JPH02153023A - Roll cooling method for steel strip - Google Patents

Roll cooling method for steel strip

Info

Publication number
JPH02153023A
JPH02153023A JP30572788A JP30572788A JPH02153023A JP H02153023 A JPH02153023 A JP H02153023A JP 30572788 A JP30572788 A JP 30572788A JP 30572788 A JP30572788 A JP 30572788A JP H02153023 A JPH02153023 A JP H02153023A
Authority
JP
Japan
Prior art keywords
cooling
steel strip
roll
roll group
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30572788A
Other languages
Japanese (ja)
Other versions
JPH0564690B2 (en
Inventor
Satoshi Teshigawara
勅使河原 敏
Tamotsu Tomobe
友部 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30572788A priority Critical patent/JPH02153023A/en
Publication of JPH02153023A publication Critical patent/JPH02153023A/en
Publication of JPH0564690B2 publication Critical patent/JPH0564690B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • C21D9/5737Rolls; Drums; Roll arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To subject steel strips of a wide range of thicknesses to roll cooling with good flatness by dividing cooling rolls to a front cooling roll group and a rear cooling roll group and changing the coeffts. of heat conduction between the steel strip and the cooling rolls in the two roll groups. CONSTITUTION:The cooling rolls are segmented to the front cooling roll group and the rear cooling roll group at the time of continuously passing the high- temp. steel strip in the plural cooling rolls and cooling the steel strip. The front cooling roll group is then set in such a region where the roll inlet side temp. of the steel strip exceeds 600 deg.C and the rear cooling roll is classified and set in such a region where the roll inlet side temp. of the steel strip attains <=600 deg.C. The coefft. alpha1 of heat conduction between the steel strip and the cooling rolls in the front cooling roll group is Specified to <=1200Kal/m<2>h deg.C and the coefft. alpha2 of heat conduction between the steel strip and the cooling rolls in the rear cooling roll group is specified to >=1800Kal/m<2>h deg.C. A wide range of the strip thicknesses from thin to thick sheets are dealt with in this way and the cooling in the prescribed temp. range is executed without impairing the flatness, material quality, etc., of the steel sheet.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋼帯の連続焼鈍等における高温の鋼帯の冷却
方法に係り、内部を冷却した複数のロールにより鋼帯を
冷却するに際して冷却ロールを前段冷却ロール群と後段
冷却ロール群とに分け、それぞれの冷却ロール群におけ
る鋼帯と冷却ロール間の熱伝達係数を変えて鋼帯の冷却
を行なうロール冷力1法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for cooling a high-temperature steel strip during continuous annealing of the steel strip, etc. This relates to a roll cooling force method 1 in which the rolls are divided into a front cooling roll group and a rear cooling roll group, and the steel strip is cooled by changing the heat transfer coefficient between the steel strip and the cooling roll in each cooling roll group.

(従来の技術) 連続焼鈍炉等における高温の鋼帯の冷却方法の一つとし
て採用されているロール冷却方法は、千鳥状に配置した
複数の冷却ロールに鋼帯を通板させて冷却する方法であ
り、設備費やエネルギー消費量が小であるとともに、鋼
帯の表面状況が良好に保たれるという特徴を有する。
(Prior art) The roll cooling method, which is adopted as one of the methods for cooling high-temperature steel strips in continuous annealing furnaces, etc., is a method in which the steel strip is cooled by passing the steel strip through a plurality of cooling rolls arranged in a staggered manner. It has the characteristics that the equipment cost and energy consumption are small, and the surface condition of the steel strip is maintained in good condition.

このロール冷却法を更に具体的に述べると、第1図に示
すように適宜の間隔([)を隔てて上下自在に支持され
た複数個の冷却ロール(1)間を鋼帯(2)をロールに
接触させながら通板させて冷却するものであって、冷却
ロール(1)を上下させてロールI\の鋼帯(2)の接
触角(θ)を変えることにより鋼帯(2)の接触周長(
ρ1)の総和を調整し得るように構成されている。
To describe this roll cooling method in more detail, as shown in Fig. 1, a steel strip (2) is passed between a plurality of cooling rolls (1) that are vertically supported at appropriate intervals ([). The steel strip (2) is cooled by passing the steel strip in contact with a roll, and the contact angle (θ) of the steel strip (2) on the roll I\ is changed by moving the cooling roll (1) up and down. Contact circumference (
The configuration is such that the sum of ρ1) can be adjusted.

ところで一般にこのようなロール冷却法において、冷却
ロールの仕様を決定する手順としては、(1)鋼帯の必
要温度降下量と、得られる鋼帯の品質上の制約から定ま
る10−ル当たりの許容温度降下量とにより必要ロール
本数を決定し、更に(2)通板する鋼帯のうちの板厚最
大のものを所定温度量抜熱し得るように、ロール径並び
に鋼帯とロール間の熱伝達係数αを決定する。
By the way, in general, in such a roll cooling method, the procedure for determining the specifications of the cooling roll is as follows: (1) the required temperature drop of the steel strip and the allowable per 10-ru, which is determined from the quality constraints of the obtained steel strip; The required number of rolls is determined based on the amount of temperature drop, and (2) the roll diameter and heat transfer between the steel strip and the rolls are determined so that a predetermined amount of heat can be removed from the thickest steel strip to be threaded. Determine the coefficient α.

(発明が解決しようとする課題) しかして、上記したように冷却ロールの仕様を厚物鋼帯
を基準として決定する結果、落物鋼帯の冷却を行なう場
合に冷却初期の高温域において急冷になり過ぎ、しばし
ば得られる製品が平坦不良となる不都合を生じた。
(Problem to be Solved by the Invention) As a result of determining the specifications of the cooling roll based on the thick steel strip as described above, when cooling the fallen steel strip, it is difficult to rapidly cool it in the high temperature range at the initial stage of cooling. This resulted in the inconvenience that the resulting product often had poor flatness.

このため薄物鋼帯の冷却を行なうにはロール冷却の開始
温度を下げてやらざるを得ない。即ち、この場合におい
て、連続焼鈍炉等において高温に加熱された鋼帯を冷却
部のロール冷却開始時点に至るまでに冷却ガスによるジ
ェット噴射を行なうことによって所定温度まで降下させ
る方法が採られているが、このようなガス噴射による方
法は操業コストの増加を招くのみならず、冷却能が低い
ために得られた鋼帯製品の降伏点を高くしたり、時効性
を劣化させるなど材質上の問題を惹起するので好ましく
ない。
Therefore, in order to cool the thin steel strip, it is necessary to lower the starting temperature of roll cooling. That is, in this case, a method is adopted in which the steel strip heated to a high temperature in a continuous annealing furnace or the like is lowered to a predetermined temperature by jetting the steel strip with cooling gas until the time when the rolls in the cooling section start cooling. However, this gas injection method not only increases operating costs, but also causes problems with the material quality, such as raising the yield point of the steel strip product due to its low cooling capacity and deteriorating aging properties. This is not desirable because it causes

本発明は、従来の鋼帯ロール冷却法における斜上の問題
点に鑑みなされたものであり、その目的とするところは
薄物から原物までの広範な板厚範囲に対応して、鋼帯の
平坦度、材質等を損なうことなく所定温度範囲の冷却を
行ない得るような方法を提供しようとするものである。
The present invention was developed in view of the problem of sloping in the conventional steel strip roll cooling method, and its purpose is to improve the thickness of steel strips in a wide range of thicknesses from thin to original. The object is to provide a method that can perform cooling within a predetermined temperature range without impairing flatness, material quality, etc.

(課題を解決するための手段) 本発明者らはこの発明を行なうに際し、研究検討を重ね
た結果、冷却ロール群を前段と後段とに分け、前段の冷
却ロール群における鋼帯とロール間の熱伝達係数を成る
程度小さく抑え、その代わりに後段の冷却ロール群にお
ける熱1云達係数を前段に比して大きくすることによっ
て、1厚両鋼帯に対応したロール冷却が可能となること
についての知見を得てこの発明を完成した。
(Means for Solving the Problems) When carrying out this invention, the inventors of the present invention have conducted repeated research and examinations, and have divided the cooling roll group into a front stage and a rear stage, and created a structure between the steel strip and the rolls in the front stage cooling roll group. By keeping the heat transfer coefficient as low as possible and instead increasing the heat transfer coefficient in the cooling roll group in the latter stage compared to the former stage, it is possible to perform roll cooling that corresponds to both steel strip thicknesses. This invention was completed based on this knowledge.

即ち、本発明は複数の冷却ロールに高温の鋼帯を連続的
に通板して冷却する鋼帯のロール冷却法において、冷却
ロールを前段冷却ロール群と後段冷却ロール群とに区分
し、前段冷却ロール群における鋼帯と冷却ロール間の熱
伝達係数α1を後段冷却ロール群における鋼帯と冷却ロ
ール間の熱伝達係数αりよりも小とすることを特徴とす
る鋼帯のロール冷却法であり、更には、前段冷却ロール
群を鋼帯のロール入側温度が600℃を超えるような領
域に、また後段冷却ロール群を鋼帯のロール入側温度が
000℃以下になるような領域に区分設定するとともに
、前段冷却ロール群における鋼帯と冷却ロール間の熱1
云達係数α、を1200Kca17nfh℃以下とし、
また後段冷却ロール群における鋼帯と冷却ロール間の熱
1云達係数α2を1800KCa/’rr?h℃以上と
したことを特徴とする鋼帯のロール冷却法である。。
That is, the present invention relates to a roll cooling method for steel strip in which a high-temperature steel strip is continuously passed through a plurality of cooling rolls to be cooled. A steel strip roll cooling method characterized in that the heat transfer coefficient α1 between the steel strip and the cooling roll in the cooling roll group is made smaller than the heat transfer coefficient α between the steel strip and the cooling roll in the downstream cooling roll group. Furthermore, the first stage cooling roll group is placed in an area where the temperature on the roll entrance side of the steel strip exceeds 600℃, and the second stage cooling roll group is placed in an area where the temperature on the roll entrance side of the steel strip is 000℃ or less. In addition to setting the classification, the heat between the steel strip and the cooling roll in the front stage cooling roll group1
The delivery coefficient α is set to 1200Kca17nfh℃ or less,
Also, the heat transfer coefficient α2 between the steel strip and the cooling roll in the latter stage cooling roll group is 1800 KCa/'rr? This is a roll cooling method for steel strip, characterized in that the temperature is at least h°C. .

(作用) 次に、本発明を行なうに当たり、本発明者らの行なった
一連の実験及びその考察結果について述べる。例えば絞
り用冷延鋼板を製造する場合の代表的な連続焼鈍炉のヒ
ートパターンは第2図に示すごとくであり、700℃付
近迄加熱され、同温度にて均熱保持された鋼帯は400
℃付近の過時効処理温度迄ロール冷却されるが、冷却開
始時における鋼帯温度と1冷却ロール当たりの許容温度
降下量との間には密接な関係があり、600℃以上の高
温域では鋼帯温度が高いほど降伏応力が低下するので、
小さな温度降下量でも平坦度不良を起し易い。
(Function) Next, a series of experiments conducted by the present inventors and the results of their considerations in carrying out the present invention will be described. For example, the heat pattern of a typical continuous annealing furnace used to produce cold-rolled steel sheets for drawing is as shown in Figure 2. A steel strip heated to around 700°C and kept soaked at the same temperature has a heat pattern of 400°C.
The rolls are cooled to the overaging treatment temperature of around 600°C, but there is a close relationship between the steel strip temperature at the start of cooling and the permissible temperature drop per cooling roll. The higher the zone temperature, the lower the yield stress, so
Even a small amount of temperature drop tends to cause flatness defects.

上記の観点から、通常冷却開始時の高温域、つまり鋼帯
温度が600〜700°C付近である場合には、1冷却
ロール当たりの許容温度降下量は30〜40℃近辺が妥
当であるとされている。しかしながら、上記した許容温
度降下量の値は鋼帯温度のみならず、鋼帯の厚さや鋼帯
と冷却ロール間の熱伝達係数によっても変わってくる。
From the above point of view, if the high temperature range at the start of normal cooling, that is, the steel strip temperature is around 600 to 700°C, it is appropriate that the allowable temperature drop per cooling roll is around 30 to 40°C. has been done. However, the value of the above-mentioned allowable temperature drop varies not only depending on the steel strip temperature but also on the thickness of the steel strip and the heat transfer coefficient between the steel strip and the cooling roll.

即ち、一般にロール冷却法においては通板する鋼帯の各
ロール単体での冷却速度Ec、ロール接触時間t、接触
周長11及び接触角θ等は次式(1)〜(4)で示され
る関係にあるとされている。
That is, in general, in the roll cooling method, the cooling rate Ec, roll contact time t, contact circumference 11, contact angle θ, etc. of each roll of the steel strip to be passed are expressed by the following equations (1) to (4). They are said to be in a relationship.

即ち、 ・・・・・・・・・(1) c ・・・・・・・・・(2) θ”ut入360/’ Dπ    ・・・・・・・・
・(4)ここで、 α ;熱1云達係数(Kcal/rn’ Hh ・℃)
T1 :冷却開始温度(’C) T2 :冷却終了温度(’C) T3 :ロール表面温度(’C> h :板厚(晒) C2:比熱(KCa l /’kg ・’C)V ニラ
イン速度(m/’m1n) N :ロール本数 D 二ロール径(m> 上式からも判かるように、ロールと接触中の鋼帯の冷却
速度Ecは、熱1云達係数αに比例し、板厚りに反比例
する。従って、特に温度降下量を厳しく制御しなければ
ならない高温域において、板厚りの大きい鋼帯を通板さ
せた場合に適正な冷却速度になるように熱伝達係数αを
定めておくと、板厚りの小さな薄板を通板する場合に冷
却速度Ecが大きくなり過ぎて平坦不良の原因となる。
That is, ・・・・・・・・・(1) c ・・・・・・・・・(2) θ”ut in 360/' Dπ ・・・・・・・・・
・(4) Here, α ; Heat 1 expansion coefficient (Kcal/rn' Hh ・℃)
T1: Cooling start temperature ('C) T2: Cooling end temperature ('C) T3: Roll surface temperature ('C> h: Plate thickness (bleached) C2: Specific heat (KCal /'kg ・'C) V Niline speed (m/'m1n) N: Number of rolls D Two roll diameter (m> As can be seen from the above equation, the cooling rate Ec of the steel strip in contact with the rolls is proportional to the heat transfer coefficient α, It is inversely proportional to the thickness.Therefore, the heat transfer coefficient α must be set to achieve an appropriate cooling rate when passing a thick steel strip, especially in high-temperature ranges where the amount of temperature drop must be strictly controlled. If this is determined, the cooling rate Ec will become too high when passing a thin plate with a small thickness, causing flatness defects.

また板厚りに比して熱伝達係数αが大きいときは、冷却
速度Ecを適正な範囲に維持させようとすると鋼帯と冷
却ロール間の接触角θを小さくせねばならず、両者間の
接触が不安定となり所謂バタツキ現象が起って鋼帯長手
方向に温度不均一を生じ、これまた平坦不良の原因とな
る。
Furthermore, when the heat transfer coefficient α is large compared to the plate thickness, in order to maintain the cooling rate Ec within an appropriate range, the contact angle θ between the steel strip and the cooling roll must be reduced, and the contact angle θ between the steel strip and the cooling roll must be reduced. The contact becomes unstable and a so-called flapping phenomenon occurs, causing temperature non-uniformity in the longitudinal direction of the steel strip, which also causes flatness defects.

本発明者らはこのような観点から冷却開始時の高温域で
問題を起し易い薄板鋼帯(0,8mmtx914W)を
使用して、鋼帯と冷却ロール間の熱伝達係数αと冷却後
の鋼帯平坦度との関係を求めるべく実験を行なった。
From this point of view, the present inventors used a thin steel strip (0.8 mmt x 914 W) that tends to cause problems in the high temperature range at the start of cooling, and calculated the heat transfer coefficient α between the steel strip and the cooling roll and the temperature after cooling. An experiment was conducted to find the relationship with the flatness of the steel strip.

なお実験には径1400mmのロールを用い、ライン速
度を200 m7’m1llとした。また熱1云達係数
αの制御はロール表面粗さ及び冷却ロール内部に通す冷
媒温度、流量を調節することによって行なった。
In the experiment, a roll with a diameter of 1400 mm was used, and the line speed was set at 200 m7'ml. The heat transfer coefficient α was controlled by adjusting the roll surface roughness and the temperature and flow rate of the coolant passed through the cooling roll.

結果を第1表に示す。The results are shown in Table 1.

第1表の結果より、鋼帯温度600〜700℃の高温域
においては冷却後の平坦度の良好な鋼帯を得るためには
、鋼帯と冷却ロール間の熱伝達係数αを1200Kca
 l /rr? h ℃以下の比較的緩冷却条件とする
ことが望ましいことが判かった。
From the results in Table 1, in order to obtain a steel strip with good flatness after cooling in the high temperature range of 600 to 700°C, it is necessary to set the heat transfer coefficient α between the steel strip and the cooling roll to 1200 Kca.
l/rr? It has been found that it is desirable to use relatively slow cooling conditions below h°C.

また、上記した絞り冷延鋼の連続焼鈍において焼鈍保持
温度の700℃付近から過時効温度の400℃付近まで
ロール冷却する場合、10−ル当たりの許容温度降下量
(30〜50℃)から使用するロール本数は7本捏度が
適切であるとされるが、高温域から低温域に至るまでの
冷却ロール全てを上記したような熱伝達係数αの小さい
緩冷却条件でおこなうときは、同一ロール本数の装置で
は板厚りの大きな鋼帯は抜熱しきれなくなって、400
℃の所定温度まで冷却することは困難となる。従って、
本発明者らは、鋼帯の冷却条件が鋼帯平坦度にあまり大
きな影響を与えることのない冷却後半の低温域における
熱伝達係数を大きくして急冷却条件を適用することによ
り、薄板から厚板に至るまでのかなりの広範囲の板厚の
鋼帯に対応して平坦度を劣化させることなく、所定の温
度域までの冷却を達成し得ると考えて次の実験を行なっ
た。
In addition, when roll cooling is performed from the annealing holding temperature of around 700°C to the overaging temperature of around 400°C in the continuous annealing of the drawn cold-rolled steel described above, the allowable temperature drop per 10 mm (30 to 50°C) is used. It is said that the appropriate number of rolls for kneading is 7, but if all the cooling rolls from the high temperature range to the low temperature range are used under the above-mentioned slow cooling conditions with a small heat transfer coefficient α, use the same roll. With a large number of devices, it became impossible to remove heat from thick steel strips, and 400
It becomes difficult to cool down to a predetermined temperature of °C. Therefore,
The present inventors succeeded in reducing the thickness of the thin sheet by applying rapid cooling conditions by increasing the heat transfer coefficient in the low-temperature region in the latter half of cooling, where the cooling conditions of the steel strip do not have a large effect on the flatness of the steel strip. The following experiment was conducted on the assumption that cooling to a predetermined temperature range could be achieved without deteriorating the flatness of steel strips with a fairly wide range of thickness up to the plate.

実験には7本の冷却ロールを使用し、加熱鋼帯を700
℃付近から600℃付近迄冷却するための冷却ロール3
本(1本当たり許容温度降下量:30〜40℃)を前段
冷却ロール群、600℃付近から400℃付近迄冷却す
るための冷却ロール4本(1本当たりの許容温度降下i
:40〜50℃)を後段冷却ロール群の2群に区分し、
前段ロール群における鋼帯/′冷却ロール間の熱伝達係
数α1を第1表の結果を適用して1000及び1200
kcal/ryfh’Cとし、後段ロール群の熱伝達係
数α2を1200〜1800Kca l/rrfh℃の
範囲にて適宜変化させ、低温域における温度降下不足を
起こし易いことが予想される厚板鋼帯(1,6mmt 
x914 t )について冷却実験を行なった。
Seven cooling rolls were used in the experiment, and 700 heated steel strips were heated.
Cooling roll 3 for cooling from around ℃ to around 600℃
4 cooling rolls (allowable temperature drop i
:40~50℃) divided into two groups, the latter cooling roll group,
Applying the results in Table 1, the heat transfer coefficient α1 between the steel strip and the cooling roll in the front roll group was set to 1000 and 1200.
kcal/ryfh'C, and the heat transfer coefficient α2 of the latter roll group was changed appropriately in the range of 1200 to 1800 Kcal/rrfh°C. 1.6mmt
A cooling experiment was carried out for x914 t ).

ロール径は1400mm、ロール間隔は1500mmで
あり、ライン速度は200 m/’minに設定しな。
The roll diameter was 1400 mm, the roll interval was 1500 mm, and the line speed was set at 200 m/min.

実験結果を第2表に示す。The experimental results are shown in Table 2.

第2表において実験結果を示す記号×は鋼帯が所定降下
温度を達成できなかったことを示し、括弧内は降下到達
温度を示す。記号Oは鋼帯が支障なく所定温度まで冷却
し得なことを示す。
In Table 2, the symbol x indicating the experimental results indicates that the steel strip could not achieve the predetermined temperature drop, and the number in parentheses indicates the temperature drop reached. The symbol O indicates that the steel strip can be cooled to the specified temperature without any problems.

第2表の結果より前段冷却ロール群における熱伝達係数
α1を1000乃至1200KCal/rrf’h℃の
緩冷却条件とした場合に後段冷却ロール群における熱1
云達係数α2を1800KCal/’rn’h℃以上の
急冷却条件に収れば、かなりの厚板の冷却を行なうとき
でも所定の降下温度量を達成出来ることが判かる。
From the results in Table 2, when the heat transfer coefficient α1 in the first stage cooling roll group is set to a slow cooling condition of 1000 to 1200 KCal/rrf'h°C, the heat 1 in the second stage cooling roll group is
It can be seen that if the reach coefficient α2 is kept within the rapid cooling condition of 1800 KCal/'rn'h°C or more, a predetermined temperature drop can be achieved even when cooling a considerably thick plate.

以上述べた二つの実験の結果を総合すると、高温の鋼帯
を複数の冷却ロールによるロール冷却法によって所定温
度迄冷却するに際し、冷却ロールを前段と後段の二つの
ロール群に区分して、それぞれのロール群における鋼帯
/′ロール間の熱伝達係数を変え、前段においては緩冷
却条件とし、後段において急冷却条件にすることにより
、薄物から厚物に至るまでの広範な厚さの変化に対応し
て鋼帯を平坦度良く所定温度まで冷却を行なうことが出
来るので極めて効率的である。
Combining the results of the two experiments described above, when cooling a high-temperature steel strip to a predetermined temperature by the roll cooling method using multiple cooling rolls, the cooling rolls are divided into two roll groups, the front stage and the rear stage, and each By changing the heat transfer coefficient between the steel strip and the rolls in the roll group, and setting the first stage to a slow cooling condition and the second stage to a rapid cooling condition, it is possible to handle a wide range of thickness changes from thin to thick. Correspondingly, the steel strip can be cooled to a predetermined temperature with good flatness, which is extremely efficient.

なお、上記の実験は絞り用冷延鋼板の連続焼鈍における
ロール冷却についてのものであるが、この発明はこれに
限るものでなく、同様なヒートパターンを有する池の鋼
種における鋼帯ロール冷却に適用出来るものであること
は云うまでもない。
Although the above experiment was conducted on roll cooling during continuous annealing of cold-rolled steel sheets for drawing, the present invention is not limited to this, and can be applied to roll cooling of steel strips of steel types having similar heat patterns. Needless to say, it is possible.

(実施例) 300 mmφの冷却ロール7本で構成した実験装置を
使用し本発明による冷却条件と従来法による冷却条件と
について、板厚1.6mrnと0.8mmの2種類の鋼
帯の冷却を行ないその結果を第3表に示した。
(Example) Using an experimental apparatus consisting of seven 300 mm diameter cooling rolls, two types of steel strips with thicknesses of 1.6 mrn and 0.8 mm were cooled under cooling conditions according to the present invention and cooling conditions according to the conventional method. The results are shown in Table 3.

第3表の結果から従来法、つまり厚板基準で鋼帯/′ロ
ール間の熱伝達係数を定めた場合には、薄板鋼帯のロー
ル冷却を700℃付近から行なおうとすると平坦不良を
生じ、やむなくガス噴射冷却等によってロール冷却の開
始温度を引下げるような措置を採らざるを得す、このよ
うな付加的な操作を行なうことはコスト的にも、材質管
理上からも問題がある。しかるに本発明によるときは厚
板(1,6mm)から薄板(0,8mm)に至るまで平
坦度を損なうことなく400℃付近の所定温度迄の冷却
を遂行することが出来ることが判る。
The results in Table 3 show that in the conventional method, that is, when the heat transfer coefficient between the steel strip and the roll is determined based on the thick plate standard, flatness defects occur when attempting to cool the roll of a thin steel strip from around 700°C. However, it is unavoidable to take measures to lower the starting temperature of roll cooling by means of gas injection cooling, etc. Performing such additional operations poses problems in terms of cost and material management. However, it can be seen that according to the present invention, it is possible to cool plates ranging from thick plates (1.6 mm) to thin plates (0.8 mm) to a predetermined temperature around 400° C. without impairing the flatness.

(発明の効果) 以上説明した如く、本発明の方法によれば、ガス噴射冷
却を施すなど特別の付加装置を講することなく広範の板
厚範囲の鋼帯に対し、良好な平坦度を以て所定のロール
冷却が可能となるので鋼帯の連続焼鈍ラインの一次冷却
処理において卓越した効果を奏するものである。
(Effects of the Invention) As explained above, according to the method of the present invention, steel strips having a wide range of thickness can be fixed with good flatness without the need for special additional equipment such as gas injection cooling. This makes it possible to perform roll cooling of 100%, which is an outstanding effect in the primary cooling treatment of continuous annealing lines for steel strips.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はロール冷却法のロール配置を示す模式図、第2
図は連続焼鈍炉における絞り冷延鋼のヒートパターンを
示す熱曲線図である。 1・・・冷却ロール、2・・・鋼帯
Figure 1 is a schematic diagram showing the roll arrangement of the roll cooling method, Figure 2
The figure is a thermal curve diagram showing the heat pattern of drawn cold-rolled steel in a continuous annealing furnace. 1...Cooling roll, 2...Steel strip

Claims (1)

【特許請求の範囲】 1、複数の冷却ロールに高温の鋼帯を連続的に通板して
冷却する鋼帯のロール冷却法において、冷却ロールを前
段冷却ロール群と後段冷却ロール群とに区分し、前段冷
却ロール群における鋼帯と冷却ロール間の熱伝達係数α
_1を後段冷却ロール群における鋼帯と冷却ロール間の
熱伝達係数α_2よりも小とすることを特徴とする鋼帯
のロール冷却法。 2、前段冷却ロール群を鋼帯のロール入側温度が600
℃を超えるような領域に、また後段冷却ロール群を鋼帯
のロール入側温度が600℃以下になるような領域に区
分設定するとともに、前段冷却ロール群における鋼帯と
冷却ロール間の熱伝達係数α_1を1200Kcal/
m^2h℃以下とし、また後段冷却ロール群における鋼
帯と冷却ロール間の熱伝達係数α_2を1800Kca
l/m^2h℃以上とする請求項1記載の鋼帯のロール
冷却法。
[Claims] 1. In a steel strip roll cooling method in which a high-temperature steel strip is cooled by continuously passing it through a plurality of cooling rolls, the cooling rolls are divided into a front stage cooling roll group and a rear stage cooling roll group. The heat transfer coefficient α between the steel strip and the cooling roll in the front cooling roll group is
A roll cooling method for a steel strip, characterized in that _1 is smaller than a heat transfer coefficient α_2 between the steel strip and the cooling roll in the latter stage cooling roll group. 2. The temperature of the roll entrance side of the steel strip in the first stage cooling roll group is 600℃.
The heat transfer between the steel strip and the cooling rolls in the first stage cooling roll group is divided into regions where the temperature exceeds 600°C, and the second stage cooling roll group is divided into a region where the temperature at the roll entrance of the steel strip is 600°C or less. The coefficient α_1 is 1200Kcal/
m^2h℃ or less, and the heat transfer coefficient α_2 between the steel strip and the cooling roll in the latter stage cooling roll group is 1800Kca.
The roll cooling method for steel strip according to claim 1, wherein the temperature is 1/m^2h°C or higher.
JP30572788A 1988-12-02 1988-12-02 Roll cooling method for steel strip Granted JPH02153023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30572788A JPH02153023A (en) 1988-12-02 1988-12-02 Roll cooling method for steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30572788A JPH02153023A (en) 1988-12-02 1988-12-02 Roll cooling method for steel strip

Publications (2)

Publication Number Publication Date
JPH02153023A true JPH02153023A (en) 1990-06-12
JPH0564690B2 JPH0564690B2 (en) 1993-09-16

Family

ID=17948619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30572788A Granted JPH02153023A (en) 1988-12-02 1988-12-02 Roll cooling method for steel strip

Country Status (1)

Country Link
JP (1) JPH02153023A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051333A (en) * 1991-02-28 1993-01-08 Nisshin Steel Co Ltd Roll cooling device for metal strip
JPH051332A (en) * 1991-02-28 1993-01-08 Nisshin Steel Co Ltd Roll cooling device for metal strip

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609835A (en) * 1983-06-29 1985-01-18 Nippon Kokan Kk <Nkk> Roll cooling installation
JPS6259173A (en) * 1985-09-06 1987-03-14 Nissan Shatai Co Ltd Engine cover of cab over engine car

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609835A (en) * 1983-06-29 1985-01-18 Nippon Kokan Kk <Nkk> Roll cooling installation
JPS6259173A (en) * 1985-09-06 1987-03-14 Nissan Shatai Co Ltd Engine cover of cab over engine car

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051333A (en) * 1991-02-28 1993-01-08 Nisshin Steel Co Ltd Roll cooling device for metal strip
JPH051332A (en) * 1991-02-28 1993-01-08 Nisshin Steel Co Ltd Roll cooling device for metal strip

Also Published As

Publication number Publication date
JPH0564690B2 (en) 1993-09-16

Similar Documents

Publication Publication Date Title
WO1996032507A1 (en) Equipment for manufacturing stainless steel strip
JPS6272429A (en) Hot straightening method for thick steel plate
JPS60169524A (en) Cooler for metallic strip
JPS6356295B2 (en)
JPS6314050B2 (en)
JPH02153023A (en) Roll cooling method for steel strip
JP2002003956A (en) Rolls at front and rear parts of rapid cooling zone in continuous heat treatment furnace and rapid cooling zone facility
KR900001092B1 (en) Apparatus for colling strip of metals
JPH02179825A (en) Controller for cooling hot-rolled steel sheet
JPS6254373B2 (en)
JP6436309B2 (en) Temperature control device and temperature control method for metal strip in continuous annealing equipment
US4595357A (en) Continuous annealing method and apparatus for cold rolled steel strips
JPS6248732B2 (en)
JPS5944367B2 (en) Water quenching continuous annealing method
JPH0671328A (en) Controller for cooling hot rolled steel plate
EP0803583A2 (en) Primary cooling method in continuously annealing steel strips
JP2867857B2 (en) Continuous annealing furnace with steel strip temperature controller
JP4150222B2 (en) Manufacturing method of thin steel sheet
JP2575873B2 (en) Continuous annealing equipment for thin steel sheets
JP2006124817A (en) Cooling device with gas jet into steel sheet continuous annealing facility and its cooling control method
JPH052728B2 (en)
KR900006693B1 (en) Continous annealing method and apparatus for cold rolled steel strips
JPH10314826A (en) Method for cooling high-temperature steel sheet
JPH06210339A (en) Cooling device for high temperature steel sheet
JPH05279752A (en) Method for continuously annealing strip and apparatus therefor