JP3709706B2 - Thick steel plate cooling method - Google Patents
Thick steel plate cooling method Download PDFInfo
- Publication number
- JP3709706B2 JP3709706B2 JP08870698A JP8870698A JP3709706B2 JP 3709706 B2 JP3709706 B2 JP 3709706B2 JP 08870698 A JP08870698 A JP 08870698A JP 8870698 A JP8870698 A JP 8870698A JP 3709706 B2 JP3709706 B2 JP 3709706B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- scale
- steel plate
- steel sheet
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、厚鋼板の冷却方法に関し、特に、圧延直後の厚鋼板を均一かつ急速に冷却して熱処理する加速冷却方法に関する。
【0002】
【従来の技術】
近年、厚鋼板の製造プロセスにおいて、圧延パス毎の圧下量と圧延温度を制御して所定の特性を得る制御圧延を行った後、鋼板を水冷(加速冷却)することにより高強度、高靭性鋼板を得る技術が広く行われている。制御圧延及び加速冷却を組み合わせることにより、添加元素を削減して製造コストを大幅に削減できるばかりでなく、溶接性にも優れた厚鋼板を製造することが可能になった。
【0003】
加速冷却においては、冷却ノズルから冷却水を200〜900℃の高温の鋼板の表面に噴射するため、鋼板表面において沸騰熱伝達がおきる。この現象により空冷などに比べ数十〜数百倍の高い冷却速度が得られるため、微細な結晶組織を有する鋼板が得られ、前記のように高強度、高靭性を有する鋼板を製造することができる。
【0004】
しかし、この沸騰熱伝達現象は、膜沸騰の状態では熱伝達率が小さく、核沸騰の状態では熱伝達率が大きい。鋼板温度が高いときは膜沸騰が主体であるが、低温になると核沸騰に遷移し、熱伝達率が急増する傾向がある。膜沸騰から核沸騰に遷移する温度は冷却水の運動量の条件や鋼板表面状態によって変動し、一定ではないために、鋼板の一部で膜沸騰から核沸騰に遷移すると局部的に冷却速度が増加し、熱伝達が非常に不安定になる。従って、鋼板全体の冷却速度を均一に制御することは困難であり、大きな温度むらが発生しやすい。
【0005】
このような温度むらの発生は、製品の機械特性のばらつきを生じるばかりでなく、耳波や中伸びなどの変形が生じ、圧延後の工程で平坦矯正や再度熱処理をしなければならないなど、生産効率を低下させる。
【0006】
温度むらの発生原因として、表面粗さ等の鋼板表面性状の不均一が大きく影響していることが近年明らかになってきた。加熱炉での加熱むらや、圧延中に生じる温度むらによって鋼板上でスケール厚さの分布むらが生じ、圧延ロールの表面磨耗の進行度合いが部分的に異なっていると鋼板表面粗さのむらが生じ、これを冷却すると膜沸騰から核沸騰に遷移する時期が局部的にばらつき、冷却速度に大きなばらつきが発生する機構が解明されてきた。前記問題点を解決するため、例えば以下に示す対策が試みられてきた。
【0007】
例えば、特公昭63−54046号公報には、金属管を高温から冷却する際に、冷却前にミルスケールを除去した後、表面に2μm以上の平均粗さで、且つPPI値が50〜500(山部の間隔が50〜500μm)の均一な粗面を形成させて冷却を行う技術が開示されている。
【0008】
特開平1―284418号公報には、被圧延材の圧延後の表面粗さを冷却媒体の蒸気膜厚さ(水の場合10μm程度)以上、Rz表示で30μm以下に調整し、かつ圧延後の新生面を加速酸化した後、冷却を行う技術が開示されている。
【0009】
特開平2―70017号公報には、金属材料の伝熱面に、溝の深さがRz表示で25μm以下の多数の線状溝からなる均一な粗さ模様を付与して、冷却を行う技術が開示されている。
【0010】
【発明が解決しようとする課題】
前記公報に開示された技術は、以下に示す問題点がある。
(a) 前記3件の公報に開示された技術は、比較的膜沸騰状態が形成されにくい強冷却タイプの冷却装置、すなわちローラまたはプラテン(鋼板を上下から押させる治具)等で鋼板を拘束しつつ、冷却ノズルを被冷却体に近接させることにより冷却を行う装置の場合には比較的効果がある。しかし、厚板の制御冷却で一般的に用いられる弱冷タイプの冷却装置、すなわちローラ等の拘束がなく、冷却ノズルと鋼板の距離1m以上ある装置の場合には、依然として局部的に膜沸騰域が発生し、大きな温度むらが生じやすい。
【0011】
(b) 特開平2―70017号公報に開示された技術は、スケールがない状態、または非常に薄いスケールに覆われた状態で鋼材表面に規則的な凹凸を付与するものであるが、規則的な凹凸は比較的目立ちやすいため、製品での表面外観が悪化し、製品・用途によっては適用できない場合がある。
【0012】
前記の問題を解決するため、本発明の課題は圧延後の鋼板を均一に加速冷却する方法を提供することにある。
【0013】
【課題を解決するための手段】
前記の課題を解決するため発明者らは種々検討の試験を行い、下記の知見を得た。
【0014】
(a) 鋼板表面に、ある厚さのスケールが形成されると、水冷によってスケールに亀裂が生じ、亀裂の尖端部に核沸騰の起点が生成され、熱伝達率が増加する。
【0015】
