JPH057107B2 - - Google Patents

Info

Publication number
JPH057107B2
JPH057107B2 JP13723684A JP13723684A JPH057107B2 JP H057107 B2 JPH057107 B2 JP H057107B2 JP 13723684 A JP13723684 A JP 13723684A JP 13723684 A JP13723684 A JP 13723684A JP H057107 B2 JPH057107 B2 JP H057107B2
Authority
JP
Japan
Prior art keywords
slab
straightening
stage
strain
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13723684A
Other languages
Japanese (ja)
Other versions
JPS6117346A (en
Inventor
Kazumi Yasuda
Kyomi Yadori
Chihiro Yamaji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13723684A priority Critical patent/JPS6117346A/en
Publication of JPS6117346A publication Critical patent/JPS6117346A/en
Publication of JPH057107B2 publication Critical patent/JPH057107B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、溶鋼を連続鋳造して鋳片を得るに
際し、内部割れ、表面横割れ、コーナ割れのない
鋳片を得るための彎曲型連続鋳造法に関し、特に
鋳片の冷却条件に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a curved continuous casting method for obtaining slabs free of internal cracks, surface transverse cracks, and corner cracks when continuously casting molten steel to obtain slabs. This article relates to casting methods, particularly to cooling conditions for slabs.

(従来技術) 近年、溶鋼金属を連続鋳造して鋳片を得る連続
鋳造技術が発達し、鉄鋼業にあつても溶鋼を鋳型
に注入して鋼塊を得、これを分塊圧延して鋳片を
得るプロセスに代つて、溶鋼を連続鋳造して直接
鋳片(鋼片)を得る連続鋳造プロセスが採用さ
れ、この連続鋳造プロセスによつて鋼片を製造す
る比率が著しく増大してきている。
(Prior art) In recent years, continuous casting technology has been developed to continuously cast molten steel to obtain slabs, and even in the steel industry, molten steel is poured into molds to obtain steel ingots, which are then bloomed and cast. Instead of the process of obtaining slabs, a continuous casting process has been adopted in which molten steel is continuously cast to directly obtain slabs (steel slabs), and the proportion of steel slabs manufactured by this continuous casting process has increased significantly.

連続鋳造プロセスは、従来の造塊−分塊圧延プ
ロセスに比し、歩留が高い、エネルギー消費量が
少ないといつた点ですぐれている。
Continuous casting processes are superior to conventional ingot-blanking and rolling processes in that they have higher yields and lower energy consumption.

この連続鋳造プロセスによつて得られる鋳片
は、多量の顕熱を保有しており、この顕熱を消失
してしまうことなく、高温鋳片の状態で圧延工程
に供給すれば、常温の鋳片を加熱して圧延するプ
ロセスに比し、エネルギー、コストの面で有利で
ある。
The slab obtained by this continuous casting process has a large amount of sensible heat, and if this sensible heat is not dissipated and the slab is supplied to the rolling process in the form of a hot slab, it is possible to Compared to the process of heating and rolling a piece, it is advantageous in terms of energy and cost.

連続鋳造によつて得られた鋳片を高温のまま、
直接圧延工程に供給することを可能ならしめるた
めには、鋳片表面に割れ疵等のない、換言すれば
表面疵除去等の手入れを要しない、品質のすぐれ
た鋳片が得られなければならない。品質のすぐれ
た鋳片とは、中心偏析、内部割れ、表面疵、介在
物のない鋳片をいうのであるが、就中表面横割
れ、コーナ割れ等、鋳片を常温まで降温させた
後、疵を検出し、これを除去するために、手入れ
を要する原因となる表面欠陥のないものでなけれ
ばならない。
The slab obtained by continuous casting is kept at high temperature,
In order to be able to supply the slab directly to the rolling process, it is necessary to obtain a slab of excellent quality that has no cracks on the surface of the slab, in other words, does not require maintenance such as removing surface scratches. . A slab of excellent quality is one that is free of center segregation, internal cracks, surface flaws, and inclusions, especially surface horizontal cracks, corner cracks, etc., after the slab is cooled to room temperature. It must be free of surface imperfections that would require maintenance to detect and remove defects.

上に述べた点も含め、鋼の連続鋳造プロセスに
おける現今の技術的課題は、以下の如くである。
The current technical issues in the continuous steel casting process, including the points mentioned above, are as follows.

(1)高速鋳造によつて、高生産性を可能ならしめ
ること。(2)連続鋳造された鋳片を直接、圧延工程
で圧延するプロセス、或は連続鋳造された鋳片
を、高温のまま圧延のための加熱炉に装入する、
所謂ホツトチヤージプロセスを可能ならしめ、圧
延のための加熱エネルギを減少或は省略するこ
と。(3)連続鋳造鋳片の直接圧延プロセス、或はホ
ツトチヤージプロセスを可能ならしめる高品質の
鋳片を製造すること。(4)設備コストが低く、メイ
ンテナンスのし易い連続鋳造機であること。(5)安
定した操業ができるプロセスであること。
(1) Making high productivity possible through high-speed casting. (2) A process in which continuously cast slabs are directly rolled in a rolling process, or continuously cast slabs are charged into a heating furnace for rolling while still at high temperature.
To enable a so-called hot charge process and to reduce or eliminate heating energy for rolling. (3) To produce high-quality slabs that enable continuous casting slabs to be directly rolled or hot-charged. (4) A continuous casting machine with low equipment cost and easy maintenance. (5) The process must be capable of stable operation.

これらの技術的課題を解決するため、従来彎曲
型連続鋳造機による未凝固部分を有する鋳片を
矯正する。鋳型から引抜かれてくる鋳片を緩冷
却し、未凝固部分を有する状態で、鋳片を真直に
矯正し(彎曲したものを曲げ戻す)、然る後復熱
させる。といつた操業形態が採られていた。
In order to solve these technical problems, the cast slabs having unsolidified parts produced by conventional curved continuous casting machines are straightened. The slab pulled out of the mold is slowly cooled, the slab is straightened (curved is bent back) while it has unsolidified parts, and then it is reheated. This type of operation was adopted.

かかる従来技術においては、以下の如き問題が
あつた。
This conventional technique has the following problems.

(1)750〜900℃に存在する鋼の脆化域を回避し
て、鋳片を矯正することにより、表面割れ等の疵
の発生を防止し、以て鋳片の疵手入を不要にし、
高温鋳片の製造を可能ならしめるけれども、バル
ジングが発生し易く、これによつて、内部割れの
発生、中心偏析の悪化を招く。
(1)By avoiding the embrittlement zone of steel that exists at 750 to 900℃ and straightening the slab, it is possible to prevent the occurrence of defects such as surface cracks, thereby eliminating the need for maintenance of defects on the slab. ,
Although it makes it possible to produce high-temperature slabs, bulging tends to occur, which leads to the occurrence of internal cracks and worsening of center segregation.

(2)このため現行操業にあつては、連続鋳造用パ
ウダを改善し、鋳造速度、鋳片冷却強度を、鋳片
の表面疵手入れが不要であり、かつ内部割れ、中
心偏析の許容限界以下となる範囲内で操業してい
る。従つて生産性が低下する。
(2) For this reason, in the current operation, the powder for continuous casting has been improved, and the casting speed and slab cooling strength are not required to clean the surface of the slab, and are below the allowable limits for internal cracking and center segregation. The company operates within the following range. Therefore, productivity decreases.

一方、緩冷却未凝固操業を、より安定化し、高
品質鋳片を得るに問題となるバルジングを抑制す
べく、(1)鋳片を支持案内するロールの鋳片進行方
向における間隔を小さくする(ロールピツチの細
密化)。(2)連続鋳造機高を低く(ローヘツド化)
して、溶鋼静圧を低くし、バルジングの増大を抑
えることが実施されつつある。
On the other hand, in order to further stabilize the slow cooling and unsolidified operation and to suppress bulging, which is a problem in obtaining high-quality slabs, (1) the distance between the rolls that support and guide the slabs in the slab traveling direction should be reduced ( Refinement of roll pitch). (2) Lower the height of the continuous casting machine (lower head)
Therefore, efforts are being made to lower the static pressure of molten steel and suppress the increase in bulging.

しかしながら、かかる技術的手段を以てして
も、先に述べた(1)〜(5)項の鋼の連続鋳造プロセス
における現今の技術的課題は、十分には解決され
得ない。
However, even with such technical means, the current technical problems in the continuous steel casting process of items (1) to (5) mentioned above cannot be sufficiently solved.

即ち、鋳片を支持案内するロールの鋳片進行方
向における間隔を小さくする、所謂ロールピツチ
の細密化は、ロールピツチを300mmまで短縮する
のが限界であり、鋳片に生起するバルジングの大
きさを、鋳片に内部割れを発生せしめないレベル
にまで低下せしめるには到らない。一方、ロール
ピツチの細密化は、設備コストを高める難点もあ
る。
In other words, the so-called refinement of the roll pitch, which reduces the interval in the slab traveling direction between the rolls that support and guide the slab, has a limit of shortening the roll pitch to 300 mm, and the size of bulging that occurs in the slab can be reduced by It cannot be lowered to a level that does not cause internal cracks in the slab. On the other hand, making the roll pitch finer has the disadvantage of increasing equipment costs.

また、連続鋳造機高を低くする、所謂ローヘツ
ド化は、鋳片の進行軌跡の彎曲曲率が大となり、
鋳片を彎曲状態から真直にする、曲げ矯正におけ
る矯正歪が大きくなり、内部割れを招くという問
題がある。この彎曲した鋳片を、真直に曲げ戻す
矯正過程において、発生する内部割れを防止する
ために、現在下記(1)式に示す、総合歪εTが、0.40
%以下となるように、鋳片温度に対応するロール
ピツチl、曲率半径Rを決定し、これに基づいた
連続鋳造機の設計が行なわれている。
In addition, lowering the height of the continuous casting machine, so-called low head, increases the curvature of the progress trajectory of the slab.
There is a problem in that the correction strain during bending straightening, which straightens the slab from a curved state, becomes large, leading to internal cracks. In order to prevent internal cracks from occurring during the straightening process of bending this curved slab back straight, the total strain ε T is currently set at 0.40 as shown in equation (1) below.
% or less, the roll pitch l and radius of curvature R corresponding to the slab temperature are determined, and a continuous casting machine is designed based on these.

即ち εT=εu+εb+εn ……(1) ここで εT:総合歪 εu:矯正歪 εb:バルジング歪 εn:ミスアライメント歪、通常、定数とし、εn
=0.05%として計算される。
That is, ε T = ε u + ε b + ε n ...(1) where ε T : Total strain ε u : Correction strain ε b : Bulging strain ε n : Misalignment strain, usually a constant, ε n
Calculated as = 0.05%.

εu=(D/2−S)(1/Ri−1/Ri+1)×100……
(2) D:鋳片の厚さ S:鋳片の凝固殻厚さ Ri:i+i番目の矯正点における曲率半径 Ri+1i:1番目の矯正点における曲率半径 εb=1600δB・S/l2 ……(3) l:ロールピツチ δB:バルジング量 ae=1.45×103exp(−74000/1.986.TM) αp:形状係数 P:溶鋼静圧 V:鋳造速度〔m/min〕 TM=TS+1490/2+273 TS:鋳片の表面温度 εn=Cn・δ・S/l2 ……(4) Cn:ミスアライメント係数 δ:ミスアライメント量 上に述べた総合歪εTを、種々の曲率半径Rに対
して、鋳片厚さ:250mm、鋳造速度:V=1.5m/
min、緩冷却操業(凝固係数:K=25m/√)
の下で操業した場合について示すと、第4図の如
くである。
ε u = (D/2-S) (1/R i -1/R i+1 )×100...
(2) D: Thickness of the slab S: Thickness of the solidified shell of the slab R i : Radius of curvature at the i+i-th straightening point R i+1i : Radius of curvature at the first straightening point ε b = 1600δ B・S /l 2 ...(3) l: Roll pitch δ B : Bulging amount a e = 1.45×10 3 exp (-74000/1.986.T M ) α p : Shape factor P : Molten steel static pressure V : Casting speed [m/min] T M = T S +1490/2 + 273 T S : Sculpture Surface temperature ε n = C n・δ・S/l 2 ...(4) C n : Misalignment coefficient δ : Misalignment amount The total strain ε T mentioned above is calculated for various curvature radii R Piece thickness: 250mm, casting speed: V=1.5m/
min, slow cooling operation (solidification coefficient: K=25m/√)
Figure 4 shows the case of operation under the following conditions.

このときの条件は、次の通りである。(1)鋳片の
軌道は、多点矯正プロフイルとする。(2)多点矯正
における歪配分は、表面歪を均等に分散するよう
に、曲率半径を決定する。(3)連続矯正プロフイル
で代表する。(4)ロールピツチは、分割ロールで基
本とした稠密配置とする。
The conditions at this time are as follows. (1) The trajectory of the slab shall have a multi-point straightening profile. (2) For strain distribution in multi-point correction, the radius of curvature is determined to evenly distribute surface strain. (3) represented by a continuous orthodontic profile; (4) The roll pitch shall be a dense arrangement based on divided rolls.

かかる技術思想に基づいて、設計された初期曲
率半径R=10.5mおよびR=3mの連続鋳造機を
用いて、前述の操業条件、鋳片厚さ:250mm、鋳
造速度:1.5m/min、凝固係数K=25m/√
で、溶鋼の連続鋳造を行なつた処、次のような結
果であつた。(1)C0.12%の低炭素鋼の場合に
は、内外面割れは全く発生しない。(2)C0.13%
の中炭素鋼の場合には、内部割れが多発する。
Based on this technical idea, a continuous casting machine with an initial radius of curvature R = 10.5 m and R = 3 m was designed under the above operating conditions, slab thickness: 250 mm, casting speed: 1.5 m/min, and solidification. Coefficient K=25m/√
Then, when continuous casting of molten steel was carried out, the following results were obtained. (1) In the case of low carbon steel with C0.12%, no cracking occurs on the inner or outer surfaces. (2)C0.13%
In the case of medium carbon steel, internal cracks occur frequently.

R=10.5mの連続鋳造機にあつては、圧縮鋳造
(CPC操業と呼ばれる)等により、C0.13%の
中炭素鋼の鋳造にあつても、内部割れを生起せし
めないように配慮されている。
The continuous casting machine with R = 10.5m uses compression casting (called CPC operation) to ensure that internal cracks do not occur even when casting medium carbon steel with a carbon content of 0.13%. There is.

しかしながら、初期曲率半径Rが3mといつた
ローヘツド連続鋳造機にあつては、彎曲した鋳片
の曲率を減少させるためのロールを配置した矯正
帯の長さが短かくて、彎曲鋳片を真直に曲げ戻す
ときに、彎曲鋳片の内面側に作用する張力によつ
て、生起する割れを抑止するに必要なだけの圧縮
力を発生するに足る駆動力発生帯が充分とれな
い。加えて、圧縮力を発生させるに必要な溶鋼静
圧が低いため、充分な矯正歪緩和をもたらし得な
い。
However, in the case of a low-head continuous casting machine with an initial radius of curvature R of 3 m, the length of the straightening band in which rolls are arranged to reduce the curvature of the curved slab is short, and the curved slab can be straightened. When the curved slab is bent back, the tension acting on the inner surface of the curved slab does not create a sufficient driving force generation band to generate the compressive force necessary to prevent cracks from occurring. In addition, since the static pressure of molten steel required to generate compressive force is low, sufficient straightening strain relaxation cannot be achieved.

ローヘツド連続鋳造機にあつては、かかる理由
によつて、C0.13%の中炭素鋼の連続鋳造に際
して、内部割れを発生し、高速鋳造が不可能とな
つている。
For this reason, internal cracks occur in low-head continuous casting machines when continuously casting medium carbon steel with a carbon content of 0.13%, making high-speed casting impossible.

一方、鋳片の冷却法を工夫することによつて、
鋳片の矯正歪を緩和することが知られている。即
ち、特開昭50−25434号、特開昭50−102526号、
特開昭50−102527号、特開昭52−52126号および
特開昭55−5115号の各公開公報には、彎曲鋳片を
真直に曲げ戻す曲げ矯正時に、鋳片上面(彎曲内
側)即ち引張り応力を生じる側の凝固殻の温度
を、鋳片下面(彎曲外側)即ち圧縮応力を生じる
側の凝固殻温度よりも低くすることにより、上面
側凝固殻の強度を増大させて、曲げ戻し矯正に伴
なう上面側凝固殻の引張歪量を小さくして、曲げ
戻し矯正に起因する内部割れを防ぐようにするこ
とが、開示されている。
On the other hand, by devising a cooling method for slabs,
It is known to alleviate the straightening strain of slabs. That is, JP-A-50-25434, JP-A-50-102526,
JP-A-50-102527, JP-A-52-52126, and JP-A-55-5115 disclose that when straightening a curved slab by bending it back straight, By lowering the temperature of the solidified shell on the side that generates tensile stress to be lower than the temperature of the solidified shell on the lower surface of the slab (on the outside of the curve), that is, the side that generates compressive stress, the strength of the solidified shell on the upper surface side is increased and the bending is straightened. It has been disclosed that the amount of tensile strain of the upper surface side solidified shell accompanying this is reduced to prevent internal cracks caused by unbending and straightening.

このような、鋳片の冷却方法を採ることによ
り、 (1) 彎曲鋳片の上面(内側)を下面(外側)より
相対的に強冷し、矯正時における鋳片の力学的中
立軸を、鋳片断面の幾何学的中心軸よりも、彎曲
鋳片上面側(内側)へ移動させることとなり、こ
れによつて鋳片の内部割れが防止できる。
By adopting this method of cooling the slab, (1) the upper surface (inside) of the curved slab is relatively strongly cooled than the lower surface (outside), and the mechanical neutral axis of the slab during straightening is The curved slab is moved toward the upper surface side (inward) of the geometric center axis of the cross section of the slab, thereby preventing internal cracking of the slab.

(2)鋳片の適正温度範囲は、鋳片の上面(内
側):700〜900℃、鋳片の下面(外側):1000℃を
超えない温度である。と開示されている。
(2) The appropriate temperature range for the slab is 700 to 900℃ for the top surface (inside) of the slab, and a temperature that does not exceed 1000℃ for the bottom surface (outside) of the slab. is disclosed.

上に述べた如く、鋳片の内部割れを防止しか
つ、5m以下といつた低溶鋼静圧(低機高)下で
の連続鋳造を可能ならしめるためには、総合歪εT
を鋳片長手方向に均一に分布させることが必要で
ある。
As mentioned above, in order to prevent internal cracking of slabs and to enable continuous casting under low molten steel static pressure (low machine height) of 5 m or less, the total strain ε T
It is necessary to distribute it uniformly in the longitudinal direction of the slab.

(発明が解決しようとする問題点) この発明は、5m以下の低機高の連続鋳造装置
による溶鋼の連続鋳造において、鋳片の凝固界面
における実質歪を、矯正帯全域に亘つて、均一に
賦存せしめることによつて、鋳片内部に割れを発
生せしめることなしに、溶鋼を連続鋳造する方法
を得ることを目的としてなされた。
(Problems to be Solved by the Invention) This invention aims to uniformly reduce the substantial strain at the solidification interface of the slab over the entire straightening zone during continuous casting of molten steel using a continuous casting machine with a low machine height of 5 m or less. This was done with the aim of providing a method for continuous casting of molten steel without causing cracks inside the slab.

(問題点を解決するための手段及び作用) この発明の特徴とするところは、機高5m以下
の多点矯正彎曲型連続鋳造装置による未凝固相を
有する彎曲鋳片を、真直に矯正する過程を有する
溶鋼の連続鋳造方法において、矯正帯における鋳
片凝固界面での歪配分を ε前段ε後段3・ε前段 ただし矯正点数Nが偶数のとき(N=2n) ε 前段=1/n oi=1 εi ε 後段=1/n 2oi=n+1 εi 矯正点数Nが奇数のとき(N=2n+1) ε 前段=1/n oi=1 εi ε 後段=1/n 2o+1i=n+2 εi なお、あるロールでの矯正歪が、最大矯正歪の
1/10倍以下である場合は、そのロールは矯正点
とは見なさず、Nのなかに数えない。
(Means and effects for solving the problems) The present invention is characterized by the process of straightening a curved slab having an unsolidified phase using a multi-point straightening curved continuous casting machine with a machine height of 5 m or less. In the continuous casting method of molten steel with i=1 ε i ε Later stage = 1/n 2oi=n+1 ε i When the number of correction points N is an odd number (N = 2n + 1) ε First stage = 1/n oi=1 ε i ε Later stage = 1/ n 2o+1i=n+2 ε iIn addition, if the straightening strain on a certain roll is less than 1/10 times the maximum straightening strain, that roll is not considered as a straightening point and is included in N. I don't count.

εui=(D/2−S)(1/Ri−1/Ri)×100 ここで、εui:i番目の矯正点における矯正歪 D:鋳片の厚さ〔mm〕 S:i番目の矯正点における凝固殻厚
さ〔mm〕 R i :i番目の矯正点の直前区間の設
計曲率半径 Ri:i番目の矯正点の直後区間の設
計曲率半径 として彎曲鋳片の矯正を遂行する低機高彎曲型連
続鋳造プロセスにおける鋳片の多点矯正方法であ
る。
ε ui = (D/2-S) (1/R i -1/R i )×100 Here, ε ui : Correction strain at the i-th correction point D: Thickness of slab [mm] S: i Solidified shell thickness at the ith straightening point [mm] R i : Design radius of curvature of the section immediately before the i-th straightening point R i : Straightening of the curved slab is performed using the design radius of curvature of the section immediately after the i-th straightening point This is a multi-point straightening method for slabs in a low machine height curved continuous casting process.

ここで、前段、後段の意味について説明する
と、矯正前段とは、矯正点のうちの前半部分を指
す。即ち、矯正点数が偶数(2n)のときは、1
〜n番の矯正点が前段、(n+1)〜(2n)番が
後段である。
Here, to explain the meanings of the first stage and the second stage, the first stage of correction refers to the first half of the correction point. In other words, when the number of correction points is an even number (2n), 1
The correction points numbered .about.n are the first stage, and the correction points numbered (n+1) to (2n) are the second stage.

また、矯正点数が奇数(2n+1)のときは、
中央点(n+1)番の矯正点を除いて、1〜n番
の矯正点が前段、(n+2)〜(2n+1)番が後
段である。
Also, when the number of correction points is an odd number (2n+1),
Except for the center point (n+1), correction points 1 to n are the front stage, and correction points (n+2) to (2n+1) are the rear stage.

以下に、この発明を詳細に説明する。 This invention will be explained in detail below.

発明者等の知見によれば、総合歪εT=εu+εb
εn(εu:矯正歪、εb:バルジング歪、εn:ミスア
ライメント歪)を構成するそれぞれの歪のうち、
バルジング歪εbとミスアライメント歪εnは、ハー
ドウエアに依存するものであり、従つて、連続鋳
造の操業に際しては一定値として取扱い得る。
According to the inventors' knowledge, the total strain ε T = ε u + ε b +
Of each strain that constitutes ε nu : correction strain, ε b : bulging strain, ε n : misalignment strain),
The bulging strain ε b and the misalignment strain ε n depend on the hardware, and therefore can be treated as constant values during continuous casting operations.

矯正歪εuは、幾何学歪εui εui=(D/2−S)(1/Ri−1/Ri)×100 (εui:i番目の矯正点における矯正歪(幾何学
歪) D:鋳片の厚さ〔mm〕 S:i番目の矯正点における凝固殻厚さ
(シエル厚)〔mm〕 R i :i番目の矯正点の直前区間の設計曲
率半径 Ri:i番目の矯正点の直後区間の設計曲
率半径) が鋳片長手方向に均一に分布するように、矯正帯
域におけるロールのセツテイングを行なつても、
鋳片長手方向に均一に分布しない。
The correction strain ε u is the geometric strain ε ui ε ui = (D/2−S) (1/R i −1/R i )×100 (ε ui : Correction strain (geometric strain) at the i-th correction point ) D: Thickness of the slab [mm] S: Solidified shell thickness at the i-th straightening point (shell thickness) [mm] R i : Design radius of curvature of the section immediately before the i-th straightening point R i : i-th straightening point Even if the rolls are set in the straightening zone so that the design radius of curvature in the section immediately after the straightening point is distributed uniformly in the longitudinal direction of the slab,
Not uniformly distributed in the longitudinal direction of the slab.

これは、鋳片の凝固殻が、ロールに巻き付くこ
とによる歪の異常な挙動に起因している。この模
様を第1図および第2図に示す。
This is due to the abnormal behavior of strain caused by the solidified shell of the slab being wrapped around the rolls. This pattern is shown in FIGS. 1 and 2.

第1図に、1点鎖線で示す鋳片の軌跡が、純粋
曲げ変形時の鋳片の軌跡であり、実線で示すプロ
フイルが、現実の鋳片の状態を示している。この
図から明らかなように、その内部に液相(未凝固
相)を有する状態の鋳片を、ロールで拘束、支持
案内するときは、鋳片はロール間において直線状
に移動し、ロールに接して凝固殻が折れ曲るよう
に巻き付く。図においてaは、正常なストランド
通路、bは巻き付き時のストランド通路である。
In FIG. 1, the locus of the slab shown by the dashed line is the locus of the slab during pure bending deformation, and the profile shown by the solid line shows the actual state of the slab. As is clear from this figure, when a slab with a liquid phase (unsolidified phase) inside is restrained, supported and guided by rolls, the slab moves linearly between the rolls and When they come into contact with each other, the solidified shells bend and wrap around each other. In the figure, a indicates a normal strand path, and b indicates a strand path during winding.

その結果、鋳片の矯正歪εuは、第2図(凝固界
面歪分布)に示すように、ロールの位置或はその
近傍で異常に大きな値となる。これが、鋳片の内
部割れを生起せしめる因子となる。図中εu# 12、
εu# 21は、それぞれi=12,21即ち12番目、21
番目のロールにおける矯正歪を示す。
As a result, the correction strain ε u of the slab becomes an abnormally large value at or near the roll position, as shown in FIG. 2 (solidification interface strain distribution). This becomes a factor that causes internal cracks in the slab. In the figure εu#12,
εu#21 is i=12, 21, i.e., the 12th, 21
The correction distortion in the th roll is shown.

鋳片の凝固界面における実際の歪εui〜と、幾何
学歪εuiの比率を、歪集中係数αと定義する。即
ちα=εui〜/εuiである。
The ratio between the actual strain εui~ and the geometric strain εui at the solidification interface of the slab is defined as the strain concentration coefficient α. That is, α=εui˜/ε ui .

αは、鋳片の凝固殻厚さ、ロールピツチ、鋳片
表面温度等によつて変化する。
α changes depending on the solidified shell thickness of the slab, roll pitch, slab surface temperature, etc.

発明者等は、多くの実験結果からαと各種パラ
メータとの間に第3図a〜eに示す関係があるこ
とを解明した。その結果、鋳片の矯正歪εuは、総
合的には第3図bに示すように、鋳片長手方向に
分布することが明らかとなつた。
The inventors have clarified from the results of many experiments that there are relationships between α and various parameters as shown in FIGS. 3a to 3e. As a result, it became clear that the straightening strain ε u of the slab was distributed in the longitudinal direction of the slab as shown in FIG. 3b.

即ち、第3図bから明らかな如く、鋳片表面温
度が700℃のとき、矯正帯域の最終段(# 23ロー
ル)における鋳片の矯正歪の集中係数αは、矯正
帯域初段(# 11ロール)におけるそれの2/5の水
準になつている。鋳片表面温度が、800℃のとき
は、やや趣が異なつていて、最終段のαは初段の
αの5/9程度になる。
That is, as is clear from Fig. 3b, when the surface temperature of the slab is 700°C, the concentration coefficient α of straightening strain in the slab at the final stage of the straightening zone (roll #23) is the same as that at the first stage of the straightening zone (roll #11). ) is now 2/5 of that in Japan. When the surface temperature of the slab is 800℃, the situation is slightly different, and the final stage α is about 5/9 of the first stage α.

第3図aは# 11ロール位置におけるシエル厚
(鋳造速度)特性、bはロール位置特性、cはロ
ールピツチ特性、dは# 11ロール位置における鋳
片表面温度特性、eは# ロール位置におけるシエ
ル曲率半径特性である。
Figure 3 a shows the shell thickness (casting speed) characteristics at the #11 roll position, b shows the roll position characteristics, c shows the roll pitch characteristics, d shows the slab surface temperature characteristics at the #11 roll position, and e shows the shell curvature at the # roll position. It is a radius characteristic.

発明者等は、この知見に基づいて、鋳片の凝固
界面における実際の歪を、一様に分布させ、内部
割れのない高品質の高温鋳片を得る鋳造プロセス
を完成した。
Based on this knowledge, the inventors have completed a casting process that uniformly distributes the actual strain at the solidification interface of the slab and obtains a high-quality high-temperature slab without internal cracks.

それは、鋳片が通過するロール配置プロフイ
ル、即ち鋳片の幾何学歪の配分を ε 前段ε 後段3×ε 前段 とすることによつて、鋳片の凝固界面における実
際の矯正歪を、鋳片長手方向に一様に分布させる
ことを可能ならしめた。
By setting the roll arrangement profile through which the slab passes, that is, the distribution of the geometric strain of the slab to ε front stage ε rear stage 3×ε front stage, the actual correction strain at the solidification interface of the slab can be adjusted to the length of the slab. This made it possible to distribute the particles uniformly in the hand direction.

(実施例) 第1円弧の曲率半径3mR、機高3.2〜3.3mの彎
曲型連続鋳造機で、断面サイズ250mm厚×1000mm
幅の鋳片を鋳造した。
(Example) A curved continuous casting machine with a radius of curvature of the first arc of 3 mR and a machine height of 3.2 to 3.3 m, with a cross-sectional size of 250 mm thick x 1000 mm.
A wide slab was cast.

鋳造諸元(両プロフイル共通) (1) 鋼種:中炭・アルミ・シリコン・キルド鋼 (2) 鋳造速度:1.7m/min (3) 注水比:0.8/Kg 鋳造プロフイル (1) 本発明プロフイル A 矯正点数:15点 ε 後段(後段平均矯正歪)=1.2ε 前段(前段平均矯正歪) B 矯正点数:15点 ε 後段=1.5ε 前段 C 矯正点数:15点 ε 後段=2.0ε 前段 D 矯正点数:15点 ε 後段=2.8ε 前段 (2) 比較プロフイル E 矯正点数:15点 ε 後段=0.9ε 前段 F 矯正点数:15点 ε 後段=3.2ε 前段 鋳造の結果、内部割れに関して下記の成績を得
た。
Casting specifications (common to both profiles) (1) Steel type: Medium coal, aluminum, silicon, killed steel (2) Casting speed: 1.7 m/min (3) Water injection ratio: 0.8/Kg Casting profile (1) Invention profile A Number of correction points: 15 points ε Second stage (average correction strain of second stage) = 1.2ε First stage (average correction strain of first stage) B Number of correction points: 15 points ε Second stage = 1.5ε First stage C Number of correction points: 15 points ε Second stage = 2.0ε First stage D Number of correction points : 15 points ε Second stage = 2.8ε First stage (2) Comparison profile E Number of correction points: 15 points ε Second stage = 0.9ε First stage F Number of correction points: 15 points ε Second stage = 3.2ε First stage As a result of casting, the following results regarding internal cracks were obtained. Ta.

本発明プロフイル: A,B,C,D内部割れ頻度 0ケ/m 比較プロフイル: E内部割れ頻度 12ケ/m F内部割れ頻度 8ケ/m (発明の効果) この発明は、以上述べたように構成し、かつ作
用せしめるようにしたから、矯正歪の集中に起因
する内部割れを、鋳片に生起せしめることなく、
高品質の高温鋳片を、高生産性下に圧延ラインに
供給することができるので、圧延のための加熱エ
ネルギを軽減或は省略できる等、大きな効果を奏
する。
Invention profile: A, B, C, D internal crack frequency 0 pieces/m Comparison profile: E internal crack frequency 12 pieces/m F internal crack frequency 8 pieces/m (Effects of the invention) As described above, this invention has the following advantages: Since it is configured and made to act, internal cracks due to concentration of correction strain will not occur in the slab.
Since high-quality hot slabs can be supplied to the rolling line with high productivity, great effects can be achieved, such as reducing or omitting heating energy for rolling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、鋳片凝固殻のロールへの巻き付き現
象を示す模式図、第2図は、鋳片凝固殻のロール
への巻き付きに起因する矯正歪の異常現象を示す
図表、第3図a〜eは、歪集中係数αと、諸種の
パラメータとの関係を示す図表、第4図は、総合
歪εTと初期曲率半径との関係を示す図表である。
Fig. 1 is a schematic diagram showing the phenomenon of the solidified slab shell wrapping around the roll, Fig. 2 is a diagram showing the abnormal phenomenon of straightening strain caused by the wrapping of the solidified slab shell around the roll, and Fig. 3 a ~e is a chart showing the relationship between the strain concentration coefficient α and various parameters, and FIG. 4 is a chart showing the relationship between the total strain ε T and the initial radius of curvature.

Claims (1)

【特許請求の範囲】 1 機高5m以下の多点矯正彎曲型連続鋳造装置
による未凝固相を有する彎曲鋳片を、真直に矯正
する過程を有する溶鋼の連続鋳造方法において、
矯正帯における鋳片凝固界面での歪配分を ε前段ε後段3・ε前段 ただし矯正点数Nが偶数のとき(N=2n) ε 前段=1/n oi=1 εi ε 後段=1/n 2oi=n+1 εi 矯正点数Nが奇数のとき(N=2n+1) ε 前段=1/n oi=1 εi ε 後段=1/n 2o+1i=n+2 εi なお、あるロールでの矯正歪が最大矯正歪の
1/10倍以下である場合は、そのロールは矯正点
とは見なさず、Nのなかにかぞえない。 εui=(D/2−S)(1/Ri−1/Ri)×100 ここで、εui:i番目の矯正点における矯正歪 D:鋳片の厚さ〔mm〕 S:i番目の矯正点における凝固殻厚さ
〔mm〕 R i :i番目の矯正点の直前区間の設
計曲率半径 Ri:i番目の矯正点の直後区間の設
計曲率半径 として彎曲鋳片の矯正を遂行することを特徴とす
る鋳片の多点矯正方法。
[Claims] 1. A method for continuous casting of molten steel, which includes the process of straightening a curved slab having an unsolidified phase using a multi-point straightening curved continuous casting device with a machine height of 5 m or less,
The strain distribution at the slab solidification interface in the straightening zone is as follows: ε first stage ε second stage 3・ε first stage However, when the number of straightening points N is an even number (N=2n) ε first stage=1/n oi=1 ε i ε second stage=1 /n 2oi=n+1 ε When the number of i correction points N is an odd number (N=2n+1) ε First stage=1/n oi=1 ε i ε Second stage=1/n 2o+1i=n+ 2 ε i Note that if the straightening strain on a certain roll is less than 1/10 times the maximum straightening strain, that roll is not considered as a straightening point and is not included in N. ε ui = (D/2-S) (1/R i -1/R i )×100 Here, ε ui : Correction strain at the i-th correction point D: Thickness of slab [mm] S: i Solidified shell thickness at the ith straightening point [mm] R i : Design radius of curvature of the section immediately before the i-th straightening point R i : Straightening of the curved slab is performed using the design radius of curvature of the section immediately after the i-th straightening point A multi-point straightening method for cast slabs.
JP13723684A 1984-07-04 1984-07-04 Multipoint straightening method of billet Granted JPS6117346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13723684A JPS6117346A (en) 1984-07-04 1984-07-04 Multipoint straightening method of billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13723684A JPS6117346A (en) 1984-07-04 1984-07-04 Multipoint straightening method of billet

Publications (2)

Publication Number Publication Date
JPS6117346A JPS6117346A (en) 1986-01-25
JPH057107B2 true JPH057107B2 (en) 1993-01-28

Family

ID=15193955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13723684A Granted JPS6117346A (en) 1984-07-04 1984-07-04 Multipoint straightening method of billet

Country Status (1)

Country Link
JP (1) JPS6117346A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045258B2 (en) * 2007-06-18 2012-10-10 Jfeスチール株式会社 Continuous casting method and continuous casting machine
CN112536340B (en) * 2020-11-20 2024-03-08 合肥工业大学 Multi-contact pressure head for straightener and straightener

Also Published As

Publication number Publication date
JPS6117346A (en) 1986-01-25

Similar Documents

Publication Publication Date Title
CN112743053B (en) Crystallizer for solving peritectic steel continuous casting slab surface cracks and control method
JPH057107B2 (en)
JP6907961B2 (en) Steel piece rolling method and rolling equipment
US4433717A (en) Process for bow type continuous casting
JPS6352988B2 (en)
JP3646417B2 (en) Manufacturing method of continuous cast slab for seamless steel pipe manufacturing
JPH057108B2 (en)
JP3390606B2 (en) Steel continuous casting method
JPS6154086B2 (en)
JPH0468064B2 (en)
JPH0390263A (en) Continuous casting method
JP2022189395A (en) Method for continuous casting of slab
JP7020307B2 (en) Rolling equipment
JPH0342981B2 (en)
JPS6228056A (en) Continuous casting method
JPS63171254A (en) Non-solidified rolling method
JP3507263B2 (en) Continuous casting method of molten steel
JPH0390259A (en) Continuous casting method
JPS59113964A (en) Continuous casting method
JPS5855158A (en) Continuous casting machine for direct coupling of steel making and rolling
JPS635859A (en) Continuous casting method for high silicon steel
JPH11239804A (en) Manufacture of hot coil
JPH033534B2 (en)
JPH0113949B2 (en)
JPH08197194A (en) Method for continuous casting of round billet