯正帯内の冷却条件によって■矯正借入側の各面
温度を矯正帯内で維持して、矯正帯出側の各面温度を上
記借入側温度に維持したり、■矯正帯内で各面温度を漸
次低下させ、帯出側の各面温度を借入側各面温度より若
干低下させたり、■矯正帯内で復熱させて、帯出側各面
温度を借入側各面温度よりも高めたりすることができる
For example, depending on the cooling conditions in the orthodontic zone, ■ the temperature of each surface on the orthodontic side is maintained within the orthodontic zone, and the temperature of each surface on the outlet side of the orthodontic zone is maintained at the above borrowing side temperature, or ■ the temperature of each surface within the orthodontic zone is Gradually reduce the temperature of each surface on the belt exit side to be slightly lower than the temperature of each surface on the borrowing side, or regenerate heat within the straightening zone to make the temperature of each surface on the belt exit side higher than the temperature of each surface on the borrowing side. I can do it.

ただし矯正帯内で冷却条件を調整して、矯正帯内で復熱
せしめる場合、上面や下面が矯正帯内で、表面温度にお
いて、100℃以上の復熱を行なうと、この復熱による
引張歪が付加されて、内部割れが発生してしまうことが
わかった。従って矯正帯内での復熱は、100℃以下に
とどめる必要があり、直接圧延プロセス用に高温鋳片を
得るための復熱工程は矯正完了後の総合歪の低い時点で
行なうのが好ましい。
However, if the cooling conditions within the straightening zone are adjusted and the heat is recuperated within the straightening zone, if the top or bottom surfaces are within the straightening zone and reheating is performed at a surface temperature of 100°C or higher, tensile strain due to this reheating will occur. It was found that internal cracks occurred due to the addition of Therefore, the reheating within the straightening zone must be kept at 100° C. or lower, and the reheating step to obtain a hot slab for the direct rolling process is preferably carried out at a time when the total strain is low after straightening is completed.

更に矯正帯内での冷却は、矯正借入側温度を維持するフ
ラット冷却パターンもしくは矯正帯内で漸次温度を低下
するスロープ冷却パターンを採用34− するのが好ましい。
Furthermore, for cooling within the straightening zone, it is preferable to adopt a flat cooling pattern that maintains the straightening borrow side temperature or a slope cooling pattern that gradually lowers the temperature within the straightening zone.

第9,10図は、基準円弧3mの例であるが、基準円弧
6mの場合では、円弧半径増大による矯正歪の減少並び
に高シェル厚での矯正歪の減少のメリットはある反面、
静圧の増大によるロール径の増大があり、ロールピッチ
の増大に基づくバルジング歪の増加から、総合歪に占め
る矯正歪の許容量が少なくなる結果、矯正借入側での温
度条件は、第9,10図とほとんど同じであり、鋳造速
度の増大した場合も同様な現象であり、はぼ同様な条件
を満している必要のあることもわかった。
Figures 9 and 10 are examples of a reference arc of 3 m, but in the case of a reference arc of 6 m, there are advantages in reducing orthodontic strain by increasing the arc radius and reducing orthodontic strain with a high shell thickness, but on the other hand,
The roll diameter increases due to the increase in static pressure, and the increase in bulging strain due to the increase in roll pitch reduces the allowable amount of straightening strain in the total strain. As a result, the temperature conditions on the straightening borrowing side are It is almost the same as in Figure 10, and it was also found that the same phenomenon occurs when the casting speed is increased, and that almost the same conditions need to be satisfied.

次に、矯正帯出側(矯正完了点)で温度条件について述
べる。矯正完了時での下限温度条件は、直接圧延の温度
条件から決まる。第11図は、直接圧延プロセスでの低
機高型連続鋳造機における冷却パターン例を示す。この
冷却パターン例では矯正帯内での冷却パターンは、前記
フラット冷却パターンを採用し、矯正完了以降の水平部
で未凝固復熱させている。
Next, the temperature conditions on the straightening band exit side (straightening completion point) will be described. The lower limit temperature condition at the time of completion of straightening is determined from the temperature condition of direct rolling. FIG. 11 shows an example of a cooling pattern in a low-height continuous casting machine in a direct rolling process. In this cooling pattern example, the flat cooling pattern described above is adopted as the cooling pattern within the straightening zone, and unsolidified heat is regenerated in the horizontal portion after the straightening is completed.

ここで問題になるのが、水平部での未凝固復熱による内
部割れの発生であり、この限界値を調べた結果、表面温
度での復熱量260℃以下では、内部割れの発生しない
ことがわかった。従って鋳造速度1.7rrymin、
水平部260℃以下の復熱条件での完全凝固時のスラブ
断面平均温度を、矯正完了点での表面温度および基準円
弧(no )毎に求めると第12図のようになる。
The problem here is the occurrence of internal cracks due to unsolidified recuperation in the horizontal section, and as a result of investigating this limit value, it was found that internal cracks will not occur if the amount of recuperation at the surface temperature is 260°C or less. Understood. Therefore, the casting speed is 1.7rrymin,
The average cross-sectional temperature of the slab at the time of complete solidification under recuperation conditions of 260° C. or less in the horizontal portion is determined for each surface temperature at the point of completion of straightening and for each reference arc (no), as shown in FIG. 12.

鋼種および圧延ミル能力により若干の差はあるものの、
圧延温度から算定して要求される連鋳機機端でのスラブ
断面平均温度は1180℃であり、この第12図から明
らかな様に表面温度800℃以上で矯正を完了する必要
のあることがわかる。
Although there are slight differences depending on the steel type and rolling mill capacity,
Calculated from the rolling temperature, the average temperature of the slab cross section at the end of the continuous casting machine required is 1180°C, and as is clear from Figure 12, it is necessary to complete straightening at a surface temperature of 800°C or higher. Recognize.

従って直接圧延プロセス用の高温鋳片(連鋳機機端での
スラブ断面平均温度1180℃以上)を得るには、矯正
帯出側(矯正完了点)で鋳片上、下面の表面温度は、8
00℃以上でなければならな℃A。
Therefore, in order to obtain a high-temperature slab for the direct rolling process (average slab cross-sectional temperature at the end of the continuous caster of 1180°C or higher), the surface temperature of the upper and lower surfaces of the slab at the straightening strip exit side (straightening completion point) must be 8.
℃A must be above 00℃.

また、第12図の関係は、鋳造速度1.7771/mj
Rの場合を示すが、スラブの連鋳機機端での温度は、復
熱プロセスを取る限り、完全凝固位置と機端との位置の
差が支配的であり、鋳造速度1,5@/mm〜2. O
m/mmの範囲であれば、はとんど鋳造速度に依存しな
いことがわかった。
In addition, the relationship shown in Figure 12 is that the casting speed is 1.7771/mj
In the case of R, the temperature at the end of the continuous caster is dominated by the difference between the completely solidified position and the end of the continuous caster as long as the reheating process is used, and the casting speed is 1.5 @ / mm~2. O
It has been found that in the range of m/mm, it is almost independent of the casting speed.

以上詳述した本発明の要旨をまとめてみると次の通りで
ある。直接圧延を目的とした場合に、必要とされる高温
かつ内部割れのない良好な品質の鋳片を得るために、バ
ルジングの少ない低機高型連続鋳造機即ち低機高の多点
矯正湾曲型連続鋳造機での鋳造に際し、詳しくは未凝固
相を有する湾曲鋳片を曲げ矯正するに際し、矯正による
引張歪の緩和のために、矯正時に引張応力の生じる側の
シェル表面温度を圧縮応力の生じる側のシェル表面温度
よりも低くすると共に短辺シェルの表面温度を上記引張
応力の生じる側のシェル表面温度よりも高くして曲げ矯
正を開始し曲げ矯正を完了することにより、短辺での剪
断変形を優先して生じせしめ、かつ高温鋳片を得るため
に少なくとも矯正完了後は未凝固復熱せしめることを特
徴とする連続鋳造方法である。
The gist of the present invention detailed above is summarized as follows. In order to obtain high-temperature slabs of good quality without internal cracks for direct rolling, we use a low machine height continuous casting machine with less bulging, i.e. a low machine height multi-point straightening curved casting machine. During casting with a continuous casting machine, more specifically, when bending and straightening a curved slab with an unsolidified phase, in order to alleviate the tensile strain caused by straightening, the shell surface temperature on the side where tensile stress is generated during straightening is adjusted to lower the shell surface temperature on the side where compressive stress occurs. By starting and completing bending straightening by lowering the surface temperature of the shorter side shell and making the surface temperature of the shorter side shell higher than the shell surface temperature of the side where the above-mentioned tensile stress occurs, shearing on the short side is achieved. This continuous casting method is characterized by giving priority to deformation and reheating the unsolidified slab at least after completion of straightening in order to obtain a high-temperature slab.

なお本発明の連続鋳造方法は、垂直部を有した37− 湾曲型連続鋳造機においても実施できるものである。Note that the continuous casting method of the present invention uses a 37- This method can also be implemented using a curved continuous casting machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は湾曲型連続鋳造機で鋳造中の連鋳鋳片のプロフ
ィルの説明図、第2図は曲げ矯正によって上面シェルに
引張歪が生じる原理的な説明図、第3図は機高におよぼ
す矯正帯開始位置の影響を示す模式図、第4図は低機高
型連鋳機において圧縮鋳造を行なう際の問題点を示す説
明図、第5図は低機高型連鋳機で圧縮鋳造を行った場合
の歪の軽減程度を示す説明図、第6図は曲げ矯正を三次
元的に見た場合の主要応力および主要歪の説明図、第7
図は短辺シェルに生じる剪断応力成分の説明図、第8図
は短辺シェル温度を上昇させるために設置した水切板の
設置状況の説明図、第9図(al・(b)は矯正帯での
上面および下面表面温度ならびに水切板設置の有無の内
部割れ発生におよぼす影響の説明図、第1O図は水切板
設置の有無における上面表面温度と短辺表面温度の関係
の説明図、第11図は高温無欠陥鋳片製造の復熱型冷却
パターンの38− 模式図、第12図は矯正完了温度と機端スラブ断面平均
温度との関係の説明図、第13図(al、 (bl、 
fclは従来の連鋳〜圧延プロセスを示す図表である。 1・・・湾曲鋳型、 2・・・湾曲鋳片、 3,4・・
・ロール、 6・・・未凝固相、  7・・・110デ
の中立軸、8・・・上面シェル、  9・・・下面シェ
ル、10・・・鋳造方向(矢印)、 11・・・鋳造方
向(矢印)12・・・上面シェル、13・・・下面シェ
ル、14・・・短辺(シェル)、 15.15’・・・
引張応力、 16.16 ’・・・圧縮応力、17.1
7’・・・上面シェルの幅を狭めようとする変形、18
.18’・・・下面シェルの幅を拡げようとする変形、
19.19’・・・鋳造方向の剪断変形、 20 、2
0 ’・・・巾方向の剪断変形、 21・・・水切板、
22・・・ロール、 23・・・ノズル 特許出願人代理人 弁理士 矢 葺 知 之 (ほか1名) 39− 第1図 第2図 ソ一一−10 第5図 ロールN。 常6WJ ンη′ぷ1 く・ 1・・  ・・必゛。 第7図 第8図 第10図 111温度TtC”C) 第11E 第12図
Figure 1 is an explanatory diagram of the profile of a continuously cast slab being cast by a curved continuous casting machine, Figure 2 is an explanatory diagram of the principle that tensile strain occurs in the upper shell due to bending straightening, and Figure 3 is an illustration of the machine height. Fig. 4 is an explanatory diagram showing the problems encountered when performing compression casting in a low machine height continuous casting machine, and Fig. 5 is a schematic diagram showing the influence of the straightening band start position. An explanatory diagram showing the degree of reduction in strain when casting is performed, Fig. 6 is an explanatory diagram of the principal stress and principal strain when bending straightening is viewed three-dimensionally, and Fig. 7
The figure is an explanatory diagram of the shear stress component generated in the short side shell, Figure 8 is an explanatory diagram of the installation situation of the drain plate installed to increase the short side shell temperature, and Figure 9 (al and (b) is an illustration of the correction zone Figure 10 is an explanatory diagram of the influence of the upper and lower surface temperatures and the presence or absence of a drain plate on the occurrence of internal cracks, and Figure 1O is an explanatory diagram of the relationship between the upper surface temperature and short side surface temperature with and without a drain plate installed. The figure is a schematic diagram of the recuperative cooling pattern for producing high-temperature defect-free slabs, Figure 12 is an explanatory diagram of the relationship between the straightening completion temperature and the average temperature of the end slab cross section, and Figure 13 (al, (bl,
fcl is a chart showing the conventional continuous casting to rolling process. 1... Curved mold, 2... Curved slab, 3, 4...
・Roll, 6... Unsolidified phase, 7... Neutral axis of 110 degrees, 8... Top shell, 9... Bottom shell, 10... Casting direction (arrow), 11... Casting Direction (arrow) 12...Top shell, 13...Bottom shell, 14...Short side (shell), 15.15'...
Tensile stress, 16.16'...Compressive stress, 17.1
7'...Deformation that attempts to narrow the width of the upper shell, 18
.. 18'...Deformation that attempts to widen the width of the lower shell,
19.19'... Shear deformation in the casting direction, 20, 2
0'... Shear deformation in the width direction, 21... Drain plate,
22... Roll, 23... Patent attorney representing the nozzle patent applicant Tomoyuki Yafuki (and one other person) 39- Figure 1 Figure 2 Soichi-10 Figure 5 Roll N. Always6WJ nη'P1 Ku・1......necessary. Figure 7 Figure 8 Figure 10 Figure 111 Temperature TtC''C) Figure 11E Figure 12

Claims (1)

【特許請求の範囲】 1、 低機高の多点矯正湾曲型連続鋳造機で未凝固相を
有する湾曲鋳片を曲げ矯正する連続鋳造方法において、
未凝固鋳片の曲げ矯正時に引張応力の生じる側のシェル
表面温度を、圧縮応力の生じる側のシェル表面温度より
も低くすると共に、短辺シェルの表面温度を、上記引張
応力の生じる側のシェル表面温度よりも高くして曲げ矯
正を開始し曲げ矯正を完了することを特徴とする連続鋳
造方法。 2、 低機高の多点矯正湾曲型連続鋳造機で未凝固相を
有する湾曲鋳片を曲げ矯正する連続鋳造方法において、
未凝固鋳片の曲げ矯正時に引張応力の生じる側のシェル
表面温度を、圧縮応力の生じる側のシェル表面温度より
も低くすると共に、短辺シェルの表面温度を、上記引張
応力の生じる側のシェル表面温度よりも高くして曲げ矯
正を開始し曲げ矯正を完了し、かつ未凝固復熱すること
を特徴とする連続鋳造方法。 3、 機高6.5m以下の多点矯正湾曲型連続鋳造機で
1.5 m/In1n以上の高速鋳造速度下にて未凝固
相を有する湾曲鋳片を曲げ矯正する連続鋳造方法におい
て、未凝固相を有する鋳片の曲げ矯正時に引張応力の生
じる側(内側)の(上面)シェルの表面温度TL、圧縮
応力の生じる側(外側)の(下面)シェルの表面温度T
F、短辺シェルの表面温度’rsの間に下記(1) 、
(2) 、(3) 、 (4)式の関係を維持して曲げ
矯正を開始し、曲げ矯正を完了し、かつ矯正完了点での
上記表面温度TL及びTFを800℃以上とし未凝固復
熱することを特徴とする特許請求の範囲1項記載の連続
鋳造法。 1000℃≧TL≧700℃  ・・・・・・(1)T
F(=TL+ΔT)41100℃ ・・・・・・(2)
1100℃づL≧ΔT≧60℃刊s (Tt 800℃
)・・・・・・(3) 1100℃+−u(TL−soo℃)≧TS≧1000
℃十片(Tr−−soo℃)3 ・・・・・・(4) 4、 機高6.5m以下の多点矯正湾曲型連続鋳造機で
1. s m/m1tt以上の高速鋳造速度下にて未凝
固相を有する湾曲鋳片を曲げ矯正する連続鋳造方法にお
いて、未凝固相を有する鋳片の曲げ矯正時に引張応力の
生じる側(内側)の(上面)シェルの表面温度TL、圧
縮応力の生じる側(外側)の(下面)シェルの表面温度
TF、短辺シェルの表面温度150間に下記(1) 、
(2) 、 (3) 、 (4)式の関係を維持して曲
げ矯正を開始し、曲げ矯正を完了し、かつ矯正完了点で
の表面温度TL及びTpを800℃以上とし、未凝固復
熱することを特徴とする特許請求の範囲1項記載の連続
鋳造方法。 1000℃≧TL≧700℃    ・・・・・・(1
)Tp(=Tt、+ΔT)41100℃  ・・・・・
・(2)200℃十−!−(TL−800℃))ΔT≧
60℃+L(Tt  800℃)5 ・・・・・・(3) 1100℃+z(Tl−800℃) 4 ’rs = 
1000℃+−fl(TL−soo℃)3 ・・・・・・(4) 5、 機高6.5m以下の多点矯正湾曲型連続鋳造機で
1.5 m/Ilrm以上の高速鋳造速度下にて未凝固
相を有する湾曲鋳片をm目デ矯正する連続鋳造方法にお
いて、未凝固相を有する鋳片の曲げ矯正時に引張応力の
生じる側(内側)の(上面)シェルの表面温度TL、圧
縮応力の生じる側(外側)の(下面)シェルの表面温度
TF、短辺シェルの表面温度TSの間に下記(]) 、
(2) 、(3) 、 (4)式の関係を維持して曲げ
矯正を開始し、曲げ矯正を完了し、かつ矯正完了点での
表面温度TL及びTFを800℃以上とし未凝固復熱す
ることを特徴とする特許請求の範囲1項記載の連続鋳造
方法。 1000℃≧TL)880℃    ・・・・・・(1
)TF (= Tt、十ΔT)41100℃  ・・・
・・・(2)1100℃−丁L≧ΔT)60℃+−(T
t、 −800℃)  ・・・・・・(3)1100℃
+ (Tt  800℃)≧TS≧1000℃十暑(T
t、−800℃)  − ・・・・・・(4)
[Claims] 1. A continuous casting method for bending and straightening a curved slab having an unsolidified phase using a multi-point straightening curved continuous casting machine with a low machine height,
When straightening the bend of an unsolidified slab, the surface temperature of the shell on the side where tensile stress occurs is lower than the surface temperature of the shell on the side where compressive stress occurs, and the surface temperature of the short side shell is lowered to lower the surface temperature of the shell on the side where tensile stress occurs. A continuous casting method characterized by starting and completing bend straightening at a temperature higher than the surface temperature. 2. In a continuous casting method for bending and straightening a curved slab having an unsolidified phase using a low machine height multi-point straightening curved continuous casting machine,
When straightening the bend of an unsolidified slab, the surface temperature of the shell on the side where tensile stress occurs is lower than the surface temperature of the shell on the side where compressive stress occurs, and the surface temperature of the short side shell is lowered to lower the surface temperature of the shell on the side where tensile stress occurs. A continuous casting method characterized by starting bending straightening at a temperature higher than the surface temperature, completing the bending straightening, and recuperating unsolidified heat. 3. In a continuous casting method of bending and straightening a curved slab having an unsolidified phase at a high casting speed of 1.5 m/In1n or more using a multi-point straightening curved continuous casting machine with a machine height of 6.5 m or less, Surface temperature TL of the (top) shell on the side (inside) where tensile stress occurs during bending straightening of a slab having a solidified phase; Surface temperature T of the (bottom) shell on the side (outside) where compressive stress occurs
F, the following (1) between the surface temperature 'rs of the short side shell,
(2), (3), and (4), maintain the relationships of equations (4), start bending straightening, complete bending straightening, and set the above-mentioned surface temperatures TL and TF at 800°C or higher at the point of completion of straightening to recover the unsolidified state. The continuous casting method according to claim 1, characterized in that the continuous casting method is heated. 1000℃≧TL≧700℃・・・・・・(1)T
F (=TL + ΔT) 41100℃ ・・・・・・(2)
1100℃zuL≧ΔT≧60℃s (Tt 800℃
)・・・・・・(3) 1100℃+-u(TL-soo℃)≧TS≧1000
℃ ten pieces (Tr--soo℃) 3 ...... (4) 4. 1. Using a multi-point straightening curved continuous casting machine with a machine height of 6.5 m or less. In a continuous casting method of bending and straightening a curved slab having an unsolidified phase at a high casting speed of s m/m1tt or higher, the side (inside) where tensile stress occurs during bending straightening of the slab having an unsolidified phase ( The following (1) between the surface temperature TL of the top shell), the surface temperature TF of the (bottom) shell on the side (outside) where compressive stress occurs, and the surface temperature 150 of the short side shell,
(2), (3), and (4), maintain the relationships of formulas, start bending straightening, complete the bending straightening, and set the surface temperatures TL and Tp at the point of completion of straightening to 800°C or higher to recover the unsolidified state. The continuous casting method according to claim 1, characterized in that heating is performed. 1000℃≧TL≧700℃ (1
) Tp (=Tt, +ΔT) 41100°C...
・(2) 200℃ 10-! -(TL-800℃))ΔT≧
60℃+L (Tt 800℃) 5 ...... (3) 1100℃+z (Tl-800℃) 4 'rs =
1000℃+-fl (TL-soo℃) 3 ...... (4) 5. High-speed casting speed of 1.5 m/Ilrm or more with a multi-point straightening curved continuous casting machine with a machine height of 6.5 m or less In the continuous casting method of straightening a curved slab having an unsolidified phase by m-th degree, the surface temperature TL of the shell on the side (inner side) where tensile stress is generated during bending straightening of the slab having an unsolidified phase (top surface). , the following (]) between the surface temperature TF of the (lower surface) shell on the side where compressive stress occurs (outside) and the surface temperature TS of the short side shell.
(2), (3), (4) Maintaining the relationships of equations, start bending straightening, complete bending straightening, and set surface temperatures TL and TF at 800°C or higher at the point where straightening is completed, and perform unsolidified reheating. The continuous casting method according to claim 1, characterized in that: 1000℃≧TL)880℃・・・・・・(1
) TF (= Tt, 10ΔT) 41100℃...
...(2) 1100℃−T L≧ΔT) 60℃+−(T
t, -800℃) ・・・・・・(3) 1100℃
+ (Tt 800℃)≧TS≧1000℃
t, -800℃) - ・・・・・・(4)
JP22391282A 1982-12-22 1982-12-22 Continuous casting method Granted JPS59113964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22391282A JPS59113964A (en) 1982-12-22 1982-12-22 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22391282A JPS59113964A (en) 1982-12-22 1982-12-22 Continuous casting method

Publications (2)

Publication Number Publication Date
JPS59113964A true JPS59113964A (en) 1984-06-30
JPS6234458B2 JPS6234458B2 (en) 1987-07-27

Family

ID=16805653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22391282A Granted JPS59113964A (en) 1982-12-22 1982-12-22 Continuous casting method

Country Status (1)

Country Link
JP (1) JPS59113964A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090048U (en) * 1983-11-28 1985-06-20 トヨタ自動車株式会社 seat belt device
JPS63115658A (en) * 1986-10-31 1988-05-20 Nkk Corp Continuous casting method for steel containing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245669U (en) * 1988-09-22 1990-03-29

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252126A (en) * 1975-10-24 1977-04-26 Nippon Kokan Kk Method of continuous casting
JPS555115A (en) * 1978-06-23 1980-01-16 Nippon Kokan Kk <Nkk> Continuous casting method
JPS56148461A (en) * 1980-04-17 1981-11-17 Nippon Steel Corp Method and device for cooling continuous casting ingot
JPS5719144A (en) * 1980-07-10 1982-02-01 Nippon Steel Corp Conveying method for high-temperature ingot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252126A (en) * 1975-10-24 1977-04-26 Nippon Kokan Kk Method of continuous casting
JPS555115A (en) * 1978-06-23 1980-01-16 Nippon Kokan Kk <Nkk> Continuous casting method
JPS56148461A (en) * 1980-04-17 1981-11-17 Nippon Steel Corp Method and device for cooling continuous casting ingot
JPS5719144A (en) * 1980-07-10 1982-02-01 Nippon Steel Corp Conveying method for high-temperature ingot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090048U (en) * 1983-11-28 1985-06-20 トヨタ自動車株式会社 seat belt device
JPH0215000Y2 (en) * 1983-11-28 1990-04-23
JPS63115658A (en) * 1986-10-31 1988-05-20 Nkk Corp Continuous casting method for steel containing

Also Published As

Publication number Publication date
JPS6234458B2 (en) 1987-07-27

Similar Documents

Publication Publication Date Title
JP2830962B2 (en) Apparatus and method for producing hot rolled steel
US5630467A (en) Thin slab continuous casting machine and method
KR20190078396A (en) Method of manufacturing sub-peritectic steel
JP4042541B2 (en) Secondary cooling device and secondary cooling method for continuous cast slab
JPS59113964A (en) Continuous casting method
US4582114A (en) Continuous casting apparatus for the production of cast sheets
US4433717A (en) Process for bow type continuous casting
JP2011005525A (en) Method for continuously casting steel cast slab
CN211360593U (en) Continuous casting system for polygonal casting blank
JP2001137901A (en) Rolling method in hot-charge of continuously cast slab
US10758972B2 (en) Continuous casting method and corresponding apparatus
JP3093533B2 (en) Continuous casting of thin cast slab
JP7356016B2 (en) Method for rolling rectangular cross-section steel billets, continuous casting and rolling equipment, and rolling equipment
JPS63171255A (en) Non-solidified rolling method
KR850001154B1 (en) Process for bow type continuous casting
JPS63171254A (en) Non-solidified rolling method
JP2806250B2 (en) Manufacturing method of continuous cast slab
JP3212256B2 (en) Continuous hot rolling of billets
JPS635859A (en) Continuous casting method for high silicon steel
JPH057108B2 (en)
JP5581668B2 (en) T-shaped steel manufacturing equipment and manufacturing method
JP3041958B2 (en) Continuous casting method and apparatus
JPS5855158A (en) Continuous casting machine for direct coupling of steel making and rolling
JPH057107B2 (en)
JPS62270257A (en) Apparatus for producing continuously rulled stock for metal sheet