JPS6352988B2 - - Google Patents

Info

Publication number
JPS6352988B2
JPS6352988B2 JP58183304A JP18330483A JPS6352988B2 JP S6352988 B2 JPS6352988 B2 JP S6352988B2 JP 58183304 A JP58183304 A JP 58183304A JP 18330483 A JP18330483 A JP 18330483A JP S6352988 B2 JPS6352988 B2 JP S6352988B2
Authority
JP
Japan
Prior art keywords
slab
continuous casting
curvature
temperature
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58183304A
Other languages
Japanese (ja)
Other versions
JPS6076260A (en
Inventor
Shuji Osada
Hiromu Fujii
Tetsuo Oohashi
Kosaku Ozawa
Yasuo Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18330483A priority Critical patent/JPS6076260A/en
Publication of JPS6076260A publication Critical patent/JPS6076260A/en
Publication of JPS6352988B2 publication Critical patent/JPS6352988B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • B22D11/1282Vertical casting and curving the cast stock to the horizontal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、溶鋼を連続鋳造して鋳片を得るに
際し、内部割れ、表面横割れ、コーナ割れのない
鋳片を得るための湾曲型連続鋳造方法に関し、特
に鋳片の冷却条件に関する。 (従来の技術) 近年、溶融金属を連続鋳造して鋳片を得る連続
鋳造技術が発達し、鉄鋼業にあつても、溶鋼を鋳
型に注入して鋼塊を得、これを分塊圧延して鋳片
を得るプロセスに代つて、溶鋼を連続鋳造して直
接鋳片(鋼片)を得る連続鋳造プロセスが採用さ
れ、この連続鋳造プロセスによつて鋼片を製造す
る比率が著しく増大してきている。 連続鋳造プロセスは、従来の造塊分塊圧延プロ
セスに比し、歩留が高い、エネルギー消費量が少
ない、といつた点ですぐれている。 この連続鋳造プロセスによつて得られる鋳片は
多量の顕熱を保有しており、この顕熱を消失して
しまうことなく、高温鋳片の状態で、圧延工程に
供給すれば、常温の鋳片を加熱して圧延するプロ
セスに比し、エネルギー、コストの面で有利であ
る。 連続鋳造によつて得られた鋳片を高温のまま直
接圧延工程に供給することを可能ならしめるため
には、鋳片表面に割れ疵等のない、換言すれば表
面疵除去等の手入れを要しない品質のすぐれた鋳
片が得られなければならない。品質のすぐれた鋳
片とは、中心偏析、内部割れ、表面疵、介在物の
ない鋳片をいうのであるが、就中表面横割れ、コ
ーナ割れ等、鋳片を常温まで降温させた後、疵を
検出し、これを除去するために手入れを要する原
因となる表面欠陥のないものでなければならな
い。 上に述べた点も含め、鋼の連続鋳造プロセスに
おける現今の技術的課題は、以下の如くである。 (1) 高速鋳造によつて、高生産性を可能ならしめ
ること。 (2) 連続鋳造された鋳片を直接、圧延工程で圧延
するプロセス、或は連続鋳造された鋳片を高温
のまま圧延のための加熱炉に装入する所謂ホツ
トチヤージプロセスを可能ならしめ、圧延のた
めの加熱エネルギを減少或は省略すること。 (3) 連続鋳造鋳片の直接圧延プロセス或はホツト
チヤージプロセスを可能ならしめる高品質の鋳
片を製造すること。 (4) 設備コストが低く、メインテナンスのし易い
連続鋳造機であること。 (5) 安定した操業ができるプロセスであること。 これらの技術的課題を解決するため従来、湾曲
型連続鋳造機による 未凝固部分を有する鋳片を矯正する、 鋳型から引抜かれてくる鋳片を緩冷却し、未
凝固部分を有する状態で鋳片を真直に矯正し
(湾曲したものを曲げ戻す)、然る後復熱させ
る、といつた操業形態が採られていた。 (発明が解決しようとする問題点) かかる従来技術においては、以下の如き問題が
あつた。 (1) 750〜850℃に存在する鋼の脆化域を回避して
鋳片を矯正することにより、表面割れ等の疵の
発生を防止し、以て鋳片の疵手入れを不要に
し、高温鋳片の製造を可能ならしめるけれど
も、バルジングが発生し易く、これによつて、
内部割れの発生、中心偏析の悪化を招く。 (2) このため、現行操業にあつては、連続鋳造用
パウダを改善し、鋳造速度、鋳片冷却強度を、
鋳片の表面疵手入れが不要であり、かつ内部割
れ、中心偏析の許容限界以下となる範囲内とし
て操業している。従つて生産性が低下する。 一方、緩冷却未凝固操業をより安定化し、高品
質鋳片を得るに問題となるバルジングを抑制すべ
く、 鋳片を支持案内するロールの鋳片進行方向に
おける間隔を小さくする(ロールピツチの細密
化)、 連続鋳造機高を低く(ローヘツド化)して溶
鋼静圧を低くし、バルジングの増大を抑えるこ
とが実施されつつある。 しかしながら、かかる支術的手段を以てして
も、先に述べた(1)〜(5)項の鋼の連続鋳造プロセス
における現今の技術課題は、十分には解決され得
ない。 即ち、鋳片を支持案内するロールの鋳片進行方
向における間隔を小さくする、所謂ロールピツチ
の細密化は、ロールピツチを300mmまで短縮する
ことが限界であり、鋳片に生起するバルジングの
大きさを鋳片に内部割れを発生せしめないレベル
にまで低下せしめるには到らない。一方、ロール
ピツチの細密化は設定コストを高める難点もあ
る。 また、連続鋳造機高を低くする、所謂ローヘツ
ド化は、鋳片の進行軌跡の湾曲曲率が大となり、
鋳片を湾曲状態から真直にする曲げ矯正における
矯正歪が大きくなり、内部割れを招くという問題
がある。この、湾曲した鋳片を真直に曲げ戻す矯
正過程において発生する内部割れを防止するため
に、現在、下記(1)式に示す総合歪εTが0.40%以下
となるように鋳片温度に対応するロールピツチ
l、曲率半径Rを決定し、これに基づいた連続鋳
造機の設計が行なわれている。 即ち、 εT=εu+εb+εn ………(1) ここで εT:総合歪 εu:矯正歪 εb:バルジング歪 εn:ミスアライメント歪、通常、定数としてεn
0.05%として計算される。 εu=(D/2−S)(1/Ri−1/Ri+1)×100……
…(2) D:鋳片の厚さ S:鋳片の凝固殻厚さ Ri:i番目の曲率半径 Ri+1:i+1番目の曲率半径 εb=1600δB・S/l2 ………(3) l:ロールピツチ δB:バルジング量 aO=1.45×108exp(−74000/1.986・TM) αO:形状係数 P:溶鋼静圧 V:鋳造速度〔m/min〕 TM=TL+1490/2+273 TM:引張応力が生じる側の鋳片の凝固殻の断面
の平均温度を絶対温度で示す TL:引張応力が生じる側の鋳片表面温度[℃] εn=Cn・δ・S/l2 ………(4) Cn:ミスアライメント係数 δ:ミスアライメント量 上に述べた総合歪εTを、種々の曲率半径Rに対
して、鋳片厚さ:250mm、鋳造速度:V=1.5m/
min、緩冷却操業(凝固係数:K=25m/√
min)の下で操業した場合について示すと、第1
図の如くである。 このときの条件は、下記の通りである。 (1) 鋳片の軌道は、多点矯正プロフイルとする。 (2) 多点矯正における歪配分は、表面歪を均等に
分散するように、曲率半径を決定する。 (3) 連続矯正プロフイルで代表する。 (4) ロールピツチは、分割ロールを基本とした稠
密配置とする。 かかる技術思想に基づいて設計された、初期曲
率半径R=10.5mの連続鋳造機を用いて、前述の
操業条件、鋳片厚さ:250mm、鋳造速度:1.5m/
min、凝固係数K=25m/√で溶鋼の連続鋳
造を行なつた処、次のような結果であつた。 C≦0.12%の低炭素鋼の場合には、内外面割
れは全く発生しない。 C≧0.13%の中炭素鋼の場合には、内部割れ
が多発する。 R=10.5mの連続鋳造機にあつては、圧縮鋳造
(CPC操業と呼ばれる)等により、C≧0.13%の
中炭素鋼の鋳造にあつても内部割れを生起せしめ
ないように配慮されている。 一方、鋳片の冷却法を工夫することによつて鋳
片の矯正歪を緩和することが知られている。即
ち、特開昭50−25434号、特開昭50−102526号、
特開昭50−102527号、特開昭52−52126号および
特開昭55−5115号の各公報には、湾曲鋳片を真直
に曲げ戻す曲げ矯正時に、鋳片上面(湾曲内側)
即ち引張り応力を生じる側の凝固殻の温度を鋳片
下面(湾曲外側)即ち圧縮応力を生じる側の凝固
殻温度よりも低くすることにより上面側凝固殻の
強度を増大させて曲げ戻し矯正に伴なう上面側凝
固殻の引張歪量を小さくして、曲げ戻し矯正に起
因する内部割れを防ぐようにすることが開示され
ている。 このような、鋳片の冷却方法を採ることによ
り、 湾曲鋳片の上面(内側)を下面(外側)より
相対的に強冷し、矯正時における鋳片の力学的
中立軸を鋳片断面の幾何学的中心軸よりも湾曲
内側へ移動させることとなり、これによつて鋳
片の内部割れが防止でき、 鋳片の適正温度範囲は、 鋳片の内側:700〜900℃ 〃 外側:1000℃を超えない温度 である と開示されている。 しかしながら、これらの技術を以てしてもなお
先に述べた(1)〜(4)項の技術的課題を解決するため
には充分ではない。限界歪0.40%でも、C≧0.13
%の中炭素鋼の連続鋳造にあつては内部割れを起
すからである。 この発明は、初期曲率半径6m超で機高6.5m
超の連続鋳造機に対して、中炭素鋼材のように割
れ感受性の強い鋼種の連続鋳造にあつても、鋳片
に内部割れを生成させない、連続鋳造技術を得る
ことを目的としてなされた。 (問題点を解決するための手段) その特徴とする処は、初期曲率半径6m超、機
高6.5m超の連続鋳造装置を用いて、未凝固相を
有する湾曲鋳片を真直に矯正する過程を有する、
鋳造速度1.5m/min以上である連続鋳造方法で
あつて、湾曲鋳片を真直にすべく曲げ戻す(矯正
する)ときの、引張応力を生じる側の鋳片表面温
度をTL[℃]とし、同様に圧縮応力を生じる側の
鋳片表面温度をTF[℃]とし、鋳片断面における
短辺の表面温度をTS[℃]とするとき、連続鋳造
装置における初期曲率半径をR〔m〕として、 −14.3R+1043≧TL≧700 −14.3R+1143≧TF≧(1+a)TL−b TS≧900かつTS≧TL ここで、 a=−0.0125R+0.205 b=−5.13R+81.25 なる条件を満足する状態下で連続鋳造するように
したこと、および初期曲率半径6m超、機高6.5
m超の連続鋳造装置を用いて、未凝固相を有する
湾曲鋳片を真直に矯正する過程を有する、鋳造速
度が1.5m/min以上である連続鋳造方法であつ
て、湾曲鋳片を真直にすべく曲げ戻す(矯正す
る)ときの、引張応力を生じる側の鋳片表面温度
をTL[℃]とし、同様に圧縮応力を生じる側の鋳
片表面温度をTF[℃]とし、鋳片断面における短
辺の表面温度をTS[℃]とするとき、連続鋳造装
置における初期曲率半径をR〔m〕として、 −14.3R+1043≧TL≧700 −14.3R+1143≧TF≧(1+a)TL−b 900>TS≧TL ここで、 a=−0.0188R+0.438 b=−1.2R+152 なる条件を満足する状態下で連続鋳造するように
したことである。 (作用) 以下に、この発明を詳細に説明する。 発明者等は、湾曲鋳片の曲げ戻し矯正に伴なう
歪の挙動について研究した結果、鋳片の曲げ戻し
矯正は、従来考えられていたように第2図の破線
で示すような幾何学的プロフイルに沿つて行なわ
れるのではなくて、第2図に実線で示すように、
支持案内ロールの位置で局部的に集中して行なわ
れるものであることを突止めた。その結果、鋳片
の曲げ矯正歪は従来考えられていたレベルよりも
2〜3倍大きなレベルであることが明らかとなつ
た。 従つて、鋳片の矯正に伴なう総合歪εTは以下の
式で示されるべきであることがわかつた。 εT=αεu+εb+εn ………(5) ここで、α=2.0〜3.0 かかる総合歪概念は発明者等によつて初めて見
出されたものであり、この現象は、溶鋼の連続鋳
造にあつて、未凝固部を内部に有し、高温でかつ
薄い凝固殻が存在する状態で、鋳片に矯正力、引
抜力等が作用したときに発生する。 この現象は、凝固殻が薄い程、凝固殻強度が低
いほど、また幾何学歪が大きいほど顕著である。 これらの現象の解明を通してみると、C≧0.13
%の中炭素鋼の高速鋳造において、従来から言わ
れていた限界歪0.40%でも鋳片に割れが生じたの
は、矯正歪が幾何学歪εuのα倍も作用した結果で
あることが明らかとなつた。即ち、(α−1)倍
もの余分の矯正歪の集中が起つたためである。 一方、発明者等は、鋳片を冷却するに当つて、
鋳片の上下面に温度差をもたせて鋳片を矯正する
に際しては、矯正歪の緩和効果は、鋳片断面の短
辺の凝固殻強度によつても変ることを解明した。
即ち、鋳片断面の短辺の凝固殻温度が900℃以上
になると、鋳片の上、下面に温度差をもたせて曲
げ矯正するときの矯正歪緩和効果が大きく、900
℃未満では、鋳片上、下面により大きな温度差を
もたせなければならない。 そして、鋳片断面短辺の凝固殻温度TSが鋳片
上面の凝固殻温度TLよりも低いときは、鋳片上、
下面に温度差をつけて矯正歪を緩和する効果は喪
失される。 上に述べた現象の解明は、発明者等による理論
的な検討および実験によつて得られた。 以上を要するに、鋳片の上、下面に温度差をも
たせる冷却を行なう連続鋳造により力学的中立軸
を移動させ、矯正歪を緩和するに際しては、 鋳片上、下面の温度差による緩和は、少なく
とも(α−1)εuに相当する大きさのものが必
要であり、 従つて緩和しなければならない歪量は前述の
(2)式によると、連続鋳造における鋳片の曲率半
径および凝固殻厚さに大きく依存する。 以上の結論に基づいて、矯正歪の集中係数αを
2として、鋳片厚さ250mm、鋳造速度V=1.5m/
min、凝固係数Kが、K=25m/√の緩冷却
操業条件下で、前述の(5)式による総合歪εTが0.40
%以下となる温度条件を求めると、第3図、第4
図に示す如くである。 ここで、 (イ) 鋳片上面の凝固殻温度TLの下限値は連続鋳
造によつて得られた鋳片を直接圧延工程で圧延
するときに必要な鋳片温度であり、 (ロ) 鋳片上面の凝固殻温度TLおよび下面の凝固
殻温度TFの上限値はロール間における鋳片の
バルジングによる内部割れ発生防止の観点から
決まり、矯正帯入側では、 R=10mのとき、1000℃以下 にする必要がある。 上に述べた第3図、第4図に示す内部割れを生
じさせない適正範囲を数式化すると(鋳造速度V
=1.5m/minとする)、 TS≧900℃かつTS≧TLの場合、 −14.3R+1043≧TL≧700 ………(6) −14.3R+1143≧TF≧(1+a)TL−b………(7) ここで、 a=−0.0125R+0.205 b=−5.13R+81.25 900>TS≧TLの場合、 −14.3R+1043≧TL≧700℃ ………(8) −14.3R+1143≧TF≧(1+a)TL−b………(9) ここで、 a=−0.0188R+0.438 b=−1.2R+152 なお、TS=900℃を境界として、TFが全く異な
る式によつて定められる理由について述べる。
TFは物性的には連続する性質を示すものである
が、鋼の場合、この付近の温度がA3変態温度に
あたり、高温強度が著しく変化する。この変化が
短辺強度(TSに強く依存)と引張応力を生じる
側の表面強度(TLに強く依存)とに相乗して現
れた場合、連続的現象というよりは一見大きく違
つた値を示すようになるので、その効果が明確に
現われる区分として異なつた式の形となるのであ
る。 ここで、矯正歪εuに関与する凝固殻厚さS〔εu
=(D/2−S)(1/Ri−1/Ri+1)〕と鋳造速
度Vの関係について説明すると、 ここで、K:凝固係数 L:メニスカスからの距離 V:鋳造速度 で表わされる。 いま、Lを曲げ戻し矯正開始位置とすると、凝
固殻厚さSは鋳造速度Vの関数として一義的に決
まる。 凝固殻厚さSが変化すると曲げ戻し矯正歪εu
変化するから、緩和すべき歪量(α−1)εuも変
化し、延いては鋳片上、下面における所要温度差
△Tが変化する。このように、鋳片上、下面にお
ける所要温度差△Tは、鋳造速度によつても変化
する。 (実施例) 以下に本発明方法を適用した鋼の連続鋳造法の
実施例について述べる。 鋳造条件 連鋳機:初期曲率半径…10.5m、機高…10.8m、
4点矯正。 鋼種:中央Al−K 鋳片サイズ:250mm厚×1050mm巾 鋳造速度:1.6m/min 本発明の実施例の鋳片の温度条件と内部割れ成
績について第1表および第5表に示す。
(Industrial Application Field) The present invention relates to a curved continuous casting method for obtaining slabs without internal cracks, surface horizontal cracks, or corner cracks when continuously casting molten steel. Regarding cooling conditions. (Conventional technology) In recent years, continuous casting technology has developed to obtain slabs by continuously casting molten metal, and even in the steel industry, molten steel is poured into molds to obtain steel ingots, which are then bloomed and rolled. Instead of the process of obtaining slabs by continuous casting of molten steel, a continuous casting process has been adopted in which molten steel is continuously cast to directly obtain slabs (steel slabs), and the proportion of steel slabs produced by this continuous casting process has increased significantly. There is. The continuous casting process is superior to the conventional agglomeration and blooming rolling process in that it has a higher yield and consumes less energy. The slab obtained by this continuous casting process has a large amount of sensible heat, and if this sensible heat is not dissipated and the slab is supplied to the rolling process in the form of a hot slab, the slab can be cast at room temperature. Compared to the process of heating and rolling a piece, it is advantageous in terms of energy and cost. In order to make it possible for slabs obtained by continuous casting to be directly supplied to the rolling process while still at high temperatures, the slab surface must be free of cracks, etc. In other words, it is necessary to take care such as removing surface scratches. It is necessary to obtain slabs of excellent quality. A slab of excellent quality is one that is free of center segregation, internal cracks, surface flaws, and inclusions, especially surface horizontal cracks, corner cracks, etc., after the slab is cooled to room temperature. It must be free of surface imperfections that would require care to detect and remove defects. The current technical issues in the continuous steel casting process, including the points mentioned above, are as follows. (1) To enable high productivity through high-speed casting. (2) Enables a process in which continuously cast slabs are directly rolled in a rolling process, or a so-called hot charge process in which continuously cast slabs are charged into a heating furnace for rolling while still at high temperature. , reducing or eliminating heating energy for rolling. (3) To produce high-quality slabs that enable the direct rolling process or hot charge process of continuously cast slabs. (4) A continuous casting machine with low equipment cost and easy maintenance. (5) The process must be capable of stable operation. In order to solve these technical problems, conventional curved continuous casting machines have been used to straighten slabs with unsolidified parts, to slowly cool the slabs pulled from the mold, and to form slabs with unsolidified parts. The method of operation was to straighten the steel (bending back the curved material) and then reheat it. (Problems to be Solved by the Invention) This prior art has the following problems. (1) By straightening the slab while avoiding the embrittlement zone of steel that exists at 750 to 850℃, it is possible to prevent defects such as surface cracks from occurring, thereby eliminating the need to clean the slab and Although it is possible to produce cast slabs, bulging is likely to occur, which causes
This leads to the occurrence of internal cracks and worsening of center segregation. (2) For this reason, in the current operation, we have improved the powder for continuous casting, and improved the casting speed and slab cooling strength.
There is no need to clean the surface of the slab, and the operation is carried out within a range where internal cracks and center segregation are below the allowable limit. Therefore, productivity decreases. On the other hand, in order to further stabilize the slow cooling and unsolidified operation and to suppress bulging, which is a problem in obtaining high-quality slabs, the spacing in the slab traveling direction of the rolls that support and guide the slabs is reduced (reducing the roll pitch). ), measures are being taken to reduce the height of continuous casting machines (lower head) to lower the static pressure of molten steel and to suppress the increase in bulging. However, even with such technical measures, the current technical problems in the continuous steel casting process described in items (1) to (5) mentioned above cannot be sufficiently solved. In other words, the limit of the so-called finer roll pitch, which is to reduce the distance in the slab traveling direction between the rolls that support and guide the slab, is to shorten the roll pitch to 300 mm. It cannot be lowered to a level that does not cause internal cracks in the pieces. On the other hand, making the roll pitch finer has the disadvantage of increasing setup costs. In addition, lowering the height of the continuous casting machine, so-called low head, increases the curvature of the progress trajectory of the slab.
There is a problem in that the correction strain during bending correction to straighten the slab from a curved state becomes large, leading to internal cracks. In order to prevent internal cracks that occur during the straightening process of bending a curved slab back straight, we are currently adjusting the slab temperature so that the total strain ε T shown in equation (1) below is 0.40% or less. The roll pitch l and radius of curvature R are determined, and a continuous casting machine is designed based on these. That is, ε T = ε u + ε b + ε n (1) where ε T : Total strain ε u : Correction strain ε b : Bulging strain ε n : Misalignment strain, usually ε n = as a constant.
Calculated as 0.05%. ε u = (D/2-S) (1/R i -1/R i+1 )×100...
...(2) D: Thickness of slab S: Thickness of solidified shell of slab R i : i-th radius of curvature R i+1 : i+1-th radius of curvature ε b = 1600δ B・S/l 2 ... ...(3) l: Roll pitch δ B : Bulging amount a O = 1.45×10 8 exp (-74000/1.986・T M ) α O : Shape factor P: Molten steel static pressure V: Casting speed [m/min] T M = T L +1490/2+273 T M : Tensile stress T L indicates the average temperature of the cross section of the solidified shell of the slab on the side where tensile stress is generated in absolute temperature: Surface temperature of the slab on the side where tensile stress occurs [℃] ε n =C n・δ・S/l 2 ………( 4) C n : Misalignment coefficient δ: Misalignment amount The above-mentioned total strain ε T is calculated as follows for various curvature radii R: slab thickness: 250 mm, casting speed: V = 1.5 m/
min, slow cooling operation (solidification coefficient: K=25m/√
In the case of operation under
As shown in the figure. The conditions at this time are as follows. (1) The trajectory of the slab shall have a multi-point straightening profile. (2) For strain distribution in multi-point correction, the radius of curvature is determined to evenly distribute surface strain. (3) represented by a continuous orthodontic profile; (4) The roll pitch shall be a dense arrangement based on divided rolls. Using a continuous casting machine with an initial radius of curvature R = 10.5 m, which was designed based on this technical idea, the above-mentioned operating conditions, slab thickness: 250 mm, and casting speed: 1.5 m/min were used.
When continuous casting of molten steel was carried out with a solidification coefficient K of 25 m/√, the following results were obtained. In the case of low carbon steel with C≦0.12%, cracks on the inner and outer surfaces do not occur at all. In the case of medium carbon steel with C≧0.13%, internal cracks occur frequently. Continuous casting machines with R = 10.5 m are designed to prevent internal cracks from occurring even when casting medium carbon steel with C≧0.13% using compression casting (called CPC operation). . On the other hand, it is known that correction strain in a slab can be alleviated by devising a cooling method for the slab. That is, JP-A-50-25434, JP-A-50-102526,
JP-A-50-102527, JP-A-52-52126, and JP-A-55-5115 disclose that when straightening a curved slab by bending it back straight,
In other words, by lowering the temperature of the solidified shell on the side that produces tensile stress lower than the temperature of the solidified shell on the lower surface (curved outside) of the slab, that is, on the side that produces compressive stress, the strength of the solidified shell on the upper surface side is increased, and as a result, the strength of the solidified shell on the upper surface side is increased. It is disclosed that the amount of tensile strain of the upper solidified shell is reduced to prevent internal cracks caused by unbending and straightening. By adopting this method of cooling the slab, the upper surface (inside) of the curved slab is cooled relatively more strongly than the lower surface (outside), and the mechanically neutral axis of the slab during straightening is aligned with the cross section of the slab. The geometric center axis is moved to the inside of the curve, thereby preventing internal cracking of the slab, and the appropriate temperature range for the slab is: Inside the slab: 700-900℃ Outside: 1000℃ It is disclosed that the temperature does not exceed . However, even with these techniques, it is still not sufficient to solve the technical problems in items (1) to (4) mentioned above. Even with a critical strain of 0.40%, C≧0.13
This is because internal cracking occurs during continuous casting of medium carbon steel. This invention has an initial radius of curvature of more than 6m and a machine height of 6.5m.
The purpose of this project was to create a continuous casting technology for super continuous casting machines that would prevent internal cracks from forming in slabs, even when continuously casting steel types that are highly susceptible to cracking, such as medium carbon steel. (Means for solving the problem) The characteristic feature is the process of straightening a curved slab with an unsolidified phase using a continuous casting machine with an initial radius of curvature of over 6 m and a machine height of over 6.5 m. has,
In a continuous casting method where the casting speed is 1.5 m/min or more, when bending (straightening) a curved slab to straighten it, the surface temperature of the slab on the side where tensile stress is generated is T L [°C]. Similarly, when the surface temperature of the slab on the side where compressive stress is generated is T F [°C], and the surface temperature of the short side of the slab cross section is T S [°C], the initial radius of curvature in the continuous casting device is R [ m], −14.3R+1043≧T L ≧700 −14.3R+1143≧T F ≧(1+a)T L −b T S ≧900 and T S ≧T L where, a=−0.0125R+0.205 b=−5.13 Continuous casting was performed under conditions that satisfied R + 81.25, and the initial radius of curvature was over 6 m, and the machine height was 6.5 m.
A continuous casting method with a casting speed of 1.5 m/min or more, which includes the process of straightening a curved slab having an unsolidified phase using a continuous casting device of more than 1.5 m/min, which straightens the curved slab Let T L [°C] be the surface temperature of the slab surface on the side that produces tensile stress when bending it back (straightening) to make it straight, and let T F [°C] be the surface temperature of the slab surface on the side that produces compressive stress. When the surface temperature of the short side in one cross section is T S [℃], and the initial radius of curvature in the continuous casting device is R [m], -14.3R + 1043≧T L ≧700 -14.3R + 1143≧T F ≧ (1 + a) Continuous casting is performed under conditions that satisfy the following conditions: T L −b 900>T S ≧T L , where a=−0.0188R+0.438 b=−1.2R+152. (Function) The present invention will be explained in detail below. As a result of research on the behavior of strain caused by unbending and straightening of curved slabs, the inventors found that unbending and straightening of curved slabs can be done in a geometrical manner as shown by the broken line in Figure 2, as previously thought. Rather than following the target profile, as shown by the solid line in Figure 2,
It was discovered that this was done locally and concentrated at the position of the support and guide rolls. As a result, it became clear that the bending straightening strain of the slab was two to three times greater than the level previously thought. Therefore, it was found that the total strain ε T due to straightening of the slab should be expressed by the following formula. ε T = αε u + ε b + ε n ………(5) Here, α = 2.0 to 3.0 This comprehensive strain concept was discovered for the first time by the inventors, and this phenomenon is This occurs during casting when straightening force, pulling force, etc. are applied to the slab in a state where it has an unsolidified part inside, a high temperature, and a thin solidified shell. This phenomenon becomes more pronounced as the solidified shell becomes thinner, the solidified shell strength becomes lower, and the geometric distortion becomes larger. Through the elucidation of these phenomena, C≧0.13
In high-speed casting of medium carbon steel with 0.4%, cracks occurred in the slab even at the conventionally accepted critical strain of 0.40%, which is the result of corrective strain acting on α times the geometric strain ε u . It became clear. That is, this is because (α-1) times as much extra corrective strain is concentrated. On the other hand, the inventors, in cooling the slab,
When straightening a slab by creating a temperature difference between the upper and lower surfaces of the slab, it was found that the effect of relaxing the straightening strain also changes depending on the solidified shell strength on the short side of the slab cross section.
In other words, when the temperature of the solidified shell on the short side of the slab cross section is 900°C or higher, the effect of straightening strain relaxation when bending and straightening by creating a temperature difference between the upper and lower surfaces of the slab becomes large;
Below ℃, a large temperature difference must be created between the upper and lower surfaces of the slab. When the solidified shell temperature T S on the short side of the slab cross section is lower than the solidified shell temperature T L on the upper surface of the slab,
The effect of creating a temperature difference on the lower surface to alleviate orthodontic strain is lost. Elucidation of the above-mentioned phenomenon was obtained through theoretical studies and experiments by the inventors. In summary, when moving the mechanically neutral axis and mitigating correction strain through continuous casting, which involves cooling with a temperature difference between the upper and lower surfaces of the slab, the relaxation due to the temperature difference between the upper and lower surfaces of the slab is at least ( α−1) ε u is required, and therefore the amount of strain that must be alleviated is
According to equation (2), it largely depends on the radius of curvature of the slab and the solidified shell thickness during continuous casting. Based on the above conclusion, the concentration coefficient α of correction strain is set to 2, the slab thickness is 250 mm, and the casting speed V = 1.5 m/
min, solidification coefficient K = 25 m/√ under slow cooling operation conditions, the total strain ε T according to the above equation (5) is 0.40
% or less, Figures 3 and 4 show
As shown in the figure. Here, (a) the lower limit value of the solidified shell temperature T L on the top surface of the slab is the slab temperature required when rolling the slab obtained by continuous casting in the direct rolling process; The upper limits of the solidified shell temperature T L on the upper surface of one side and the solidified shell temperature T F on the lower surface are determined from the viewpoint of preventing internal cracks from occurring due to bulging of the slab between the rolls, and on the straightening band side, when R = 10 m, the upper limit values are 1000 It needs to be below ℃. The appropriate range that does not cause internal cracks as shown in Figures 3 and 4 mentioned above can be expressed mathematically (casting speed V
= 1.5m/min), if T S ≧900℃ and T S ≧T L , −14.3R+1043≧T L ≧700 ………(6) −14.3R+1143≧T F ≧(1+a)T L − b………(7) Here, a=−0.0125R+0.205 b=−5.13R+81.25 If 900>T S ≧T L , −14.3R+1043≧T L ≧700℃……(8) − 14.3R+1143≧T F ≧(1+a)T L −b……(9) Here, a=−0.0188R+0.438 b=−1.2R+152 Note that T F is completely different with T S =900℃ as the boundary The reason determined by the formula will be explained below.
T F exhibits continuous physical properties, but in the case of steel, the temperature around this corresponds to the A 3 transformation temperature, and the high temperature strength changes significantly. If this change appears synergistically with the short side strength (strongly dependent on T S ) and the surface strength on the side that generates tensile stress (strongly dependent on T L ), rather than being a continuous phenomenon, it appears that the values appear to be very different at first glance. As a result, the effects become clearly visible, resulting in different forms of expressions. Here, the solidified shell thickness S[ ε u
=(D/2-S)(1/R i -1/R i+1 )] and the relationship between casting speed V is as follows. Here, K: Solidification coefficient L: Distance from the meniscus V: Casting speed. Now, if L is the bending and straightening start position, the solidified shell thickness S is uniquely determined as a function of the casting speed V. When the solidified shell thickness S changes, the unbending straightening strain ε u changes, so the amount of strain to be alleviated (α-1) ε u also changes, which in turn changes the required temperature difference ΔT between the top and bottom surfaces of the slab. do. In this way, the required temperature difference ΔT between the upper and lower surfaces of the slab also changes depending on the casting speed. (Example) An example of a continuous steel casting method to which the method of the present invention is applied will be described below. Casting conditions Continuous casting machine: initial radius of curvature...10.5m, machine height...10.8m,
4 point correction. Steel type: Central Al-K Slab size: 250 mm thick x 1050 mm width Casting speed: 1.6 m/min Tables 1 and 5 show the temperature conditions and internal cracking results of the slabs of Examples of the present invention.

【表】 第5図において、実線bは初期曲率半径が10.5
mの場合でTS≧900かつTS≧TLのときの限界線で
あり、破線aはTL≦TS<900℃のときの限界線で
ある。そして短辺温度TSが、TL≦TS<900℃のと
きの本発明の実施例を△で、比較例を▲で示して
あり、TS≧900かつTS≧TLのときの本発明の実施
例を〇で比較例を●で示してあり、本発明の実施
例の△及び〇は内部割れはなかつたが、比較例の
▲及び●は内部割れが発生した。 (発明の効果) 以上の結果から明らかなように、本発明の構成
に従つて鋳片断面短辺の凝固殻温度、鋳片上、下
面温度差、鋳片の初期曲率半径Rの関係を満足せ
しめて鋳造を行なえば、内部割れを惹起せしめる
ことなく、また表面割れも生成しない。 この発明は、以上述べたように構成しかつ作用
せしめるようにしたから (1) 高速鋳造を可能ならしめることによつて生産
性を高め、 (2) 連続鋳造した鋳片を、直接、圧延工程で圧延
することが可能であるから、圧延のための材料
加熱エネルギを減少或は省略することができ、 (3) 連続鋳造機を低機高化してコンパクトにでき
るから設備、建家がコンパクトとなり設備費を
低減でき、 またメインテナンスのし易い設備とすること
ができ、 (4) 内部割れ等のトラブルが惹起しないから鋳造
操業が安定する 等々、顕著な効果を奏する。
[Table] In Figure 5, solid line b has an initial radius of curvature of 10.5.
In the case of m, this is the limit line when T S ≧900 and T S ≧T L , and the broken line a is the limit line when T L ≦T S <900°C. Examples of the present invention when the short side temperature T S is T L ≦T S <900°C are indicated by △, comparative examples are indicated by ▲, and when T S ≧900 and T S ≧T L Examples of the present invention are indicated by ◯, and comparative examples are indicated by ●. In Examples of the present invention, △ and ○, no internal cracks occurred, but in Comparative Examples, ▲ and ●, internal cracks occurred. (Effects of the Invention) As is clear from the above results, according to the configuration of the present invention, the relationships among the solidified shell temperature of the short side of the slab cross section, the temperature difference between the upper and lower surfaces of the slab, and the initial radius of curvature R of the slab are satisfied. If casting is carried out using the same method, no internal cracks will occur, and no surface cracks will occur. This invention is constructed and operated as described above; (1) productivity is increased by making high-speed casting possible; and (2) continuously cast slabs are directly cast in the rolling process. (3) Since the continuous casting machine can be made compact by lowering the machine height, equipment and buildings can be made compact. It has remarkable effects such as reducing equipment costs, making the equipment easier to maintain, and (4) stabilizing casting operations because troubles such as internal cracks do not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は初期曲率半径と総合歪εTとの関係を矯
正点数水準別に示す図、第2図は発明者等が見出
した鋳片の曲げ戻し矯正における矯正歪の集中現
象を示す模式図、第3図は鋳片断面短辺の凝固殻
の表面温度TSがTS≧900かつTS≧TLの領域にお
ける、鋳片上面温度TLと鋳片上、下面における
所要温度差との関係を示す図、第4図は鋳片断面
短辺の凝固殻の表面温度TSがTL≦TS<900℃の温
度領域における、鋳片上面温度TLと鋳片上、下
面における所要温度差との関係を示す図、第5図
はこの発明の実施例の結果を示す図である。
FIG. 1 is a diagram showing the relationship between the initial radius of curvature and the total strain ε T for each level of the number of straightening points, and FIG. 2 is a schematic diagram showing the concentration phenomenon of straightening strain in the bending and straightening of slabs discovered by the inventors. Figure 3 shows the relationship between the slab top surface temperature T L and the required temperature difference between the top and bottom surfaces of the slab in the region where the surface temperature T S of the solidified shell on the short side of the slab cross section is T S ≧900 and T S ≧ T L. Figure 4 shows the required temperature difference between the top surface temperature T L of the slab and the top and bottom surfaces of the slab in the temperature range where the surface temperature T S of the solidified shell on the short side of the slab cross section is T L ≤ T S <900℃. FIG. 5 is a diagram showing the results of an example of the present invention.

Claims (1)

【特許請求の範囲】 1 初期曲率半径6m超、機高6.5m超の連続鋳
造装置を用いて、未凝固相を有する湾曲鋳片を真
直に矯正する過程を有する、鋳造速度が1.5m/
min以上である連続鋳造方法であつて、 湾曲鋳片を真直にすべく曲げ戻す(矯正する)
ときの、引張応力を生じる側の鋳片表面温度を
TL[℃]とし、同様に圧縮応力を生じる側の鋳片
表面温度をTF[℃]とし、 鋳片断面における短辺の表面温度をTS[℃]と
するとき、 連続鋳造装置における初期曲率半径をR[m]
として、 −14.3R+1043≧TL≧700 −14.3R+1143≧TF≧(1+a)TL−b TS≧900かつTS≧TL ここで、 a=−0.0125R+0.205 b=−5.13R+81.25 なる条件を満足する状態下で連続鋳造するように
したことを特徴とする鋼の連続鋳造方法。 2 初期曲率半径6m超、機高6.5m超の連続鋳
造装置を用いて、未凝固相を有する湾曲鋳片を真
直に矯正する過程を有する、鋳造速度が1.5m/
min以上である連続鋳造方法であつて、 湾曲鋳片を真直にすべく曲げ戻す(矯正する)
ときの、引張応力を生じる側の鋳片表面温度を
TL[℃]とし、同様に圧縮応力を生じる側の鋳片
表面温度をTF[℃]とし、 鋳片断面における短辺の表面温度をTS[℃]と
するとき、 連続鋳造装置における初期曲率半径をR[m]
として、 −14.3R+1043≧TL≧700 −14.3R+1143≧TF≧(1+a)TL−b 900>TS≧TL ここで、 a=−0.0188R+0.438 b=−1.2R+152 なる条件を満足する状態下で連続鋳造するように
したことを特徴とする鋼の連続鋳造方法。
[Claims] 1. A continuous casting device with an initial radius of curvature of more than 6 m and a machine height of more than 6.5 m, which includes the process of straightening a curved slab having an unsolidified phase, with a casting speed of 1.5 m/min.
It is a continuous casting method that is more than min, and bends back (straightens) a curved slab to make it straight.
When the slab surface temperature on the side where tensile stress occurs is
Similarly, when T L [℃] is the surface temperature of the slab on the side where compressive stress occurs, and T F [℃] is the surface temperature of the short side of the cross section of the slab, then The initial radius of curvature is R [m]
As, −14.3R+1043≧T L ≧700 −14.3R+1143≧T F ≧(1+a)T L −b T S ≧900 and T S ≧T L where a=−0.0125R+0.205 b=−5.13R+81. 25. A continuous casting method for steel, characterized in that continuous casting is carried out under conditions that satisfy the following conditions. 2 A continuous casting machine with an initial radius of curvature of over 6 m and a machine height of over 6.5 m is used to straighten a curved slab with an unsolidified phase, and the casting speed is 1.5 m/min.
It is a continuous casting method that is more than min, and bends back (straightens) a curved slab to make it straight.
When the slab surface temperature on the side where tensile stress occurs is
Similarly, when T L [℃] is the surface temperature of the slab on the side where compressive stress occurs, and T F [℃] is the surface temperature of the short side of the cross section of the slab, then The initial radius of curvature is R [m]
As, −14.3R+1043≧T L ≧700 −14.3R+1143≧T F ≧(1+a)T L −b 900>T S ≧T L where a=−0.0188R+0.438 b=−1.2R+152 The following conditions are satisfied. 1. A continuous casting method for steel, characterized in that continuous casting is carried out under such conditions.
JP18330483A 1983-09-30 1983-09-30 Continuous casting method of steel Granted JPS6076260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18330483A JPS6076260A (en) 1983-09-30 1983-09-30 Continuous casting method of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18330483A JPS6076260A (en) 1983-09-30 1983-09-30 Continuous casting method of steel

Publications (2)

Publication Number Publication Date
JPS6076260A JPS6076260A (en) 1985-04-30
JPS6352988B2 true JPS6352988B2 (en) 1988-10-20

Family

ID=16133331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18330483A Granted JPS6076260A (en) 1983-09-30 1983-09-30 Continuous casting method of steel

Country Status (1)

Country Link
JP (1) JPS6076260A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919138B2 (en) * 2001-02-20 2012-04-18 新東工業株式会社 Waste water denitrification equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252126A (en) * 1975-10-24 1977-04-26 Nippon Kokan Kk Method of continuous casting
JPS57187150A (en) * 1981-05-12 1982-11-17 Nippon Steel Corp Secondary cooling installation for continuous casting
JPS58163559A (en) * 1982-03-23 1983-09-28 Nippon Kokan Kk <Nkk> Continuous casting method of steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252126A (en) * 1975-10-24 1977-04-26 Nippon Kokan Kk Method of continuous casting
JPS57187150A (en) * 1981-05-12 1982-11-17 Nippon Steel Corp Secondary cooling installation for continuous casting
JPS58163559A (en) * 1982-03-23 1983-09-28 Nippon Kokan Kk <Nkk> Continuous casting method of steel

Also Published As

Publication number Publication date
JPS6076260A (en) 1985-04-30

Similar Documents

Publication Publication Date Title
US5634510A (en) Integrated manufacturing system
KR20190078396A (en) Method of manufacturing sub-peritectic steel
JPH038864B2 (en)
JPS6352988B2 (en)
US4582114A (en) Continuous casting apparatus for the production of cast sheets
JPH0565263B2 (en)
JPH057107B2 (en)
JPH0327843A (en) Method for uniformly and rapidly cooling continuous cast strip in width direction
JP6149789B2 (en) Steel continuous casting method
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JPH0218936B2 (en)
JPH057108B2 (en)
JP4019476B2 (en) Slab cooling method in continuous casting
JPH0468064B2 (en)
JPS6228056A (en) Continuous casting method
JP3507263B2 (en) Continuous casting method of molten steel
JPH0390263A (en) Continuous casting method
JPH0390259A (en) Continuous casting method
JPS635857A (en) Continuous casting method for steel containing high silicon
JPS59113964A (en) Continuous casting method
JPS6154086B2 (en)
JPS63171254A (en) Non-solidified rolling method
JP2022189395A (en) Method for continuous casting of slab
JPS6127148B2 (en)
JPH0243571B2 (en)