JPH06238320A - Spray cooling method - Google Patents

Spray cooling method

Info

Publication number
JPH06238320A
JPH06238320A JP5029470A JP2947093A JPH06238320A JP H06238320 A JPH06238320 A JP H06238320A JP 5029470 A JP5029470 A JP 5029470A JP 2947093 A JP2947093 A JP 2947093A JP H06238320 A JPH06238320 A JP H06238320A
Authority
JP
Japan
Prior art keywords
cooling
water
nozzle
spray
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5029470A
Other languages
Japanese (ja)
Other versions
JP3406013B2 (en
Inventor
Atsushi Hatanaka
淳 畠中
Masaki Imamura
巨城 今村
Tsuneo Seto
恒雄 瀬戸
Yoji Fujimoto
洋二 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP02947093A priority Critical patent/JP3406013B2/en
Publication of JPH06238320A publication Critical patent/JPH06238320A/en
Application granted granted Critical
Publication of JP3406013B2 publication Critical patent/JP3406013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To magnify a heat transfer coefficient to improve cooling capacity and to uniformly cool the whole body of a cooling surface by managing collision force of cooling water, water film pattern, water film breadth in cooling a high temperature steel plate, a wide flange shape steel, etc. CONSTITUTION:The collision pressure of cooling water to a cooled surface is set to an area of 0.05-0.5g/mm<2>, the dispersion of collision force of cooling water does not exceed + or -20% of the set value, the water film pattern of the cooling water is rectangular or square or elliptical, the breadth of a spray water film is cooled at >=20mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷却媒体に水又は気水混
合体を用いるスプレー冷却方法に関する。このような冷
却は例えばロール冷却、鋼板冷却、H形鋼冷却等あらゆ
る分野において利用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spray cooling method using water or a mixture of steam and water as a cooling medium. Such cooling can be used in all fields such as roll cooling, steel plate cooling, and H-section steel cooling.

【0002】[0002]

【従来の技術】従来の冷却媒体に水を用いるスプレーノ
ズルによる冷却方法の設計、計画、制御では、冷却水量
の分布を重要視したものが全てであり、冷却の制御は冷
却水量の調整によっていた。すなわち、従来は、冷却ノ
ズルの冷却効率については論じられていないのが現状で
あり、専ら、ノズルの組合せ、水量制御などにより均一
冷却することを試みていた。このような従来技術では例
えば、H形鋼のフランジ等の全面を均一に冷却すること
は困難であった。
2. Description of the Related Art In the conventional design, planning and control of a cooling method using a spray nozzle that uses water as a cooling medium, the distribution of the cooling water amount is important, and the cooling control is based on the adjustment of the cooling water amount. . That is, conventionally, the cooling efficiency of the cooling nozzle has not been discussed so far, and an attempt has been made exclusively for uniform cooling by combining nozzles, controlling the amount of water, and the like. In such a conventional technique, for example, it was difficult to uniformly cool the entire surface of the H-shaped steel flange or the like.

【0003】[0003]

【発明が解決しようとする課題】従来、スプレーノズル
を用いる冷却では、ノズルから噴射された冷却水が被冷
却面に衝突したとき均一な冷却水分布となるように冷却
ノズルが作られていた。このような均一な冷却水分布の
冷却ノズルを用いて、熱間鋼板を冷却した場合において
も均一な冷却を得られていない。
Conventionally, in cooling using a spray nozzle, a cooling nozzle has been made so that when cooling water sprayed from the nozzle collides with a surface to be cooled, a uniform cooling water distribution is obtained. Even if the hot steel sheet is cooled using such a cooling nozzle having a uniform cooling water distribution, uniform cooling cannot be obtained.

【0004】本発明者らが、冷却水量以外の冷却に寄与
する因子を調査、研究した結果、冷却面における冷却水
の衝突圧力並びに水膜パターンが冷却水量とともに冷却
能力を決定する重要な因子であることが判明した。本発
明はこのような新たな知見に基づくスプレー冷却方法を
提供することを目的とするものである。
As a result of investigating and studying factors other than the cooling water amount that contribute to cooling, the present inventors have found that the collision pressure of the cooling water on the cooling surface and the water film pattern are important factors that determine the cooling capacity together with the cooling water amount. It turned out to be. An object of the present invention is to provide a spray cooling method based on such new knowledge.

【0005】[0005]

【課題を解決するための手段】本発明は、高温の鋼板、
H形鋼のフランジ等平面部又はロール面等をスプレー冷
却するに当たり、(a)冷却水の冷却面への衝突圧力を
0.05〜0.5 g/mm2 の範囲に設定し、(b)冷却水の
衝突圧力のばらつきを設定値の±20%以内とし、
(c)冷却水の水膜パターンを長方形又は正方形又は長
円形の形状とし、(d)冷却水の被冷却面に衝突する部
分でのスプレー水膜横幅を20mm以上として冷却する
ことを特徴とするスプレー冷却方法である。
SUMMARY OF THE INVENTION The present invention is a high temperature steel plate,
When spray-cooling the flat surface such as the flange of H-section steel or the roll surface, (a) check the collision pressure of the cooling water on the cooling surface.
Set within the range of 0.05 to 0.5 g / mm 2 , and (b) make the variation of the collision pressure of the cooling water within ± 20% of the set value,
(C) The water film pattern of the cooling water has a rectangular shape, a square shape, or an oval shape, and (d) the spray water film has a lateral width of 20 mm or more at the portion that collides with the surface to be cooled of the cooling water for cooling. It is a spray cooling method.

【0006】[0006]

【作用】本発明者らは、スプレー冷却において、冷却に
寄与する因子を調査、研究した研究開発実験結果を図に
従って説明する。 (1)有効水量密度について 移動中の被冷却体を冷却する場合について調査すると、
図1に示すようにノズルピッチを変え冷却水横幅(進行
方向の冷却幅)を変化させることで冷却効率が大幅に変
化することが判明した。つまり、スプレー冷却の場合
に、単に冷却水量のみを増加すればよいのではなく、有
効に冷却に関与する水量すなわち、有効水量密度が冷却
効果に寄与する。図1は全噴出水の水量密度と有効冷却
に関与する有効水量密度との関係を示したものである。
曲線1、2および3はそれぞれノズルピッチを100m
m、200mm、400mmとしたもので、材料(被冷
却体)通過速度2.0m/secの場合である。曲線1
と曲線2においては、ほぼ等しい全水量密度約2×10
3 リットル/m2 ・minに対して、有効水量密度は著
しい差がある。曲線2と曲線3の全水量密度約1×10
3 リットル/m2 ・minについても同様である。
The present inventors will explain the results of research and development experiments conducted by investigating and investigating factors contributing to cooling in spray cooling with reference to the drawings. (1) Effective water density When investigating the case of cooling a moving object,
As shown in FIG. 1, it has been found that the cooling efficiency is significantly changed by changing the nozzle pitch and the cooling water lateral width (cooling width in the traveling direction). That is, in the case of spray cooling, not only the cooling water amount needs to be increased, but the amount of water effectively involved in cooling, that is, the effective water amount density contributes to the cooling effect. FIG. 1 shows the relationship between the water amount density of all jetted water and the effective water amount density involved in effective cooling.
Curves 1, 2 and 3 each have a nozzle pitch of 100 m.
m, 200 mm, 400 mm, and the material (cooling target) passing speed is 2.0 m / sec. Curve 1
And the curve 2, the total water density is about 2 × 10
There is a significant difference in the effective water density with respect to 3 liters / m 2 · min. Total water density of curves 2 and 3 about 1 x 10
The same applies to 3 liters / m 2 · min.

【0007】すなわちノズルピッチを密にすると有効水
量密度が上昇するため、本発明のスプレー冷却において
は、単一ノズルの冷却水横幅を大きくすることを指向し
た。 (2)スプレー水膜の横幅bとフランジ幅方向高さh 前述のように高い冷却効率を得るためには、冷却水の衝
突圧力が低下しない範囲で冷却水膜横幅を大きくするこ
とが重要である。表1に示す条件で試験を行い、その結
果を図5にしめした。スプレーの水膜横幅が薄いと、噴
射水量密度Wnが増加しても、有効水量密度Weはほと
んど変化がなく、スプレーの水膜横幅が10mmと15
mmで大きな変化はないが、25mmでは著しく上昇す
る。従って、20mm以上にするとよい。
That is, since the effective water amount density increases when the nozzle pitch is made dense, in the spray cooling of the present invention, it was aimed to increase the lateral width of the cooling water for a single nozzle. (2) Horizontal width b of spray water film and height h in the flange width direction As described above, in order to obtain high cooling efficiency, it is important to increase the lateral width of the cooling water film within a range where the collision pressure of the cooling water does not decrease. is there. The test was conducted under the conditions shown in Table 1, and the results are shown in FIG. When the water film width of the spray is thin, the effective water amount density We hardly changes even if the jet water amount density Wn increases, and the water film width of the spray is 10 mm and 15
There is no significant change in mm, but it significantly increases at 25 mm. Therefore, it is recommended to set it to 20 mm or more.

【0008】本発明者等は、さらにスプレー水膜のパタ
ーンが一辺50mmの正方形となるようなノズルを用い
た場合についても実験を行なったが、この場合において
も高い冷却効率を得ることが判明した。
The inventors of the present invention also conducted an experiment using a nozzle in which the pattern of the spray water film was a square of 50 mm on each side, and it was found that high cooling efficiency can be obtained even in this case. .

【0009】[0009]

【表1】 [Table 1]

【0010】すなわちノズルからスプレーされるスプレ
ー水膜のパターンは平面的に従来は図7の(a)または
(b)にそれぞれ示すように円形又は楕円形であったた
め、被冷却面の有効水量密度が低かった。このため本発
明では、被冷却面の有効水量密度を上げるべく図7の
(c)、(d)、(e)にそれぞれ示すようにノズルか
らスプレーされるスプレー水膜のパターンを正方形、長
方形、または長円形(長方形のコーナ部が丸味を帯びた
形状)として、水膜パターン内の偏差を極力少くしたも
のとする。
That is, since the pattern of the spray water film sprayed from the nozzle is conventionally circular or elliptical as shown in FIG. 7 (a) or (b), respectively, the effective water amount density of the surface to be cooled is reduced. Was low. Therefore, in the present invention, in order to increase the effective water amount density of the surface to be cooled, as shown in (c), (d) and (e) of FIG. Alternatively, an oval shape (a rectangular corner having a rounded shape) is used to minimize deviation in the water film pattern.

【0011】図7の(c)、(d)、(e)に示す本発
明の水膜パターンを形成するノズルを用いて被冷却面に
スプレーする際には、図8の(a)、(b)、(c)に
それぞれ示すように正方形、長方形または長円形の水膜
パターンを形成する単一のノズルを被冷却面の長手方向
に所定ノズルピッチで配置するか、あるいは図8の
(d)、(e)、(f)にそれぞれ示すように正方形や
長円形の水膜パターンを形成するノズルを上下に複数個
組み合わせたものを被冷却面の長手方向に所定ノズルピ
ッチで配置して均一にスプレー冷却することも可能であ
る。
When spraying on the surface to be cooled by using the nozzle for forming the water film pattern of the present invention shown in FIGS. 7C, 7D and 7E, FIGS. As shown in (b) and (c), single nozzles forming a square, rectangular or oval water film pattern are arranged at a predetermined nozzle pitch in the longitudinal direction of the surface to be cooled, or (d) in FIG. ), (E), and (f), a plurality of nozzles that form a square or oval water film pattern are combined vertically and uniformly arranged in the longitudinal direction of the surface to be cooled at a predetermined nozzle pitch. It is also possible to spray cool.

【0012】(3)冷却水衝突圧力0.05g/mm2
以上について 冷却面における冷却水の衝突圧力が冷却水の水量と共に
冷却能力を決定する重要な因子である。図2は、スプレ
ー水膜横幅(b)を25mmとした従来ノズルA、B
と、スプレー水膜横幅(b)を50mmとした新ノズル
Cをそれぞれ用いて、衝突圧力が熱伝達係数に影響する
ことを確認した結果を示している。
(3) Collision pressure of cooling water 0.05 g / mm 2
Regarding the above, the collision pressure of the cooling water on the cooling surface is an important factor that determines the cooling capacity together with the amount of cooling water. FIG. 2 shows conventional nozzles A and B having a spray water film width (b) of 25 mm.
And the results of confirming that the collision pressure affects the heat transfer coefficient using the new nozzle C having the spray water film width (b) of 50 mm, respectively.

【0013】すなわちノズルAとノズルBは従来から使
われていたものであるが、従来から行われている水量調
整だけでは均一に冷却されていない点に注目し、詳細に
ノズル特性を調査した結果が図2に示すグラフである。
図2において従来ノズルAと従来ノズルBの衝突圧力が
ほぼラップする0.25(g/mm2) において、一方のノズルB
の水量が4(l/min) であるのに対し、他方のノズルA の
水量が6(l/min) と水量差があるにもかかわらずそれぞ
れの熱伝達係数αが600(kcal/m2h℃) と同一であった。
That is, although the nozzle A and the nozzle B have been conventionally used, the result of detailed investigation of the nozzle characteristics, paying attention to the fact that the nozzle is not cooled uniformly only by the conventional water amount adjustment Is the graph shown in FIG.
In FIG. 2, when the collision pressure between the conventional nozzle A and the conventional nozzle B is approximately 0.25 (g / mm 2 ), one nozzle B
Although the amount of water is 4 (l / min), the other nozzle A has a water amount of 6 (l / min) and the heat transfer coefficient α of each is 600 (kcal / m 2). h ° C).

【0014】従来ノズルA、Bのこのような現象がスプ
レー内で発生した場合、不均一冷却となったり、また水
量調整に対する冷却能力調整がむずかしいノズルとされ
ていた。しかし、少ない水量で高熱伝達係数αを得る条
件を整理すると、ノズルピッチを密にすること、スプレ
ー横幅を厚く(広く)することなどから類推すると、冷
却水を均一に分布させ、かつ衝突圧力も均一にし、ある
レベル以上の衝突圧力を維持できれば、有効水量密度が
上昇できると考えて試作したのが本発明で用いた新ノズ
ルCである。
Conventionally, when such a phenomenon of the nozzles A and B occurs in the spray, the nozzles are unevenly cooled, and it is difficult to adjust the cooling capacity for adjusting the amount of water. However, if the conditions for obtaining a high heat transfer coefficient α with a small amount of water are summarized, by analogy with making the nozzle pitch dense and making the spray width thick (wide), the cooling water is evenly distributed and the collision pressure is also reduced. The new nozzle C used in the present invention was prototyped on the assumption that the effective water amount density can be increased if the collision pressure can be made uniform and a certain level or more can be maintained.

【0015】前述の図2においては、冷却水の冷却面に
対する衝突圧力(g/mm2) と、冷却水の水量W(l/min)
と、熱伝達係数α (kcal/m2h℃) との関係を示している
が、本発明の新ノズルCによれば、従来ノズルA、Bに
比較して冷却水の水量Wが少なくとも新ノズルCのスプ
レー水膜幅増が効果を包含して極めて高い熱伝達係数α
(kcal/m2h℃) が得られる。
In FIG. 2 described above, the collision pressure (g / mm 2 ) of the cooling water on the cooling surface and the water amount W (l / min) of the cooling water are used.
And the heat transfer coefficient α (kcal / m 2 h ° C.) are shown. According to the new nozzle C of the present invention, the amount W of cooling water is at least new compared to the conventional nozzles A and B. Increasing the spray water film width of the nozzle C includes the effect and has an extremely high heat transfer coefficient α
(kcal / m 2 h ℃) is obtained.

【0016】新ノズルCでは冷却水の衝突圧力が 0.03g
/mm2と 0.05g/mm2の場合の衝突圧力における熱伝達係数
αを比較すると 600kcal/m2h℃から 900kcal/m2h℃に大
幅に改善されている。そして衝突圧力が 0.05g/mm2から
0.2g/mm2に上昇するにつれて熱伝達係数αは 900kcal/m
2h℃から1100kcal/m2h℃に0.2g/mm2以上からは徐々に上
昇し、衝突圧力が0.5g/mm2を越えると熱伝達係数αは飽
和し、衝突圧力がこれ以上増加しても効果が少ない。し
たがって本発明では、冷却水の冷却面への衝突圧力を0.
05〜0.5g/mm2の範囲に設定するものである。
With the new nozzle C, the collision pressure of the cooling water is 0.03 g.
Comparing the heat transfer coefficient α at the collision pressure between / mm 2 and 0.05 g / mm 2 , it was significantly improved from 600 kcal / m 2 h ℃ to 900 kcal / m 2 h ℃. And the collision pressure is from 0.05g / mm 2
The heat transfer coefficient α is 900 kcal / m as it increases to 0.2 g / mm 2.
From 2 h ℃ to 1100 kcal / m 2 h ℃ gradually increases from 0.2 g / mm 2 or more, and when the collision pressure exceeds 0.5 g / mm 2 , the heat transfer coefficient α becomes saturated and the collision pressure increases further. However, the effect is small. Therefore, in the present invention, the collision pressure of the cooling water on the cooling surface is set to 0.
It is set in the range of 05 to 0.5 g / mm 2 .

【0017】(4)冷却水の衝突力の冷却水衝突面での
均等化。 フランジ幅200mm のH形綱を長手方向に1.0m/sの速度で
移動しながら、その中央部を冷却幅100mm のスプレーノ
ズルで冷却した。図3はこのときのフランジ幅を縦軸に
とり、横軸に各幅位置の熱伝達率分布を示した。図3に
おいて、○印は従来ノズルA、Bによるフランジ幅方向
の熱伝達率の分布を示し、×印は本発明で使用する新ノ
ズルCによるフランジ幅方向の熱伝達率の分布を示す。
従来ノズルA、Bによれば直接冷却範囲の熱伝達率にば
らつきが大きいのに対し、本発明で用いた新ノズルCに
よれば、ばらつきの少ない均一な熱伝達率で冷却される
ことが分かる。
(4) Equalization of the collision force of the cooling water on the cooling water collision surface. While moving an H-shaped rope having a flange width of 200 mm in the longitudinal direction at a speed of 1.0 m / s, the central portion thereof was cooled by a spray nozzle having a cooling width of 100 mm. In FIG. 3, the vertical axis shows the flange width and the horizontal axis shows the heat transfer coefficient distribution at each width position. In FIG. 3, the circle marks show the heat transfer coefficient distribution in the flange width direction by the conventional nozzles A and B, and the X mark show the heat transfer coefficient distribution in the flange width direction by the new nozzle C used in the present invention.
It can be seen that the conventional nozzles A and B have a large variation in the heat transfer coefficient in the direct cooling range, whereas the new nozzle C used in the present invention cools with a uniform heat transfer coefficient with little variation. .

【0018】図4は本発明の新ノズルCを用いて受圧面
積6mm×50mmの冷却面に冷却水量がほぼ一定の冷却水を
噴射したときの衝突圧力の分布を示したものである。そ
のときの水圧はそれぞれ圧力2.0 、1.5 、1.0 、0.5 kg
/cm2の4種とした。図4の衝突圧力の分布は 0.05g/mm2
以上の範囲にある。図3に×印で示すように、本発明に
よる直接冷却範囲の熱伝達係数α (kcal/m2h℃) は優れ
た値を示している。しかし図3に○印で示すように従来
ノズルから噴射された水膜においては衝突面での幅方向
の位置により熱伝達率にばらつきがあり、水膜幅中央部
と端部では違いがある。このため熱伝達率をほぼ一定に
保つためには経験的にこの衝突圧力のばらつきを設定値
±20%程度におさえることが望ましい。
FIG. 4 shows the distribution of the collision pressure when the new nozzle C of the present invention is used to inject cooling water having a substantially constant amount of cooling water onto a cooling surface having a pressure receiving area of 6 mm × 50 mm. The water pressure at that time is 2.0, 1.5, 1.0, and 0.5 kg, respectively.
There are 4 types of / cm 2 . The distribution of collision pressure in Fig. 4 is 0.05g / mm 2
Within the above range. As indicated by the mark X in FIG. 3, the heat transfer coefficient α (kcal / m 2 h ° C.) in the direct cooling range according to the present invention shows an excellent value. However, as indicated by a circle in FIG. 3, in the water film sprayed from the conventional nozzle, the heat transfer coefficient varies depending on the position in the width direction on the collision surface, and there is a difference between the central part and the end part of the water film width. Therefore, in order to keep the heat transfer coefficient almost constant, it is empirically desirable to keep the variation of the collision pressure within the set value ± 20%.

【0019】[0019]

【実施例】図6に示すようなH形綱の冷却を本発明方法
により実施した。フランジ幅がそれぞれ150mm 、200mm
、250mm 、300mm のH形綱のフランジを図6に示すノ
ズルパターンで水冷した。H形綱のフランジのみを冷却
するため、冷却水がウェブ側に飛散するのを防止する必
要があり、ノズルのスプレー方向を図6に示す斜方型と
し、冷却水衝突圧力を0.2(g/mm2)で均一とし、スプレー
水膜横幅bをそれぞれ20mm、40mmにし、ノズルピッチp
を200mm 、100mm として、総使用水量Qを同一とした。
またその時のスプレー水膜高さをhとした。その結果を
表2に示した。実施例では、冷却効率(有効水量密度)
が2倍に改善され、均一に冷却することができた。
EXAMPLE A H-shaped rope as shown in FIG. 6 was cooled by the method of the present invention. Flange widths of 150mm and 200mm respectively
, 250 mm and 300 mm H-shaped flanges were water-cooled with the nozzle pattern shown in FIG. Since only the flange of the H-shaped rope is cooled, it is necessary to prevent the cooling water from splashing to the web side. The spray direction of the nozzle is the oblique type shown in Fig. 6, and the cooling water collision pressure is 0.2 (g / g / mm 2 ), the spray water film width b is 20 mm and 40 mm, respectively, and the nozzle pitch p
Was 200 mm and 100 mm, and the total water consumption Q was the same.
The height of the spray water film at that time was defined as h. The results are shown in Table 2. In the example, cooling efficiency (effective water amount density)
Was doubled, and uniform cooling was possible.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】本発明によれば、スプレーノズルを用い
る冷却において、従来検討されていなかった新規な要因
によってノズルの形状、配列、操業条件等を規定して、
冷却効率の高い冷却を実現することができる。
According to the present invention, in cooling using a spray nozzle, the shape, arrangement, operating conditions, etc. of the nozzle are defined by a novel factor that has not been studied in the past.
Cooling with high cooling efficiency can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】全水量密度と有効水量密度との関係を示すグラ
フである。
FIG. 1 is a graph showing the relationship between total water density and effective water density.

【図2】衝突圧力と熱伝達係数との関係を示すグラフで
ある。
FIG. 2 is a graph showing the relationship between collision pressure and heat transfer coefficient.

【図3】冷却面の熱伝達率分布を示すグラフである。FIG. 3 is a graph showing a heat transfer coefficient distribution on a cooling surface.

【図4】衝突圧力分布を示すチャートである。FIG. 4 is a chart showing a collision pressure distribution.

【図5】スプレー水圧力と各水量密度の関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between spray water pressure and each water amount density.

【図6】実施例のH形綱のスプレーノズル冷却の説明図
である。
FIG. 6 is an explanatory view of cooling the spray nozzle of the H-shaped rope of the embodiment.

【図7】ノズルからのスプレー水膜パターンを示す平面
図である。
FIG. 7 is a plan view showing a spray water film pattern from a nozzle.

【図8】ノズルからのスプレー水膜により被冷却面を冷
却する場合のパターンの組み合わせ状況を示す説明図で
ある。
FIG. 8 is an explanatory diagram showing a pattern combination state in the case where a surface to be cooled is cooled by a water film sprayed from a nozzle.

【符号の説明】[Explanation of symbols]

α 熱伝達係数 W 水量 b 水膜横幅 h 水膜高さ We 有効水量密度 Wn 噴射水量密度 α Heat transfer coefficient W Water quantity b Water film width h Water film height We Effective water quantity density Wn Injection water quantity density

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬戸 恒雄 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 藤本 洋二 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Tsuneo Seto Tsuneo Seto 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture (No address) Inside the Mizushima Works, Kawasaki Steel Co., Ltd. (72) Yoji Fujimoto 1-shima-shima Kawasaki, Kurashiki-shi, Okayama Chome (No house number) Kawasaki Steel Co., Ltd. Mizushima Steel Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷却媒体に水又は気水混合体を用いてス
プレー冷却するに当たり、冷却水の冷却面への衝突圧力
を0.05〜0.5 g/mm2 の範囲に設定し、冷却水の衝突
圧力のばらつきを設定値の±20%以内とし、冷却水の
水膜パターンを長方形又は正方形又は長円形の形状と
し、冷却水の被冷却体に衝突する部分でのスプレー水膜
横幅を20mm以上として冷却することを特徴とするス
プレー冷却方法。
1. In spray cooling using water or a water-water mixture as a cooling medium, the collision pressure of the cooling water on the cooling surface is set to 0.05 to 0.5 g / mm 2 , and the collision pressure of the cooling water is set. Variation is within ± 20% of the set value, the water film pattern of the cooling water is rectangular, square or oval, and the horizontal width of the spray water film is 20 mm or more at the part where the cooling water collides with the cooled object. A spray cooling method characterized by:
JP02947093A 1993-02-18 1993-02-18 Spray cooling method Expired - Fee Related JP3406013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02947093A JP3406013B2 (en) 1993-02-18 1993-02-18 Spray cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02947093A JP3406013B2 (en) 1993-02-18 1993-02-18 Spray cooling method

Publications (2)

Publication Number Publication Date
JPH06238320A true JPH06238320A (en) 1994-08-30
JP3406013B2 JP3406013B2 (en) 2003-05-12

Family

ID=12276992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02947093A Expired - Fee Related JP3406013B2 (en) 1993-02-18 1993-02-18 Spray cooling method

Country Status (1)

Country Link
JP (1) JP3406013B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048003A (en) * 2001-07-31 2003-02-18 Nkk Corp Method for manufacturing hot-rolled steel sheet
WO2008032473A1 (en) * 2006-09-12 2008-03-20 Nippon Steel Corporation Method for setting arrangement of spray cooling nozzles and hot steel plate cooling system
US7981358B2 (en) 2007-07-30 2011-07-19 Nippon Steel Corporation Cooling apparatus of hot steel plate, cooling method of hot steel plate, and program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048003A (en) * 2001-07-31 2003-02-18 Nkk Corp Method for manufacturing hot-rolled steel sheet
JP4586314B2 (en) * 2001-07-31 2010-11-24 Jfeスチール株式会社 Manufacturing method of hot-rolled steel sheet
WO2008032473A1 (en) * 2006-09-12 2008-03-20 Nippon Steel Corporation Method for setting arrangement of spray cooling nozzles and hot steel plate cooling system
EP1944098A1 (en) * 2006-09-12 2008-07-16 Nippon Steel Corporation Method for setting arrangement of spray cooling nozzles and hot steel plate cooling system
EP1944098A4 (en) * 2006-09-12 2008-12-17 Nippon Steel Corp Method for setting arrangement of spray cooling nozzles and hot steel plate cooling system
US8012406B2 (en) 2006-09-12 2011-09-06 Nippon Steel Corporation Method of arranging and setting spray cooling nozzles and hot steel plate cooling apparatus
US8197746B2 (en) 2006-09-12 2012-06-12 Nippon Steel Corporation Method of arranging and setting spray cooling nozzles and hot steel plate cooling apparatus
US7981358B2 (en) 2007-07-30 2011-07-19 Nippon Steel Corporation Cooling apparatus of hot steel plate, cooling method of hot steel plate, and program

Also Published As

Publication number Publication date
JP3406013B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
JPH06238320A (en) Spray cooling method
US3981347A (en) Method and apparatus for strand cooling with a flat spray pattern
JPH06116697A (en) Jet-type stripping apparatus
WO2018055918A1 (en) Device and method for cooling hot-rolled steel sheet
US20010020446A1 (en) Linear nozzle with tailored gas plumes and method
KR20090024874A (en) Roll crown forming method of twin roll type strip caster
JPH05179340A (en) Spray cooling method
JP4126908B2 (en) Steel cooling method
US6258166B1 (en) Linear nozzle with tailored gas plumes
JP3247204B2 (en) Secondary cooling method for continuous casting
JP3160315B2 (en) Electron beam irradiation method and irradiation device
JP4682669B2 (en) H-shaped steel cooling equipment and cooling method
JP2003048003A (en) Method for manufacturing hot-rolled steel sheet
KR20030008132A (en) Injection nozzle and Method for manufacturing strip wire using it
JP2006082115A (en) Cooling method for heavy steel plate
DE69909141D1 (en) Method for producing a planographic printing plate support
JP3617448B2 (en) Steel plate draining method and apparatus
JP2659887B2 (en) Water cooling device for section steel
US5758715A (en) Method of manufacturing a wide metal thin strip
JP2917429B2 (en) Cooling control method
SU1761329A1 (en) Method of cooling hot-sheet
JP2002066726A (en) Method for cooling casting piece made by continuous casting
JPS62166019A (en) Cooling device for hot rolled steel plate
JP2000237815A (en) Method and device for cooling steel plate
JPH02163358A (en) Production of zero spangle steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees