JPS6076260A - Continuous casting method of steel - Google Patents

Continuous casting method of steel

Info

Publication number
JPS6076260A
JPS6076260A JP18330483A JP18330483A JPS6076260A JP S6076260 A JPS6076260 A JP S6076260A JP 18330483 A JP18330483 A JP 18330483A JP 18330483 A JP18330483 A JP 18330483A JP S6076260 A JPS6076260 A JP S6076260A
Authority
JP
Japan
Prior art keywords
slab
continuous casting
straightening
curvature
curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18330483A
Other languages
Japanese (ja)
Other versions
JPS6352988B2 (en
Inventor
Shuji Osada
長田 修次
Hiromu Fujii
博務 藤井
Tetsuo Ohashi
大橋 徹郎
Kosaku Ozawa
小沢 浩作
Yasuo Takeda
武田 安夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18330483A priority Critical patent/JPS6076260A/en
Publication of JPS6076260A publication Critical patent/JPS6076260A/en
Publication of JPS6352988B2 publication Critical patent/JPS6352988B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • B22D11/1282Vertical casting and curving the cast stock to the horizontal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To cast continuously a billet having high quality without defects such as internal creck or the like at a high speed by specifying the respective surface temp. on the side of the billet where tensile stress is generated in the stage of straightening, on the side where compressive stress is generated and on short sides in the relation with the initial radius of curvature. CONSTITUTION:The billet temp. on the side where tensile stress is generated when a curved ingot having an initial radius R[m] of curvature is unbent so as to be straightened is designated as TL, the billet surface temp. on the side where compressive stress is similarly generated is designated as TF and the surface temp. on the short sides in the billet section is designated as TS in the straightening stage of the curved billet having an unsolidified phase by a continuous casting method at >=1.5m/min casting speed. The steel is cast continuously in the state satisfying the conditions -14.3R+1,043>=TL>=700, -14.3R+1,143>=TF>= (1+a) TL-b, TS>=900 where DELTAT=TF-TL, a=-0.0125R+0.205, b=-5.13R+ 81.25.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、溶鋼を連続鋳造して鋳片を得るに際し、内
部割れ、表面横割れ、コーナ割れのない鋳片を得るため
の、湾曲型連続鋳造法に関し、特に鋳片の冷却条件に関
する、 近年、溶融金属全連続鋳造して鋳片2得る連続鋳造技術
が発達し、鉄鋼業にあっても、溶鋼を鋳型に注入して儒
塊を得、これを分塊圧延して鋳片を得るプロセスに代っ
て、溶銅を連続鋳造して直接鋳片(@片)を得る連続鋳
造プロセスが採用され、この連続鋳造プロセスによって
鋼片を製造する比率が著しく増大してきている、 連続鋳造プロセスは、従来の造塊−分塊圧延プロセスに
比し、歩留が高い、エネルギー消費量が少ない、といっ
た点ですぐれている、 (従来技術) この連続鋳造プロセスによって得られる鋳片は。
Detailed Description of the Invention (Industrial Application Field) This invention provides a curved mold for obtaining slabs free of internal cracks, transverse surface cracks, and corner cracks when continuously casting molten steel. Regarding the continuous casting method, especially regarding the cooling conditions of the slab, in recent years continuous casting technology has been developed to obtain slabs by completely continuous casting of molten metal, and even in the steel industry, it is now possible to pour molten steel into a mold to produce a slab. Instead of the process of obtaining slabs by blooming and rolling the molten copper, a continuous casting process has been adopted in which molten copper is continuously cast to directly obtain slabs (@slabs). The continuous casting process, which has been increasing its production ratio significantly, is superior to the conventional ingot-blowing process in terms of higher yield and lower energy consumption. (Prior technology) The slabs obtained by this continuous casting process.

多量の顕熱を保有しておシ、この顕熱を消失してしまう
ことなく、高温鋳片の状態で、圧延工程に供給すれば、
常温の鋳片を加熱して圧延するプロセスに比し、エネル
ギー、コストの面で有利である。
It retains a large amount of sensible heat, and if it is supplied to the rolling process in the form of a high-temperature slab without dissipating this sensible heat,
This method is advantageous in terms of energy and cost compared to the process of heating and rolling slabs at room temperature.

連続鋳造によって得られた鋳片全高温のまま、直接圧延
工程に供給すること全可能ならしめるためには、鋳片表
面に割れ疵等のない、換言すれば表面疵除去等の手入れ
を要しない品質のすぐれた鋳片が得られなければならな
い。品質のすぐれた鋳片とは、中心偏析、内部割れ5表
面疵、介在物のない鋳片をいうのであるが、就中表面横
割れ、コーナ割れ等、鋳片を常温まで降温させた後、疵
を検出し、これを除去するために手入れを璧する原因と
なる表面欠陥のないものでなければならない。
In order to make it possible to directly supply the slab obtained by continuous casting to the rolling process while keeping it at a high temperature, the slab must have no cracks or other defects on its surface, in other words, it does not require any maintenance such as surface flaw removal. It is necessary to obtain slabs of excellent quality. A slab of excellent quality is one that is free of center segregation, internal cracks, surface flaws, and inclusions, but especially surface cracks, corner cracks, etc., after cooling the slab to room temperature. It must be free of surface imperfections that require careful maintenance to detect and remove defects.

上に述べた点も含め、鋼の連続鋳造プロセスにおける現
今の技術的課題は、以下の如くである。
The current technical issues in the continuous steel casting process, including the points mentioned above, are as follows.

(1)高速la造によって、高生産性全可能ならしめる
こと。
(1) High-speed LA construction makes it possible to achieve high productivity.

(2)連続鋳造された鋳片全直接、圧延工程で圧延する
プロセス或は連庇鋳造された鋳片を高温のま1圧延のた
めの加熱炉に装入する、所謂ホットチャージプロセスを
可能ならしめ、圧延のための加熱エネルギ全減少或は省
略すること。
(2) If possible, use the so-called hot charging process, in which continuously cast slabs are fully rolled in a direct rolling process, or continuously cast slabs are charged into a heating furnace for high-temperature rolling. Total reduction or omission of heating energy for tightening and rolling.

(3) 連続鋳造鋳片の直接圧延プロセス或は、ホット
チャージプロセス全可能ならしめる高品質の鋳片を製造
すること。
(3) To produce high-quality slabs that can be subjected to a direct rolling process or a hot charging process for continuously cast slabs.

(4) 設備コストが低く、メインテナンスのL易い連
続鋳造機であること。
(4) A continuous casting machine with low equipment cost and easy maintenance.

(5)安定した操苗ができるプロセスであること。(5) The process allows for stable seedling production.

これらの技術的課題全解決するため従来、湾曲型連続鋳
造機による ■ 未凝固部分を有する鋳片′を矯正する5■ 鋳型か
ら引抜かれてくる鋳片を緩冷却し、未凝固部分を有する
状態で鋳片全真直に矯正しく湾曲したもの全曲げ戻すン
、然る後復熱させる。
In order to solve all of these technical problems, conventional curved continuous casting machines have been used to: ■ Straighten the slab with unsolidified parts 5 ■ Cool the slab pulled out of the mold slowly to the state where it has unsolidified parts The cast slab, which was completely straightened and curved, is completely bent back, and then reheated.

といった操業形態が採られていた。This type of operation was adopted.

かかる従来技術においては、以下の如き問題があった、 (11750〜850Cに存在する鋼の脆化域を回避し
て鋳片を矯正することにより、表面割れ等の疵の発生を
防止し、以て鋳片の疵手入を不要にし一高混鋳片の製造
を可能ならしめるけれども、/々ルジングが発生し易く
、これによって、内部割れの発生、中心偏析の悪化を招
く。
Such conventional technology has the following problems: (By straightening the slab while avoiding the embrittlement region of steel that exists in 11750 to 850C, the occurrence of defects such as surface cracks is prevented; Although this makes it possible to manufacture single-height mixed slabs by eliminating the need for maintenance of defects in the slabs, lugs are likely to occur, which leads to the occurrence of internal cracks and worsening of center segregation.

(2) このため、現行操業にあっては、連続鋳造用パ
ウダを改善し、鋳造速度、鋳片冷却強度を、鋳片の表面
疵手入れが不要であシ、かつ内部割れ、中心偏析の許容
限界以下となる範囲内として操業している。従って生産
性が低下する。
(2) For this reason, in the current operation, the powder for continuous casting has been improved to improve the casting speed, slab cooling strength, eliminate the need to clean the slab surface, and allow for internal cracking and center segregation. We are operating within a range that is below the limit. Therefore, productivity decreases.

一方、緩冷却未凝固操朶ヲ、より安定化し、高品質鋳片
を得るに問題となる/々ルジングを抑制すべく。
On the other hand, in order to make the slow-cooled unsolidified steel more stable, it is possible to suppress the lugging that is a problem in obtaining high-quality slabs.

■ 鋳片を支持案内するロールの、鋳片進行方向におけ
る間隔を小さくする(ロールピッチの細密化)。
■ Reduce the distance between the rolls that support and guide the slab in the slab advancing direction (fine roll pitch).

■ 連続鋳造機高を低く(ローヘッド化)して、溶銅静
圧を低くし、・々ルジングの増大を抑える。
■ Lower the height of the continuous casting machine (lower head) to lower the molten copper static pressure and suppress the increase in melting.

ことが実施されつつちる。Things are being implemented.

しかしながら、かかる技術的手段を以てしても、先に述
べた、(1)〜(5)項の鋼の連続鋳造プロセスにおけ
る現今の技術的課題は、十分には解決され得ない。
However, even with such technical means, the current technical problems in the continuous steel casting process of items (1) to (5) mentioned above cannot be sufficiently solved.

即ち一鋳片を、支持案内するロールの、鋳片進行方向に
おける間隔を小さくする、所請、ロールピッチの細密化
は、ロールピッチを3001111!壕で短縮すること
が限界であり、鋳片に生起するバルジングの大きさ?、
鋳片に内部割れを発生せしめないレベルにまで低下せし
めるには到らない。一方、ロールピッチの細密化は設備
コストヲ高める難点もある。
In other words, the distance between the rolls that support and guide one slab in the slab traveling direction is reduced, and the roll pitch is reduced to 3001111! Is there a limit to shortening in trenches and the size of bulging that occurs in slabs? ,
It cannot be lowered to a level that does not cause internal cracks in the slab. On the other hand, the finer roll pitch also has the disadvantage of increasing equipment costs.

また、連続鋳造機高を低くする、所匍、ローヘッド化は
、鋳片の進行軌跡の湾曲曲率が大となシ、鋳片全、湾曲
状態から真直にする5曲げ矯正における矯正歪が大きく
なり、内部割れ金招くという問題がある、この、湾曲し
た鋳片を、真直に曲げ戻す矯正過程において発生する内
部割れ全防止するために、現在、下記(り式に示す、総
合歪εTが、0.40%以下となるように、鋳片温度に
対応する、ロールピラフ1i曲率半径Rを決定し、これ
に基づいた連続鋳造機の設計が行なわれている。
In addition, lowering the height of the continuous casting machine, lowering the height of the continuous casting machine, and lowering the head will result in a large curvature of the progress trajectory of the slab, and the correction strain in straightening the slab from a curved state to straightening will become large. In order to completely prevent internal cracks that occur during the straightening process of bending a curved slab back to straight, there is a problem of internal cracks. The radius of curvature R of the roll pilaf 1i corresponding to the slab temperature is determined so as to be .40% or less, and a continuous casting machine is designed based on this.

即ち、 εT−ε。+εb+ε□ ・・・…・・・・・・・・・
(1)ここで εT:総合歪 εU:矯正歪 εbニー々ルジング歪 εm:ミスアライメント歪、通常、定薮としてεm−0
,05%として計算される。
That is, εT−ε. +εb+ε□ ・・・・・・・・・・・・・・・
(1) where εT: total strain εU: corrective strain εb kneeling strain εm: misalignment strain, usually εm-0 as a constant
,05%.

D:鋳片の厚さ S:鋳片の凝固殻厚さ ■、i:盪番目の曲率半径 R4−4−1: i+1番目のll11軒龜16O0δ
B、S 6bエ 川・・・・・・・・・・・・Fal+2 t:0−ルピツテ δB=/々ルジング量 1−986 、 TM α0:形状係数 P:清缶静圧 ■二鋳造速度Cm/峨〕 Ts+1490 T、= +273 Ts: 鋳片の表面温度 δ、S ε□=Om、 ・・・・・・・・・・・・(4)2 On+= ミスアライメント係数 δ : ミスアライメント量 上に述べた総合歪εTk、種々の曲率半径Rに対して、
鋳片厚さ:、250isb鋳造速度:V=1.5m/m
、緩冷却操業(凝固係数:K = 2 s m /fj
7 ) の下で操業した場合について示すと、第1図の
如くであろう このときの条件は、下記の通シである。
D: Thickness of the slab S: Solidified shell thickness of the slab ■, i: Radius of curvature of the (2)th R4-4-1: i+1th ll11 eaves 16O0δ
B, S 6b E River・・・・・・・・・Fal + 2 t: 0-Lupitute δB=/molding amount 1-986, TM α0: Shape factor P: Clean can static pressure ■2 Casting speed Cm /峨] Ts+1490 T, = +273 Ts: Surface temperature of slab δ, S ε□=Om, ...................................... (4) 2 On+= Misalignment coefficient δ: Above the amount of misalignment For the total strain εTk and various radii of curvature R described in
Slab thickness: 250isb Casting speed: V=1.5m/m
, slow cooling operation (solidification coefficient: K = 2 s m /fj
7) When operating under the following conditions, the conditions shown in Figure 1 are as follows.

(1) 鋳片の軌道は、多点矯正プロフィルとする。(1) The trajectory of the slab shall be a multi-point straightening profile.

(2) 多点矯正における歪配分は、表面歪を均等に分
散するように、曲率半径全決定する。
(2) For strain distribution in multi-point correction, the entire radius of curvature is determined so that surface strain is evenly distributed.

(3) 連続矯正プロフィルで代表する5(4) ロー
ルピッチは、分割ロールを基本とした稠密配置とする。
(3) 5 (4) The roll pitch represented by the continuous straightening profile shall be a dense arrangement based on divided rolls.

かかる技術思想に基づいて設計された、初期曲率半径1
1 = 10.5 mおよびR= 3 mの連続鋳造機
を用いて、前述の操業条件、鋳片厚さ:250vI、鋳
造速度:1.5m/sm、凝固係数に一25m/D1で
溶鋼の連続鋳造を行なった処、次のような結果であった
Initial radius of curvature 1 designed based on this technical idea
Using a continuous casting machine of 1 = 10.5 m and R = 3 m, the molten steel was Continuous casting was performed and the results were as follows.

■ a ’E 0.12%の低炭素州の場合には、内外
面割れは全く発生しない。
■ In the case of a low carbon state with a 'E of 0.12%, no cracking occurs on the inner or outer surfaces.

■ C20,13係の中炭素鋼の場合には、内部割れが
多発する5 R= 10.5 mの連続鋳造機にあっては、圧縮鋳造
(OPO操業と呼ばれる)等により、C20,13係の
中炭素鋼の鋳造にあっても内部割れを生起せしめないよ
うに配慮されている。
■ In the case of medium carbon steel of C20, 13 grade, internal cracks occur frequently.In a continuous casting machine of 5 R = 10.5 m, compression casting (called OPO operation) etc. Even when casting medium carbon steel, care has been taken to prevent internal cracks from occurring.

しかしながら、初期曲率半径几が3mと(八ったローヘ
ッド連続鋳造機にあっては、矯正帯長が短かくて、湾曲
鋳片を真直に曲げ戻すときに、湾曲鋳片の内面側に作用
する張力によって生起する割れ全抑止するに必要なだけ
の圧縮力を発生するに足る1駆動力発生帯が光分とれな
い。加えて、圧縮力全発生させるに必要な、溶鋼静圧が
低いため、充分な、矯正歪緩和をもたらし得ない。
However, in a low-head continuous casting machine with an initial radius of curvature of 3 m, the straightening band length is short, and when the curved slab is bent back straight, it acts on the inner surface of the curved slab. One driving force generation band that is sufficient to generate the compressive force necessary to completely suppress cracking caused by tension cannot be obtained.In addition, the static pressure of molten steel required to generate the full compressive force is low; It cannot provide sufficient corrective strain relaxation.

ローヘッド連続鋳造機にあっては、かかる理由によって
、C20,13%の中炭素鋼の連び鋳造に際して内部割
れ全発生し、高速鋳造が不可能となっている。
For this reason, in the case of a low-head continuous casting machine, internal cracks occur completely during continuous casting of C20.13% medium carbon steel, making high-speed casting impossible.

一方、鋳片の冷却法を工夫することによって、鋳片の焙
正歪を緩和することが知られている、即ち、特開昭50
−25434号、特開昭50−10252.6号、特開
昭50−1025.27号、特開昭52−52126号
および特開昭55−5115号の各公開公報には、湾曲
鋳片を真直に曲げ戻す曲げ矯正時に、鋳片上面(湾曲内
側)即ち引張り応力を生じる側の凝固殻の温度を鋳片下
面(湾曲外側)即ち圧縮応力を生じる側の凝固殻温度よ
りも低くすることによシ上面側凝固殻の強度を増大させ
て、曲げ戻し矯正に伴なう、上面側凝固殻の引張歪量金
車さくして、曲げ戻し矯正に起因する内部割れを防ぐよ
うにすることが、開示されている。
On the other hand, it is known that the normal strain of a slab can be alleviated by devising a cooling method for the slab.
-25434, JP-A-50-10252.6, JP-A-50-1025.27, JP-A-52-52126, and JP-A-55-5115 disclose curved slabs. When straightening the bend back to straight, the temperature of the solidified shell on the top surface (curved inside), that is, the side that produces tensile stress, is lower than the temperature of the solidified shell on the bottom surface (curved outside), that is, the side that produces compressive stress. In order to increase the strength of the upper surface side solidified shell and reduce the tensile strain of the upper surface side solidified shell due to the bending and straightening, it is possible to prevent internal cracks caused by the bending and straightening. Disclosed.

このような、鋳片の冷却方法全裸ることにより、■ 湾
曲鋳片の上面(内側)を下面(外側)より相対的に強冷
し、矯正時における鋳片の力学的中立軸を、鋳片断面の
幾何学的中心軸よりも、湾曲内側へ移動させることとな
シ、これによって鋳片の内部割れが防止できる、 ■ 鋳片の適正温度範囲は、 鋳片の内側ニア00〜900C l 外側: 1000℃を超えない、 温度である。
By completely exposing the slab cooling method, the upper surface (inside) of the curved slab is relatively strongly cooled than the lower surface (outside), and the mechanically neutral axis of the slab during straightening is The appropriate temperature range for the slab is as follows: 00 to 900C on the inside of the slab, 00 to 900C on the outside of the slab. : The temperature does not exceed 1000℃.

と開示されている。is disclosed.

しかしながら、これらの技術を以てしてもなお、先に述
べた。(1)〜(5)項の技術的課題を解決するために
は充分ではない。限界歪0.40 %でも、C20,1
3%の中炭素鋼の連続鋳造にあっては、内部割れを起す
からである。
However, even with these techniques, the above-mentioned problems still occur. This is not sufficient to solve the technical problems in items (1) to (5). Even with a critical strain of 0.40%, C20.1
This is because continuous casting of 3% medium carbon steel causes internal cracks.

(発明の目的) この発明は、あらゆる曲率半径の連続鋳造機に対して、
中炭素鋼材のように割れ感受性の強い佳種の連続鋳造(
Cあっても、鋳片に内部割れを生成させない、連続鋳造
技術を得ることを目的としてなされた、 (発明の構成) その特徴とする処は、未凝同相全有する湾曲鋳片を真直
に矯正する過程を有する、鋳造速度が1.5m/”n以
上である連続鋳造方法であって、湾曲鋳片を真直にすべ
く曲げ戻す(矯正する)ときの、引張応力を生じる側の
鋳片表面温度をTLとし、同様に圧縮応力音生じる側の
鋳片表面温度をTFとし、 鋳片断面における短辺の表
面温度をTsとするとき、連続@造装置における初期曲
率半径をRam)として −14,3几+1043〉TL≧700−14.3R+
1143≧TF(−TL+△T)Ta2900 ここで、 ΔT=aTj−b a = 0.0125R+0.205 b =−5,13R−!−81,25 なる条件を満足する状態下で連続鋳造するようにしたこ
と。
(Object of the invention) This invention provides continuous casting machines with any radius of curvature.
Continuous casting (
This was developed with the aim of obtaining a continuous casting technology that does not generate internal cracks in the slab even when the slab is in the same state. A continuous casting method with a casting speed of 1.5 m/''n or more, which involves the process of When the temperature is TL, the surface temperature of the slab surface on the side where the compressive stress sound occurs is TF, and the surface temperature of the short side in the cross section of the slab is Ts, the initial radius of curvature in the continuous casting machine is -14 (Ram). , 3 liters + 1043〉TL≧700-14.3R+
1143≧TF(-TL+△T)Ta2900 Here, ΔT=aTj-b a = 0.0125R+0.205 b =-5,13R-! −81,25 Continuous casting was performed under conditions that satisfied the following conditions.

未凝固相を有する湾曲鋳片を真直に矯正する過程を有す
る、鋳造速度が1.5m/wh以上である連続鋳造方法
であって、湾曲鋳片を真直にすべく曲げ戻す(矯正する
〕ときの、引張応力を生じる側の鋳片表面温度をTLと
し、同様に圧縮応力を生じる側の鋳片表面温度をTFと
し、鋳片断面における短辺の表面温産金’rsとすると
き、連続鋳造装置における初期曲率半径k RCm)と
して、−14,3FL+1043≧TL≧700二14
.3 R+ 1143≧’I’F C= TL + Δ
T )900)Ts≧TL ここで ムT = aTL−b a = −0,0188R,+0.438b = −1
,,2R+152 なる条件を満足する状態下で連続鋳造するようにしたこ
とにある。
A continuous casting method with a casting speed of 1.5 m/wh or higher, which includes the process of straightening a curved slab having an unsolidified phase, when bending back (straightening) the curved slab to make it straight. When the surface temperature of the slab on the side where tensile stress occurs is TL, the surface temperature of the slab on the side where compressive stress is generated is TF, and the surface warmed gold 'rs on the short side in the cross section of the slab, then continuous The initial radius of curvature k (RCm) in the casting device is -14,3FL+1043≧TL≧700214
.. 3 R+ 1143≧'I'F C= TL + Δ
T ) 900) Ts≧TL where T = aTL - b a = -0,0188R, +0.438b = -1
, , 2R+152 Continuous casting is performed under conditions that satisfy the following conditions.

以下に、この発明の詳細な説明するっ 発明者等は、湾曲鋳片の曲げ戻し知正に伴なう歪の挙動
について研究した結果、鋳片の曲げ戻し矯正は、従来考
えられていたように、第2図の破線で示すような幾何学
的プロフィルに沿って行なわれるのではなくて、第2図
に、実根で示すように、支持案内ロールの位置で局部的
に集中して行なわれるものであることを突止めた。その
結果、鋳片の曲げ矯正歪は、従来考えられていたレベル
よりも2〜3倍大きなレベルであることが明らかとなっ
た。
The present invention will be described in detail below.As a result of research into the behavior of strain associated with the unbending and straightening of curved slabs, the inventors have discovered that the unbending and straightening of curved slabs is not as simple as previously thought. , which is not carried out along a geometrical profile as shown by the dashed line in Fig. 2, but is carried out locally concentrated at the position of the support guide roll, as shown by the real roots in Fig. 2. I discovered that it was. As a result, it became clear that the bending straightening strain of the slab was two to three times greater than the level conventionally thought.

従2て、鋳片の、矯正に伴なう総合歪εTは、以下の式
で示されるべきでちることがわかった。
Therefore, it has been found that the total strain εT of the slab due to straightening can be expressed by the following formula.

εT =αεU+ εb+ ε□ ・・・・・・・・・
(5)ここで、α=2.0〜3.0 かかる総合型概念は、発明者等によって初めて見出され
たものであシ、この現象は、溶鋼の連続鋳造にあって、
未凝固部を内部に有し、高温でかつ薄い凝固殻が存在す
る状態で、鋳片に矯正力、引抜力等が作用したときに発
生する。
εT = αεU+ εb+ ε□ ・・・・・・・・・
(5) Here, α = 2.0 to 3.0 This comprehensive type concept was discovered for the first time by the inventors, and this phenomenon occurs in the continuous casting of molten steel.
This occurs when straightening force, pulling force, etc. are applied to the slab in a state where it has an unsolidified part inside and a thin solidified shell at high temperature.

この現象は、凝固殻が薄い程、凝固殻強度が低いほど、
また幾何学歪が大きいほど顕著である。
This phenomenon occurs as the thinner the solidified shell and the lower the solidified shell strength,
Moreover, the larger the geometric distortion, the more conspicuous it is.

これらの、現象の解明を通してみると、0≧0.13%
の中炭素鋼の高速鋳造において、従来から言われていた
、限界歪0.40 %でも鋳片に割れが生じたのは、矯
正歪が幾何学歪ε1のα倍も作用した結果であることが
明らかとなった。即ち、(α−1)倍もの余分の矯正歪
の集中が起った念めである。
Through the elucidation of these phenomena, 0≧0.13%
In high-speed casting of medium carbon steel, cracks occurred in slabs even at a critical strain of 0.40%, which was previously said to be the result of corrective strain acting on α times geometric strain ε1. became clear. In other words, this is a sign that an extra concentration of corrective distortion of (α-1) times has occurred.

一方5発明者等は、鋳片を冷却するに当って、鋳片の上
下面に温度差をもたせて、鋳片を矯正するに際しては、
矯正歪の緩和効果は、釣片断面、短辺の凝固殻強度によ
っても変ることを解明した。
On the other hand, the five inventors et al. established that when cooling a slab, there is a temperature difference between the upper and lower surfaces of the slab, and when straightening the slab,
It was revealed that the effect of relieving correction strain also changes depending on the cross section of the fishing piece and the strength of the solidified shell on the short side.

即ち、鋳片断面の短辺の凝固殻温度が900C以上にな
ると、鋳片の上、下面に塩度差をもたせて、曲げ矯正す
るときの矯正歪緩和効果が大きく、900℃未満では、
鋳片上、下面によシ大きな塩度差をもたせ々ければなら
ない。
That is, when the solidified shell temperature of the short side of the slab cross section is 900C or higher, the effect of straightening strain relaxation when bending and straightening by creating a difference in salinity between the upper and lower surfaces of the slab is large;
There must be a large difference in salinity between the top and bottom surfaces of the slab.

そして、鋳片断面短辺の凝固殻温度T8が、鋳片上面の
凝固殻温度TLよりも低いときは、鋳片上、下面に温度
差をつけて矯正歪を緩和する効果は喪失される。
When the solidified shell temperature T8 of the short side of the slab cross section is lower than the solidified shell temperature TL of the upper surface of the slab, the effect of creating a temperature difference between the upper and lower surfaces of the slab to alleviate correction strain is lost.

上に述べた現数の解明は、発明者等による理論的な検討
および実験によって得られた3以上全署するに、鋳片の
上、下面に塩度差をもたせる冷却を行なう連続鋳造によ
シカ学的中立軸を移動させ、矯正歪を緩和するに際して
は、■ 鋳片上、下面の湿度差による愛和は、少なくと
も、(α−1)ε。に相当する大きさのものが必要であ
る。
The above-mentioned current numbers can be elucidated by continuous casting, which cools the upper and lower surfaces of the slab to create a difference in salinity, according to the findings obtained through theoretical studies and experiments by the inventors. When moving the mechanical neutral axis to alleviate the correction strain, ■ the humidity due to the humidity difference between the upper and lower surfaces of the slab is at least (α-1)ε. A size equivalent to that is required.

■ 従って、緩和しなければならない歪量は、連続鋳造
における鋳片の曲率半径および凝固殻厚さに大きく依存
する。
■ Therefore, the amount of strain that must be alleviated largely depends on the radius of curvature of the slab during continuous casting and the thickness of the solidified shell.

以上の結論に基づいて、矯正歪の集中係数αを2として
、鋳片厚さ250+u+、鋳造速度V=1..57FZ
 / ―、凝固係数Kが、K=25m1fjの緩冷却操
業条件下で、総合歪εTが、0.40%以下となる塩度
条件をめると、第3図、第4図に示す如くである。
Based on the above conclusion, the concentration coefficient α of corrective strain is set to 2, the slab thickness is 250+u+, and the casting speed V=1. .. 57FZ
/ -, assuming the salinity conditions under which the solidification coefficient K is 0.40% or less under the slow cooling operating conditions where K = 25 m1fj, the results are as shown in Figures 3 and 4. be.

ここで、 (イ)鋳片上面の凝固殻温度TLの下限値は、連続鋳造
によって得られた鋳片を、直接、圧延工程で圧延すると
きに必要な鋳片湯度である。
Here, (a) The lower limit value of the solidified shell temperature TL of the upper surface of the slab is the slab hot water temperature required when the slab obtained by continuous casting is directly rolled in a rolling process.

(ロ)鋳片上面の凝固殻温度TLおよび下面の凝固殻温
度TFの上限値は ロール間における鋳片のバルジング
による内部割れ発生防止の観点から決まり、矯正帝人側
では、 R= 3 mのとき、1100℃以下 R=1’Omのとき、1000tl:以下にする必要が
ある。
(b) The upper limits of the solidified shell temperature TL on the upper surface of the slab and the solidified shell temperature TF on the lower surface are determined from the viewpoint of preventing internal cracks from occurring due to bulging of the slab between the rolls, and on the straightening Teijin side, when R = 3 m. , 1100° C. or less When R=1'Om, it is necessary to make it 1000 tl or less.

上に述べた、第3図、第4図に示す事項を数式化すると
、(鋳造速度■−1,5ml=とする)TEI≧900
−℃の場合、 −14,3a+ 1043≧TL≧700 −・・・−
・−+61−14.3Ft+1143≧TF (−TL
+ ム’r ) ・” (7)ここで、 △T=aT1−b ・・・・・・・・・・・・・・・・
・・(8)a =−0,0125R+0.205 b = −5,13R,+81.25 900>Ts > TLの場合、 −14,3R+ 1043≧TL≧70’O℃ ・・・
・・・(9)14−3 R+ 1143≧TF(−TL
+△T) ・・・00ここで、 ΔT=aTL−b ・・・・・・・・・・・・・・・・
・・圓a −−0,0188EL+(1,438b =
−1,21”j+152 ここで、矯正歪ε。に関与する凝固殻厚さS〔εu−(
])/2−8 ) (1/ Rl−1,/ J + i
 ) )と鋳造速度■の関係について説明すると、 ここで、K:凝固係数 L:メニスカスからの距離 V:鋳造速度 で表わされる。
Converting the matters shown in Figures 3 and 4 above into a mathematical formula, (casting speed - 1.5ml =) TEI≧900
In the case of −℃, −14,3a+ 1043≧TL≧700 −・・・−
・-+61-14.3Ft+1143≧TF (-TL
+ M'r) ・” (7) Here, △T=aT1−b ・・・・・・・・・・・・・・・・
... (8) a = -0,0125R+0.205 b = -5,13R, +81.25 When 900>Ts>TL, -14,3R+ 1043≧TL≧70'O℃...
...(9) 14-3 R+ 1143≧TF(-TL
+△T) ・・・00Here, ΔT=aTL−b ・・・・・・・・・・・・・・・・・・
・・Ren a −−0,0188EL+(1,438b=
−1,21”j+152 Here, the solidified shell thickness S[εu−(
])/2-8) (1/ Rl-1,/J + i
)) and the casting speed ■: Here, K: Solidification coefficient L: Distance from the meniscus V: Casting speed.

いま、L′ff:曲げ戻し矯正開始位置とすると、凝固
殻厚さSは、鋳造速度Vの関数として一義的に決まる、 凝固殻厚さSが変化すると、曲げ戻し矯正歪ε。
Now, when L'ff is the bending straightening start position, the solidified shell thickness S is uniquely determined as a function of the casting speed V. When the solidified shell thickness S changes, the bending straightening strain ε changes.

が変化するから、緩和すべき歪量(α−1)ε0も変化
し、延いては、鋳片士、下面における所要温度差ΔTが
変化する。このように、鋳片上、下面における所要温度
差ΔTは、鋳造速度によっても変化づ−る。
Since this changes, the amount of strain (α-1) ε0 to be relaxed also changes, which in turn changes the required temperature difference ΔT at the bottom surface of the slab. In this way, the required temperature difference ΔT between the upper and lower surfaces of the slab varies depending on the casting speed.

(実施例) 以下に本発明方法を適用した鋼の連続鋳造法の実施例に
ついて述べるっ 実施例1 鋳造条件 連鋳機:初期曲率半径(員・・・3 m 。
(Example) An example of a continuous casting method for steel to which the method of the present invention is applied will be described below.Example 1 Casting conditions Continuous casting machine: Initial radius of curvature (member: 3 m).

機高=・3.5m 15点達kX矯正、axis:中炭
 At−8i−に 鋳片サイズニ250藺厚X 1500鰭巾鋳造速度二1
.5m/wh 注水比 二〇、3〜0.5 t/に9 本発明の実施例の結果と、比較例の結果とを、第5図に
示す。第5図におりで、実線(b)は、初期曲率半径3
mの場合で’rs≧900℃のときの限界線であり、破
nJi(alはTL <Ts(900’Cのときの限界
線である。
Machine height = 3.5m 15 points kX correction, axis: medium coal At-8i- slab size 250mm thickness x 1500 fin width casting speed 21
.. 5 m/wh Water injection ratio 20.3 to 0.5 t/9 The results of the example of the present invention and the results of the comparative example are shown in FIG. In Fig. 5, the solid line (b) indicates the initial radius of curvature 3
In the case of m, it is the limit line when 'rs≧900°C, and broken nJi (al is the limit line when TL < Ts (900'C).

そして短辺温度’rsがTL≦Ts(900℃の時の本
発明の実施flIをΔで、比較例をムで示してあシ、’
rs≧900Cの時の本発明の実施例を○で比較例fO
で示してあり、△及び○は内部割れはなかった。
When the short side temperature 'rs is TL≦Ts (900°C, the implementation flI of the present invention is indicated by Δ, and the comparative example is indicated by M.
The example of the present invention when rs≧900C is marked as a comparative example fO
△ and ○ indicate that there was no internal crack.

実施例2 鋳造条件 連鋳機:初期曲率半径・・・10.5 m、機高・・・
10.8 m、 4点矯正。
Example 2 Casting conditions Continuous casting machine: initial radius of curvature...10.5 m, machine height...
10.8 m, 4-point correction.

銀 独:中央AA−に 鋳片サイズ:25o關厚X1050U巾鋳造速度:1.
.6m/紬 本発明の実施例の結果と比較例の結果と°を第6図に示
す。第6図において、実!bは初期曲率半径が1 ’0
.5 mの場合でTS≧900℃のときの限界線であり
、破線aはTL≦Ts(900℃のときの限界線である
Silver Germany: Center AA- Slab size: 25o thick x 1050U width Casting speed: 1.
.. 6m/pongee Figure 6 shows the results of the example of the present invention and the results of the comparative example. In Figure 6, fruit! b has an initial radius of curvature of 1'0
.. This is the limit line when TS≧900°C in the case of 5 m, and the broken line a is the limit line when TL≦Ts (900°C).

そして短辺温度Tsが、TL≦Ts(900℃の時の本
発明の実施例を△で、比較例をムで示してあ、j)、T
s≧900℃ の時の本発明の実施例を○で比較例をe
で示してあシ、Δ及び○は内部割れはなかった。
When the short side temperature Ts is TL≦Ts (the example of the present invention at 900°C is indicated by △, and the comparative example is indicated by M, j), T
When s≧900℃, the example of the present invention is marked with ○, and the comparative example is marked with e.
There were no internal cracks in the reeds, ∆, and ○ shown by .

(発明の効果) 以上の結果から、明らかなように、本発明の構成に従っ
て、鋳片断面短辺の凝固殻温度、鋳片上。
(Effects of the Invention) From the above results, it is clear that according to the configuration of the present invention, the temperature of the solidified shell on the short side of the slab cross section, and the temperature on the slab top.

下面温度差、鋳片の初期曲率半径凡の関係を満足せしめ
て、鋳造を行なえば内部割れを惹起せしめることなく、
また、表面割れも生成しない。
If the relationship between the bottom surface temperature difference and the initial radius of curvature of the slab is satisfied and casting is performed, internal cracks will not occur.
Furthermore, no surface cracks occur.

この発明は、以上述べたように構成しかつ作用せしめる
ようにしたから (1) 高速鋳造を可能ならしめることによって生産性
全高め、 (2) 連続鋳造した鋳片を、直接、圧延工程で圧延す
ることが可能であるから、圧延のための材料加熱エネル
ギを減少或は省略することができる。
This invention is constructed and operated as described above, and therefore (1) improves productivity by making high-speed casting possible, and (2) directly rolls continuously cast slabs in the rolling process. Therefore, the material heating energy for rolling can be reduced or omitted.

(3) 連続鋳造機を低機高イヒしてコンパクトにでき
るから設備、@家がコンパクトとなシ設備費全低減でき
る。
(3) The continuous casting machine can be made compact by lowering the height of the machine, making the equipment more compact and reducing the total equipment cost.

またメインテナンスのし易い設備とすることができる。Furthermore, the equipment can be easily maintained.

(4) 内部割れ等のトラブルが惹起しないから鋳造操
業が安定する。
(4) Casting operations are stable because troubles such as internal cracks do not occur.

等々、顕著な効果を奏する。etc., have a remarkable effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、初期曲率半径と、総合歪εTの関係を、矯正
点数水準別に示す図、 第2図は5発明者等が見出した、鋳片の曲げ戻し矯正に
おける嬌正歪の集中現象を示す模式図、第3図は、鋳片
断面短辺の凝固殻の表面温度Tsが、182900℃の
領域における、鋳片上面温度TLと、鋳片上、下面にお
ける所要温度差の関係を示す図、 第4図は、鋳片断面短辺の凝固殻の表面温度’rsが%
TT、 S TE+ < 900 Cの温度領域におけ
る、鋳片上面温度TLと、鋳片上、下面における所−要
嵩度差の関係を示す図。 第5図および第6図は、この発明の実施例の結果を示す
図である。 代理人 弁理士 秋 沢 政 光 列2名 窄77#n曲辛子径 *(m+ 21′1図 片2図 r面表耐■五(°C) 背4図 上6& fn51nK n (−c) 1、事件の表示 特願昭郭−第 183304号 2、兆明の名称 す調のJi:A元&a遣方法 3、補正をする者 事件との関係 出願人 住所(居所)東京都千代田区大手町2丁目6訃3号氏名
(名称) (6G5) ”d「日本製鐵株式会社4、代
 理 人 居 所 東京都中央区日本橋兜町12番1号大洋ヒル抽
正ぎ17令 5’ tlne、!rI、1ilflil の日付昭和
 年 月 日(発送)6 補正により増加する発明の数
 なし7、補正の対象明鮨1.(特許請求の範囲、発明
の詳IyLIIl説明)8、補正の内容 別紙の通り 補正・の内容一 本願特許請求の範囲を下記の通シ訂正する。 r (1) 未凝固相を有する湾曲鋳片を真【σに矧正
する過程を有する、鋳造速度が1.5 gr / ma
以上である連続婉遣方法であって、 湾曲釣片を真直にすべく曲げ戻す(帰正する)ときの、
引張応力を生じる側の鋳片表面温度をTL、とし、同様
に圧縮応力を生じる側の鋳片表面温度をTFとし) 切片断面VC,I、−ける短辺の表面温度を′I″Sと
するとき、 連続鋳造装置における初期曲率半径を几〔m〕古として
、 −14,3几+10432 TL≧ 700ここで、 a = −0,0125R+0.205b = −5,
13R+81.25 なる条件を満足する状態下で連続鋳造するようにしたこ
とを特徴とする鏑の連続鋳造法。 (2)未凝固相を有する湾曲鋳片を真直に矯正する過程
を有する、鋳造速度が1.5m/ax以上である連わ゛
じ鋳造方法であって、 湾曲鋳片を冥1はにすべく曲げ戻す(矯正する)ときの
、引張筋力を生じる側の鋳片表凶畠要をTLとし、 同
、1kに圧縮応力を生じる側の一片表面滉厩をTpとし
、 一片断面に2ける短辺の表面温贋をTSとするとき、 連続駒遺装駄1(おける初期曲率半径をR〔m〕として
、 −14,3几+1043≧TL”700−14.3几+
1143≧TF≧(1+a)TL−bここで、 a = −0,0188几十0.438b=−1゜2几
+152 なる条件を満足す乞状態下で連続鋳造するようにしたこ
とを特徴とする鋼の連わ、鋳造方法。J(2) 明細書
中、下記箇所に記載゛のr −14,3R十1143≧
TF (−TL+△T) Jをいずれも4−143几+
1143≧Ty≧(1+a ) TL−b J と訂正
する。 第14頁;第3行、下から1行目、 第19頁;第2行、第9行。 (3) 明細書中、下記箇所に記載のlΔT−a’f’
 L −b 」および第11行。
Figure 1 is a diagram showing the relationship between the initial radius of curvature and total strain εT for each level of the number of straightening points. Figure 2 shows the concentration phenomenon of positive strain during straightening of cast slabs, which was discovered by the inventors. The schematic diagram shown in FIG. 3 is a diagram showing the relationship between the slab upper surface temperature TL and the required temperature difference between the upper and lower surfaces of the slab in a region where the surface temperature Ts of the solidified shell on the short side of the slab cross section is 182900 ° C. Figure 4 shows that the surface temperature 'rs of the solidified shell on the short side of the slab cross section is %
A diagram showing the relationship between the upper surface temperature TL of the slab and the required bulk difference between the upper and lower surfaces of the slab in the temperature range of TT, S TE+ < 900 C. FIG. 5 and FIG. 6 are diagrams showing the results of an example of the present invention. Agent Patent Attorney Masaaki Aki Sawa Koretsu 2 Narrow 77#n Curved Mustard Diameter *(m+ 21'1 Figure Piece 2 Figure R Surface Resistance ■5 (°C) Back 4 Figure Top 6 & fn51nK n (-c) 1 , Indication of the case Special application Shokaku - No. 183304 No. 2, Chomei's name in the form of Ji: A Gen & A method 3, Person making the amendment Relationship to the case Applicant's address (residence) Otemachi, Chiyoda-ku, Tokyo 2-6 No. 3 Name (Name) (6G5) "d" Nippon Steel Corporation 4, Agent Residence: Taiyo Hill Rakushogi 17-5, 12-1 Nihonbashi Kabuto-cho, Chuo-ku, Tokyo tlne, !rI, 1ilflil date Showa year, month, day (shipment) 6 Number of inventions increased by the amendment None 7. Subject of the amendment Meizushi 1. (Claims, details of the invention IyLIIl explanation) 8. Contents of the amendment Attached sheet Contents of Amendment 1 The claims of the present patent application are amended as follows: r (1) The casting speed is 1.5 gr. / ma
In the above-mentioned continuous tricking method, when bending (returning) a curved fishing piece back to straighten it,
Let the surface temperature of the slab on the side where tensile stress is generated be TL, and similarly, let the surface temperature of the slab on the side where compressive stress is generated be TF). When the initial radius of curvature in the continuous casting device is ㇠ [m] old, -14,3 几 + 10432 TL≧ 700, where a = -0,0125R + 0.205b = -5,
13R+81.25 A method for continuous casting of kabura, characterized in that continuous casting is carried out under conditions satisfying the following conditions. (2) A continuous casting method in which the casting speed is 1.5 m/ax or more, which includes the process of straightening a curved slab having an unsolidified phase, and in which the curved slab is straightened. When bending back (straightening) as much as possible, let TL be the surface roughness of the slab on the side that produces tensile strength, and let Tp be the surface roughness of the slab on the side that produces compressive stress at 1k. When the surface temperature of the side is TS, the initial radius of curvature at R [m] is -14.3 + 1043≧TL''700 - 14.3 +
1143≧TF≧(1+a)TL−b Here, a = −0,0188㇠10.438b=−1゜2㇠+152 The feature is that continuous casting is performed under conditions that satisfy the following condition. Steel reaming and casting methods. J(2) r -14,3R11143≧ stated in the following location in the specification
TF (-TL+△T) J is 4-143L+
Correct as 1143≧Ty≧(1+a) TL-b J. Page 14; line 3, line 1 from the bottom; page 19; line 2, line 9. (3) lΔT-a'f' described in the following part of the specification
L-b” and line 11.

Claims (2)

【特許請求の範囲】[Claims] (1) 未凝固相を有する湾曲鋳片を真直に矯正する過
程金有する、鋳造速度が1.5m/m以上である連続鋳
造方法であって、 湾曲鋳片を真直にすべく曲げ戻す(矯正する〕ときの、
引張応力を生じる側の鋳片表面流度をTLとし、 同様
に圧縮応力を生じる側の鋳片表面流度をTFとし、 Ω)5片断面における短辺の表面湿度f ’l”sとす
るとき、 連続鋳造装置における初期曲率半径をR[7711とと
して、 −14,3R+1.043≧TL≧700−14.3R
+1143≧Tp(−TL+△T)Ts≧900 ここで。 △T=aTL−b a =−0,01258+0.205 b =−5,13R−1−81,25 なる条件を満足する状態下で連続鋳造するようにしたこ
とを特徴とする鋼の連続鋳造法
(1) A continuous casting method in which the process of straightening a curved slab having an unsolidified phase is performed at a casting speed of 1.5 m/m or more, which involves bending back the curved slab to make it straight (straightening). When you do
Let the surface flow rate of the slab on the side where tensile stress is generated be TL, similarly, let the surface flow rate of the slab on the side where compressive stress is generated be TF, and let the surface humidity of the short side in the cross section of Ω)5 be f 'l''s. When, the initial radius of curvature in the continuous casting device is R[7711, -14,3R+1.043≧TL≧700−14.3R
+1143≧Tp(-TL+△T)Ts≧900 Here. ΔT=aTL-b a =-0,01258+0.205 b =-5,13R-1-81,25 A continuous casting method for steel, characterized in that continuous casting is performed under conditions that satisfy the following condition.
(2)゛未凝固相を有する湾曲鋳片を真直に矯正する過
程を有する、鋳造速度が1.5m/”以上である連続鋳
造方法であって、 湾曲鋳片を真直にすべく曲げ戻す(矯正する〕ときの、
引張応力を生じる側の鋳片表面流度をTLとし、同様に
圧縮応力を生じる側の鋳片表面流度をTFとし、 鋳片断面における短辺の表面塩度をTsとするとき、 連続鋳造装置における初期曲率半径’e R[、r+]
として、 −14,3R+ 1043≧TL≧700−14.3 
R+ 1143≧TF(=Tj+ΔT)900)Ts≧
TL ここで、 ΔT=aTL−b a =−0,0188B+0.438 b = −1,2R+152 なる条件を満足する状態下で連続鋳造するようにしたこ
とを特徴とする鋼の連続鋳造方法、
(2) ``A continuous casting method with a casting speed of 1.5 m/'' or higher, which includes the process of straightening a curved slab having an unsolidified phase, and which involves bending the curved slab back to straighten it. When correcting
Continuous casting: When the surface flow rate of the slab on the side where tensile stress occurs is TL, the surface flow rate of the slab surface on the side where compressive stress is generated is TF, and the surface salinity of the short side in the cross section of the slab is Ts. Initial radius of curvature in the device 'e R[, r+]
As, −14,3R+ 1043≧TL≧700−14.3
R+ 1143≧TF(=Tj+ΔT)900)Ts≧
A continuous casting method for steel, characterized in that continuous casting is carried out under conditions that satisfy the following conditions: ΔT=aTL-ba=-0,0188B+0.438b=-1,2R+152,
JP18330483A 1983-09-30 1983-09-30 Continuous casting method of steel Granted JPS6076260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18330483A JPS6076260A (en) 1983-09-30 1983-09-30 Continuous casting method of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18330483A JPS6076260A (en) 1983-09-30 1983-09-30 Continuous casting method of steel

Publications (2)

Publication Number Publication Date
JPS6076260A true JPS6076260A (en) 1985-04-30
JPS6352988B2 JPS6352988B2 (en) 1988-10-20

Family

ID=16133331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18330483A Granted JPS6076260A (en) 1983-09-30 1983-09-30 Continuous casting method of steel

Country Status (1)

Country Link
JP (1) JPS6076260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239594A (en) * 2001-02-20 2002-08-27 Sinto Brator Co Ltd Wastewater denitrifying method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252126A (en) * 1975-10-24 1977-04-26 Nippon Kokan Kk Method of continuous casting
JPS57187150A (en) * 1981-05-12 1982-11-17 Nippon Steel Corp Secondary cooling installation for continuous casting
JPS58163559A (en) * 1982-03-23 1983-09-28 Nippon Kokan Kk <Nkk> Continuous casting method of steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252126A (en) * 1975-10-24 1977-04-26 Nippon Kokan Kk Method of continuous casting
JPS57187150A (en) * 1981-05-12 1982-11-17 Nippon Steel Corp Secondary cooling installation for continuous casting
JPS58163559A (en) * 1982-03-23 1983-09-28 Nippon Kokan Kk <Nkk> Continuous casting method of steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239594A (en) * 2001-02-20 2002-08-27 Sinto Brator Co Ltd Wastewater denitrifying method

Also Published As

Publication number Publication date
JPS6352988B2 (en) 1988-10-20

Similar Documents

Publication Publication Date Title
US5634510A (en) Integrated manufacturing system
JP2018507110A (en) Hot rolled lightweight martensitic steel sheet and method for producing the same
US10047417B2 (en) Continuous caster roll for a continuous casting machine
CN112605360A (en) High-pulling-speed production method of sub-peritectic steel slab
KR20060130745A (en) High copper low alloy steel sheet
JPH038864B2 (en)
JP4337565B2 (en) Steel slab continuous casting method
US4687047A (en) Continuous casting method
JPS62275556A (en) Continuous casting method
JPS6076260A (en) Continuous casting method of steel
JPH08238550A (en) Method for continuously casting steel
KR101223107B1 (en) Apparatus for manufacturing martensitic stainless hot rolled steel strip and method for manufacturing martensitic stainless hot rolled steel strip
JP3093533B2 (en) Continuous casting of thin cast slab
WO2016162906A1 (en) Method for manufacturing slab using continuous casting machine
JPH1080749A (en) Method for continuously casting high carbon steel
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JP3022211B2 (en) Mold for continuous casting of round billet slab and continuous casting method using the mold
JP2001137901A (en) Rolling method in hot-charge of continuously cast slab
JPS6363561A (en) Continuous casting method
JP3601591B2 (en) Continuous casting method of steel with few internal cracks
JPH0890182A (en) Method for continuously casting wide and thin cast slab
JPS6117346A (en) Multipoint straightening method of billet
WO2023228796A1 (en) Continuous casting method and continuous casting machine for steel
JPS58167060A (en) Method and device for production of thin steel sheet
JPH0390263A (en) Continuous casting method