また、亀裂の入ったスケールからその破片が鋼板から剥離し、冷却水中に分散することにより、冷却水と鋼板間の蒸気膜が破壊され、冷却水と鋼板間の熱伝達率が増加する効果がある。しかし、スケール破片のすべてが鋼板から剥離すると鋼板への熱伝達率は再び低下したり、冷却水の流動によって局部的に熱伝達率の不均一が生じる。
【0016】
(b) 軽圧下によってスケールの一部を鋼板に食い込ませれば、核沸騰の起点とすることができる。食い込ませるスケールの分布密度を調整することにより、熱伝達率を調整できる。また、スケールを食い込ませる深さをある限度以下とすれば、スケール噛み込みの問題はなく、鋼板表面に目立った模様を生じることもない。
【0017】
本発明は上記知見に基づいてなされたもので、その要旨は下記(1) 〜(2) にある。
(1) 厚鋼板を圧延後、水で冷却する冷却方法において、圧延後の鋼板に厚さが10〜30μmのスケール層を生成させ、次いで高さが10〜30μmの凹凸を表面に有するロールで圧下した後、水で冷却することを特徴とする厚鋼板の冷却方法。
【0018】
(2) 前記(1) 項に記載の凹凸は、互いに隣接する凸部の頂点、稜線または頂上部の間隔が凹凸の高さの2〜10倍であることを特徴とする厚鋼板の冷却方法。
【0019】
【発明の実施の形態】
本発明は、水冷前の鋼板表面に所定の厚さのスケール層を形成し、スケールの一部を鋼板表面に固定して核沸騰の起点とすることにある。これにより、鋼板をローラまたはプラテンによって拘束しつつ、冷却ノズルを接近させ高圧冷却水を噴射する強冷却タイプの冷却装置を用いる必要はなくなって、鋼板を非拘束として冷却ノズルと鋼板間の距離を1m以上確保する比較的弱冷タイプの冷却装置で、均一かつ安定的に冷却を行うことができる。以下に本発明の原理を説明する。
【0020】
冷却が開始される700〜800℃の高温域では、通常膜沸騰状態にある。鋼板表面と冷却水の間に蒸気膜が形成され、伝熱は蒸気膜を介した放射伝熱のみにより行われるため、熱伝達率は小さい。冷却が進行し温度が低下すると、ある温度(以下、クエンチ温度という)でこの蒸気膜が破壊される。このクエンチ温度から核沸騰状態に遷移し、冷却水と鋼板が直接接触して伝熱が行われるようになって、急激に熱伝達率が増加して急冷される。この蒸気膜の破壊過程は非常に不安定で、鋼板の表面粗さのばらつき等により、蒸気膜が破壊されて局部的に急冷される部分と、蒸気膜が維持され冷却が遅れる部分とが混在するため、温度むらが発生しやすい。
【0021】
700〜800℃の高温域でも、高圧噴流水を衝突させることにより、蒸気膜を破壊する強冷却タイプの冷却装置においては、クエンチ温度を高め、鋼板全面を同時に急冷開始して均一に冷却することができる。しかし、一般的な弱冷タイプの冷却装置では、蒸気膜が破壊されにくく、冷却むらの改善を行うことができない。
【0022】
本発明では、第1に高温域(膜沸騰域)で冷却水中に分散したスケール破片が膜沸騰状態の蒸気膜を破壊する効果を狙っている。第2に、いわゆるフィン効果により、フィン部の先端の温度が低下し、クエンチ点以下となって核沸騰の起点が形成される効果を狙っている。かつ、フィン部として濡れ性のよいスケールを用いるものである。
【0023】
前記効果を実現する手段として、圧延後の鋼板1表面に所定の厚さのスケールを生成させ、このスケールを軽圧下によって亀裂を入れ、同時に一部のスケールを鋼板に食い込ませる。次いで、冷却水を噴射し、前記亀裂の入ったスケールを剥離し、冷却水中に分散した状態にする。
【0024】
図1は鋼板と冷却水との境界近傍の挙動を示す模式図である。同図において、鋼板1に対して、冷却水2は蒸気膜3で隔てられている。鋼板1から剥離したスケールの破片は、浮遊スケール4として冷却水2の中に分散している。鋼板1の近傍では浮遊スケール4は蒸気膜3中に進入し、浮遊スケール3のフィン部6が核沸騰の起点になって、同図のように蒸気膜3中での核沸騰により蒸気膜が破壊され、高温域(クエンチ点以上)での熱伝達率が向上する。
【0025】
スケールのすべてが剥離して、冷却水中に分散すると、前記第1の効果しか期待できないが、スケールの一部は鋼板表面に固定され、同図のように食い込みスケール5となる、食い込みスケール5のフィン部6が核沸騰の起点となって蒸気泡7が生成する。この状態では鋼板が直接冷却され、冷却が一層促進される。
【0026】
前記第1の効果を狙って、スケールに亀裂を入れる際、スケール破片のサイズを、蒸気膜の厚さと同等〜膜厚厚さの数倍程度になるようにすると、浮遊スケール4が蒸気膜に進入しやすくなり、蒸気膜破壊の効果を大きくすることができる。スケールに前記の大きさの均一な亀裂を入れるには、軽圧下するロールの表面に均一な模様を刻印することで実現できる。
【0027】
前記第2の効果を狙って、スケールの一部を鋼板表面に固定する際にも、軽圧下するロールの表面に規則的な凹凸模様を付与することにより、均一なスケール食い込みの分布を得ることができる。スケール破片が鋼板に深く食い込みすぎるとスケール疵となるため、スケールの厚さは適切な範囲にとどめなければならないし、凹凸の深さを適切な範囲にとどめなければならない。
【0028】
上記の考慮の元、本発明の条件の限定理由を以下に説明する。
圧延後に生成させるスケールの厚さは10〜30μmとする。スケールの厚さが10μm未満であると、軽圧下によりスケールに亀裂を付与しても、冷却水を噴射したときに剥離しにくいこと、剥離したスケールを冷却水中に分散させたときの分散密度が小さいこと、およびスケール破片のサイズが蒸気膜の厚さより小さくなって、蒸気膜破壊の効果が小さいこと等によって、前記第1の効果が小さくなるためである。スケールの厚さが30μmより大きいと、圧延後に所定厚さのスケールを生成させるまでの時間が長くなり、圧延能率が低下したり、鋼板の温度が低下して所定の冷却開始温度が確保できないこと、および軽圧下によってスケールが鋼板に深く食い込んでスケール疵となること等による。より好ましいスケール厚さは15〜25μmである。
【0029】
スケールを生成するには、圧延後、10〜15秒間大気中で放冷することにより、所定の冷却開始温度を確保しつつ、圧延能率に支障をきたすことなく、所定のスケール厚さを確保することができる。
【0030】
スケールの厚さを確保するため、放冷時間が長くなり、圧延能率に支障がある場合や鋼板温度の低下の問題がある場合は、圧延後に加速酸化を施してもよい。加速酸化の方法としては、鋼板表面に酸素富化ガスを吹き付けたり、直火バーナーで加熱する方法がある。また、鋼板の先端部と後端部とで、冷却開始温度、スケール厚さなどに著しく差がある場合は、鋼板の後端部を還元性雰囲気で加熱してもよい。
【0031】
なお、通常の冷却方法では仕上圧延後の鋼板が10秒未満の時間で冷却装置に搬送されるため、スケール生成厚さは十分ではなく、本発明の冷却方法では圧延後に積極的に放冷時間を調整する必要がある。従って、本発明の冷却方法は熱延鋼板のような連続プロセスで適用するのは困難であり、厚鋼板のような、1本単位で処理可能なプロセスでの適用に限られる。
【0032】
軽圧下するロール表面の凹凸は10〜30μmとする。凹凸の高さが10μm未満では、前記10〜30μmの厚さのスケールに対して、有効に亀裂を入れることができないこと、およびロール凹凸の凸部に対応した部分のスケールを鋼板に有効に食い込ませることができないことによる。スケールを無理に鋼板に食い込ませようとして重圧下すると、鋼板全面でスケールが食い込んで、適切なフィン分布にならず、スケール疵発生の恐れもある。凹凸の高さが30μmより大きいと、凹凸の凸部に対応した部分での面圧が大きくなり、スケールが深く食い込んでスケール疵となる。より好ましい凹凸の高さは15〜25μmである。
【0033】
軽圧下ロールの凹凸パターンはランダムでもよいが、一定の規則性があるのがのぞましい。すなわち、前記第1の目的によれば、軽圧下の亀裂に従って剥離するスケール破片の大きさがある大きさ以上で、かつ揃っている方が膜沸騰の破壊効果が高められるためと、核沸騰のフィン部が、鋼板表面にほぼ均一に分布している方が、均一な抜熱効果が得られるためである。
【0034】
図2はロール表面の凹凸の分布状態を示す概念図であり、同図(a) は点状の凸部がランダムに配置されている場合、同図(b) は形状一定の点状の凸部が格子状に配置されている場合、同図(c) は一定形状の平行線状の凸部が配置されている場合である。同図(a) では凸部の形状を円錐、同図(b) では四角錐、同図(c) では三角畝として例示しているが、一つの凸部の形状の規則性はさほど重要ではないし、凹部の形状もさほど重要ではない。しかし、凸部の分布密度は以下の説明のように、重要である。
【0035】
互いに隣接する凸部の頂点間の距離Pは凹凸の大きさの2〜10倍であるのが望ましい。この距離Pは例えば、同図(a) または(b) の場合は、ある凸部と最隣接する凸部の頂点間の距離で表され、同図(c) のように、線状の凸部の場合は、稜線間の距離で表される。
【0036】
凸部の間隔Pが凸部の高さHの2倍未満であると、鋼板の表面に生成したスケールに生じる亀裂が細かくなり、前記第1の効果を狙った浮遊スケールが細かくなりすぎること、および鋼板上に固定される食い込みスケールの分布密度が大きくなりすぎて、局部的に急冷されるためである。凸部の間隔Pが凸部の高さHの10倍より大きいと、軽圧下によって亀裂の入ったスケールが浮遊スケールになるとき、サイズが大きくなりすぎること、鋼板上に固定される食い込みスケールの分布密度が小さすぎて、有効に冷却できないこと、および凸部の面圧が大きくなって、食い込みスケールが深く食い込んで、スケール疵発生の恐れや、鋼板に圧痕を生じる恐れがあることによる。凸部の間隔P対凸部の高さHのより好ましい範囲は、3〜8倍である。
【0037】
ロールの加工は、実際には、図2(b) のような格子状、または同図(c) のような線状とするのが加工しやすい。とくに、同図(b) のように稜線方向をロールの周方向にすれば、ロール旋盤での加工が容易である。凸部の断面形状は、四角形、台形、三角形等が考えられるが、頂点の形状が鋭いと、磨耗が早いため頂点の曲率半径を3〜10μm程度、または台形の場合は頂辺を3〜10μm前後とするのが望ましい。
【0038】
前記の軽圧下は所定厚さのスケールを生成後、ワークロールに所定の凹凸を有する厚板圧延機で行ってもよいし、厚板圧延機とは別に軽圧下専用の圧延機で行ってもよい。ただし、厚板圧延機に所定の凹凸をつけても、各パスの圧延中に凹凸が急速に摩耗したり、バックアップロールとワークロールとの面圧によって凹凸が圧壊するため、専用の軽圧下圧延機を設けるのが望ましい。
【0039】
軽圧下によって鋼板表面に微少な凹凸が生じるが、水冷後に通常実施する熱間レベリングによる軽圧下で容易にならすことができ、最終的な製品の外観を損なうことはない。
【0040】
図3は本発明の冷却方法を適用する厚板制御冷却設備を示す概要図である。厚板圧延機11により目標板厚まで圧延された鋼板1は、ローラテーブル12上を搬送されつつ、所定のスケール厚さを生成させるため所定の放冷時間を経過後、冷却装置13に達する。次いで鋼板1は冷却装置13の中を通過しながら、上下面を水冷される。冷却前及び冷却後の鋼板温度は、それぞれ冷却装置13の入側に設けられた上下の温度計16a、16b及び出側に設けられた上下の温度計17a、17bで測温される。制御冷却をする場合は、これらの温度計で冷却前および冷却後の温度が所定の範囲に入るように、水冷中の搬送速度、或いは使用する冷却水の量を制御する。冷却装置13の出側には幅方向温度計18が設置されている。
【0041】
水冷装置には、上面水冷ノズル14、下面水冷ノズル15を、例えば10基ずつ搬送方向に並べて設置している。上面水冷ノズル14はラミナーフロー型で、膜状の層流冷却水を鋼板表面に噴射して水冷するもので、熱伝達率が大きい。上面水冷ノズル14は冷却中に板が変形しても衝突しないように、鋼板面からの高さを1m程度に離して配置しているため、鋼板を拘束するローラもしくはプラテンは不要である。この形式の冷却装置は厚板、熱延鋼板の制御冷却装置に一般的に用いられているものであり、鋼板を高速で搬送でき、設備費・コスト・能率面で有利である。
【0042】
冷却装置13の入側には、鋼板を軽圧下するための軽圧下装置19を設置している。この軽圧下装置19は上下1対のロール20、21を有し、上側ロール20は、使用しない場合に上方に待避可能なように昇降装置(図示せず)が設けられている。ロール20、21には凹凸模様が付けられている。軽圧下装置19は同図に示すような2段ロールのほか、4段ロールタイプまたは数本のロール列で構成したレベラータイプのものであってもよい。
【0043】
【実施例】
本発明の冷却方法と従来法による冷却方法とを比較する試験を行った。試験は図3に示す圧延ラインで行った。同図の軽圧下装置19のロール20、21には、図2(c) に示す線状の凹凸を設けた。ロール20、21のロール径は500mmで、表面の凹凸の高さを15μm、また隣り合う凸部頂点の間隔を、ロールの周方向、軸方向共に、100μmとした。
【0044】
本発明例では、表面スケールを15μm程度生成するよう、圧延後約15秒放冷した後、軽圧下装置19で軽圧下し、さらに冷却装置13で冷却した。
【0045】
比較例1では、圧延後の鋼板にデスケーリング装置22で150kgf/cm2 の高圧水を噴射し、スケールを除去した。次いで、軽圧下により鋼板表面に高さ15μmの凹凸を付与した後、冷却装置13で冷却した。
【0046】
比較例2では、表面スケールを15μm程度生成するよう、圧延後約15秒放冷したのち、軽圧下をせずに冷却装置13で冷却した。
【0047】
仕上げ圧延終了時の鋼板板厚は20.5mm、目標冷却開始温度は750℃、目標冷却停止温度は450℃である。また軽圧下装置での圧下による板厚減少量は、0.5mmとした。
【0048】
図4は、冷却試験後の幅方向温度分布を示すグラフである。
同図に示すように、本発明例では、比較例1および2に比べて、水冷後の温度偏差が大幅に減少していた。また、軽圧下による鋼板表面の圧下模様もほとんどなかった。
【0049】
本発明例と比較例1の差異は、軽圧下を施す場合の表面スケールの有無の差異である。比較例1は比較例2に比べて鋼板表面の粗度化により冷却の均一化に若干の改善が見られるものの、本発明例に比較すると冷却の均一化は劣っていた。また、鋼板表面には線状模様が残っており、品質面での問題があった。
【0050】
本発明例と比較例2の差異は、軽圧下の有無の差異があり、表面スケール厚さの条件は同じであった。比較例2を本発明例と比較すると、鋼板表面に単にスケールを生成させただけでは、冷却の均一化には寄与しないことがわかった。
【0051】
以上のように、本発明方法により、制御冷却により生じる温度むらを大幅に改善でき、安定して製造できることが明らかとなった。
【0052】
なお本発明による冷却方法は、厚鋼板の冷却プロセスに限らず、鋼管や形鋼等の他の鋼材制御冷却プロセスへ適用した場合も、同様の効果を得ることができる。
【0053】
【発明の効果】
本発明の冷却方法によれば、高温の厚鋼板を冷却むらなく、大きな冷却速度が得られる。このため、厚鋼板の制御冷却の適用が容易になる。しかも、圧延能率低下やコスト増大を生じることがない。
【図面の簡単な説明】
【図1】鋼板と冷却水との境界近傍の挙動を示す模式図である。
【図2】ロール表面の凹凸の分布状態を示す概念図であり、同図(a) は点状の凸部がランダムに配置されている場合、同図(b) は形状一定の点状の凸部が格子状に配置されている場合、同図(c) は一定形状の平行線状の凸部が配置されている場合である。
【図3】本発明の冷却方法を適用する厚板制御冷却設備を示す概要図である。
【図4】冷却試験後の幅方向温度分布を示すグラフである。
【符号の説明】
1 鋼板 2 冷却水
3 蒸気膜 4 浮遊スケール
5 食い込みスケール 6 フィン部
7 蒸気泡 8 凸部
11 厚板圧延機 12 ローラテーブル
13 冷却装置 14 上面水冷ノズル
15 下面水冷ノズル 16a、16b 温度計
17a、17b 温度計 18 幅方向温度計
19 軽圧下装置 20 上側ロール
21 下側ロール 22 デスケーリング装置
H 凸部高さ P 凸部間隔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for cooling a thick steel plate, and more particularly to an accelerated cooling method in which a thick steel plate immediately after rolling is uniformly and rapidly cooled and heat-treated.
[0002]
[Prior art]
In recent years, in the manufacturing process of thick steel plates, high-strength and high-toughness steel plates are obtained by performing controlled rolling to obtain predetermined characteristics by controlling the rolling amount and rolling temperature for each rolling pass and then water-cooling (accelerated cooling) the steel plates. The technology to obtain is widely performed. By combining controlled rolling and accelerated cooling, it has become possible not only to reduce additive elements and greatly reduce production costs, but also to produce thick steel plates with excellent weldability.
[0003]
In accelerated cooling, since cooling water is sprayed from a cooling nozzle onto the surface of a high-temperature steel plate at 200 to 900 ° C., boiling heat transfer occurs on the surface of the steel plate. Because of this phenomenon, a cooling rate several tens to several hundred times higher than that of air cooling or the like can be obtained, so that a steel sheet having a fine crystal structure can be obtained, and a steel sheet having high strength and high toughness can be manufactured as described above. it can.
[0004]
However, this boiling heat transfer phenomenon has a small heat transfer coefficient in the film boiling state and a large heat transfer coefficient in the nucleate boiling state. When the steel plate temperature is high, film boiling is the main component, but when the temperature is low, transition to nucleate boiling tends to increase the heat transfer coefficient. The temperature at which transition from film boiling to nucleate boiling varies depending on the condition of the momentum of the cooling water and the surface condition of the steel sheet, and is not constant, so when transitioning from film boiling to nucleate boiling in part of the steel sheet, the cooling rate increases locally. Heat transfer becomes very unstable. Therefore, it is difficult to uniformly control the cooling rate of the entire steel plate, and large temperature unevenness is likely to occur.
[0005]
The occurrence of such temperature irregularities not only causes variations in the mechanical properties of the product, but also causes deformations such as ear waves and medium elongation, and flattening and heat treatment must be performed again after the rolling process. Reduce efficiency.
[0006]
In recent years, it has become clear that unevenness in the surface properties of the steel sheet, such as surface roughness, is a major cause of temperature unevenness. Unevenness in scale thickness distribution on the steel sheet due to uneven heating in the heating furnace and temperature unevenness during rolling, and unevenness in the surface roughness of the steel sheet occurs when the degree of progress of surface wear of the rolling roll is partially different. When this is cooled, the mechanism of the transition from film boiling to nucleate boiling varies locally and the cooling rate varies greatly. In order to solve the above problems, for example, the following countermeasures have been tried.
[0007]
For example, Japanese Patent Publication No. 63-54046 discloses that when a metal tube is cooled from a high temperature, after removing the mill scale before cooling, the surface has an average roughness of 2 μm or more and a PPI value of 50 to 500 ( There is disclosed a technique for cooling by forming a uniform rough surface with a crest of 50 to 500 μm.
[0008]
In JP-A-1-284418, the surface roughness after rolling of the material to be rolled is adjusted to be not less than the vapor film thickness of the cooling medium (about 10 μm for water) and not more than 30 μm in terms of Rz, and after rolling. A technique for performing cooling after accelerating oxidation of a new surface is disclosed.
[0009]
Japanese Patent Laid-Open No. 2-70017 discloses a technique for cooling a heat transfer surface of a metal material by providing a uniform roughness pattern composed of a large number of linear grooves having a groove depth of 25 μm or less in terms of Rz. Is disclosed.
[0010]
[Problems to be solved by the invention]
The technique disclosed in the publication has the following problems.
(a) The technology disclosed in the three publications described above is a strong cooling type cooling device in which a film boiling state is relatively difficult to form, that is, a steel plate is restrained by a roller or a platen (a jig that pushes the steel plate from above and below). However, in the case of an apparatus that performs cooling by bringing the cooling nozzle close to the body to be cooled, it is relatively effective. However, in the case of a weak cooling type cooling device generally used for controlled cooling of a thick plate, that is, a device in which the distance between the cooling nozzle and the steel plate is 1 m or more without restriction of a roller or the like, the film boiling region is still locally. And large temperature unevenness is likely to occur.
[0011]
(b) The technique disclosed in Japanese Patent Application Laid-Open No. 2-70017 provides regular irregularities on the steel surface in a state where there is no scale or is covered with a very thin scale. Since the irregularities are relatively conspicuous, the surface appearance of the product deteriorates and may not be applied depending on the product / use.
[0012]
In order to solve the above problems, an object of the present invention is to provide a method for uniformly accelerating and cooling a rolled steel sheet.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors conducted various examinations and obtained the following findings.
[0014]
(a) When a scale with a certain thickness is formed on the surface of a steel plate, the scale is cracked by water cooling, and the starting point of nucleate boiling is generated at the tip of the crack, thereby increasing the heat transfer coefficient.
[0015]
In addition, the fragments from the cracked scale are peeled off from the steel sheet and dispersed in the cooling water, thereby destroying the vapor film between the cooling water and the steel sheet and increasing the heat transfer coefficient between the cooling water and the steel sheet. is there. However, when all the scale fragments are peeled off from the steel sheet, the heat transfer coefficient to the steel sheet is lowered again, or the heat transfer coefficient is locally uneven due to the flow of the cooling water.
[0016]
(b) If a part of the scale is bitten into the steel plate by light pressure, it can be the starting point of nucleate boiling. The heat transfer coefficient can be adjusted by adjusting the distribution density of the scale to be bitten. Further, if the depth at which the scale is bited is set to a certain limit or less, there is no problem of scale biting and no noticeable pattern is generated on the surface of the steel plate.
[0017]
The present invention has been made on the basis of the above findings, and the gist thereof is as follows (1) to (2).
(1) In a cooling method in which a thick steel plate is rolled and then cooled with water, a roll having a thickness of 10 to 30 μm on the rolled steel plate and then having a height of 10 to 30 μm on the surface is provided. A method of cooling a thick steel plate, characterized by cooling with water after reduction.
[0018]
(2) The method for cooling a thick steel plate according to (1), wherein the unevenness of the protrusions adjacent to each other is 2 to 10 times the height of the unevenness. .
[0019]
DETAILED DESCRIPTION OF THE INVENTION
It is an object of the present invention to form a scale layer having a predetermined thickness on the surface of a steel plate before water cooling, and fix a part of the scale to the surface of the steel plate as a starting point for nucleate boiling. As a result, there is no need to use a strong cooling type cooling device that constrains the steel plate with a roller or a platen and closes the cooling nozzle to inject high-pressure cooling water. Cooling can be performed uniformly and stably with a relatively weak cooling device that secures 1 m or more. The principle of the present invention will be described below.
[0020]
In a high temperature range of 700 to 800 ° C. where cooling is started, the film is normally in a film boiling state. A steam film is formed between the steel plate surface and the cooling water, and heat transfer is performed only by radiant heat transfer through the steam film, so the heat transfer coefficient is small. When the cooling proceeds and the temperature decreases, the vapor film is destroyed at a certain temperature (hereinafter referred to as a quench temperature). The transition from the quench temperature to the nucleate boiling state is such that the cooling water and the steel plate come into direct contact and heat transfer is performed, and the heat transfer coefficient is rapidly increased to cause rapid cooling. The destruction process of this vapor film is very unstable, and there are a part where the vapor film is destroyed and locally cooled due to variations in the surface roughness of the steel sheet, and a part where the vapor film is maintained and cooling is delayed. Therefore, temperature unevenness is likely to occur.
[0021]
Even in a high temperature range of 700 to 800 ° C., in the strong cooling type cooling device that breaks the vapor film by colliding with high-pressure jet water, the quench temperature is raised, and the entire surface of the steel sheet is started rapidly to cool uniformly. Can do. However, in a general weak-cooling type cooling device, the vapor film is not easily broken, and the cooling unevenness cannot be improved.
[0022]
In the present invention, first, the effect is that the scale fragments dispersed in the cooling water in the high temperature region (film boiling region) destroy the vapor film in the film boiling state. Second, the so-called fin effect lowers the temperature of the tip of the fin portion, and aims at the effect that the starting point of nucleate boiling is formed below the quench point. And a scale with good wettability is used as a fin part.
[0023]
As a means for realizing the above-described effect, a scale having a predetermined thickness is generated on the surface of the steel sheet 1 after rolling, and the scale is cracked by light reduction, and at the same time, a part of the scale is bitten into the steel sheet. Next, cooling water is sprayed, the scale having cracks is peeled off, and dispersed in the cooling water.
[0024]
FIG. 1 is a schematic diagram showing the behavior in the vicinity of the boundary between a steel plate and cooling water. In the figure, the cooling
[0025]
When all of the scale is peeled off and dispersed in the cooling water, only the first effect can be expected. However, a part of the scale is fixed to the steel plate surface and becomes the
[0026]
Aiming at the first effect, when the scale is cracked, if the size of the scale fragment is made equal to the thickness of the vapor film to several times the thickness of the vapor film, the floating
[0027]
Aiming at the second effect, even when a part of the scale is fixed to the surface of the steel sheet, a uniform unevenness distribution is obtained by providing a regular uneven pattern on the surface of the roll that is lightly pressed. Can do. If scale debris penetrates too deep into the steel sheet, it will become scale wrinkles, so the thickness of the scale must be kept within an appropriate range, and the depth of irregularities must be kept within an appropriate range.
[0028]
Based on the above consideration, the reasons for limiting the conditions of the present invention will be described below.
The thickness of the scale generated after rolling is 10 to 30 μm. If the thickness of the scale is less than 10 μm, even if the scale is cracked by light pressure, it is difficult to peel off when cooling water is injected, and the dispersion density when the peeled scale is dispersed in cooling water is This is because the first effect is reduced due to the small size and the size of the scale fragments being smaller than the thickness of the vapor film, and the vapor film destruction effect is small. If the thickness of the scale is larger than 30 μm, it takes a long time to generate a scale having a predetermined thickness after rolling, the rolling efficiency is lowered, or the temperature of the steel sheet is lowered, so that a predetermined cooling start temperature cannot be secured. And, due to light pressure, the scale deeply digs into the steel sheet and becomes scale flaws. A more preferable scale thickness is 15 to 25 μm.
[0029]
In order to generate the scale, by cooling in the air for 10 to 15 seconds after rolling, the predetermined scale thickness is ensured without affecting the rolling efficiency while ensuring the predetermined cooling start temperature. be able to.
[0030]
In order to secure the thickness of the scale, when the cooling time is long and there is a problem in rolling efficiency or there is a problem of a decrease in the steel sheet temperature, accelerated oxidation may be performed after rolling. As a method of accelerated oxidation, there is a method of spraying an oxygen-enriched gas on the surface of a steel plate or heating with a direct fire burner. Further, when the cooling start temperature, the scale thickness, and the like are significantly different between the front end portion and the rear end portion of the steel plate, the rear end portion of the steel plate may be heated in a reducing atmosphere.
[0031]
In the normal cooling method, the steel sheet after finish rolling is transported to the cooling device in a time of less than 10 seconds. Therefore, the scale generation thickness is not sufficient, and the cooling method of the present invention actively cools down after rolling. Need to be adjusted. Therefore, the cooling method of the present invention is difficult to apply in a continuous process such as a hot-rolled steel sheet, and is limited to application in a process that can be processed in a single unit such as a thick steel sheet.
[0032]
The unevenness of the roll surface that is lightly pressed is 10 to 30 μm. If the height of the unevenness is less than 10 μm, it is impossible to effectively crack the scale having the thickness of 10 to 30 μm, and the scale corresponding to the convex portions of the roll unevenness is effectively cut into the steel plate. It is because it cannot be made. If the scale is pushed down to force the scale into the steel sheet, the scale will bite over the entire surface of the steel sheet, resulting in an inappropriate fin distribution and the possibility of scale flaws. If the height of the unevenness is larger than 30 μm, the surface pressure at the portion corresponding to the convex portion of the unevenness will increase, and the scale will dig deeply into a scale wrinkle. A more preferable height of the unevenness is 15 to 25 μm.
[0033]
The uneven pattern of the lightly pressed roll may be random, but preferably has a certain regularity. That is, according to the first object, since the scale fragments that peel according to the cracks under light pressure are larger than a certain size and are aligned, the destruction effect of the film boiling is enhanced. This is because a uniform heat removal effect can be obtained when the fin portions are substantially uniformly distributed on the steel plate surface.
[0034]
Fig. 2 is a conceptual diagram showing the distribution of irregularities on the roll surface. Fig. 2 (a) shows the case where dot-like projections are randomly arranged, and Fig. 2 (b) shows a point-like projection with a constant shape. In the case where the portions are arranged in a lattice shape, FIG. 10C shows the case where the parallel line-shaped convex portions having a fixed shape are arranged. In Fig. (A), the shape of the convex portion is illustrated as a cone, in Fig. (B) as a quadrangular pyramid, and in Fig. (C) as a triangular ridge, the regularity of the shape of one convex portion is not so important. Also, the shape of the recess is not so important. However, the distribution density of the convex portions is important as described below.
[0035]
It is desirable that the distance P between the vertices of adjacent convex portions is 2 to 10 times the size of the concave and convex portions. For example, in the case of (a) or (b) in the figure, the distance P is represented by the distance between the vertices of a certain convex part and the nearest neighboring convex part. As shown in FIG. In the case of a part, it is represented by the distance between ridge lines.
[0036]
If the interval P between the protrusions is less than twice the height H of the protrusions, the cracks generated in the scale generated on the surface of the steel sheet will be fine, and the floating scale aiming at the first effect will be too fine. This is because the distribution density of the bite scale fixed on the steel plate becomes too large and is rapidly cooled locally. If the distance P between the protrusions is larger than 10 times the height H of the protrusions, when the scale cracked by light pressure becomes a floating scale, the size becomes too large, and the bite scale fixed on the steel plate This is because the distribution density is too small to effectively cool, and the surface pressure of the convex portion increases, the bite scale deeply penetrates, and there is a risk of scale wrinkles and indentations on the steel sheet. A more preferable range of the protrusion interval P to the protrusion height H is 3 to 8 times.
[0037]
In actuality, it is easy to process the roll in a lattice shape as shown in FIG. 2B or a linear shape as shown in FIG. In particular, if the ridgeline direction is set to the roll circumferential direction as shown in FIG. The cross-sectional shape of the protrusion may be a quadrangle, trapezoid, triangle or the like, but if the shape of the apex is sharp, the wear is fast, so the radius of curvature of the apex is about 3 to 10 μm, or the top side is 3 to 10 μm in the case of a trapezoid It is desirable to be front and back.
[0038]
The light reduction may be performed by a thick plate rolling mill having predetermined irregularities on the work roll after generating a scale having a predetermined thickness, or may be performed by a rolling mill dedicated to light reduction separately from the thick plate rolling mill. Good. However, even if the plate rolling mill has the specified irregularities, the irregularities are worn quickly during rolling of each pass, and the irregularities are crushed by the surface pressure between the backup roll and work roll. It is desirable to provide a machine.
[0039]
Although slight unevenness is generated on the surface of the steel plate by light pressure, it can be easily smoothed by light pressure by hot leveling usually performed after water cooling, and the appearance of the final product is not impaired.
[0040]
FIG. 3 is a schematic view showing a thick plate controlled cooling facility to which the cooling method of the present invention is applied. The steel plate 1 rolled to the target plate thickness by the
[0041]
In the water cooling device, for example, 10 upper surface
[0042]
On the entry side of the
[0043]
【Example】
A test for comparing the cooling method of the present invention with the cooling method according to the conventional method was conducted. The test was conducted on the rolling line shown in FIG. The
[0044]
In the example of the present invention, the steel sheet was allowed to cool for about 15 seconds after rolling so as to generate a surface scale of about 15 μm, then lightly reduced by the
[0045]
In Comparative Example 1, 150 kgf / cm 2 of high-pressure water was sprayed onto the rolled steel plate by the
[0046]
In Comparative Example 2, the steel sheet was allowed to cool for about 15 seconds after rolling so as to generate a surface scale of about 15 μm, and then cooled by the cooling
[0047]
The steel plate thickness at the end of finish rolling is 20.5 mm, the target cooling start temperature is 750 ° C., and the target cooling stop temperature is 450 ° C. In addition, the reduction in plate thickness due to the reduction by the light reduction device was set to 0.5 mm.
[0048]
FIG. 4 is a graph showing the temperature distribution in the width direction after the cooling test.
As shown in the figure, in the example of the present invention, the temperature deviation after water cooling was significantly reduced as compared with Comparative Examples 1 and 2. Also, there was almost no reduction pattern on the surface of the steel sheet due to light reduction.
[0049]
The difference between the inventive example and Comparative Example 1 is the difference in the presence or absence of a surface scale when light reduction is applied. Compared to Comparative Example 2, Comparative Example 1 showed a slight improvement in cooling uniformity due to the roughening of the surface of the steel sheet, but the cooling uniformity was inferior compared to the inventive example. Moreover, the linear pattern remained on the steel plate surface, and there was a problem in quality.
[0050]
The difference between the inventive example and Comparative Example 2 was the presence or absence of light pressure, and the condition of the surface scale thickness was the same. Comparing Comparative Example 2 with the inventive example, it was found that simply generating a scale on the steel sheet surface does not contribute to uniform cooling.
[0051]
As described above, it has been clarified that the method according to the present invention can greatly improve the temperature unevenness caused by controlled cooling and can be stably manufactured.
[0052]
The cooling method according to the present invention is not limited to the cooling process of thick steel plates, and the same effect can be obtained when applied to other steel material controlled cooling processes such as steel pipes and shaped steels.
[0053]
【The invention's effect】
According to the cooling method of the present invention, a high cooling rate can be obtained without unevenly cooling a high-temperature thick steel plate. For this reason, application of the controlled cooling of the thick steel plate becomes easy. Moreover, there is no reduction in rolling efficiency or increase in cost.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the behavior in the vicinity of the boundary between a steel plate and cooling water.
FIG. 2 is a conceptual diagram showing the distribution of unevenness on the roll surface. FIG. 2 (a) shows a case where dot-like convex portions are randomly arranged, and FIG. In the case where the convex portions are arranged in a lattice shape, FIG. 10C shows the case where the parallel-shaped convex portions having a fixed shape are arranged.
FIG. 3 is a schematic diagram showing a thick plate controlled cooling facility to which the cooling method of the present invention is applied.
FIG. 4 is a graph showing the temperature distribution in the width direction after the cooling test.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08870698A JP3709706B2 (en) | 1998-04-01 | 1998-04-01 | Thick steel plate cooling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08870698A JP3709706B2 (en) | 1998-04-01 | 1998-04-01 | Thick steel plate cooling method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11285724A JPH11285724A (en) | 1999-10-19 |
JP3709706B2 true JP3709706B2 (en) | 2005-10-26 |
Family
ID=13950344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08870698A Expired - Fee Related JP3709706B2 (en) | 1998-04-01 | 1998-04-01 | Thick steel plate cooling method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3709706B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101353695B1 (en) * | 2011-12-21 | 2014-01-20 | 주식회사 포스코 | Apparatus for removing gas and cooler having thereof for high temperature plate |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01284418A (en) * | 1988-05-11 | 1989-11-15 | Nippon Steel Corp | Control method for cooling in on line control cooling heat treatment, cooling method and cooling control device for hot strip |
JP2510899B2 (en) * | 1991-04-10 | 1996-06-26 | 新日本製鐵株式会社 | Cold rolling method for thin steel sheet |
JP2509489B2 (en) * | 1991-09-13 | 1996-06-19 | 新日本製鐵株式会社 | Steel plate with excellent press formability |
JPH05131209A (en) * | 1991-11-12 | 1993-05-28 | Nippon Steel Corp | Method for uniformizing cooling temperature of metallic material |
JP2991861B2 (en) * | 1992-06-19 | 1999-12-20 | 新日本製鐵株式会社 | Cold strip rolling method for steel strip |
JPH06254616A (en) * | 1993-03-05 | 1994-09-13 | Nippon Steel Corp | Manufacture of thick steel plate excellent in shape and device therefor |
JPH0957327A (en) * | 1995-08-22 | 1997-03-04 | Sumitomo Metal Ind Ltd | Scale removal method of steel plate |
JPH10113713A (en) * | 1996-10-09 | 1998-05-06 | Kobe Steel Ltd | Production of steel plate of controlled cooling |
-
1998
- 1998-04-01 JP JP08870698A patent/JP3709706B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11285724A (en) | 1999-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8634953B2 (en) | Method and equipment for flatness control in cooling a stainless steel strip | |
RU2745923C1 (en) | Unit and method for producing thick steel sheet | |
JP5218435B2 (en) | Controlled cooling method for thick steel plate | |
JP3796133B2 (en) | Thick steel plate cooling method and apparatus | |
JP4772924B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
EP1359230A1 (en) | Production method for steel plate and equipment therefor | |
JP4800245B2 (en) | Billet descaler | |
JP3709706B2 (en) | Thick steel plate cooling method | |
JP3656707B2 (en) | Controlled cooling method for hot rolled steel sheet | |
JP2003285115A (en) | Descaling method for steel plate and facility used for the same | |
JP2005279703A (en) | Method and equipment for manufacturing steel sheet | |
JP5577654B2 (en) | Manufacturing method of high-strength hot-rolled steel strip | |
JP3287254B2 (en) | Method and apparatus for cooling high-temperature steel sheet | |
JP4714628B2 (en) | Thick steel plate cooling equipment row and cooling method | |
JP4586314B2 (en) | Manufacturing method of hot-rolled steel sheet | |
JP6702386B2 (en) | Steel material manufacturing method and manufacturing equipment | |
JPH11267755A (en) | Manufacture of thick steel plate and straightening device used in it | |
JP2001009520A (en) | Steel plate descaling method | |
JP3800722B2 (en) | Cooling method for high temperature steel sheet | |
JP2003181522A (en) | Method and device for manufacturing steel plate having excellent surface property | |
JP4621061B2 (en) | Steel plate cooling equipment | |
JPS6254507A (en) | Cooling method for hot steel sheet | |
JP3173574B2 (en) | High temperature steel plate cooling system | |
JP3201513B2 (en) | Hot rolled steel sheet cooling method | |
JP3171326B2 (en) | Thick steel plate manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050708 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050719 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050801 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080819 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090819 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090819 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100819 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110819 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110819 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120819 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120819 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130819 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130819 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130819 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |