JPH11285724A - Method for cooling thick steel plate - Google Patents

Method for cooling thick steel plate

Info

Publication number
JPH11285724A
JPH11285724A JP10088706A JP8870698A JPH11285724A JP H11285724 A JPH11285724 A JP H11285724A JP 10088706 A JP10088706 A JP 10088706A JP 8870698 A JP8870698 A JP 8870698A JP H11285724 A JPH11285724 A JP H11285724A
Authority
JP
Japan
Prior art keywords
cooling
steel plate
scale
steel sheet
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10088706A
Other languages
Japanese (ja)
Other versions
JP3709706B2 (en
Inventor
Yoichi Haraguchi
洋一 原口
Akira Onishi
晶 大西
Shigeto Shoji
成人 東海林
Michiharu Hannoki
道春 播木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP08870698A priority Critical patent/JP3709706B2/en
Publication of JPH11285724A publication Critical patent/JPH11285724A/en
Application granted granted Critical
Publication of JP3709706B2 publication Critical patent/JP3709706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the cooling of a high temp. thick steel plate without developing the unevenness and to facilitate the application to control cooling of the thick steel plate by developing a scale layer having a specific thickness on the steel plate after rolling and cooling with water after executing the rolling reduction with rolls having a specific height of ruggedness on the surface. SOLUTION: The steel plate 1 is rolled to a target plate thickness with a thick plate rolling mill 11 and carried on a roller table 12. After rolling, the steel plate is cooled in the atmosphere for 10-15 sec on the roller table 12 to develop the scale having 10-30 μm thickness. Successively, the ruggedness on the roll surface for light rolling reduction is made to 10-30 μm, desirably, 15-25 μm to execute the light rolling reduction to the steel plate 1 with an upper side roll 20 and a lower side roll 21 in the light rolling reduction device 19. The ruggedness pattern in the light rolling reduction roll may be used in randum size but this is desirable to be a fixed regularity. After executing the light rolling reduction to the steel plate 1, the steel plate is passed through the cooling device 13 to cool the upper and the lower surfaces of the steel plate 1 with the water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、厚鋼板の冷却方法
に関し、特に、圧延直後の厚鋼板を均一かつ急速に冷却
して熱処理する加速冷却方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cooling a thick steel plate, and more particularly to an accelerated cooling method for uniformly and rapidly cooling and heat-treating a thick steel plate immediately after rolling.

【0002】[0002]

【従来の技術】近年、厚鋼板の製造プロセスにおいて、
圧延パス毎の圧下量と圧延温度を制御して所定の特性を
得る制御圧延を行った後、鋼板を水冷(加速冷却)する
ことにより高強度、高靭性鋼板を得る技術が広く行われ
ている。制御圧延及び加速冷却を組み合わせることによ
り、添加元素を削減して製造コストを大幅に削減できる
ばかりでなく、溶接性にも優れた厚鋼板を製造すること
が可能になった。
2. Description of the Related Art In recent years, in the manufacturing process of steel plates,
2. Description of the Related Art A technique for obtaining a high-strength, high-toughness steel sheet by performing water-cooling (accelerated cooling) on a steel sheet after controlling rolling to obtain predetermined characteristics by controlling a rolling reduction and a rolling temperature for each rolling pass is widely performed. . By combining controlled rolling and accelerated cooling, it has become possible to not only significantly reduce the production cost by reducing the added elements, but also to produce a thick steel plate excellent in weldability.

【0003】加速冷却においては、冷却ノズルから冷却
水を200〜900℃の高温の鋼板の表面に噴射するた
め、鋼板表面において沸騰熱伝達がおきる。この現象に
より空冷などに比べ数十〜数百倍の高い冷却速度が得ら
れるため、微細な結晶組織を有する鋼板が得られ、前記
のように高強度、高靭性を有する鋼板を製造することが
できる。
In accelerated cooling, cooling water is injected from a cooling nozzle onto the surface of a steel sheet having a high temperature of 200 to 900 ° C., so that boiling heat transfer occurs on the surface of the steel sheet. Due to this phenomenon, a cooling rate of several tens to several hundreds times higher than that of air cooling can be obtained, so that a steel sheet having a fine crystal structure can be obtained, and a steel sheet having high strength and high toughness as described above can be manufactured. it can.

【0004】しかし、この沸騰熱伝達現象は、膜沸騰の
状態では熱伝達率が小さく、核沸騰の状態では熱伝達率
が大きい。鋼板温度が高いときは膜沸騰が主体である
が、低温になると核沸騰に遷移し、熱伝達率が急増する
傾向がある。膜沸騰から核沸騰に遷移する温度は冷却水
の運動量の条件や鋼板表面状態によって変動し、一定で
はないために、鋼板の一部で膜沸騰から核沸騰に遷移す
ると局部的に冷却速度が増加し、熱伝達が非常に不安定
になる。従って、鋼板全体の冷却速度を均一に制御する
ことは困難であり、大きな温度むらが発生しやすい。
However, in this boiling heat transfer phenomenon, the heat transfer coefficient is small in the state of film boiling and large in the state of nucleate boiling. When the temperature of the steel sheet is high, film boiling is mainly performed, but when the temperature is low, the state transitions to nucleate boiling, and the heat transfer coefficient tends to rapidly increase. The transition temperature from film boiling to nucleate boiling varies depending on the momentum of cooling water and the surface condition of the steel sheet, and is not constant, so the transition from film boiling to nucleate boiling in part of the steel sheet locally increases the cooling rate And the heat transfer becomes very unstable. Therefore, it is difficult to uniformly control the cooling rate of the entire steel sheet, and large temperature unevenness is likely to occur.

【0005】このような温度むらの発生は、製品の機械
特性のばらつきを生じるばかりでなく、耳波や中伸びな
どの変形が生じ、圧延後の工程で平坦矯正や再度熱処理
をしなければならないなど、生産効率を低下させる。
[0005] The occurrence of such temperature unevenness not only causes variations in the mechanical properties of the product, but also causes deformation such as ear waves and medium elongation, and requires flatness correction and heat treatment again in the process after rolling. Such as reducing production efficiency.

【0006】温度むらの発生原因として、表面粗さ等の
鋼板表面性状の不均一が大きく影響していることが近年
明らかになってきた。加熱炉での加熱むらや、圧延中に
生じる温度むらによって鋼板上でスケール厚さの分布む
らが生じ、圧延ロールの表面磨耗の進行度合いが部分的
に異なっていると鋼板表面粗さのむらが生じ、これを冷
却すると膜沸騰から核沸騰に遷移する時期が局部的にば
らつき、冷却速度に大きなばらつきが発生する機構が解
明されてきた。前記問題点を解決するため、例えば以下
に示す対策が試みられてきた。
In recent years, it has been clarified that unevenness in the surface properties of a steel sheet, such as surface roughness, is a major cause of uneven temperature. Uneven heating in the heating furnace and uneven temperature caused during rolling causes uneven thickness distribution on the steel sheet.If the degree of progress of surface wear on the rolling rolls is partially different, uneven surface roughness of the steel sheet occurs However, it has been elucidated the mechanism by which the time when the film transitions from film boiling to nucleate boiling is locally varied when the material is cooled, causing a large variation in the cooling rate. In order to solve the above problems, for example, the following countermeasures have been attempted.

【0007】例えば、特公昭63−54046号公報に
は、金属管を高温から冷却する際に、冷却前にミルスケ
ールを除去した後、表面に2μm以上の平均粗さで、且
つPPI値が50〜500(山部の間隔が50〜500
μm)の均一な粗面を形成させて冷却を行う技術が開示
されている。
For example, Japanese Patent Publication No. 63-54046 discloses that when cooling a metal tube from a high temperature, after removing the mill scale before cooling, the surface has an average roughness of 2 μm or more and a PPI value of 50 or more. ~ 500 (interval between peaks is 50 ~ 500
A technique for cooling by forming a uniform rough surface (μm) is disclosed.

【0008】特開平1―284418号公報には、被圧
延材の圧延後の表面粗さを冷却媒体の蒸気膜厚さ(水の
場合10μm程度)以上、Rz表示で30μm以下に調整
し、かつ圧延後の新生面を加速酸化した後、冷却を行う
技術が開示されている。
Japanese Patent Application Laid-Open No. 1-284418 discloses that the surface roughness of a material to be rolled after rolling is adjusted to be not less than the vapor film thickness of the cooling medium (about 10 μm in the case of water) and not more than 30 μm in terms of Rz, and There is disclosed a technique of performing cooling after accelerated oxidation of a new surface after rolling.

【0009】特開平2―70017号公報には、金属材
料の伝熱面に、溝の深さがRz表示で25μm以下の多数
の線状溝からなる均一な粗さ模様を付与して、冷却を行
う技術が開示されている。
Japanese Patent Laid-Open Publication No. Hei 2-70017 discloses that a heat transfer surface of a metal material is provided with a uniform roughness pattern composed of a large number of linear grooves having a depth of 25 μm or less in Rz, and cooling. A technique for performing the above is disclosed.

【0010】[0010]

【発明が解決しようとする課題】前記公報に開示された
技術は、以下に示す問題点がある。 (a) 前記3件の公報に開示された技術は、比較的膜沸騰
状態が形成されにくい強冷却タイプの冷却装置、すなわ
ちローラまたはプラテン(鋼板を上下から押させる治
具)等で鋼板を拘束しつつ、冷却ノズルを被冷却体に近
接させることにより冷却を行う装置の場合には比較的効
果がある。しかし、厚板の制御冷却で一般的に用いられ
る弱冷タイプの冷却装置、すなわちローラ等の拘束がな
く、冷却ノズルと鋼板の距離1m以上ある装置の場合に
は、依然として局部的に膜沸騰域が発生し、大きな温度
むらが生じやすい。
The technique disclosed in the above publication has the following problems. (a) The technology disclosed in the above three publications discloses that a steel plate is restrained by a cooling device of a strong cooling type in which a film boiling state is relatively unlikely to be formed, that is, a roller or a platen (a jig for pressing the steel plate from above and below). However, in the case of an apparatus that performs cooling by bringing the cooling nozzle close to the object to be cooled, it is relatively effective. However, in the case of a weak cooling type cooling device generally used for controlled cooling of a thick plate, that is, a device having no constraint such as a roller and having a distance of 1 m or more between a cooling nozzle and a steel plate, a film boiling region is still locally localized. And large temperature unevenness is likely to occur.

【0011】(b) 特開平2―70017号公報に開示さ
れた技術は、スケールがない状態、または非常に薄いス
ケールに覆われた状態で鋼材表面に規則的な凹凸を付与
するものであるが、規則的な凹凸は比較的目立ちやすい
ため、製品での表面外観が悪化し、製品・用途によって
は適用できない場合がある。
(B) The technique disclosed in Japanese Patent Application Laid-Open No. Hei 2-70017 is to impart regular irregularities to the surface of a steel material without a scale or with a very thin scale. In addition, since the regular irregularities are relatively conspicuous, the surface appearance of the product is deteriorated, and it may not be applicable depending on the product or application.

【0012】前記の問題を解決するため、本発明の課題
は圧延後の鋼板を均一に加速冷却する方法を提供するこ
とにある。
[0012] In order to solve the above problems, an object of the present invention is to provide a method for uniformly accelerating and cooling a rolled steel sheet.

【0013】[0013]

【課題を解決するための手段】前記の課題を解決するた
め発明者らは種々検討の試験を行い、下記の知見を得
た。
Means for Solving the Problems In order to solve the above-mentioned problems, the inventors conducted various examination tests and obtained the following findings.

【0014】(a) 鋼板表面に、ある厚さのスケールが形
成されると、水冷によってスケールに亀裂が生じ、亀裂
の尖端部に核沸騰の起点が生成され、熱伝達率が増加す
る。
(A) When a scale of a certain thickness is formed on the surface of a steel sheet, a crack is generated in the scale by water cooling, a starting point of nucleate boiling is generated at a tip of the crack, and a heat transfer coefficient is increased.

【0015】また、亀裂の入ったスケールからその破片
が鋼板から剥離し、冷却水中に分散することにより、冷
却水と鋼板間の蒸気膜が破壊され、冷却水と鋼板間の熱
伝達率が増加する効果がある。しかし、スケール破片の
すべてが鋼板から剥離すると鋼板への熱伝達率は再び低
下したり、冷却水の流動によって局部的に熱伝達率の不
均一が生じる。
[0015] Further, the fragments are separated from the steel plate from the cracked scale and dispersed in the cooling water, so that the vapor film between the cooling water and the steel plate is broken, and the heat transfer coefficient between the cooling water and the steel plate is increased. Has the effect of doing However, when all of the scale fragments are separated from the steel sheet, the heat transfer coefficient to the steel sheet is reduced again, or the flow of the cooling water causes the heat transfer coefficient to be locally uneven.

【0016】(b) 軽圧下によってスケールの一部を鋼板
に食い込ませれば、核沸騰の起点とすることができる。
食い込ませるスケールの分布密度を調整することによ
り、熱伝達率を調整できる。また、スケールを食い込ま
せる深さをある限度以下とすれば、スケール噛み込みの
問題はなく、鋼板表面に目立った模様を生じることもな
い。
(B) If a part of the scale is bitten into the steel sheet under light pressure, it can be used as a starting point of nucleate boiling.
The heat transfer coefficient can be adjusted by adjusting the distribution density of the scale to be cut. Further, if the depth at which the scale bites is set to a certain limit or less, there is no problem of scale biting, and no noticeable pattern is generated on the steel sheet surface.

【0017】本発明は上記知見に基づいてなされたもの
で、その要旨は下記(1) 〜(2) にある。 (1) 厚鋼板を圧延後、水で冷却する冷却方法において、
圧延後の鋼板に厚さが10〜30μmのスケール層を生
成させ、次いで高さが10〜30μmの凹凸を表面に有
するロールで圧下した後、水で冷却することを特徴とす
る厚鋼板の冷却方法。
The present invention has been made based on the above findings, and the gist thereof is as described in (1) and (2) below. (1) In the cooling method of cooling the steel plate with water after rolling the steel plate,
A scale layer having a thickness of 10 to 30 μm is formed on the rolled steel sheet, and then rolled down with a roll having irregularities of a height of 10 to 30 μm, and then cooled with water. Method.

【0018】(2) 前記(1) 項に記載の凹凸は、互いに隣
接する凸部の頂点、稜線または頂上部の間隔が凹凸の高
さの2〜10倍であることを特徴とする厚鋼板の冷却方
法。
(2) The steel plate according to the above (1), wherein the interval between the apexes, ridges, or tops of the adjacent protrusions is 2 to 10 times the height of the protrusions. Cooling method.

【0019】[0019]

【発明の実施の形態】本発明は、水冷前の鋼板表面に所
定の厚さのスケール層を形成し、スケールの一部を鋼板
表面に固定して核沸騰の起点とすることにある。これに
より、鋼板をローラまたはプラテンによって拘束しつ
つ、冷却ノズルを接近させ高圧冷却水を噴射する強冷却
タイプの冷却装置を用いる必要はなくなって、鋼板を非
拘束として冷却ノズルと鋼板間の距離を1m以上確保す
る比較的弱冷タイプの冷却装置で、均一かつ安定的に冷
却を行うことができる。以下に本発明の原理を説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is to form a scale layer of a predetermined thickness on the surface of a steel sheet before water cooling, and fix a part of the scale on the steel sheet surface to serve as a starting point of nucleate boiling. This eliminates the need to use a strong cooling type cooling device that closes the cooling nozzle and injects high-pressure cooling water while constraining the steel plate with a roller or platen, and reduces the distance between the cooling nozzle and the steel plate by unconstraining the steel plate. A relatively weak cooling device that secures 1 m or more can perform uniform and stable cooling. Hereinafter, the principle of the present invention will be described.

【0020】冷却が開始される700〜800℃の高温
域では、通常膜沸騰状態にある。鋼板表面と冷却水の間
に蒸気膜が形成され、伝熱は蒸気膜を介した放射伝熱の
みにより行われるため、熱伝達率は小さい。冷却が進行
し温度が低下すると、ある温度(以下、クエンチ温度と
いう)でこの蒸気膜が破壊される。このクエンチ温度か
ら核沸騰状態に遷移し、冷却水と鋼板が直接接触して伝
熱が行われるようになって、急激に熱伝達率が増加して
急冷される。この蒸気膜の破壊過程は非常に不安定で、
鋼板の表面粗さのばらつき等により、蒸気膜が破壊され
て局部的に急冷される部分と、蒸気膜が維持され冷却が
遅れる部分とが混在するため、温度むらが発生しやす
い。
In a high temperature range of 700 to 800 ° C. where cooling is started, the film is usually in a film boiling state. Since a steam film is formed between the steel sheet surface and the cooling water, and heat transfer is performed only by radiant heat transfer through the steam film, the heat transfer coefficient is small. As the cooling proceeds and the temperature decreases, the vapor film is broken at a certain temperature (hereinafter, referred to as a quench temperature). A transition from the quench temperature to the nucleate boiling state occurs, and the cooling water and the steel plate come into direct contact with each other to perform heat transfer. The destruction process of this vapor film is very unstable,
The unevenness in temperature is apt to occur because the steam film is broken and locally cooled rapidly due to the unevenness of the surface roughness of the steel sheet and the portion where the steam film is maintained and the cooling is delayed.

【0021】700〜800℃の高温域でも、高圧噴流
水を衝突させることにより、蒸気膜を破壊する強冷却タ
イプの冷却装置においては、クエンチ温度を高め、鋼板
全面を同時に急冷開始して均一に冷却することができ
る。しかし、一般的な弱冷タイプの冷却装置では、蒸気
膜が破壊されにくく、冷却むらの改善を行うことができ
ない。
Even in a high temperature range of 700 to 800 ° C., in a strong cooling type cooling device that breaks a vapor film by colliding high-pressure jet water, the quench temperature is increased and the entire surface of the steel sheet is simultaneously quenched and uniformly cooled. Can be cooled. However, in a general weak-cooling type cooling device, the vapor film is hardly broken, and it is not possible to improve cooling unevenness.

【0022】本発明では、第1に高温域(膜沸騰域)で
冷却水中に分散したスケール破片が膜沸騰状態の蒸気膜
を破壊する効果を狙っている。第2に、いわゆるフィン
効果により、フィン部の先端の温度が低下し、クエンチ
点以下となって核沸騰の起点が形成される効果を狙って
いる。かつ、フィン部として濡れ性のよいスケールを用
いるものである。
In the present invention, first, the effect is obtained that the scale fragments dispersed in the cooling water in the high temperature region (film boiling region) destroy the vapor film in the film boiling state. Secondly, the so-called fin effect lowers the temperature at the tip of the fin portion to lower the temperature below the quench point to form the starting point of nucleate boiling. In addition, a scale having good wettability is used as the fin portion.

【0023】前記効果を実現する手段として、圧延後の
鋼板1表面に所定の厚さのスケールを生成させ、このス
ケールを軽圧下によって亀裂を入れ、同時に一部のスケ
ールを鋼板に食い込ませる。次いで、冷却水を噴射し、
前記亀裂の入ったスケールを剥離し、冷却水中に分散し
た状態にする。
As means for realizing the above effect, a scale having a predetermined thickness is formed on the surface of the steel sheet 1 after rolling, and this scale is cracked by light pressure, and at the same time, a part of the scale is cut into the steel sheet. Next, inject cooling water,
The cracked scale is peeled off and dispersed in cooling water.

【0024】図1は鋼板と冷却水との境界近傍の挙動を
示す模式図である。同図において、鋼板1に対して、冷
却水2は蒸気膜3で隔てられている。鋼板1から剥離し
たスケールの破片は、浮遊スケール4として冷却水2の
中に分散している。鋼板1の近傍では浮遊スケール4は
蒸気膜3中に進入し、浮遊スケール3のフィン部6が核
沸騰の起点になって、同図のように蒸気膜3中での核沸
騰により蒸気膜が破壊され、高温域(クエンチ点以上)
での熱伝達率が向上する。
FIG. 1 is a schematic view showing the behavior near the boundary between the steel sheet and the cooling water. In the figure, a cooling water 2 is separated from a steel plate 1 by a vapor film 3. The fragments of the scale peeled from the steel sheet 1 are dispersed in the cooling water 2 as a floating scale 4. In the vicinity of the steel sheet 1, the floating scale 4 enters the vapor film 3, and the fin portions 6 of the floating scale 3 become the starting point of nucleate boiling. As shown in FIG. Destroyed, high temperature range (above quench point)
The heat transfer coefficient is improved.

【0025】スケールのすべてが剥離して、冷却水中に
分散すると、前記第1の効果しか期待できないが、スケ
ールの一部は鋼板表面に固定され、同図のように食い込
みスケール5となる、食い込みスケール5のフィン部6
が核沸騰の起点となって蒸気泡7が生成する。この状態
では鋼板が直接冷却され、冷却が一層促進される。
When all of the scale is peeled off and dispersed in the cooling water, only the first effect can be expected. However, a part of the scale is fixed to the surface of the steel sheet and becomes a biting scale 5 as shown in FIG. Fin part 6 of scale 5
Is the starting point of nucleate boiling, and vapor bubbles 7 are generated. In this state, the steel sheet is directly cooled, and cooling is further promoted.

【0026】前記第1の効果を狙って、スケールに亀裂
を入れる際、スケール破片のサイズを、蒸気膜の厚さと
同等〜膜厚厚さの数倍程度になるようにすると、浮遊ス
ケール4が蒸気膜に進入しやすくなり、蒸気膜破壊の効
果を大きくすることができる。スケールに前記の大きさ
の均一な亀裂を入れるには、軽圧下するロールの表面に
均一な模様を刻印することで実現できる。
When the scale is cracked with the aim of the first effect, if the size of the scale fragments is set to be about the same as the thickness of the vapor film to several times the film thickness, the floating scale 4 will be formed. It becomes easy to enter the vapor film, and the effect of destruction of the vapor film can be increased. The uniform cracks of the above-mentioned size can be formed in the scale by imprinting a uniform pattern on the surface of the roll to be lightly reduced.

【0027】前記第2の効果を狙って、スケールの一部
を鋼板表面に固定する際にも、軽圧下するロールの表面
に規則的な凹凸模様を付与することにより、均一なスケ
ール食い込みの分布を得ることができる。スケール破片
が鋼板に深く食い込みすぎるとスケール疵となるため、
スケールの厚さは適切な範囲にとどめなければならない
し、凹凸の深さを適切な範囲にとどめなければならな
い。
Even when a part of the scale is fixed to the surface of the steel sheet with the aim of the second effect, a uniform unevenness distribution is provided by providing a regular uneven pattern on the surface of the roll to be lightly reduced. Can be obtained. If the scale shards penetrate too deeply into the steel plate, they become scale flaws.
The thickness of the scale must be kept in an appropriate range, and the depth of the unevenness must be kept in an appropriate range.

【0028】上記の考慮の元、本発明の条件の限定理由
を以下に説明する。圧延後に生成させるスケールの厚さ
は10〜30μmとする。スケールの厚さが10μm未
満であると、軽圧下によりスケールに亀裂を付与して
も、冷却水を噴射したときに剥離しにくいこと、剥離し
たスケールを冷却水中に分散させたときの分散密度が小
さいこと、およびスケール破片のサイズが蒸気膜の厚さ
より小さくなって、蒸気膜破壊の効果が小さいこと等に
よって、前記第1の効果が小さくなるためである。スケ
ールの厚さが30μmより大きいと、圧延後に所定厚さ
のスケールを生成させるまでの時間が長くなり、圧延能
率が低下したり、鋼板の温度が低下して所定の冷却開始
温度が確保できないこと、および軽圧下によってスケー
ルが鋼板に深く食い込んでスケール疵となること等によ
る。より好ましいスケール厚さは15〜25μmであ
る。
Based on the above considerations, the reasons for limiting the conditions of the present invention will be described below. The thickness of the scale formed after rolling is 10 to 30 μm. If the thickness of the scale is less than 10 μm, even if a crack is applied to the scale under light pressure, it is difficult to peel when the cooling water is injected, and the dispersion density when the peeled scale is dispersed in the cooling water is This is because the first effect is reduced because the size is small and the size of the scale fragments is smaller than the thickness of the vapor film, and the effect of destruction of the vapor film is small. When the thickness of the scale is larger than 30 μm, the time required to generate a scale having a predetermined thickness after rolling becomes longer, and the rolling efficiency is reduced, or the temperature of the steel sheet is lowered and a predetermined cooling start temperature cannot be secured. This is because the scale is deeply cut into the steel sheet by light pressure reduction and scale flaws are caused. A more preferred scale thickness is 15 to 25 μm.

【0029】スケールを生成するには、圧延後、10〜
15秒間大気中で放冷することにより、所定の冷却開始
温度を確保しつつ、圧延能率に支障をきたすことなく、
所定のスケール厚さを確保することができる。
To produce the scale, after rolling, 10 to
By leaving to cool in the atmosphere for 15 seconds, while maintaining the predetermined cooling start temperature, without affecting the rolling efficiency,
A predetermined scale thickness can be ensured.

【0030】スケールの厚さを確保するため、放冷時間
が長くなり、圧延能率に支障がある場合や鋼板温度の低
下の問題がある場合は、圧延後に加速酸化を施してもよ
い。加速酸化の方法としては、鋼板表面に酸素富化ガス
を吹き付けたり、直火バーナーで加熱する方法がある。
また、鋼板の先端部と後端部とで、冷却開始温度、スケ
ール厚さなどに著しく差がある場合は、鋼板の後端部を
還元性雰囲気で加熱してもよい。
In order to secure the thickness of the scale, the cooling time is prolonged, and if there is a problem with the rolling efficiency or a problem of a drop in the steel sheet temperature, accelerated oxidation may be performed after the rolling. As a method of the accelerated oxidation, there are a method of blowing an oxygen-enriched gas onto the surface of the steel sheet and a method of heating with a direct-fired burner.
When there is a significant difference in the cooling start temperature, the scale thickness, and the like between the front end and the rear end of the steel sheet, the rear end of the steel sheet may be heated in a reducing atmosphere.

【0031】なお、通常の冷却方法では仕上圧延後の鋼
板が10秒未満の時間で冷却装置に搬送されるため、ス
ケール生成厚さは十分ではなく、本発明の冷却方法では
圧延後に積極的に放冷時間を調整する必要がある。従っ
て、本発明の冷却方法は熱延鋼板のような連続プロセス
で適用するのは困難であり、厚鋼板のような、1本単位
で処理可能なプロセスでの適用に限られる。
In the ordinary cooling method, the steel sheet after finish rolling is transported to the cooling device in less than 10 seconds, so that the scale formation thickness is not sufficient. It is necessary to adjust the cooling time. Accordingly, it is difficult to apply the cooling method of the present invention in a continuous process such as a hot-rolled steel sheet, and is limited to an application such as a thick steel sheet that can be processed in a single unit.

【0032】軽圧下するロール表面の凹凸は10〜30
μmとする。凹凸の高さが10μm未満では、前記10
〜30μmの厚さのスケールに対して、有効に亀裂を入
れることができないこと、およびロール凹凸の凸部に対
応した部分のスケールを鋼板に有効に食い込ませること
ができないことによる。スケールを無理に鋼板に食い込
ませようとして重圧下すると、鋼板全面でスケールが食
い込んで、適切なフィン分布にならず、スケール疵発生
の恐れもある。凹凸の高さが30μmより大きいと、凹
凸の凸部に対応した部分での面圧が大きくなり、スケー
ルが深く食い込んでスケール疵となる。より好ましい凹
凸の高さは15〜25μmである。
The surface of the roll surface to be lightly reduced is 10 to 30.
μm. If the height of the unevenness is less than 10 μm,
This is because cracks cannot be effectively formed on a scale having a thickness of 3030 μm, and the scale corresponding to the convex portion of the roll unevenness cannot be effectively cut into the steel sheet. If a heavy pressure is applied to force the scale to bite into the steel sheet, the scale will cut into the entire surface of the steel sheet, making it impossible to obtain an appropriate fin distribution and possibly causing scale flaws. If the height of the unevenness is larger than 30 μm, the surface pressure at the portion corresponding to the convex portion of the unevenness increases, and the scale penetrates deeply to form a scale flaw. A more preferable height of the unevenness is 15 to 25 μm.

【0033】軽圧下ロールの凹凸パターンはランダムで
もよいが、一定の規則性があるのがのぞましい。すなわ
ち、前記第1の目的によれば、軽圧下の亀裂に従って剥
離するスケール破片の大きさがある大きさ以上で、かつ
揃っている方が膜沸騰の破壊効果が高められるためと、
核沸騰のフィン部が、鋼板表面にほぼ均一に分布してい
る方が、均一な抜熱効果が得られるためである。
The concavo-convex pattern of the light pressure roll may be random, but preferably has a certain regularity. That is, according to the first object, the size of the scale fragments separated according to the crack under light pressure is equal to or larger than a certain size, and the more uniform, the better the destruction effect of film boiling is,
This is because, when the fin portions of nucleate boiling are substantially uniformly distributed on the steel sheet surface, a uniform heat removal effect can be obtained.

【0034】図2はロール表面の凹凸の分布状態を示す
概念図であり、同図(a) は点状の凸部がランダムに配置
されている場合、同図(b) は形状一定の点状の凸部が格
子状に配置されている場合、同図(c) は一定形状の平行
線状の凸部が配置されている場合である。同図(a) では
凸部の形状を円錐、同図(b) では四角錐、同図(c) では
三角畝として例示しているが、一つの凸部の形状の規則
性はさほど重要ではないし、凹部の形状もさほど重要で
はない。しかし、凸部の分布密度は以下の説明のよう
に、重要である。
FIGS. 2A and 2B are conceptual diagrams showing the distribution of unevenness on the roll surface. FIG. 2A shows a case where dot-like projections are randomly arranged, and FIG. FIG. 4C shows a case where parallel-shaped convex portions having a predetermined shape are arranged when the convex portions having a rectangular shape are arranged in a lattice shape. The shape of the protrusion is illustrated as a cone in FIG. 5A, a quadrangular pyramid in FIG. 5B, and a triangular ridge in FIG. 5C, but the regularity of the shape of one protrusion is not so important. Also, the shape of the recess is not so important. However, the distribution density of the protrusions is important as described below.

【0035】互いに隣接する凸部の頂点間の距離Pは凹
凸の大きさの2〜10倍であるのが望ましい。この距離
Pは例えば、同図(a) または(b) の場合は、ある凸部と
最隣接する凸部の頂点間の距離で表され、同図(c) のよ
うに、線状の凸部の場合は、稜線間の距離で表される。
It is desirable that the distance P between the vertices of the adjacent convex portions is 2 to 10 times the size of the unevenness. The distance P is, for example, expressed as the distance between a certain convex portion and the vertex of the nearest convex portion in the case of FIG. 3A or FIG. 3B, and as shown in FIG. In the case of a part, it is represented by the distance between the ridge lines.

【0036】凸部の間隔Pが凸部の高さHの2倍未満で
あると、鋼板の表面に生成したスケールに生じる亀裂が
細かくなり、前記第1の効果を狙った浮遊スケールが細
かくなりすぎること、および鋼板上に固定される食い込
みスケールの分布密度が大きくなりすぎて、局部的に急
冷されるためである。凸部の間隔Pが凸部の高さHの1
0倍より大きいと、軽圧下によって亀裂の入ったスケー
ルが浮遊スケールになるとき、サイズが大きくなりすぎ
ること、鋼板上に固定される食い込みスケールの分布密
度が小さすぎて、有効に冷却できないこと、および凸部
の面圧が大きくなって、食い込みスケールが深く食い込
んで、スケール疵発生の恐れや、鋼板に圧痕を生じる恐
れがあることによる。凸部の間隔P対凸部の高さHのよ
り好ましい範囲は、3〜8倍である。
If the interval P between the projections is less than twice the height H of the projections, the cracks generated on the scale formed on the surface of the steel sheet become finer, and the floating scale aimed at the first effect becomes finer. This is because the distribution density of the biting scale fixed on the steel plate becomes too large and is rapidly cooled locally. The interval P between the projections is 1 of the height H of the projections.
If it is larger than 0 times, when the scale with cracks becomes a floating scale by light pressure reduction, the size will be too large, the distribution density of the bite scale fixed on the steel plate is too small, it can not be cooled effectively, In addition, the surface pressure of the projections is increased, and the bite scale is deeply penetrated, which may cause scale flaws and indentations on the steel plate. A more preferable range of the interval P between the projections and the height H of the projections is 3 to 8 times.

【0037】ロールの加工は、実際には、図2(b) のよ
うな格子状、または同図(c) のような線状とするのが加
工しやすい。とくに、同図(b) のように稜線方向をロー
ルの周方向にすれば、ロール旋盤での加工が容易であ
る。凸部の断面形状は、四角形、台形、三角形等が考え
られるが、頂点の形状が鋭いと、磨耗が早いため頂点の
曲率半径を3〜10μm程度、または台形の場合は頂辺
を3〜10μm前後とするのが望ましい。
In practice, it is easy to form the roll into a lattice shape as shown in FIG. 2B or a linear shape as shown in FIG. 2C. In particular, if the ridge direction is set to the circumferential direction of the roll as shown in FIG. The cross-sectional shape of the convex portion may be square, trapezoidal, triangular, or the like. If the shape of the vertex is sharp, the radius of curvature of the vertex is about 3 to 10 μm because the abrasion is rapid, or the vertex of the vertex is 3 to 10 μm. It is desirable to be before and after.

【0038】前記の軽圧下は所定厚さのスケールを生成
後、ワークロールに所定の凹凸を有する厚板圧延機で行
ってもよいし、厚板圧延機とは別に軽圧下専用の圧延機
で行ってもよい。ただし、厚板圧延機に所定の凹凸をつ
けても、各パスの圧延中に凹凸が急速に摩耗したり、バ
ックアップロールとワークロールとの面圧によって凹凸
が圧壊するため、専用の軽圧下圧延機を設けるのが望ま
しい。
The above-mentioned light reduction may be carried out by a plate rolling mill having a predetermined unevenness on a work roll after a scale having a predetermined thickness is formed, or by a rolling mill dedicated to light reduction separately from the plate rolling mill. May go. However, even if the plate rolling mill is provided with predetermined irregularities, the irregularities are rapidly worn during rolling in each pass, and the irregularities are crushed by the surface pressure between the backup roll and the work roll. It is desirable to provide a machine.

【0039】軽圧下によって鋼板表面に微少な凹凸が生
じるが、水冷後に通常実施する熱間レベリングによる軽
圧下で容易にならすことができ、最終的な製品の外観を
損なうことはない。
Although slight irregularities are generated on the surface of the steel sheet by light reduction, it can be easily smoothed under light pressure by hot leveling usually performed after water cooling, and does not impair the appearance of the final product.

【0040】図3は本発明の冷却方法を適用する厚板制
御冷却設備を示す概要図である。厚板圧延機11により
目標板厚まで圧延された鋼板1は、ローラテーブル12
上を搬送されつつ、所定のスケール厚さを生成させるた
め所定の放冷時間を経過後、冷却装置13に達する。次
いで鋼板1は冷却装置13の中を通過しながら、上下面
を水冷される。冷却前及び冷却後の鋼板温度は、それぞ
れ冷却装置13の入側に設けられた上下の温度計16
a、16b及び出側に設けられた上下の温度計17a、
17bで測温される。制御冷却をする場合は、これらの
温度計で冷却前および冷却後の温度が所定の範囲に入る
ように、水冷中の搬送速度、或いは使用する冷却水の量
を制御する。冷却装置13の出側には幅方向温度計18
が設置されている。
FIG. 3 is a schematic diagram showing a thick plate control cooling equipment to which the cooling method of the present invention is applied. The steel plate 1 rolled to the target plate thickness by the plate rolling mill 11 is
After a predetermined cooling time has elapsed in order to generate a predetermined scale thickness while being transported above, the cooling device 13 is reached. Next, the steel sheet 1 is water-cooled on the upper and lower surfaces while passing through the cooling device 13. The temperature of the steel sheet before and after the cooling is measured by the upper and lower thermometers 16 provided on the inlet side of the cooling device 13, respectively.
a, 16b and upper and lower thermometers 17a provided on the outlet side,
The temperature is measured at 17b. In the case of controlled cooling, the transport speed during water cooling or the amount of cooling water to be used is controlled by these thermometers so that the temperatures before and after cooling fall within a predetermined range. A width direction thermometer 18 is provided on the output side of the cooling device 13.
Is installed.

【0041】水冷装置には、上面水冷ノズル14、下面
水冷ノズル15を、例えば10基ずつ搬送方向に並べて
設置している。上面水冷ノズル14はラミナーフロー型
で、膜状の層流冷却水を鋼板表面に噴射して水冷するも
ので、熱伝達率が大きい。上面水冷ノズル14は冷却中
に板が変形しても衝突しないように、鋼板面からの高さ
を1m程度に離して配置しているため、鋼板を拘束する
ローラもしくはプラテンは不要である。この形式の冷却
装置は厚板、熱延鋼板の制御冷却装置に一般的に用いら
れているものであり、鋼板を高速で搬送でき、設備費・
コスト・能率面で有利である。
In the water-cooling device, an upper surface water-cooling nozzle 14 and a lower surface water-cooling nozzle 15 are arranged side by side in the transport direction, for example, ten at a time. The upper surface water-cooling nozzle 14 is of a laminar flow type, in which laminar cooling water in the form of a film is sprayed onto the surface of the steel plate to be water-cooled, and has a large heat transfer coefficient. Since the upper surface water-cooling nozzle 14 is arranged at a height of about 1 m from the steel plate surface so as not to collide even if the plate is deformed during cooling, a roller or a platen for restraining the steel plate is unnecessary. This type of cooling device is generally used for the control cooling device for thick plates and hot-rolled steel sheets.
It is advantageous in terms of cost and efficiency.

【0042】冷却装置13の入側には、鋼板を軽圧下す
るための軽圧下装置19を設置している。この軽圧下装
置19は上下1対のロール20、21を有し、上側ロー
ル20は、使用しない場合に上方に待避可能なように昇
降装置(図示せず)が設けられている。ロール20、2
1には凹凸模様が付けられている。軽圧下装置19は同
図に示すような2段ロールのほか、4段ロールタイプま
たは数本のロール列で構成したレベラータイプのもので
あってもよい。
On the inlet side of the cooling device 13, a light reduction device 19 for reducing the steel plate lightly is installed. The light roll-down device 19 has a pair of upper and lower rolls 20 and 21, and the upper roll 20 is provided with an elevating device (not shown) so as to be able to retract upward when not in use. Roll 20, 2
1 has an uneven pattern. The light reduction device 19 may be a two-stage roll as shown in the figure, or may be a four-stage roll type or a leveler type composed of several roll rows.

【0043】[0043]

【実施例】本発明の冷却方法と従来法による冷却方法と
を比較する試験を行った。試験は図3に示す圧延ライン
で行った。同図の軽圧下装置19のロール20、21に
は、図2(c) に示す線状の凹凸を設けた。ロール20、
21のロール径は500mmで、表面の凹凸の高さを1
5μm、また隣り合う凸部頂点の間隔を、ロールの周方
向、軸方向共に、100μmとした。
EXAMPLE A test was conducted to compare the cooling method of the present invention with a conventional cooling method. The test was performed on the rolling line shown in FIG. The rolls 20 and 21 of the light reduction device 19 in the same figure were provided with linear irregularities shown in FIG. Roll 20,
The roll diameter of No. 21 is 500 mm, and the height of the surface irregularities is 1
The distance between adjacent ridge vertices was set to 100 μm in both the circumferential direction and the axial direction of the roll.

【0044】本発明例では、表面スケールを15μm程
度生成するよう、圧延後約15秒放冷した後、軽圧下装
置19で軽圧下し、さらに冷却装置13で冷却した。
In the example of the present invention, the roll was allowed to cool for about 15 seconds after rolling so as to produce a surface scale of about 15 μm, then lightly reduced by the light reduction device 19, and further cooled by the cooling device 13.

【0045】比較例1では、圧延後の鋼板にデスケーリ
ング装置22で150kgf/cm2 の高圧水を噴射し、スケ
ールを除去した。次いで、軽圧下により鋼板表面に高さ
15μmの凹凸を付与した後、冷却装置13で冷却し
た。
In Comparative Example 1, high pressure water of 150 kgf / cm 2 was sprayed on the steel sheet after rolling by the descaling device 22 to remove the scale. Subsequently, the surface of the steel sheet was provided with irregularities having a height of 15 μm by light pressure reduction, and then cooled by the cooling device 13.

【0046】比較例2では、表面スケールを15μm程
度生成するよう、圧延後約15秒放冷したのち、軽圧下
をせずに冷却装置13で冷却した。
In Comparative Example 2, the roll was allowed to cool for about 15 seconds after rolling so as to form a surface scale of about 15 μm, and then cooled by the cooling device 13 without reducing the pressure.

【0047】仕上げ圧延終了時の鋼板板厚は20.5m
m、目標冷却開始温度は750℃、目標冷却停止温度は
450℃である。また軽圧下装置での圧下による板厚減
少量は、0.5mmとした。
The thickness of the steel sheet at the end of the finish rolling is 20.5 m
m, the target cooling start temperature is 750 ° C., and the target cooling stop temperature is 450 ° C. Further, the amount of reduction in the thickness of the plate due to the reduction by the light reduction device was 0.5 mm.

【0048】図4は、冷却試験後の幅方向温度分布を示
すグラフである。同図に示すように、本発明例では、比
較例1および2に比べて、水冷後の温度偏差が大幅に減
少していた。また、軽圧下による鋼板表面の圧下模様も
ほとんどなかった。
FIG. 4 is a graph showing the temperature distribution in the width direction after the cooling test. As shown in the figure, in the example of the present invention, the temperature deviation after water cooling was significantly reduced as compared with Comparative Examples 1 and 2. In addition, there was almost no rolling pattern on the steel sheet surface due to light rolling.

【0049】本発明例と比較例1の差異は、軽圧下を施
す場合の表面スケールの有無の差異である。比較例1は
比較例2に比べて鋼板表面の粗度化により冷却の均一化
に若干の改善が見られるものの、本発明例に比較すると
冷却の均一化は劣っていた。また、鋼板表面には線状模
様が残っており、品質面での問題があった。
The difference between the present invention example and the comparative example 1 is the difference in the presence or absence of the surface scale when a light reduction is performed. Comparative Example 1 showed a slight improvement in cooling uniformity due to roughness of the steel sheet surface as compared with Comparative Example 2, but was inferior in cooling uniformity as compared to the present invention. In addition, a linear pattern remains on the surface of the steel sheet, and there was a problem in quality.

【0050】本発明例と比較例2の差異は、軽圧下の有
無の差異があり、表面スケール厚さの条件は同じであっ
た。比較例2を本発明例と比較すると、鋼板表面に単に
スケールを生成させただけでは、冷却の均一化には寄与
しないことがわかった。
The difference between the present invention and Comparative Example 2 was the presence or absence of light reduction, and the conditions for the thickness of the surface scale were the same. Comparing Comparative Example 2 with the present invention example, it was found that mere generation of scale on the steel sheet surface did not contribute to uniform cooling.

【0051】以上のように、本発明方法により、制御冷
却により生じる温度むらを大幅に改善でき、安定して製
造できることが明らかとなった。
As described above, it has been clarified that the method of the present invention can significantly reduce the temperature unevenness caused by controlled cooling and can stably produce the same.

【0052】なお本発明による冷却方法は、厚鋼板の冷
却プロセスに限らず、鋼管や形鋼等の他の鋼材制御冷却
プロセスへ適用した場合も、同様の効果を得ることがで
きる。
The same effect can be obtained when the cooling method according to the present invention is applied not only to the cooling process of a thick steel plate but also to another steel material controlled cooling process such as a steel pipe or a shaped steel.

【0053】[0053]

【発明の効果】本発明の冷却方法によれば、高温の厚鋼
板を冷却むらなく、大きな冷却速度が得られる。このた
め、厚鋼板の制御冷却の適用が容易になる。しかも、圧
延能率低下やコスト増大を生じることがない。
According to the cooling method of the present invention, a high cooling rate can be obtained without evenly cooling a high-temperature thick steel plate. For this reason, it becomes easy to apply the controlled cooling of the thick steel plate. Moreover, there is no reduction in rolling efficiency and no increase in cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼板と冷却水との境界近傍の挙動を示す模式図
である。
FIG. 1 is a schematic diagram showing a behavior near a boundary between a steel plate and cooling water.

【図2】ロール表面の凹凸の分布状態を示す概念図であ
り、同図(a) は点状の凸部がランダムに配置されている
場合、同図(b) は形状一定の点状の凸部が格子状に配置
されている場合、同図(c) は一定形状の平行線状の凸部
が配置されている場合である。
FIG. 2 is a conceptual diagram showing a distribution state of irregularities on a roll surface. FIG. 2A shows a case where point-like protrusions are randomly arranged, and FIG. FIG. 4C shows a case where the convex portions are arranged in a lattice shape, and FIG.

【図3】本発明の冷却方法を適用する厚板制御冷却設備
を示す概要図である。
FIG. 3 is a schematic diagram showing a thick plate control cooling facility to which the cooling method of the present invention is applied.

【図4】冷却試験後の幅方向温度分布を示すグラフであ
る。
FIG. 4 is a graph showing a temperature distribution in a width direction after a cooling test.

【符号の説明】[Explanation of symbols]

1 鋼板 2 冷却水 3 蒸気膜 4 浮遊スケール 5 食い込みスケール 6 フィン部 7 蒸気泡 8 凸部 11 厚板圧延機 12 ローラテーブル 13 冷却装置 14 上面水冷ノズル 15 下面水冷ノズル 16a、16b 温度計 17a、17b 温度計 18 幅方向温度計 19 軽圧下装置 20 上側ロール 21 下側ロール 22 デスケーリング装置 H 凸部高さ P 凸部間隔 DESCRIPTION OF SYMBOLS 1 Steel plate 2 Cooling water 3 Steam film 4 Floating scale 5 Biting scale 6 Fin part 7 Steam bubble 8 Convex part 11 Plate rolling mill 12 Roller table 13 Cooling device 14 Upper surface water cooling nozzle 15 Lower surface water cooling nozzle 16a, 16b Thermometer 17a, 17b Thermometer 18 Width thermometer 19 Light pressure reduction device 20 Upper roll 21 Lower roll 22 Descaling device H Convex height P Convex interval

───────────────────────────────────────────────────── フロントページの続き (72)発明者 播木 道春 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Michiharu Hariki 4-5-33 Kitahama, Chuo-ku, Osaka City Sumitomo Metal Industries Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 厚鋼板を圧延後、水で冷却する冷却方法
において、圧延後の鋼板に厚さが10〜30μmのスケ
ール層を生成させ、次いで高さが10〜30μmの凹凸
を表面に有するロールで圧下した後、水で冷却すること
を特徴とする厚鋼板の冷却方法。
In a cooling method of rolling a thick steel plate and cooling it with water, a scale layer having a thickness of 10 to 30 μm is formed on the rolled steel plate, and the surface has irregularities with a height of 10 to 30 μm. A method for cooling a thick steel plate, wherein the steel plate is rolled down and then cooled with water.
【請求項2】 請求項1に記載の凹凸は、互いに隣接す
る凸部の頂点、稜線または頂上部の間隔が凹凸の高さの
2〜10倍であることを特徴とする厚鋼板の冷却方法。
2. The method for cooling a thick steel plate according to claim 1, wherein the distance between the apexes, ridges, or tops of the protrusions adjacent to each other is 2 to 10 times the height of the protrusions. .
JP08870698A 1998-04-01 1998-04-01 Thick steel plate cooling method Expired - Fee Related JP3709706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08870698A JP3709706B2 (en) 1998-04-01 1998-04-01 Thick steel plate cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08870698A JP3709706B2 (en) 1998-04-01 1998-04-01 Thick steel plate cooling method

Publications (2)

Publication Number Publication Date
JPH11285724A true JPH11285724A (en) 1999-10-19
JP3709706B2 JP3709706B2 (en) 2005-10-26

Family

ID=13950344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08870698A Expired - Fee Related JP3709706B2 (en) 1998-04-01 1998-04-01 Thick steel plate cooling method

Country Status (1)

Country Link
JP (1) JP3709706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353695B1 (en) * 2011-12-21 2014-01-20 주식회사 포스코 Apparatus for removing gas and cooler having thereof for high temperature plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284418A (en) * 1988-05-11 1989-11-15 Nippon Steel Corp Control method for cooling in on line control cooling heat treatment, cooling method and cooling control device for hot strip
JPH04313405A (en) * 1991-04-10 1992-11-05 Nippon Steel Corp Method for cold rolling this steel sheet
JPH0569006A (en) * 1991-09-13 1993-03-23 Nippon Steel Corp Steel sheet excellent in press formability
JPH05131209A (en) * 1991-11-12 1993-05-28 Nippon Steel Corp Method for uniformizing cooling temperature of metallic material
JPH06505A (en) * 1992-06-19 1994-01-11 Nippon Steel Corp Method for cold rolling steel strip with different diameter roll
JPH06254616A (en) * 1993-03-05 1994-09-13 Nippon Steel Corp Manufacture of thick steel plate excellent in shape and device therefor
JPH0957327A (en) * 1995-08-22 1997-03-04 Sumitomo Metal Ind Ltd Scale removal method of steel plate
JPH10113713A (en) * 1996-10-09 1998-05-06 Kobe Steel Ltd Production of steel plate of controlled cooling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284418A (en) * 1988-05-11 1989-11-15 Nippon Steel Corp Control method for cooling in on line control cooling heat treatment, cooling method and cooling control device for hot strip
JPH04313405A (en) * 1991-04-10 1992-11-05 Nippon Steel Corp Method for cold rolling this steel sheet
JPH0569006A (en) * 1991-09-13 1993-03-23 Nippon Steel Corp Steel sheet excellent in press formability
JPH05131209A (en) * 1991-11-12 1993-05-28 Nippon Steel Corp Method for uniformizing cooling temperature of metallic material
JPH06505A (en) * 1992-06-19 1994-01-11 Nippon Steel Corp Method for cold rolling steel strip with different diameter roll
JPH06254616A (en) * 1993-03-05 1994-09-13 Nippon Steel Corp Manufacture of thick steel plate excellent in shape and device therefor
JPH0957327A (en) * 1995-08-22 1997-03-04 Sumitomo Metal Ind Ltd Scale removal method of steel plate
JPH10113713A (en) * 1996-10-09 1998-05-06 Kobe Steel Ltd Production of steel plate of controlled cooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353695B1 (en) * 2011-12-21 2014-01-20 주식회사 포스코 Apparatus for removing gas and cooler having thereof for high temperature plate

Also Published As

Publication number Publication date
JP3709706B2 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
RU2745923C1 (en) Unit and method for producing thick steel sheet
TWI433736B (en) Method and equipment for flatness control in cooling a stainless steel strip
JP5220115B2 (en) Titanium slab for hot rolling, its melting method and rolling method
JP5119505B2 (en) Titanium slab for hot rolling melted in an electron beam melting furnace and its melting method
JP3796133B2 (en) Thick steel plate cooling method and apparatus
JP4772924B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP1359230A1 (en) Production method for steel plate and equipment therefor
JP3656707B2 (en) Controlled cooling method for hot rolled steel sheet
JP3709706B2 (en) Thick steel plate cooling method
JP4066652B2 (en) Heat treatment method and apparatus for steel
TW201718879A (en) Method of heat treatment for metal
JP5577654B2 (en) Manufacturing method of high-strength hot-rolled steel strip
JP4714628B2 (en) Thick steel plate cooling equipment row and cooling method
JP3287254B2 (en) Method and apparatus for cooling high-temperature steel sheet
JP3661434B2 (en) Controlled cooling method for hot rolled steel sheet
CN112845616A (en) Control method for wave bending in middle plate rolling process
JP2003326302A (en) Method and device for manufacturing thick steel plate
JPS6254507A (en) Cooling method for hot steel sheet
JP2001164323A (en) Cleaning method for thick steel plate
JP2005296978A (en) Method and equipment for manufacturing thick steel plate
JP6518948B2 (en) Method and equipment for manufacturing steel plate
RU2650651C1 (en) Method of austenitic anticorrosion steel section hot rolled plates production
JP2018051596A (en) Manufacturing method and manufacturing equipment of steel plate
JPH01242717A (en) Steel strip reduced in occurrence of plane strain at the time of heat treatment and its production
JPH02153023A (en) Roll cooling method for steel strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees