JP4586314B2 - Manufacturing method of hot-rolled steel sheet - Google Patents

Manufacturing method of hot-rolled steel sheet Download PDF

Info

Publication number
JP4586314B2
JP4586314B2 JP2001232011A JP2001232011A JP4586314B2 JP 4586314 B2 JP4586314 B2 JP 4586314B2 JP 2001232011 A JP2001232011 A JP 2001232011A JP 2001232011 A JP2001232011 A JP 2001232011A JP 4586314 B2 JP4586314 B2 JP 4586314B2
Authority
JP
Japan
Prior art keywords
cooling
hot
rolled
rolled material
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001232011A
Other languages
Japanese (ja)
Other versions
JP2003048003A (en
Inventor
徹 簑手
悟史 上岡
康一 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001232011A priority Critical patent/JP4586314B2/en
Publication of JP2003048003A publication Critical patent/JP2003048003A/en
Application granted granted Critical
Publication of JP4586314B2 publication Critical patent/JP4586314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱延鋼板の製造方法に関するものである。
【0002】
【従来の技術】
熱延鋼板の製造工程では、加熱炉においてスラブを所定温度に加熱し、加熱されたスラブを粗圧延機で所定厚さに圧延して粗バーとし、次いで、この粗バーを複数基の圧延スタンドからなる仕上圧延機において仕上圧延して所定厚さの熱延鋼帯とし、この熱延鋼帯をランナウトテーブル上の冷却装置において冷却した後、コイラーで巻取ることにより熱延コイルが得られる。
【0003】
【発明が解決しようとする課題】
しかし、このようにして製造される熱延鋼板は、鋼板幅方向の板厚分布に波形様のバラツキを生じる傾向があり、長らくその原因が判らず、適切な対策を講じることができなかった。
【0004】
したがって本発明の目的は、熱延鋼板の板幅方向での波形様の板厚分布を解消し、板幅方向で均一な板厚を有する熱延鋼板を製造することができる方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は、上述した熱延鋼板の形状不良、すなわち板幅方向で波形様の板厚分布を生じる原因と、その防止対策について検討を行った。その結果、上記のような板幅方向で波形様の板厚分布は冷却ムラが原因で発生していること、したがって、熱延鋼板を板幅方向に均一冷却となるように冷却することにより解消できることを見出した。
【0006】
熱間仕上圧延機では、圧延ロールの肌荒れやスケール性欠陥の防止などを目的として、圧延ロール直前に冷却装置を設けるのが一般的であり、この冷却装置としては、図6に示すようなヘッダー管7aに多数の噴射ノズル7bが取付けられた装置が一般に用いられている。本発明者等は、この冷却装置で冷却される熱延鋼板表面の板幅方向での冷却能分布を調べた。その結果を模式的に示すと図9のようになり、ノズル7bの直下で最も冷却能が高く、隣り合ったノズルの間では冷却水が干渉しあって冷却能が低くなる。このような板幅方向での冷却能の高低に応じて熱延鋼板表面には熱伝達率の分布が生じており、図9において最高熱伝達率と最低熱伝達率との差はΔhとなる。その結果、噴射ノズル7bの直下と、隣り合ったノズル7bとの間では、圧延材5の冷却のされ方が異なって、噴射ノズル7bの直下のほうがノズル7bの間よりも圧延材5の温度が下がり、変形抵抗が高くなる。
【0007】
また、図7に示すような冷却装置7を用いて熱間仕上圧延機ロールバイト直前で圧延材を冷却した場合には、冷却水の一部が圧延ロール3に直接当たり、圧延材冷却装置7のノズルの位置に対応して、圧延ロール3の軸方向に図8に示したような波形の温度分布(温度ムラ)が発生することが判った。そして、このような温度分布に対応して発生した、圧延ロール3のヒートクラウンは、噴射ノズル7bの直下で凹状のクラウンとなることが判った。したがって、圧延材の変形抵抗の高い部分は前記凹状のクラウン部分で圧延され、変形抵抗の低い部分はそれ以外の部分で圧延され、その結果、仕上板厚の幅方向分布は図8に示すように、噴射ノズル7bの配置に対応して波型になってしまうことが判った。
【0008】
このような問題に対して、本発明者等はノズルピッチが異なる種々の冷却装置を用い、冷却後の熱延鋼板の板幅方向における温度分布と熱伝達率を調査した。
【0009】
本発明者等は、従来型の噴射ノズルを備えた冷却装置(実験装置)(図6,7の冷却装置7参照)を用い、ノズルピッチや流量を変えて、ノズル冷却水直下と、隣り合ったノズルの間における熱伝達率を求める実験を行った。熱電対を埋め込んだ鋼材を加熱したのち、熱電対のある場所がノズルの直下または隣り合ったノズルの間を通過するように搬送して鋼材を冷却した。このときの温度変化から逆算して、熱伝達率を算出した。次に、上記実験で用いたノズルおよびノズルヘッダーと同一の型式で同一ノズルピッチのものを実機に取付けて、ヘッダー圧(または水量密度)を同一にして、熱間仕上圧延機ロールバイトの直前で圧延材の表面を冷却してから圧延を行う、実機での圧延試験を繰り返した。その結果、仕上板厚の板幅方向でのバラツキ(Δt)は、実験で求めた圧延材の幅方向における最高熱伝達率と最低熱伝達率との差(Δh)(図9参照)に依存していることが明らかになった。実験で求めた圧延材の幅方向における最高熱伝達率と最低熱伝達率との差Δhを横軸、それに対応した実機試験で求めた仕上板厚の板幅方向でのバラツキΔtを縦軸にプロットしたのが図2である。これにより、Δhが200kcal/m2/℃/hr以下であれば、仕上板厚の板幅方向でのバラツキはほとんど発生しないことが判った。
【0010】
本発明はこのような知見に基づきなされたもので、その特徴は以下の通りである。
【0011】
(1)熱間仕上圧延機ロールバイトの直前で圧延材の表面を冷却してから圧延を行う熱延鋼板の製造方法において、前記冷却を圧延材の幅方向における最高熱伝達率と最低熱伝達率との差が200kcal/m2/℃/hr以下となるように実施することを特徴とする熱延鋼板の製造方法。
【0012】
(2)熱間仕上圧延機ロールバイトの直前での圧延材の冷却をスリットラミナーで行うことを特徴とする上記(1)に記載の熱延鋼板の製造方法。
【0013】
(3)熱間仕上圧延機ロールバイトの直前での圧延材の冷却をミスト冷却で行うことを特徴とする上記(1)に記載の熱延鋼板の製造方法。
【0014】
【発明の実施の形態】
図1は、本発明の実施に供すべき、熱間仕上圧延機のロールバイト直前で圧延材5を冷却するための圧延材冷却装置1を示している。
【0015】
この圧延材冷却装置1は、圧延材5の幅方向における最高熱伝達率と最低熱伝達率との差Δhが200kcal/m2/℃/hr以下となるように圧延材を冷却することができる冷却手段を有している。
【0016】
このような冷却手段としては、例えば▲1▼スリットラミナーで冷却する手段、▲2▼ミスト冷却で冷却する手段、▲3▼ロール冷却で冷却する手段、▲4▼過熱液体噴流冷却で冷却する手段、▲5▼強制風冷で冷却する手段などが考えられる。
【0017】
図1において、圧延ロール冷却装置2は圧延ロール3を冷却するためのもので、この例では圧延ロールに面してその軸方向に沿って配置されたヘッダーとこのヘッダーの長手方向に沿って適当な間隔で設けられる複数のノズルとから構成される。その他に、ロール冷却水の水切りワイパー4、サイドガイドやストリッパーガイド、熱間潤滑装置(図示せず)などの、圧延ロール3の前後で通常用いられている構成要素を本発明の実施を妨げない範囲で併用することは、全く差し支えない。ただし、ロール冷却水の水切りワイパー4は常に圧延材5の板幅以上をカバーする幅を有することが必要である。
【0018】
上記▲1▼のスリットラミナー冷却手段を用いる場合を図3に示す。図3は図1のA―A線に沿う矢視図である。この冷却手段は、熱間仕上圧延機のロールバイト直前位置において圧延材5の幅方向に沿って配置されたヘッダー1aとこのヘッダー1aの長手方向に沿って設けられた、スリットノズル1bから構成され、そのスリットノズル1bからスリットラミナー1cを噴出する。
【0019】
スリットノズルから吐出されるスリットラミナー1cは元々圧延材5の幅方向に冷却能分布を持たないから、圧延材5や圧延ロール3の幅方向に、波型の温度分布を生じることなく圧延材5を圧延することができる。流体としては、水または温水が使われる。
【0020】
上記▲2▼のミスト冷却手段を用いる場合、ミスト冷却は、高速空気流とともに、水をノズルから噴射して冷却する方法である。液滴を加速して冷却能力を高める目的で空気を用いる場合と、液滴を極く微細化し、あまり大きな運動量を与えず、冷却能力を微細制御する目的で空気を用いる場合がある。後者はフォグ冷却と呼ばれることもあるが、本発明のミスト冷却に含まれるものとする。ノズル間の干渉がほとんどないため、本発明の冷却手段に適している。また、ミストをスリットから噴出するスリットミストノズルといった技術も知られており、本発明の冷却手段として用いることができる。
【0021】
上記▲3▼のロール冷却手段を用いる場合を図4および図5に示す。図4は側面図、図5は図4のA−A線に沿う矢視図である。
【0022】
熱間仕上圧延機のロールバイト直前で、圧延材5に内部が水冷された水冷ロール6を押し付けることにより、圧延材5の表面を冷却するロール冷却を用いた水冷ロール6を有する。
【0023】
図4および図5の冷却方法では、圧延材5の幅方向に、冷却による特定の温度分布が発生しにくい。圧延ロール3も水冷ロール6と接触していないため、従来技術のように幅方向に波型の温度分布が発生することはない。圧延ロール冷却装置2、ロール冷却水の水切りワイパー4等の実施形態は図1に示すものと同様である。
【0024】
上記▲4▼の過熱液体噴流冷却手段を用いる場合、過熱液体噴流冷却は、廃熱から過熱水を製造し、これを冷却に利用する方法である。過熱水をノズルから噴出すると、突発的な減圧沸騰により、一部が自己蒸発して液体は微細化され、広範囲に広がる高速の蒸気液滴二相流となる。この冷却方法は、高速の二相流を高温の圧延材に衝突させ冷却を行うものである。空気を用いるミスト冷却に比べて動力の低減が図れると共に、広範囲な噴射と、より均一な冷却が可能である。
【0025】
上記▲5▼の強制風冷手段を用いる場合、強制風冷は、圧延材の表面に気体を噴射して冷却する方法である。衝風冷却、強制空冷と呼ばれることもある。製鉄工程で幅広く用いられている技術である。スリットノズルから噴射すれば、圧延材を幅方向に均一に冷却することができる。吹き付ける気体としては、空気だけでなく、窒素ガスなどの、スケール生成を抑制するガス種を用いることもできる。
【0026】
本発明では、以上に述べた▲1▼〜▲5▼までの冷却方法を、任意に組み合わせて用いることができる。また、圧延材5の幅方向に均一な冷却能分布を持っていれば、どのような冷却装置も本発明に用いることは差し支えない。
【0027】
本発明の熱間圧延方法では、熱間仕上圧延機のロールバイト直前で圧延材5の表面の冷却を行った際の圧延ロール3のヒートクラウンの発生を防止し、圧延材5の板幅方向での仕上板厚を均一化する基本的な効果があり、さらに熱間仕上圧延機のロールバイト直前で圧延材5を冷却してその表面温度を下げるため圧延ロール3の肌荒れが低減する。また、2次スケールの成長が抑制され、デスケーリングの効果も加わってスケール性欠陥が減少する。
【0028】
【実施例】
本発明を熱間仕上圧延機に適用した例について述べる。本実施例の熱間仕上圧延機は圧延機7台からなる仕上圧延機群を備え、板厚30〜40mmの粗バーを仕上圧延機で仕上圧延して、仕上圧延が1.2〜10mmの熱延鋼鈑を製造している。仕上圧延機の1段目から5段目のロールバイト直前に図6および図7に示すような圧延材冷却装置7を設置した。
【0029】
この設備で圧延を行ったところ、圧延材冷却装置7のノズル7bの配置に対応して、圧延材板幅方向の仕上板厚が波形になった。ここで、圧延材冷却装置7のノズル7bの幅方向ノズル配置ピッチは130mm、ノズル数は15である。仕上板厚が3mmの熱延鋼板の場合、仕上板厚の板幅方向でのバラツキは、最大で15μmにも達した。
【0030】
そこで、図1および図3に示すように、スリットラミナーで圧延材を冷却するようにしたところ、熱延鋼板板幅方向の仕上板厚から波形のパターンが消滅した。
【0031】
【発明の効果】
本発明を適用すれば、圧延材の表面を熱間仕上圧延機ロールバイトの直前で、圧延材の幅方向に均一に冷却することにより、圧延ロールの肌荒れやスケール性欠陥を低減できるだけでなく、圧延材の板幅方向での仕上板厚を均一化することができる。
【図面の簡単な説明】
【図1】本発明の実施に供すべき、熱間仕上圧延機のロールバイト直前で圧延材を冷却するための圧延材冷却装置を示す側面図
【図2】仕上板厚の板幅方向でのバラツキ(Δt)と、圧延材の幅方向における最高熱伝達率と最低熱伝達率との差(Δh)との関係の一例を示すグラフ
【図3】本発明のスリットラミナー冷却手段を用いる場合の図1のA―A線に沿う矢視図
【図4】本発明のロール冷却手段による圧延材冷却装置を示す側面図
【図5】図4のA−A線に沿う矢視図
【図6】一般的な冷却装置を示す側面図
【図7】従来技術の熱間仕上圧延機のロールバイト直前で圧延材を冷却するための圧延材冷却装置を示す側面図
【図8】圧延材の冷却で発生する圧延ロールの軸方向温度分布と圧延材の板幅方向の仕上板厚分布を示す図
【図9】一般的な冷却装置で発生する熱伝達率(冷却能)の分布を示す図
【符号の説明】
1 圧延材冷却装置
1a 圧延材冷却ヘッダー
1b 圧延材冷却ノズル
1c スリットラミナー
2 圧延ロール冷却装置
3 圧延ロール
4 水切りワイパー
5 圧延材
6 水冷ロール
7 圧延材冷却装置
7a 圧延材冷却ヘッダー
7b 圧延材冷却ノズル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hot-rolled steel sheet.
[0002]
[Prior art]
In the manufacturing process of the hot-rolled steel sheet, the slab is heated to a predetermined temperature in a heating furnace, and the heated slab is rolled to a predetermined thickness with a roughing mill to form a rough bar. A hot-rolled steel strip having a predetermined thickness is finished and rolled in a finish rolling mill consisting of the above, and after the hot-rolled steel strip is cooled in a cooling device on a run-out table, a hot-rolled coil is obtained by winding it with a coiler.
[0003]
[Problems to be solved by the invention]
However, the hot-rolled steel sheet manufactured in this way has a tendency to have a wavy variation in the sheet thickness distribution in the width direction of the steel sheet, the cause of which has not been known for a long time, and appropriate measures could not be taken.
[0004]
Accordingly, an object of the present invention is to provide a method capable of eliminating the wavy plate thickness distribution in the plate width direction of the hot rolled steel plate and producing a hot rolled steel plate having a uniform plate thickness in the plate width direction. It is in.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have studied the cause of the above-described defective shape of the hot-rolled steel sheet, that is, the corrugated thickness distribution in the sheet width direction, and the prevention measures. As a result, the corrugated plate thickness distribution in the plate width direction as described above is caused by uneven cooling, and therefore it is solved by cooling the hot-rolled steel plate so that it is uniformly cooled in the plate width direction. I found out that I can do it.
[0006]
In a hot finish rolling mill, a cooling device is generally provided immediately before the rolling roll for the purpose of preventing roughing of the rolling roll and scaling defects, and the cooling device includes a header as shown in FIG. An apparatus in which a large number of injection nozzles 7b are attached to the pipe 7a is generally used. The inventors examined the cooling capacity distribution in the sheet width direction on the surface of the hot-rolled steel sheet cooled by this cooling device. The result is schematically shown in FIG. 9 and has the highest cooling ability directly under the nozzle 7b, and cooling water interferes between adjacent nozzles, resulting in a low cooling ability. In accordance with the level of cooling capability in the sheet width direction, a heat transfer coefficient distribution is generated on the surface of the hot-rolled steel sheet. In FIG. 9, the difference between the maximum heat transfer coefficient and the minimum heat transfer coefficient is Δh. . As a result, the rolling material 5 is cooled differently between the nozzle 7b immediately below and the adjacent nozzle 7b, and the temperature of the rolled material 5 is directly below the nozzle 7b than between the nozzles 7b. Decreases and the deformation resistance increases.
[0007]
In addition, when the rolled material is cooled immediately before the hot finish rolling mill roll bite using the cooling device 7 as shown in FIG. 7, a part of the cooling water directly hits the rolling roll 3, and the rolled material cooling device 7. Corresponding to the position of the nozzle, it was found that a temperature distribution (temperature unevenness) having a waveform as shown in FIG. And it turned out that the heat crown of the rolling roll 3 which generate | occur | produced corresponding to such temperature distribution turns into a concave crown right under the injection nozzle 7b. Accordingly, the portion with high deformation resistance of the rolled material is rolled at the concave crown portion, and the portion with low deformation resistance is rolled at the other portions. As a result, the distribution of the finished plate thickness in the width direction is as shown in FIG. Further, it has been found that the waveform becomes corrugated corresponding to the arrangement of the injection nozzle 7b.
[0008]
In order to solve such a problem, the present inventors investigated the temperature distribution and heat transfer coefficient in the sheet width direction of the hot-rolled steel sheet after cooling using various cooling devices having different nozzle pitches.
[0009]
The inventors use a cooling device (experimental device) having a conventional injection nozzle (see the cooling device 7 in FIGS. 6 and 7), change the nozzle pitch and flow rate, and directly adjacent to the nozzle cooling water. Experiments were conducted to determine the heat transfer coefficient between the nozzles. After heating the steel material in which the thermocouple was embedded, the steel material was cooled by being conveyed so that the place where the thermocouple was located passed directly under the nozzle or between adjacent nozzles. The heat transfer coefficient was calculated by calculating backward from the temperature change at this time. Next, attach the same nozzle pitch and nozzle header used in the above experiment with the same nozzle pitch to the actual machine, make the header pressure (or water density) the same, and immediately before the hot finish rolling mill roll bite. Rolling tests with actual machines were repeated in which rolling was performed after the surface of the rolled material was cooled. As a result, the variation (Δt) in the sheet width direction of the finished sheet thickness depends on the difference (Δh) (see FIG. 9) between the maximum heat transfer coefficient and the minimum heat transfer coefficient in the width direction of the rolled material obtained in the experiment. It became clear that The horizontal axis indicates the difference Δh between the maximum heat transfer coefficient and the minimum heat transfer coefficient in the width direction of the rolled material obtained in the experiment, and the vertical axis indicates the variation Δt in the plate width direction of the finished plate thickness obtained in the corresponding actual machine test. FIG. 2 is plotted. As a result, it was found that when Δh is 200 kcal / m 2 / ° C./hr or less, there is little variation in the thickness of the finished plate in the width direction.
[0010]
The present invention has been made based on such findings, and the features thereof are as follows.
[0011]
(1) In a method of manufacturing a hot-rolled steel sheet that is rolled after cooling the surface of the rolled material immediately before the hot finish rolling mill roll bite, the cooling is performed with the highest heat transfer coefficient and the lowest heat transfer in the width direction of the rolled material. A method for producing a hot-rolled steel sheet, characterized in that the difference from the rate is 200 kcal / m 2 / ° C./hr or less.
[0012]
(2) The method for producing a hot-rolled steel sheet according to (1) above, wherein the rolled material is cooled with a slit laminator immediately before the hot finish rolling mill roll bite.
[0013]
(3) The method for producing a hot-rolled steel sheet according to (1) above, wherein the rolled material is cooled by mist cooling immediately before the hot finish rolling mill roll bite.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a rolled material cooling device 1 for cooling a rolled material 5 immediately before a roll bite of a hot finish rolling mill to be used in the practice of the present invention.
[0015]
The rolled material cooling device 1 can cool the rolled material so that the difference Δh between the maximum heat transfer coefficient and the minimum heat transfer coefficient in the width direction of the rolled material 5 is 200 kcal / m 2 / ° C./hr or less. It has a cooling means.
[0016]
As such cooling means, for example, (1) means for cooling by slit laminar, (2) means for cooling by mist cooling, (3) means for cooling by roll cooling, (4) means for cooling by superheated liquid jet cooling (5) Means for cooling by forced air cooling can be considered.
[0017]
In FIG. 1, a rolling roll cooling device 2 is for cooling the rolling roll 3, and in this example, a header arranged along the axial direction facing the rolling roll and an appropriate length along the header. And a plurality of nozzles provided at regular intervals. In addition, components normally used before and after the rolling roll 3 such as a roll cooling water draining wiper 4, a side guide and a stripper guide, and a hot lubrication device (not shown) are not disturbed. It can be used at all within the range. However, the drainage wiper 4 for roll cooling water must always have a width that covers the plate width of the rolled material 5.
[0018]
FIG. 3 shows a case where the slit laminator cooling means (1) is used. FIG. 3 is a view taken along the line AA in FIG. This cooling means is composed of a header 1a disposed along the width direction of the rolled material 5 at a position immediately before the roll bite of the hot finish rolling mill, and a slit nozzle 1b provided along the longitudinal direction of the header 1a. The slit laminar 1c is ejected from the slit nozzle 1b.
[0019]
Since the slit laminator 1c discharged from the slit nozzle originally has no cooling capacity distribution in the width direction of the rolled material 5, the rolled material 5 does not generate a corrugated temperature distribution in the width direction of the rolled material 5 or the rolling roll 3. Can be rolled. Water or warm water is used as the fluid.
[0020]
When the mist cooling means (2) is used, the mist cooling is a method of cooling by jetting water from a nozzle together with a high-speed air flow. There are cases where air is used for the purpose of accelerating the liquid droplets to increase the cooling capacity, and air is used for the purpose of finely controlling the liquid cooling capacity without making a very large momentum and finely controlling the cooling capacity. The latter is sometimes referred to as fog cooling, but is included in the mist cooling of the present invention. Since there is almost no interference between nozzles, it is suitable for the cooling means of the present invention. A technique such as a slit mist nozzle that ejects mist from a slit is also known, and can be used as the cooling means of the present invention.
[0021]
The case where the roll cooling means (3) is used is shown in FIGS. 4 is a side view, and FIG. 5 is a view taken along the line AA in FIG.
[0022]
Immediately before the roll bite of the hot finish rolling mill, a water-cooled roll 6 using roll cooling that cools the surface of the rolled material 5 is provided by pressing the water-cooled roll 6 whose interior is water-cooled against the rolled material 5.
[0023]
In the cooling method of FIGS. 4 and 5, a specific temperature distribution due to cooling hardly occurs in the width direction of the rolled material 5. Since the rolling roll 3 is not in contact with the water-cooled roll 6, the corrugated temperature distribution does not occur in the width direction as in the prior art. Embodiments of the rolling roll cooling device 2 and the roll cooling water draining wiper 4 are the same as those shown in FIG.
[0024]
When the superheated liquid jet cooling means (4) is used, the superheated liquid jet cooling is a method in which superheated water is produced from waste heat and used for cooling. When superheated water is ejected from the nozzle, due to sudden boiling under reduced pressure, part of the liquid is self-evaporated and the liquid becomes finer, resulting in a high-speed vapor droplet two-phase flow spreading over a wide area. In this cooling method, a high-speed two-phase flow is collided with a high-temperature rolling material to perform cooling. Power can be reduced as compared with mist cooling using air, and a wide range of injections and more uniform cooling are possible.
[0025]
When the forced air cooling means (5) is used, the forced air cooling is a method of cooling by injecting gas onto the surface of the rolled material. Sometimes called blast cooling or forced air cooling. This technology is widely used in the iron making process. If sprayed from the slit nozzle, the rolled material can be uniformly cooled in the width direction. As the gas to be blown, not only air but also a gas species such as nitrogen gas that suppresses scale generation can be used.
[0026]
In the present invention, the cooling methods (1) to (5) described above can be used in any combination. Further, any cooling device may be used in the present invention as long as it has a uniform cooling capacity distribution in the width direction of the rolled material 5.
[0027]
In the hot rolling method of the present invention, the occurrence of a heat crown of the rolling roll 3 when the surface of the rolled material 5 is cooled immediately before the roll bite of the hot finish rolling mill is prevented. There is a basic effect of making the finished plate thickness uniform, and the surface of the rolling roll 3 is reduced by cooling the rolled material 5 immediately before the roll bite of the hot finish rolling mill to lower the surface temperature. Further, the growth of secondary scale is suppressed, and the descaling effect is added to reduce the scale defect.
[0028]
【Example】
An example in which the present invention is applied to a hot finish rolling mill will be described. The hot finish rolling mill of this example includes a finish rolling mill group consisting of seven rolling mills, and finish rolls a rough bar having a thickness of 30 to 40 mm with a finish rolling mill, and the finish rolling is 1.2 to 10 mm. Manufactures hot-rolled steel sheets. A rolling material cooling device 7 as shown in FIGS. 6 and 7 was installed immediately before the first to fifth roll bites of the finishing mill.
[0029]
When rolling was performed with this facility, the finished plate thickness in the width direction of the rolled material became corrugated corresponding to the arrangement of the nozzles 7b of the rolled material cooling device 7. Here, the width direction nozzle arrangement pitch of the nozzles 7b of the rolled material cooling device 7 is 130 mm, and the number of nozzles is 15. In the case of a hot-rolled steel sheet with a finishing plate thickness of 3 mm, the variation in the finishing plate thickness in the plate width direction reached 15 μm at the maximum.
[0030]
Therefore, as shown in FIGS. 1 and 3, when the rolled material was cooled with a slit laminator, the corrugated pattern disappeared from the finished thickness in the width direction of the hot-rolled steel sheet.
[0031]
【The invention's effect】
By applying the present invention, the surface of the rolled material can be uniformly cooled in the width direction of the rolled material immediately before the hot finish rolling mill roll bite, thereby reducing the roughness of the rolling roll and the scale property defects, The finished plate thickness in the plate width direction of the rolled material can be made uniform.
[Brief description of the drawings]
FIG. 1 is a side view showing a rolled material cooling device for cooling a rolled material immediately before a roll bite of a hot finish rolling mill to be used in the practice of the present invention. FIG. 3 is a graph showing an example of the relationship between variation (Δt) and the difference (Δh) between the maximum heat transfer coefficient and the minimum heat transfer coefficient in the width direction of the rolled material. FIG. 4 is a side view showing the rolling material cooling device by the roll cooling means of the present invention. FIG. 5 is an arrow view taken along the line AA in FIG. A side view showing a general cooling device FIG. 7 is a side view showing a rolling material cooling device for cooling the rolled material immediately before a roll bit of a prior art hot finish rolling mill. FIG. 8 is a cooling of the rolled material. Showing the axial temperature distribution of rolling rolls and the finished plate thickness distribution in the sheet width direction of the rolled material [Fig. 9] Figure [EXPLANATION OF SYMBOLS] indicating the Do distribution of the heat transfer coefficient generated by the cooling device (cooling capacity)
DESCRIPTION OF SYMBOLS 1 Rolling material cooling device 1a Rolling material cooling header 1b Rolling material cooling nozzle 1c Slit laminator 2 Rolling roll cooling device 3 Rolling roll 4 Drain wiper 5 Rolling material 6 Water cooling roll 7 Rolling material cooling device 7a Rolling material cooling header 7b Rolling material cooling nozzle

Claims (3)

熱間仕上圧延機ロールバイトの直前で圧延材の表面を冷却してから圧延を行う熱延鋼板の製造方法において、前記冷却を圧延材の幅方向における最高熱伝達率と最低熱伝達率との差が200kcal/m2/℃/hr以下となるように実施することを特徴とする熱延鋼板の製造方法。In the method of manufacturing a hot-rolled steel sheet that is rolled after cooling the surface of the rolled material immediately before the hot finish rolling mill roll bite, the cooling is performed between the maximum heat transfer coefficient and the minimum heat transfer coefficient in the width direction of the rolled material. A method for producing a hot-rolled steel sheet, wherein the difference is 200 kcal / m 2 / ° C./hr or less. 熱間仕上圧延機ロールバイトの直前での圧延材の冷却をスリットラミナーで行うことを特徴とする請求項1に記載の熱延鋼板の製造方法。The method for producing a hot-rolled steel sheet according to claim 1, wherein the rolled material is cooled by a slit laminator immediately before the hot finish rolling mill roll bite. 熱間仕上圧延機ロールバイトの直前での圧延材の冷却をミスト冷却で行うことを特徴とする請求項1に記載の熱延鋼板の製造方法。The method for producing a hot-rolled steel sheet according to claim 1, wherein the rolling material is cooled by mist cooling immediately before the hot finish rolling mill roll bite.
JP2001232011A 2001-07-31 2001-07-31 Manufacturing method of hot-rolled steel sheet Expired - Fee Related JP4586314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001232011A JP4586314B2 (en) 2001-07-31 2001-07-31 Manufacturing method of hot-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001232011A JP4586314B2 (en) 2001-07-31 2001-07-31 Manufacturing method of hot-rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2003048003A JP2003048003A (en) 2003-02-18
JP4586314B2 true JP4586314B2 (en) 2010-11-24

Family

ID=19063990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001232011A Expired - Fee Related JP4586314B2 (en) 2001-07-31 2001-07-31 Manufacturing method of hot-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP4586314B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9186710B2 (en) 2011-06-07 2015-11-17 Nippon Steel & Sumitomo Metal Corporation Method for cooling hot-rolled steel sheet
US9566625B2 (en) 2011-06-07 2017-02-14 Nippon Steel & Sumitomo Metal Corporation Apparatus for cooling hot-rolled steel sheet
US9211574B2 (en) 2011-07-27 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing steel sheet
KR101528690B1 (en) 2012-12-06 2015-06-12 신닛테츠스미킨 카부시키카이샤 Method for manufacturing steel sheet
CN103987469B (en) 2012-12-06 2015-11-25 新日铁住金株式会社 Hot rolled steel plate cooling device
JP5310965B1 (en) 2012-12-06 2013-10-09 新日鐵住金株式会社 Hot-rolled steel sheet cooling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462151A (en) * 1977-10-28 1979-05-18 Kawasaki Steel Co Temperature equalizing method of steel plate during rolling
JPH06210339A (en) * 1993-01-12 1994-08-02 Sumitomo Metal Ind Ltd Cooling device for high temperature steel sheet
JPH06238320A (en) * 1993-02-18 1994-08-30 Kawasaki Steel Corp Spray cooling method
JPH1071412A (en) * 1996-04-08 1998-03-17 Nippon Steel Corp Method for controlling temperature or rolled stock in continuous hot rolling and cotinuous hot rolling equipment
JPH10156414A (en) * 1996-11-29 1998-06-16 Kawasaki Steel Corp Method for jetting rolling oil in hot rolling of steel strip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462151A (en) * 1977-10-28 1979-05-18 Kawasaki Steel Co Temperature equalizing method of steel plate during rolling
JPH06210339A (en) * 1993-01-12 1994-08-02 Sumitomo Metal Ind Ltd Cooling device for high temperature steel sheet
JPH06238320A (en) * 1993-02-18 1994-08-30 Kawasaki Steel Corp Spray cooling method
JPH1071412A (en) * 1996-04-08 1998-03-17 Nippon Steel Corp Method for controlling temperature or rolled stock in continuous hot rolling and cotinuous hot rolling equipment
JPH10156414A (en) * 1996-11-29 1998-06-16 Kawasaki Steel Corp Method for jetting rolling oil in hot rolling of steel strip

Also Published As

Publication number Publication date
JP2003048003A (en) 2003-02-18

Similar Documents

Publication Publication Date Title
JP4586791B2 (en) Cooling method for hot-rolled steel strip
KR101209355B1 (en) Cooling method for hot-rolled steel sheets
EP1179375B1 (en) Method for producing hot rolled steel sheet and apparatus therefor
JP3796133B2 (en) Thick steel plate cooling method and apparatus
JP4586314B2 (en) Manufacturing method of hot-rolled steel sheet
WO2013183694A1 (en) Dewatering device and dewatering method for cooling water for hot rolled steel sheet
JP5685861B2 (en) Draining device, draining method and cooling equipment for hot steel plate
JP4029865B2 (en) Hot rolled steel sheet manufacturing equipment and hot rolled steel sheet manufacturing method
JP2006247714A (en) Method and apparatus for de-scaling hot-rolled material
JP4337157B2 (en) Steel plate cooling method and apparatus
JP3994582B2 (en) Steel sheet descaling method
JP3603767B2 (en) Hot rolling method and equipment
JP2001334306A (en) Method of manufacturing hot-rolled steel strip
WO2018073973A1 (en) Method and apparatus for cooling hot-rolled steel sheet
JP3287254B2 (en) Method and apparatus for cooling high-temperature steel sheet
JP3189669B2 (en) Cooling method of steel strip in continuous annealing and cooling device therefor
JP5577654B2 (en) Manufacturing method of high-strength hot-rolled steel strip
JP6179691B1 (en) Method and apparatus for cooling hot-rolled steel sheet
JP4145606B2 (en) Steel plate lower surface cooling device, steel plate and method for producing the same
JP3675372B2 (en) Draining method of high temperature steel sheet
JP3985401B2 (en) Steel sheet rolling method
JPH0852509A (en) Method for rolling high temperature steel plate
JP3282714B2 (en) Cooling method for hot steel sheet
JPH10314803A (en) Method for straightening bend of rail
JP3327223B2 (en) Method and apparatus for cooling U-shaped sheet pile

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees