JP2013147733A - High tensile strength steel sheet having excellent strength-elongation balance and method for producing the same - Google Patents

High tensile strength steel sheet having excellent strength-elongation balance and method for producing the same Download PDF

Info

Publication number
JP2013147733A
JP2013147733A JP2012232895A JP2012232895A JP2013147733A JP 2013147733 A JP2013147733 A JP 2013147733A JP 2012232895 A JP2012232895 A JP 2012232895A JP 2012232895 A JP2012232895 A JP 2012232895A JP 2013147733 A JP2013147733 A JP 2013147733A
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012232895A
Other languages
Japanese (ja)
Other versions
JP6094139B2 (en
Inventor
Masao Yuga
正雄 柚賀
Yusuke Terasawa
祐介 寺澤
Kenji Hayashi
謙次 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012232895A priority Critical patent/JP6094139B2/en
Publication of JP2013147733A publication Critical patent/JP2013147733A/en
Application granted granted Critical
Publication of JP6094139B2 publication Critical patent/JP6094139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high tensile strength steel sheet which has a tensile strength of ≥550 MPa and an excellent strengh-elongation balance and toughness, and the material of which is uniform in the steel sheet by controlling a thickness of scale in the surface of the steel sheet and its composition to prescribed ranges, and to provide a method for producing the same.SOLUTION: A high tensile strength steel sheet having a tensile strength of ≥550 MPa and having an excellent strength-elongation balance has a composition including 0.03 to 0.12% C, 0.10 to 0.45% Si, 0.5 to 2.0% Mn, 0.005 to 0.1% Al and 0.0005 to 0.005% N, and the balance Fe with inevitable impurities as a base, and in which a metallic structure in the vicinity of the surface of the steel sheet is made of bainite and martensite with a structural percentage of <30%, a difference between the maximum value and the minimum value of the hardness in the surface layer of the steel sheet is ≤45 HV, and scale thickness in the surface is ≤5 μm. In the method for its production, the thickness of scale in the surface of the steel sheet is controlled to ≤5 μm.

Description

本発明は、建築、橋梁、貯蔵タンク、圧力容器およびラインパイプなど鉄鋼構造物の用途に供して好適な高張力鋼板およびその製造方法に関し、特に550MPa以上の引張強さと優れた低温靱性を併せて付与することにより、強度−伸びバランスの有利な向上を図ろうとするものである。   The present invention relates to a high-tensile steel plate suitable for use in steel structures such as buildings, bridges, storage tanks, pressure vessels, and line pipes, and a method for producing the same, and particularly combines a tensile strength of 550 MPa or more and excellent low-temperature toughness. By imparting, it is intended to improve the strength-elongation balance advantageously.

橋梁、貯蔵タンク、圧力容器およびラインパイプなどの鉄鋼構造物に用いられる鋼板は、強度が高く、靱性に優れていることは勿論であるが、これらに加え、耐震性の観点から高い延性が求められる。一般に、建築用鋼材では、耐震性確保のために低降伏比化することで塑性変形能を高めている。
しかしながら、これらの鋼材は、2相域焼入れなどの手段により、マルテンサイトまたはベイナイト主体の組織中に軟質のフェライト組織を導入し、ミクロ的に不均一な組織とすることによって低降伏比を実現しているため、鋼材の降伏現象を早期に発生させることに繋がり、高い負荷がかかる構造物などで必要とされる降伏強度とのバランスをとることが難しく、また複雑な熱処理工程を必要とすることから、実用的な大量生産品としては必ずしも適当ではなかった。
Steel sheets used in steel structures such as bridges, storage tanks, pressure vessels and line pipes are of course high in strength and excellent in toughness, but in addition to these, high ductility is required from the viewpoint of earthquake resistance. It is done. In general, steel materials for construction increase plastic deformability by reducing the yield ratio to ensure earthquake resistance.
However, these steel materials achieve a low yield ratio by introducing a soft ferrite structure into a martensite- or bainite-based structure by means such as two-phase quenching and making it a micro-homogeneous structure. Therefore, it is difficult to balance the yield strength required for structures with high loads, which leads to the early occurrence of steel yielding, and requires a complicated heat treatment process. Therefore, it was not necessarily suitable as a practical mass-produced product.

一方、伸びが大きいことも鋼材の安全性の指標となる。伸び特性が高いほど外部からの応力による変形量が大きいため、変形が始まってから破壊するまでに変形する量が大きいことを意味しており、構造物の倒壊や、圧力容器、ラインパイプなどの破壊が抑制される。   On the other hand, large elongation is also an index of steel safety. The higher the elongation characteristics, the greater the amount of deformation due to external stress, which means that the amount of deformation from the start of deformation to failure is large, which means that the structure collapses, pressure vessels, line pipes, etc. Destruction is suppressed.

一般に、伸びの向上には、複相組織化が有効であると考えられている。その例として、特許文献1や特許文献2などが挙げられる。
特許文献1では、オーステナイトの再結晶温度域で圧延終了後、2相域での冷却を制御することによってフェライト+マルテンサイト組織とする方法が示されている。
しかしながら、この方法では、一様伸びは向上するものの、フェライト粒が粗大化するために、低温靱性は良好とは言えない。また、ミクロ組織が不均一であることから、局部伸びが著しく低下するおそれもある。
In general, it is considered that multiphase organization is effective for improving elongation. Examples thereof include Patent Document 1 and Patent Document 2.
Patent Document 1 discloses a method of forming a ferrite + martensitic structure by controlling cooling in a two-phase region after rolling is completed in the austenite recrystallization temperature region.
However, in this method, although the uniform elongation is improved, the ferrite grains are coarsened, so the low temperature toughness is not good. Further, since the microstructure is non-uniform, there is a risk that the local elongation is significantly reduced.

特許文献2では、残留オーステナイトを生成させて伸びを向上させる手法が示されている。薄鋼板などでは、残留オーステナイトを生成させたTRIP鋼等が実用化されているが、厚鋼板の分野では、実用化された例はない。その理由として、残留オーステナイトを生成させるためには合金添加が必要となるため、成分コストが高くなることや、溶接性との両立が困難であることが挙げられる。   Patent Document 2 discloses a technique for improving elongation by generating retained austenite. For thin steel sheets and the like, TRIP steel and the like in which retained austenite is generated have been put into practical use, but there has been no practical application in the field of thick steel sheets. The reason is that, in order to generate retained austenite, it is necessary to add an alloy, so that the component cost becomes high and it is difficult to achieve both weldability.

また、一方で、Cu析出を利用することにより、伸びが向上することが報告されている。これは、軟質な強化粒子を使うことにより、強化粒子自体の塑性変形能が高いことから、ミクロ的な不均一変形が抑制されるためと考えられている。例えば、特許文献3に、その手法が示されている。
しかしながら、Cu析出強化を発現させるには、概ね1%以上のCu添加が必要であることから、製造コストおよび特性の安定性の観点から、実用鋼としての実現可能性は低い。
On the other hand, it has been reported that elongation is improved by utilizing Cu precipitation. This is considered to be because the use of soft reinforcing particles suppresses microscopic non-uniform deformation because the plastic deformability of the reinforcing particles themselves is high. For example, Patent Document 3 discloses the technique.
However, in order to develop Cu precipitation strengthening, approximately 1% or more of Cu needs to be added. Therefore, the feasibility as a practical steel is low from the viewpoint of manufacturing cost and stability of characteristics.

特許文献4、5では、特殊な製造条件により表層と中心部の金属組織を制御し、表層はポリゴナルフェライトを含む組織とし、中心部はベイナイト主体組織とすることによる伸び向上の方法が示されている。しかしながらこの方法では、製造可能な板厚に限界があり、また、特に表層の材質のばらつきにより、伸びのばらつきの低減は困難である。   Patent Documents 4 and 5 show a method of improving elongation by controlling the metal structure of the surface layer and the central part under special manufacturing conditions, the surface layer is a structure containing polygonal ferrite, and the central part is a bainite-based structure. ing. However, with this method, there is a limit to the plate thickness that can be manufactured, and it is difficult to reduce variations in elongation, particularly due to variations in surface material.

特許第3459501号公報Japanese Patent No. 3459501 特開2006−131958号公報JP 2006-131958 A 特許第3694383号公報Japanese Patent No. 3694383 特開2010−236046号公報JP 2010-236046 A 特開2010−236047号公報JP 2010-236047 A

上述したとおり、従来の技術では、生産性の低下や製造コストの増大、さらには溶接性や靱性の低下などの問題を残していた。また、伸びのばらつきを低減させる方法については十分に検討がなされていない。本発明は、上記の現状に鑑み開発されたもので、鋼板表面のスケールの厚さと組成を制御することにより、生産性の低下や製造コストの増大を招くことなしに、550MPa以上の引張強さと強度−伸びバランスおよび靱性に優れ、しかも鋼板内で材質が均一な高張力鋼板を、その有利な製造方法と共に提案することを目的とする。   As described above, the conventional techniques have left problems such as a decrease in productivity, an increase in manufacturing cost, and a decrease in weldability and toughness. In addition, a method for reducing variation in elongation has not been sufficiently studied. The present invention was developed in view of the above-mentioned present situation, and by controlling the thickness and composition of the scale on the surface of the steel sheet, the tensile strength of 550 MPa or more can be achieved without causing a decrease in productivity and an increase in manufacturing cost. It is an object of the present invention to propose a high-strength steel sheet that is excellent in strength-elongation balance and toughness and that is uniform in material within the steel sheet, together with its advantageous manufacturing method.

さて、発明者らは、550MPa以上の降伏強度を確保した上で、引張試験片における伸びを向上させ、かつ、鋼板内の伸びのばらつきを小さくする方法について、鋭意研究を進めた。
その結果、同一鋼板内で高い伸びが出たり低い伸びがでたりする原因は、表面の材質ばらつきに起因しており、ベイナイトを主体とする組織の場合、材質のばらつきは硬さのばらつきで表される。
Now, the inventors have conducted earnest research on a method for improving the elongation in the tensile test piece and reducing the variation in the elongation in the steel sheet while ensuring a yield strength of 550 MPa or more.
As a result, the reason why high elongation or low elongation occurs in the same steel sheet is due to surface material variations.In the case of a structure mainly composed of bainite, the material variation is represented by hardness variation. Is done.

伸びの支配因子は、引張試験片の平行部内における表層の硬さのばらつきであり、硬さばらつきは鋼板表面のスケールの厚さと組成を適正に制御することにより所期した目的が有利に達成されることの知見を得た。
すなわち、フェライトを含まないベイナイト主体のミクロ組織の場合、表層の硬さのばらつきが大きい場合、硬さの低いところで優先的に変形が進行するため、くびれが発生しやすくなり、一様伸びの低下を招く。
The controlling factor of elongation is the hardness variation of the surface layer in the parallel part of the tensile test piece. The hardness variation can be achieved advantageously by properly controlling the thickness and composition of the scale on the steel sheet surface. I got the knowledge of that.
That is, in the case of a bainite-based microstructure that does not contain ferrite, if the hardness of the surface layer is large, deformation preferentially proceeds at a low hardness, so that constriction is likely to occur and the uniform elongation is reduced. Invite.

制御冷却後の硬さは、制御冷却直前のスケール厚さの影響を受け、スケール厚が厚いほど表面の冷却速度は速くなり、硬さが上昇する。制御冷却直前のスケール厚さを薄くすることにより、冷却により生じる表層の硬さは抑えられると同時に、そのばらつきを抑制することができる。冷却中は、スケールは成長しないことから、冷却後のスケールは冷却直前のスケールとほぼ同等である。
スケールには、鋼板からの拡散によりSiが濃化するが、Siの濃化が小さいスケールとすることで、結果的に薄いスケールが得られやすく、硬さのばらつきが抑制される。
The hardness after the controlled cooling is affected by the scale thickness immediately before the controlled cooling. The thicker the scale thickness, the faster the surface cooling rate and the higher the hardness. By reducing the thickness of the scale immediately before the controlled cooling, the hardness of the surface layer generated by the cooling can be suppressed, and at the same time, the variation can be suppressed. Since the scale does not grow during cooling, the scale after cooling is almost the same as the scale immediately before cooling.
In the scale, Si is concentrated by diffusion from the steel sheet. However, by setting the scale to be small in Si concentration, a thin scale can be easily obtained as a result, and variation in hardness is suppressed.

本発明は、上記の知見に基づいて完成されたものである。
すなわち、本発明の要旨は次のとおりである。
[1] 質量%で、C:0.03〜0.12%、Si:0.10〜0.45%、Mn:0.5〜2.0%、Al:0.005〜0.1%およびN:0.0005〜0.005%を含有し、残部はFeおよび不可避的不純物の組成からなり、金属組織がベイナイトを主体とする組織であって、鋼板の表裏面から板厚方向に2mmの領域のミクロ組織が組織分率で30%未満のマルテンサイトとベイナイトからなり、鋼板表層の硬さの板幅方向分布における硬さの最大値と最小値の差がビッカース硬さで45HV以下、表面のスケール厚さが5μm以下であり、引張強さが550MPa以上であることを特徴とする強度−伸びバランスおよび靱性に優れた高張力鋼板。
[2] 前記鋼板の表面のスケール中のSiの濃度が質量%で4%以下であることを特徴とする[1]に記載の強度−伸びバランスおよび靱性に優れた高張力鋼板。
[3] 前記鋼板が、さらに質量%で、Cu:0.8%以下、Ni:2%以下、Cr:1%以下、Mo:0.8%以下、Nb:0.05%以下、V:0.1%以下およびTi:0.025%以下のうちから選んだ一種または二種以上を含有することを特徴とする[1]または[2]に記載の強度−伸びバランスおよび靱性に優れた高張力鋼板。
[4] 前記鋼板が、さらに質量%で、B:0.0003〜0.002%を含有することを特徴とする[1]〜[3]のいずれかに記載の強度−伸びバランスおよび靱性に優れた高張力鋼板。
[5] 前記鋼板が、さらに質量%でCa:0.005%以下を含有することを特徴とする[1]〜[4]のいずれかに記載の強度−伸びバランスおよび靱性に優れた高張力鋼板。
[6] [1]〜[5]のいずれかに記載の組成を有するスラブを、1000〜1250℃に加熱して熱間圧延し、累積圧下率50%以上で鋼板表面温度Ar以上、900℃以下で熱間圧延を終了し、次いで鋼板平均の冷却速度が4℃/s以上で550℃以下まで冷却することを特徴とする[1]〜[5]のいずれかに記載の強度−伸びバランスおよび靱性に優れた高張力鋼板の製造方法。
[7] 熱間圧延終了後の鋼板を冷却する際、鋼板表層の温度が300℃以上の範囲にあるとき、0.3秒以上の一時的に水冷されない時間を1回あるいは2回以上で合計の非水冷時間が1.5秒以上、15秒以下となるように設け、鋼板平均の冷却速度が4℃/s以上で冷却を行い、鋼板を鋼板平均温度で550℃以下まで冷却することを特徴とする[6]に記載の強度−伸びバランスおよび靱性に優れた高張力鋼板の製造方法。
[8] [1]〜[5]のいずれかに記載の組成を有するスラブを、1000〜1250℃に加熱して熱間圧延し、累積圧下率50%以上で鋼板表面温度がAr以上、900℃以下で熱間圧延を終了し、次いで鋼板表面での噴射流の衝突圧が1MPa以上でデスケーリングを行い、デスケーリング終了後5秒以内に鋼板平均の冷却速度が4℃/s以上で冷却を行い、鋼板を鋼板平均温度で550℃以下まで冷却することを特徴とする[1]〜[5]のいずれかに記載の強度−伸びバランスおよび靱性に優れた高張力鋼板の製造方法。
[9] デスケーリング終了後の鋼板を冷却する際、鋼板表層の温度が300℃以上の範囲にあるとき、0.3秒以上の一時的に水冷されない時間を1回あるいは2回以上で合計の非水冷時間が1.5秒以上、15秒以下となるように設け、鋼板平均の冷却速度が4℃/s以上で冷却を行い、鋼板を鋼板平均温度で550℃以下まで冷却することを特徴とする[8]に記載の強度−伸びバランスおよび靱性に優れた高張力鋼板の製造方法。
[10] 前記冷却後に、さらに、500℃以上、700℃以下の温度で焼戻し処理を施すことを特徴とする[6]〜[9]のいずれかに記載の強度−伸びバランスおよび靱性に優れた高張力鋼板の製造方法。
The present invention has been completed based on the above findings.
That is, the gist of the present invention is as follows.
[1] By mass%, C: 0.03 to 0.12%, Si: 0.10 to 0.45%, Mn: 0.5 to 2.0%, Al: 0.005 to 0.1% And N: 0.0005 to 0.005%, the balance is composed of Fe and inevitable impurities, and the metal structure is a structure mainly composed of bainite, 2 mm from the front and back surfaces of the steel plate in the thickness direction. The microstructure of the region is composed of martensite and bainite whose structure fraction is less than 30%, and the difference between the maximum value and the minimum value in the distribution in the sheet width direction of the hardness of the steel sheet surface layer is 45 HV or less in terms of Vickers hardness, A high-tensile steel plate excellent in strength-elongation balance and toughness characterized by having a surface scale thickness of 5 μm or less and a tensile strength of 550 MPa or more.
[2] The high-tensile steel plate excellent in strength-elongation balance and toughness according to [1], wherein the concentration of Si in the scale on the surface of the steel plate is 4% by mass or less.
[3] The steel sheet is further mass%, Cu: 0.8% or less, Ni: 2% or less, Cr: 1% or less, Mo: 0.8% or less, Nb: 0.05% or less, V: It is excellent in the strength-elongation balance and toughness according to [1] or [2], characterized by containing one or more selected from 0.1% or less and Ti: 0.025% or less High tensile steel plate.
[4] The strength-elongation balance and toughness according to any one of [1] to [3], wherein the steel sheet further contains B: 0.0003 to 0.002% by mass%. Excellent high strength steel plate.
[5] The steel sheet further contains Ca: 0.005% or less by mass%. High tensile strength excellent in strength-elongation balance and toughness according to any one of [1] to [4] steel sheet.
[6] The slab having the composition according to any one of [1] to [5] is heated to 1000 to 1250 ° C. and hot-rolled, and the steel sheet surface temperature Ar is 3 or more and 900 or more with a cumulative reduction of 50% or more. The strength-elongation according to any one of [1] to [5], wherein the hot rolling is finished at a temperature of ℃ or less, and then the cooling rate of the steel sheet average is 4 ℃ / s or more to 550 ℃ or less. A method for producing a high-strength steel sheet excellent in balance and toughness.
[7] When cooling the steel sheet after the hot rolling is completed, when the temperature of the steel sheet surface layer is in the range of 300 ° C. or higher, the time during which water is not temporarily cooled for 0.3 seconds or more is added once or twice or more. The non-water cooling time is set to 1.5 seconds or more and 15 seconds or less, cooling is performed at an average cooling rate of the steel plate of 4 ° C./s or more, and the steel plate is cooled to an average temperature of the steel plate of 550 ° C. or less. The method for producing a high-tensile steel sheet excellent in strength-elongation balance and toughness as described in [6].
[8] A slab having the composition described in any one of [1] to [5] is heated to 1000 to 1250 ° C. and hot-rolled, and the steel sheet surface temperature is Ar 3 or more at a cumulative reduction of 50% or more. The hot rolling is finished at 900 ° C. or less, then descaling is performed when the impinging pressure of the jet flow on the steel sheet surface is 1 MPa or more, and within 5 seconds after the descaling is finished, the average cooling rate of the steel plate is 4 ° C./s or more. The method for producing a high-tensile steel plate excellent in strength-elongation balance and toughness according to any one of [1] to [5], wherein the steel plate is cooled to 550 ° C. or less at an average steel plate temperature.
[9] When cooling the steel sheet after descaling is completed, if the temperature of the steel sheet surface layer is in the range of 300 ° C. or higher, the time during which the water is not temporarily cooled for 0.3 seconds or more is once or twice or more. It is provided so that the non-water cooling time is 1.5 seconds or more and 15 seconds or less, the steel sheet is cooled at an average cooling rate of 4 ° C./s or more, and the steel plate is cooled to a steel plate average temperature of 550 ° C. or less. [8] The method for producing a high-tensile steel plate excellent in strength-elongation balance and toughness.
[10] After the cooling, tempering treatment is further performed at a temperature of 500 ° C. or higher and 700 ° C. or lower, which is excellent in strength-elongation balance and toughness according to any one of [6] to [9] Manufacturing method of high-tensile steel plate.

本発明によれば、生産性の低下や製造コストの増大を招くことなしに、550MPa以上の引張強さと強度−伸びバランスおよび靱性に優れ、しかも鋼板内で材質が均一な高張力鋼板を、安定して得ることができる。   According to the present invention, a high-tensile steel plate having excellent tensile strength, strength-elongation balance and toughness of 550 MPa or more, and having a uniform material within the steel plate can be stably produced without causing a decrease in productivity and an increase in manufacturing cost. Can be obtained.

以下、本発明を具体的に説明する。
まず、本発明において、鋼の成分組成を前記の範囲に限定した理由について説明する。なお、組成に関する「%」表示は特に断らない限り質量%を意味するものとする。
・C:0.03〜012%
Cは、高張力鋼板の母材強度の確保に必要な元素であるが、含有量が0.03%に満たないとCu,Ni,Cr,Moなどの焼入性向上元素の多量添加が必要となり、コスト高となるだけでなく、溶接性の劣化を招き、また大入熱溶接が施される場合には、溶接金属へのCの希釈が少なくなり、継手強度の確保が困難となる。一方、C量が0.12%を超えると母材靱性および溶接性の劣化を招き、また溶接継手部靱性の劣化を招くため、C量は0.03〜0.12%の範囲に限定した。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of steel is limited to the above range in the present invention will be described. In addition, unless otherwise indicated, "%" display regarding a composition shall mean the mass%.
・ C: 0.03 to 012%
C is an element necessary to ensure the strength of the base material of the high-tensile steel sheet. However, if the content is less than 0.03%, a large amount of a hardenability improving element such as Cu, Ni, Cr, or Mo is required. Thus, not only the cost is increased, but also the weldability is deteriorated, and when high heat input welding is performed, the dilution of C into the weld metal is reduced, and it is difficult to ensure the joint strength. On the other hand, if the C content exceeds 0.12%, the base metal toughness and weldability deteriorate, and the weld joint toughness deteriorates. Therefore, the C content is limited to a range of 0.03 to 0.12%. .

・Si:0.10〜0.45%
Siは、母材強度および溶接継手強度を確保する上で有用な元素なので、0.10%以上含有させるものとした。しかしながら、Si量が0.45%を超えると、溶接割れ感受性と溶接継手靱性の劣化を招く。そのため、Si量は0.10〜0.45%の範囲に限定した。
・ Si: 0.10 to 0.45%
Since Si is an element useful for ensuring the strength of the base metal and the welded joint, it is included in an amount of 0.10% or more. However, if the amount of Si exceeds 0.45%, the weld cracking sensitivity and weld joint toughness are deteriorated. Therefore, the amount of Si is limited to the range of 0.10 to 0.45%.

・Mn:0.5〜2.0%
Mnは、母材強度および溶接継手強度を確保する上で有用なので、0.5%以上含有させるものとした。しかしながら、Mn量が2.0%を超えると溶接割れ感受性が劣化するだけでなく、必要以上の焼入性をもたらし母材靱性および継手靱性を劣化させる。そのため、Mn量は0.5〜2.0%の範囲に限定した。
・ Mn: 0.5-2.0%
Mn is useful for ensuring the strength of the base metal and the welded joint, so it is included in an amount of 0.5% or more. However, if the amount of Mn exceeds 2.0%, not only the weld cracking susceptibility is deteriorated, but also hardenability more than necessary is brought about and the base metal toughness and joint toughness are deteriorated. Therefore, the amount of Mn is limited to a range of 0.5 to 2.0%.

・Al:0.005〜0.1%
Alは、鋼の脱酸剤として有用であるので、0.005%以上含有させる。また、結晶粒の微細化による母材靱性確保のためには0.01%以上の添加が好適である。しかしながら、Al量が0.1%を超えると母材靱性を損なうので、Alは0.005〜0.1%の範囲で含有させるものとした。
-Al: 0.005-0.1%
Since Al is useful as a deoxidizer for steel, 0.005% or more is contained. In addition, addition of 0.01% or more is suitable for securing the toughness of the base material by refining crystal grains. However, if the Al content exceeds 0.1%, the toughness of the base metal is impaired. Therefore, Al is contained in the range of 0.005 to 0.1%.

・N:0.0005〜0.005%
Nは、AlやNbなどと反応し析出物を形成することで結晶粒を微細化し、母材靱性を向上させる効果がある。しかしながら、含有量が0.0005%未満では結晶粒の微細化および強度確保に必要な析出物が形成されず、一方0.005%を超えるとむしろ母材および大入熱溶接継手の靱性を損なうので、Nは0.0005〜0.005%の範囲で含有させるものとした。
・ N: 0.0005-0.005%
N reacts with Al, Nb, and the like to form precipitates and thereby has the effect of refining crystal grains and improving the base material toughness. However, if the content is less than 0.0005%, precipitates necessary for refining the crystal grains and securing the strength are not formed. On the other hand, if the content exceeds 0.005%, the toughness of the base metal and the high heat input welded joint is impaired. Therefore, N is contained in the range of 0.0005 to 0.005%.

以上、基本成分について説明したが、本発明では、その他にも、Cu,Ni,Cr,Mo,Nb,V,Ti,BおよびCaのうちから選んだ一種または二種以上を、以下の範囲で適宜含有させることができる。
・Cu:0.8%以下、Ni:2%以下、Cr:1%以下、Mo:0.8%以下、Nb:
0.05%以下、V:0.1%以下
本発明鋼において、特に板厚が厚い場合や引張強さ600MPa級以上の高張力鋼板を得る場合、耐候性を必要とする場合には、Cu,Ni,Cr,Mo,NbおよびVのうちから選んだ少なくとも一種を添加することが有利である。
この場合、Cu,Ni,Cr,Moについては、いずれも多量の添加は高コストとなり、また、溶接性を低下させるため、それぞれ、Cuについては上限を0.8%、Crについては上限を1%、Niについては上限を2%、Moについては上限を0.8%とした。
またNbは、母材強度確保に有効であるが、多量の添加は強化に寄与せず、逆に溶接継手靱性を劣化させることから、添加する場合の上限は0.05%、好ましくは0.03%である。さらに、Vは、母材強度と溶接継手強度を確保する上で有効に作用するが、0.1%を超える添加は溶接割れ感受性を劣化させるので、上限を0.1%とした。
Although the basic components have been described above, in the present invention, one or more selected from Cu, Ni, Cr, Mo, Nb, V, Ti, B, and Ca are also included in the following ranges. It can be contained as appropriate.
Cu: 0.8% or less, Ni: 2% or less, Cr: 1% or less, Mo: 0.8% or less, Nb:
0.05% or less, V: 0.1% or less In the steel of the present invention, in particular, when the plate thickness is thick, or when obtaining a high-tensile steel plate with a tensile strength of 600 MPa or more, when weather resistance is required, Cu It is advantageous to add at least one selected from Ni, Cr, Mo, Nb and V.
In this case, for Cu, Ni, Cr, and Mo, the addition of a large amount is expensive, and the weldability is lowered. Therefore, the upper limit is 0.8% for Cu and the upper limit is 1 for Cr, respectively. For% and Ni, the upper limit was 2%, and for Mo, the upper limit was 0.8%.
Nb is effective in securing the strength of the base metal, but addition of a large amount does not contribute to strengthening and conversely deteriorates the toughness of the welded joint. Therefore, the upper limit when added is 0.05%, preferably 0.00. 03%. Furthermore, V acts effectively in securing the base metal strength and weld joint strength, but addition exceeding 0.1% degrades the weld crack sensitivity, so the upper limit was made 0.1%.

・Ti:0.025%以下、B:0.0003〜0.002%
Tiは、ミクロ組織の細粒化およびB添加鋼の場合には焼入性に有効なBを確保するために添加するが、0.025%を超える添加は母材靱性を損ねることから、Ti量は0.025%以下とした。また、Bは、ごく微量の添加で焼入性を高める効果が得られるが、過剰に添加するとBNを形成し逆に焼入性の低下を招き、また溶接熱影響部が著しく硬化するため、0.0003〜0.002%の範囲に限定した。
Ti: 0.025% or less, B: 0.0003-0.002%
Ti is added in order to reduce the microstructure and to ensure B effective in hardenability in the case of B-added steel, but addition exceeding 0.025% impairs the toughness of the base metal. The amount was set to 0.025% or less. In addition, B has an effect of improving hardenability by adding a very small amount, but if added excessively, BN is formed and conversely the hardenability is lowered, and the weld heat affected zone is remarkably hardened. It was limited to the range of 0.0003 to 0.002%.

・Ca:0.005%以下
Caは、靱性を劣化させるMnSの析出形態を変化させて、その悪影響を緩和する作用があるが、過剰の添加は焼入性の低下を招くため、上限は0.005%とした。
-Ca: 0.005% or less Ca has the effect of changing the precipitation form of MnS, which deteriorates toughness, and mitigating its adverse effects. However, excessive addition causes a decrease in hardenability, so the upper limit is 0. 0.005%.

残部は、Feおよび不可避的不純物である。
ここに、不可避的不純物としては、P,Sなどが考えられるが、健全な母材および溶接継手を得るためには、いずれも0.015%以下に抑制することが望ましい。
なお、本発明の効果を損なわない範囲であれば、上記以外の成分の含有、たとえば、靱性改善を目的として、0.0050%以下のMg及び/または0.02%以下のREM(希土類金属)の含有、を拒むものではない。
The balance is Fe and inevitable impurities.
Here, P, S, etc. are conceivable as inevitable impurities, but in order to obtain a sound base material and a welded joint, it is desirable to suppress both to 0.015% or less.
In addition, if it is a range which does not impair the effect of this invention, 0.0050% or less of Mg and / or 0.02% or less of REM (rare earth metal) are included for the purpose of inclusion of components other than the above, for example, toughness improvement. It does not refuse to contain.

次に、本発明において、金属組織や鋼板表面のスケール厚等を前記のように限定した理由について説明する。
(金属組織について)
引張強さ550MPa以上の高強度化を図るために、本発明の高張力鋼板では、金属組織はベイナイト主体の組織とする。特に鋼板の表裏面から板厚方向に2mm以内の鋼板表層部にマルテンサイトが生成すると硬さが上昇し、鋼板内の表層硬さのばらつきが増大し、伸び低下の原因となるため、鋼板表層のマルテンサイトの体積分率は30%未満とする。ベイナイトとマルテンサイト以外の金属組織(フェライト、パーライト、島状マルテンサイト、残留オーステナイトなど)を含む場合、強度低下や靱性の低下、また表層硬さを上昇させるが、微量であれば影響は小さいため、ベイナイトとマルテンサイト以外の金属組織の合計が5%以下の体積分率であれば、1種または2種以上を含有してもよい。
なお、鋼板表層部(表裏面から板厚方向に2mm以内の領域)以外の金属組織は上述のようにベイナイト主体の組織とするが、ベイナイト以外の組織(フェライト、パーライト、島状マルテンサイトなど)が体積分率で25%を超えると所定の引張強さが得られなくなることから、ベイナイト以外の組織は25%以下とする。
Next, the reason why the metal structure, the scale thickness of the steel sheet surface, and the like are limited as described above in the present invention will be described.
(About metal structure)
In order to increase the strength of a tensile strength of 550 MPa or more, in the high-tensile steel sheet of the present invention, the metal structure is a structure mainly composed of bainite. In particular, when martensite is generated in the steel sheet surface layer within 2 mm from the front and back surfaces of the steel sheet, the hardness increases, and the dispersion of the surface hardness in the steel sheet increases and causes a decrease in elongation. The volume fraction of martensite is less than 30%. If it contains a metal structure other than bainite and martensite (ferrite, pearlite, island martensite, retained austenite, etc.), it will reduce strength, toughness, and surface hardness. If the total volume of metal structures other than bainite and martensite is 5% or less, one or more kinds may be contained.
In addition, the metal structure other than the steel plate surface layer portion (region within 2 mm from the front and back surfaces in the plate thickness direction) is a bainite-based structure as described above, but the structure other than bainite (ferrite, pearlite, island martensite, etc.) When the volume fraction exceeds 25%, a predetermined tensile strength cannot be obtained, so the structure other than bainite is made 25% or less.

(スケールについて)
・スケール厚さ:5μm以下
鋼板表面のスケール厚さは5μm以下とする。高冷却速度の制御冷却を行う場合、冷却停止温度のばらつきは低減されて鋼板形状は改善されるが、スケール厚さが大きいほど、表層部の冷却速度が増大し、表層硬さが上昇する。スケール厚さが5μmを超える場合、表層部の冷却速度増大により、マルテンサイトや島状マルテンサイト(MA)等の硬質相が生成して、表層硬さが上昇するとともに表層硬さのばらつきも大きくなる。よって、表層の硬さおよびそのばらつきを抑制するために、鋼板表面のスケール厚さは、5μm以下とする。好ましくは、4μm以下である。
(About scale)
-Scale thickness: 5 μm or less The scale thickness of the steel sheet surface is 5 μm or less. When performing controlled cooling at a high cooling rate, the variation in the cooling stop temperature is reduced and the steel plate shape is improved. However, as the scale thickness is increased, the cooling rate of the surface layer portion is increased and the surface layer hardness is increased. When the scale thickness exceeds 5 μm, a hard phase such as martensite and island-like martensite (MA) is generated due to an increase in the cooling rate of the surface layer portion, and the surface layer hardness increases and the variation in the surface layer hardness is large. Become. Therefore, in order to suppress the hardness of the surface layer and its variation, the scale thickness of the steel sheet surface is set to 5 μm or less. Preferably, it is 4 μm or less.

・鋼板表層の硬さの板幅方向分布における硬さの最大値と最小値の差:45HV以下
板幅方向の硬さのばらつきをビッカース硬さで45HV以下とする。鋼板の強度や伸び、成形性などの観点から、鋼板内の硬さのばらつき抑制が要求される。板幅方向の硬さのばらつきがビッカース硬さで45HVを超えた場合は、上記特性に悪影響を及ぼす。例えば、板幅方向の硬さ分布が45HVを超えた場合は、成形時に硬い部分と軟らかい部分で変形の仕方に差が生じて所望の形状が得られなかったり、小板に切断した場合にそれぞれの小板で強度や伸びが異なったりする。鋼板内の材質均一性の観点から、板厚方向の硬さのばらつきがビッカース硬さで45HV以下とするが、板幅方向の硬さのばらつきがビッカース硬さで35HV以下であることがより好ましい。
-Difference between the maximum and minimum hardness values in the sheet width direction distribution of the steel sheet surface layer: 45 HV or less The variation in hardness in the sheet width direction is set to 45 HV or less in terms of Vickers hardness. From the viewpoint of strength, elongation, formability, and the like of the steel sheet, it is required to suppress variation in hardness within the steel sheet. When the variation in hardness in the plate width direction exceeds 45 HV in terms of Vickers hardness, the above characteristics are adversely affected. For example, if the hardness distribution in the plate width direction exceeds 45 HV, there will be a difference in the way of deformation between the hard part and the soft part during molding, and the desired shape will not be obtained, or if it is cut into small plates, respectively The strength and elongation of the small plates are different. From the viewpoint of material uniformity in the steel sheet, the variation in hardness in the thickness direction is 45 HV or less in terms of Vickers hardness, but the variation in hardness in the sheet width direction is more preferably 35 HV or less in terms of Vickers hardness. .

・スケール中のSi濃度:4%以下
鋼板からスケールへのSiの濃化が進み、スケール中のSi濃度が高い場合、部分的に地鉄との密着性が高まり、圧延時のデスケーリングや圧延によるスケールの剥離にむらが生じるため、制御冷却時の冷却速度にばらつきが生じ、表層硬さのばらつきの原因となる。したがって、スケール中のSi濃度は4%以下とするが、3%以下とすることがより好ましい。
-Si concentration in the scale: 4% or less When the concentration of Si from the steel plate to the scale progresses, and the Si concentration in the scale is high, the adhesion with the base iron partially increases, and descaling and rolling during rolling As a result, unevenness of scale peeling occurs due to variability in the cooling rate during controlled cooling, which causes variations in surface hardness. Therefore, the Si concentration in the scale is 4% or less, but more preferably 3% or less.

なお、本発明では、対象とする鋼板の板厚が10mm以上の場合が多い。その理由は次のとおりである。
すなわち、引張強さが550MPa以上の構造用鋼として一般に必要とされる鋼材を対象としているが、この種の鋼材は板厚は10mm以上が多いためである。もちろん本発明は板厚10mm未満の厚鋼板にも適用して構わない。
In the present invention, the thickness of the target steel plate is often 10 mm or more. The reason is as follows.
That is, although steel materials generally required as structural steel having a tensile strength of 550 MPa or more are targeted, this type of steel material has a plate thickness of 10 mm or more. Of course, the present invention may be applied to a thick steel plate having a thickness of less than 10 mm.

次に、本発明の製造方法について説明する。
前記した成分組成になる溶鋼を、転炉や電気炉等の公知の炉を用いて溶製した後、連続鋳造法や造塊−分塊法でスラブとする。スラブは、以下に記載するように、熱間圧延加工が施される。
(熱間圧延について)
・スラブ加熱温度:1000〜1250℃
スラブ(鋼素材)の加熱は、鋼中の成分を均一化とMo,Nb,Vなどの析出強化元素を固溶させるために少なくとも1000℃を確保する必要があるが、加熱温度があまりに高くなると、結晶粒が粗大化し板厚中心においてはマイクロボイドの発生を助長することに加え、母材の靱性劣化を招くため、1000〜1250℃の範囲に限定した。好ましくは1200℃以下である。
Next, the manufacturing method of this invention is demonstrated.
The molten steel having the above-described component composition is melted using a known furnace such as a converter or an electric furnace, and then formed into a slab by a continuous casting method or an ingot-bundling method. The slab is hot rolled as described below.
(About hot rolling)
-Slab heating temperature: 1000-1250 ° C
The heating of the slab (steel material) needs to secure at least 1000 ° C. in order to homogenize the components in the steel and dissolve precipitation strengthening elements such as Mo, Nb, V, etc. If the heating temperature becomes too high In addition to the fact that the crystal grains become coarse and promotes the generation of microvoids at the center of the plate thickness, the toughness of the base material is deteriorated, so the range is limited to 1000 to 1250 ° C. Preferably it is 1200 degrees C or less.

・熱間圧延における累積圧下率:50%以上
熱間圧延によりオーステナイト粒の微細化を図ると共に、後工程での冷却(加速冷却)により、ベイナイト変態の促進およびフェライト粒の微細化を図るためには、熱間圧延における累積圧下率を50%以上とする必要がある。また、母材の靱性を向上させ、より安定に確保する観点からは、1000℃以下900℃以上の温度域で20%以上の累積圧下を付与することが望ましい。これにより、オーステナイト(γ)粒の再結晶に伴って組織が細粒化し、母材の靱性を向上かつ安定化させる。これと同じ効果の面からは、各圧延パス毎の圧下量を5%以上、好ましくは10%以上とすることが望ましい。
・ Cumulative rolling reduction in hot rolling: 50% or more In order to refine austenite grains by hot rolling and to promote bainite transformation and refine ferrite grains by cooling (accelerated cooling) in the subsequent process Requires a cumulative rolling reduction in hot rolling of 50% or more. Further, from the viewpoint of improving the toughness of the base material and ensuring more stability, it is desirable to apply a cumulative reduction of 20% or more in a temperature range of 1000 ° C. or lower and 900 ° C. or higher. Thereby, a structure | tissue refines | miniaturizes with recrystallization of austenite ((gamma)) grain, and the toughness of a base material is improved and stabilized. From the aspect of the same effect, it is desirable that the reduction amount for each rolling pass is 5% or more, preferably 10% or more.

・熱間圧延終了時の鋼板表面温度:Ar以上、900℃以下
表層のフェライト析出を抑制する上で、最も重要な制御項目である。熱間圧延をAr変態点よりもより低い温度で終了すると、初析フェライトを加工することになり、転位を含む加工フェライトが生成するので、圧延終了時における鋼板表面温度はAr以上とする。一方、圧延終了温度がAr以上であれば加工フェライトの生成は抑制できるものの、高温すぎると結晶粒が粗大化し、靱性の低下や伸びの低下を招く。よって、圧延終了時における鋼板表面温度は900℃以下とする。
Steel sheet surface temperature at the end of hot rolling: Ar 3 or more and 900 ° C. or less This is the most important control item for suppressing ferrite precipitation on the surface layer. When hot rolling is finished at a temperature lower than the Ar 3 transformation point, pro-eutectoid ferrite is processed, and processed ferrite containing dislocations is generated, so that the steel sheet surface temperature at the end of rolling is Ar 3 or higher. . On the other hand, if the rolling end temperature is Ar 3 or more, the formation of processed ferrite can be suppressed, but if the temperature is too high, the crystal grains become coarse, leading to a decrease in toughness and a decrease in elongation. Therefore, the steel sheet surface temperature at the end of rolling is set to 900 ° C. or less.

なお、Ar点は、例えば、次に示す関係式を用いて算出することができる。
Ar(℃)=910−310[%C]−80[%Mn]−20[%Cu]−
15[%Cr]−55[%Ni]−80[%Mo]
但し、[%M]は、M元素の含有量(質量%)を表す。
The Ar 3 points can be calculated using, for example, the following relational expression.
Ar 3 (° C.) = 910-310 [% C] −80 [% Mn] −20 [% Cu] —
15 [% Cr] -55 [% Ni] -80 [% Mo]
However, [% M] represents the content (mass%) of the M element.

(熱間圧延後の冷却について)
・熱間圧延後の鋼板平均の冷却速度:4℃/s以上
熱間圧延後の鋼板平均の冷却速度は4℃/s以上とする。これは、冷却速度が4℃/sに満たないと、冷却途中に一部にフェライトが生成し、強度低下するためである。
(About cooling after hot rolling)
-Average cooling rate of steel sheet after hot rolling: 4 ° C / s or more The average cooling rate of steel plate after hot rolling is 4 ° C / s or more. This is because if the cooling rate is less than 4 ° C./s, ferrite is partially generated during cooling and the strength is lowered.

・熱間圧延後の冷却の停止温度:鋼板平均温度で550℃以下
熱間圧延後の冷却の停止温度が550℃超では、ベイナイト変態が十分進行しないため、高張力鋼板としての強度を確保するのが困難となるだけでなく、粗大なパーライト組織が生成し、延性が低下する。ベイナイト主体の組織とするために、冷却停止温度は鋼板平均温度で550℃以下の範囲とする。冷却停止温度の下限温度の規定はないが、冷却停止温度が400℃以下の場合には、後述の焼戻し処理を行うことが望ましい。なお、加速冷却終了後は、後述の焼戻し処理を実施する場合を除き、空冷することが望ましい。
・ Cooling stop temperature after hot rolling: 550 ° C. or less at the average temperature of the steel sheet If the cooling stop temperature after hot rolling exceeds 550 ° C., the bainite transformation does not proceed sufficiently, so the strength as a high-tensile steel plate is secured. Not only is this difficult, but a coarse pearlite structure is formed, and ductility is reduced. In order to obtain a bainite-based structure, the cooling stop temperature is in the range of 550 ° C. or less in terms of the steel sheet average temperature. Although there is no regulation of the lower limit temperature of the cooling stop temperature, when the cooling stop temperature is 400 ° C. or lower, it is desirable to perform a tempering process described later. In addition, it is desirable to air-cool after completion | finish of accelerated cooling except the case where the below-mentioned tempering process is implemented.

ここで、冷却時の温度を板厚方向の平均温度で規定した理由は、鋼板の板厚が大きい場合や冷却速度が速い場合には、板厚方向の各部位で温度履歴が異なってしまい、基準が明確でなくなることを防ぐために、鋼材の全体的な材質として最も良く関係する平均温度を基準としたのである。
なお、平均温度は、板厚、表面温度および冷却条件等が与えられた場合に、シミュレーション計算等により求められるものを用いることができる。例えば、差分法を用い、板厚方向の温度分布を平均化することにより得られた温度を平均温度とすることができる。
Here, the reason for prescribing the temperature during cooling by the average temperature in the plate thickness direction is that when the plate thickness of the steel plate is large or the cooling rate is fast, the temperature history is different in each part in the plate thickness direction, In order to prevent the standard from becoming unclear, the average temperature, which is the most relevant to the overall quality of the steel, was used as the standard.
As the average temperature, a value obtained by simulation calculation or the like when a plate thickness, a surface temperature, a cooling condition, or the like is given can be used. For example, the temperature obtained by averaging the temperature distribution in the plate thickness direction using the difference method can be used as the average temperature.

本発明では、熱間圧延後の加速冷却過程において非冷却時間を設けることにより、生産性を低下させることなく、経済性に優れ、強度−伸びバランスおよび靱性に優れた高張力鋼板を製造することもできる。
この製造方法によれば、熱間圧延後の加速冷却過程において非冷却時間を設けることにより、表裏層に比べ高温である板厚内部からの熱により表裏層は復熱し、これにより表裏層のみの硬さが低下する。その際、鋼板の中央部に近くなるほど、非冷却時間を設けることによる復熱の影響は小さく、鋼板の中央部およびその周辺では、冷却熱履歴の変化は小さく、冷却速度の低下はほとんど無いかあるいはごく僅かに抑えることができるため、硬さはほとんど低下しない。従って、全厚としての強度を大きく低下させることなく、また、熱間圧延後の冷却に要する時間は変わらないため、生産性を低下させることなく、加工性に優れた高張力鋼板を製造することができる。
復熱により到達する表面温度は、Acを超えない温度とする。Acを超えると部分的にオーステナイトへ変態するため、その後の冷却過程でマルテンサイトや島状マルテンサイト(MA)等の硬質層が生成して、表層硬さが上昇するとともに、表層硬さのばらつきも大きくなる。よって、非冷却時間を設けることにより復熱させる表面温度はAc以下とする。
In the present invention, by providing a non-cooling time in the accelerated cooling process after hot rolling, it is possible to produce a high-tensile steel plate that is excellent in economic efficiency and excellent in strength-elongation balance and toughness without reducing productivity. You can also.
According to this manufacturing method, by providing a non-cooling time in the accelerated cooling process after hot rolling, the front and back layers are reheated by heat from the inside of the plate thickness, which is higher than that of the front and back layers. Hardness decreases. At that time, the closer to the center of the steel plate, the smaller the effect of recuperation by providing a non-cooling time. At the center of the steel plate and its surroundings, the change in cooling heat history is small and there is almost no decrease in cooling rate. Or since it can suppress very slightly, hardness hardly falls. Therefore, since the time required for cooling after hot rolling does not change without greatly reducing the strength as a total thickness, a high-tensile steel sheet with excellent workability can be manufactured without reducing productivity. Can do.
The surface temperature reached by recuperation is a temperature that does not exceed Ac 1 . When it exceeds Ac 1 , it partially transforms into austenite, so that a hard layer such as martensite or island martensite (MA) is generated in the subsequent cooling process, and the surface hardness is increased. Variations also increase. Therefore, the surface temperature to be reheated by providing the non-cooling time is set to Ac 1 or less.

水冷されない時間は、0.3秒より短い場合、表層の復熱が十分でなく、期待する効果が得られないため、0.3秒以上、好ましくは0.8秒以上とする。
また、非水冷時間の長さと回数は製品板厚、サイズ、強度レベルに応じて設定することができる。しかし、合計の非冷却時間が短すぎる場合、表層が復熱される時間が十分でなく、期待する効果が得られず、また、長過ぎると、板厚中心部およびその周辺の冷却速度が低下することにより、通常の連続冷却を行う製造方法に比べ強度が低下することに加え、生産性の低下を招くことになる。従って、合計の非水冷時間は1.5秒以上、15秒以下、好ましくは3秒以上、13秒以下とする。
非水冷時間を設ける温度は、鋼板の温度が低い場合は表裏層の復熱が小さくなり、期待される効果が十分得られないため、鋼板の表面温度が300℃以上とする。
When the time during which the water is not cooled is shorter than 0.3 seconds, the surface layer is not sufficiently reheated and the expected effect cannot be obtained. Therefore, the time is not longer than 0.3 seconds, preferably not less than 0.8 seconds.
Further, the length and number of times of non-water cooling can be set according to the product sheet thickness, size, and strength level. However, if the total non-cooling time is too short, the time for which the surface layer is reheated is not sufficient, and the expected effect cannot be obtained, and if it is too long, the cooling rate at the central portion of the plate thickness and its surroundings decreases. As a result, the strength is lowered as compared with a production method in which normal continuous cooling is performed, and productivity is lowered. Therefore, the total non-water cooling time is 1.5 seconds or more and 15 seconds or less, preferably 3 seconds or more and 13 seconds or less.
The temperature at which the non-water cooling time is provided is such that when the temperature of the steel sheet is low, the recuperation of the front and back layers becomes small and the expected effect cannot be obtained sufficiently.

(デスケーリングについて)
・熱間圧延後のデスケーリング
さらに上記製造方法に加えて、熱間圧延後の冷却の直前に高衝突圧のデスケーリングを行うことが望ましい。圧延後の鋼板においては、圧延前および圧延中のデスケーリング等によりスケールが除去されている。しかし、複数回の冷却中に鋼板表面が復熱により高温状態にある時間が長くなると、再びスケールの厚みが増加する。スケール厚みが大きくなると、部分的にスケールの剥離が生じることがある。スケール厚みにばらつきがあるとその厚みに応じて鋼板表面の冷却速度も変化してしまい、その冷却速度に応じて鋼板表面の硬度も変化してしまう。その対策として、熱間圧延後の冷却の直前にデスケーリングを行うことによりスケール厚みを、スケール生成により冷却速度に大きな差が生じない程度に薄くすることができる。
(About descaling)
-Descaling after hot rolling Further, in addition to the above manufacturing method, it is desirable to perform descaling of high impact pressure immediately before cooling after hot rolling. In the steel sheet after rolling, the scale is removed by descaling before rolling and during rolling. However, if the time during which the steel sheet surface is in a high temperature state due to recuperation becomes longer during a plurality of times of cooling, the thickness of the scale increases again. When the scale thickness is increased, the scale may be partially peeled off. If the scale thickness varies, the cooling rate of the steel sheet surface changes according to the thickness, and the hardness of the steel sheet surface also changes according to the cooling rate. As a countermeasure, the scale thickness can be reduced by performing descaling immediately before cooling after hot rolling to such an extent that a large difference in cooling rate does not occur due to scale generation.

本発明では、熱間圧延後の制御冷却の直前に鋼板表面での噴射流の衝突圧が1MPa以上でデスケーリングを行い、その後5秒以内に制御冷却を行うことが望ましい。
鋼板表面での噴射流の衝突圧が1MPa未満では、デスケーリングが不十分でスケールむらが生じる場合があり、表層硬さのばらつきが生じるため、噴射流の衝突圧は1MPa以上とする。また、1MPa以上とすることでSi濃度の高いスケールが除去できる。デスケーリングは高圧水を用いて行うが、鋼板表面での噴射流の衝突圧が1MPa以上であれば、他の噴射流を用いても構わない。
デスケーリング後、5秒を超えてから制御冷却を開始する場合、スケールが成長して
Siが濃化したり、硬さのばらつきが大きくなったりするため、デスケーリングから制御冷却までの時間を5秒以内とする。
In the present invention, it is desirable to perform descaling when the impinging pressure of the jet flow on the steel sheet surface is 1 MPa or more immediately before the controlled cooling after hot rolling, and then perform the controlled cooling within 5 seconds.
If the collision pressure of the jet flow on the surface of the steel sheet is less than 1 MPa, the descaling may be insufficient and unevenness in scale may occur, resulting in variations in surface hardness. Therefore, the collision pressure of the jet flow is set to 1 MPa or more. Moreover, the scale with high Si concentration can be removed by setting it as 1 Mpa or more. Descaling is performed using high-pressure water, but other jet streams may be used as long as the collision pressure of the jet stream on the steel sheet surface is 1 MPa or more.
When control cooling is started after 5 seconds after descaling, the scale grows and Si concentrates or the variation in hardness increases, so the time from descaling to control cooling is 5 seconds. Within.

(焼戻し処理について)
・焼戻し温度:500℃以上、700℃以下
冷却停止温度が400℃以下の場合はとくに焼戻し処理が有効である。焼戻し温度は、目標の強度となる適正な温度とする必要があるが、500℃未満では焼戻しによる靱性回復などの効果が十分でなく、一方700℃を超えると強度が大幅に低下するおそれがあるだけでなく、炭化物の粗大化により靱性が低下する。従って、焼戻し処理における加熱温度は、500℃以上、700℃以下とする。
なお、焼戻し処理に誘導加熱を用いることも可能であり、それにより、生産性が向上する。
(About tempering treatment)
Tempering temperature: 500 ° C. or higher and 700 ° C. or lower Tempering treatment is particularly effective when the cooling stop temperature is 400 ° C. or lower. The tempering temperature needs to be an appropriate temperature for the target strength, but if it is less than 500 ° C., the effect such as toughness recovery by tempering is not sufficient, while if it exceeds 700 ° C., the strength may be greatly reduced. In addition, the toughness decreases due to coarsening of the carbide. Therefore, the heating temperature in the tempering process is set to 500 ° C. or more and 700 ° C. or less.
In addition, it is also possible to use induction heating for the tempering process, thereby improving productivity.

表1に示す成分組成になる鋼を溶製し、鋼塊を作製したのち、表2に示す製造条件にて所定の板厚に熱間圧延後、同じく表2に示す種々の条件で供試鋼板を製造した。
鋼番A〜Fは成分組成が本発明の適正範囲を満足する適合鋼であり、鋼番G〜Jは成分組成が本発明の適正範囲外の比較鋼である。
The steel having the composition shown in Table 1 was melted to produce a steel ingot, and after hot rolling to a predetermined plate thickness under the manufacturing conditions shown in Table 2, the test was conducted under various conditions shown in Table 2 as well. A steel plate was produced.
Steel numbers A to F are compatible steels whose component compositions satisfy the proper range of the present invention, and steel numbers G to J are comparative steels whose component compositions are outside the proper range of the present invention.

Figure 2013147733
Figure 2013147733

表層部の金属組織の分率は、3%ナイタールで腐食したサンプルの表層直下から0.3mm間隔で400倍の光学顕微鏡写真を5枚撮影し、画像解析によりベイナイトとマルテンサイトの組織分率を算出した。
腐食していないサンプルを400倍の光学顕微鏡で10視野観察し、その平均のスケール厚を測定し、同視野の地鉄とスケール界面を中心にEPMAによるSiの面分析を行い、その最大濃度を求めた。
The fraction of the metallographic structure of the surface layer part was obtained by taking five 400% optical micrographs at 0.3 mm intervals from directly below the surface layer of the sample corroded with 3% nital, and analyzing the structural fraction of bainite and martensite by image analysis. Calculated.
Observe 10 samples of non-corroded sample with a 400x optical microscope, measure the average scale thickness, and perform surface analysis of Si by EPMA centering on the iron and scale interface of the same field. Asked.

母材の機械的性質の評価として、JIS 5号引張試験片を用いた全厚引張試験、ビッカース硬さによる幅方向の硬さばらつきは表層下1mm位置の硬さで評価した。また、1/2t位置でのシャルピー衝撃試験を行った。伸びはTSと相関関係があることから、伸びの評価としてTS×El(全伸び)の値を用い、この値が大きいほど、強度−伸びバランス(TS×El)が優れると評価した。TS×Elは、板厚12mmで20000MPa・%、板厚30mm以上で26000MPa・%以上を、またvTsは、−40℃以下を目標値とした。   As an evaluation of the mechanical properties of the base material, the full thickness tensile test using a JIS No. 5 tensile test piece, and the hardness variation in the width direction due to the Vickers hardness were evaluated by the hardness at the 1 mm position below the surface layer. In addition, a Charpy impact test at a 1/2 t position was performed. Since elongation has a correlation with TS, the value of TS × El (total elongation) was used as an evaluation of elongation, and the greater this value, the better the strength-elongation balance (TS × El). The target value of TS × El was 20000 MPa ·% when the plate thickness was 12 mm, 26000 MPa ·% or more when the plate thickness was 30 mm or more, and vTs was −40 ° C. or less.

各供試鋼のミクロ組織および機械的性質について調べた結果を、表2示す。
No.1、3、4、6、7、8、10、13、14、15、20、22、23、25は発明例であり、No.2、5、9、11、12、16、17、18、19、21、24は比較例である。
なお、No.20〜25では、熱間圧延後の冷却過程において非冷却時間が設けられている。
Table 2 shows the results of examining the microstructure and mechanical properties of each test steel.
No. 1, 3, 4, 6, 7, 8, 10, 13, 14, 15, 20, 22, 23, 25 are examples of the invention. 2, 5, 9, 11, 12, 16, 17, 18, 19, 21, 24 are comparative examples.
In addition, No. In 20-25, the non-cooling time is provided in the cooling process after hot rolling.

Figure 2013147733
Figure 2013147733

本発明に従い得られた発明例はいずれも、引張り強さが550MPa以上、表面のスケール厚さが5μm以下、鋼板表層の硬さの板幅方向分布における硬さの最大値と最小値の差ΔHVが45HV以下であり、vTsが−40℃以下、TS×Elが板厚12mmでは20000MPa・%以上、板厚30mm以上では26000MPa・%以上という優れた特性が得られている。   In all of the inventive examples obtained according to the present invention, the tensile strength is 550 MPa or more, the surface scale thickness is 5 μm or less, and the difference ΔHV between the maximum value and the minimum value of the hardness of the steel sheet surface layer in the plate width direction. Is excellent, such that VTs is −40 ° C. or less, TS × E1 is 20,000 MPa ·% or more when the plate thickness is 12 mm, and 26000 MPa ·% or more when the plate thickness is 30 mm or more.

No.2は、冷却停止温度が適正温度範囲より高いため、必要な引張強さが得られていない。
No.5は、スケールの厚さが本発明の範囲外であり、硬さのばらつき(ΔHV)が大きく、伸びが低いため、強度−伸びバランス(TS×El)が劣っている。
No.9、21は、表層部のマルテンサイト分率、スケールの厚さが本発明の範囲外であり、硬さのばらつきが大きく、伸びも低いため、強度−伸びバランス(TS×El)が劣っている。
No.11は、表面の圧延終了温度が適正温度範囲より低いため、表層組織にフェライトが生成しており、Siの濃度が本発明の範囲外であり、伸びが低いため、強度−伸びバランス(TS×El)が劣っている。
No.12は、表面の圧延終了温度が適正温度範囲より高いため、硬さのばらつき(ΔHV)が大きく、靭性も低下している。
No.16〜19は、成分組成が本発明の適正範囲外のため、本発明の特性を満足しない。
No.24は、水冷されない時間の合計が17.0秒と長いために、強度・靭性が大幅に低下し、目標の引張強さ、およびvTsを満足しない。
No. No. 2 has a required cooling strength because the cooling stop temperature is higher than the appropriate temperature range.
No. No. 5 is inferior in strength-elongation balance (TS × El) because the thickness of the scale is outside the range of the present invention, the hardness variation (ΔHV) is large, and the elongation is low.
No. 9 and 21, the martensite fraction of the surface layer part and the thickness of the scale are outside the scope of the present invention, the hardness varies greatly, and the elongation is low, so the strength-elongation balance (TS × El) is inferior. Yes.
No. No. 11, since the rolling end temperature of the surface is lower than the appropriate temperature range, ferrite is generated in the surface layer structure, the Si concentration is outside the range of the present invention, and the elongation is low, so the strength-elongation balance (TS × El) is inferior.
No. No. 12, since the rolling end temperature of the surface is higher than the appropriate temperature range, the hardness variation (ΔHV) is large and the toughness is also lowered.
No. Nos. 16 to 19 do not satisfy the characteristics of the present invention because the component composition is outside the proper range of the present invention.
No. In No. 24, the total time during which water cooling is not carried out is as long as 17.0 seconds, so the strength and toughness are greatly reduced, and the target tensile strength and vTs are not satisfied.

Claims (10)

質量%で、C:0.03〜0.12%、Si:0.10〜0.45%、Mn:0.5〜2.0%、Al:0.005〜0.1%およびN:0.0005〜0.005%を含有し、残部はFeおよび不可避的不純物の組成からなり、金属組織がベイナイトを主体とする組織であって、鋼板の表裏面から板厚方向に2mmの領域のミクロ組織が組織分率で30%未満のマルテンサイトとベイナイトからなり、鋼板表層の硬さの板幅方向分布における硬さの最大値と最小値の差がビッカース硬さで45HV以下、表面のスケール厚さが5μm以下であり、引張強さが550MPa以上であることを特徴とする強度−伸びバランスおよび靱性に優れた高張力鋼板。   In mass%, C: 0.03-0.12%, Si: 0.10-0.45%, Mn: 0.5-2.0%, Al: 0.005-0.1% and N: 0.0005% to 0.005% is contained, the balance is composed of Fe and inevitable impurities, the metal structure is a structure mainly composed of bainite, and the region is 2 mm from the front and back surfaces of the steel plate in the thickness direction. The microstructure is composed of martensite and bainite with a structural fraction of less than 30%, and the difference between the maximum and minimum hardness values in the sheet width direction distribution of the steel sheet surface layer is 45 HV or less in terms of Vickers hardness. A high-tensile steel sheet excellent in strength-elongation balance and toughness characterized by having a thickness of 5 μm or less and a tensile strength of 550 MPa or more. 前記鋼板の表面のスケール中のSiの濃度が質量%で4%以下であることを特徴とする請求項1に記載の強度−伸びバランスおよび靱性に優れた高張力鋼板。   The high-strength steel sheet excellent in strength-elongation balance and toughness according to claim 1, wherein the concentration of Si in the scale on the surface of the steel sheet is 4% or less by mass%. 前記鋼板が、さらに質量%で、Cu:0.8%以下、Ni:2%以下、Cr:1%以下、Mo:0.8%以下、Nb:0.05%以下、V:0.1%以下およびTi:0.025%以下のうちから選んだ一種または二種以上を含有することを特徴とする請求項1または2に記載の強度−伸びバランスおよび靱性に優れた高張力鋼板。   The steel sheet is further in mass%, Cu: 0.8% or less, Ni: 2% or less, Cr: 1% or less, Mo: 0.8% or less, Nb: 0.05% or less, V: 0.1 % Or less and Ti: 0.025% or less, one or two or more kinds selected from the group consisting of 0.025% or less, and the high-tensile steel plate excellent in strength-elongation balance and toughness according to claim 1 or 2. 前記鋼板が、さらに質量%で、B:0.0003〜0.002%を含有することを特徴とする請求項1〜3のいずれか一項に記載の強度−伸びバランスおよび靱性に優れた高張力鋼板。   The steel sheet further contains, in mass%, B: 0.0003 to 0.002%, and high in strength-elongation balance and toughness according to any one of claims 1 to 3. Tensile steel plate. 前記鋼板が、さらに質量%でCa:0.005%以下を含有することを特徴とする請求項1〜4のいずれか一項に記載の強度−伸びバランスおよび靱性に優れた高張力鋼板。   The said steel plate contains Ca: 0.005% or less further by the mass%, The high tension steel plate excellent in the strength-elongation balance and toughness as described in any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜5のいずれか一項に記載の組成を有するスラブを、1000〜1250℃に加熱して熱間圧延し、累積圧下率50%以上で鋼板表面温度Ar以上、900℃以下で熱間圧延を終了し、次いで鋼板平均の冷却速度が4℃/s以上で550℃以下まで冷却することを特徴とする請求項1〜5のいずれか一項に記載の強度−伸びバランスおよび靱性に優れた高張力鋼板の製造方法。 The slab having the composition according to any one of claims 1 to 5 is heated to 1000 to 1250 ° C and hot-rolled, and the steel sheet surface temperature Ar is 3 to 900 ° C with a cumulative rolling reduction of 50% or more. The strength-elongation balance and toughness according to any one of claims 1 to 5, wherein the hot rolling is finished, and then the average cooling rate of the steel sheet is cooled to 4 ° C / s or more and 550 ° C or less. For producing high-strength steel sheets with excellent resistance. 熱間圧延終了後の鋼板を冷却する際、鋼板表層の温度が300℃以上の範囲にあるとき、0.3秒以上の一時的に水冷されない時間を1回あるいは2回以上で合計の非水冷時間が1.5秒以上、15秒以下となるように設け、鋼板平均の冷却速度が4℃/s以上で冷却を行い、鋼板を鋼板平均温度で550℃以下まで冷却することを特徴とする請求項6に記載の強度−伸びバランスおよび靱性に優れた高張力鋼板の製造方法。   When cooling the steel sheet after the hot rolling is completed, if the temperature of the steel sheet surface layer is in the range of 300 ° C. or higher, the total non-water cooling is performed once or twice or more for 0.3 seconds or more when it is not temporarily cooled with water. It is provided so that the time is 1.5 seconds or more and 15 seconds or less, and the steel sheet is cooled at an average cooling rate of 4 ° C./s or more, and the steel plate is cooled to a steel plate average temperature of 550 ° C. or less. The manufacturing method of the high-tensile steel plate excellent in the strength-elongation balance and toughness according to claim 6. 請求項1〜5のいずれか一項に記載の組成を有するスラブを、1000〜1250℃に加熱して熱間圧延し、累積圧下率50%以上で鋼板表面温度がAr以上、900℃以下で熱間圧延を終了し、次いで鋼板表面での噴射流の衝突圧が1MPa以上でデスケーリングを行い、デスケーリング終了後5秒以内に鋼板平均の冷却速度が4℃/s以上で冷却を行い、鋼板を鋼板平均温度で550℃以下まで冷却することを特徴とする請求項1〜5のいずれか一項に記載の強度−伸びバランスおよび靱性に優れた高張力鋼板の製造方法。 The slab having the composition according to any one of claims 1 to 5 is heated to 1000 to 1250 ° C and hot-rolled, and the steel sheet surface temperature is Ar 3 or more and 900 ° C or less with a cumulative rolling reduction of 50% or more. After the hot rolling is completed, descaling is performed when the impinging pressure of the jet flow on the steel sheet surface is 1 MPa or more, and cooling is performed at an average cooling rate of 4 ° C / s or more within 5 seconds after the descaling is completed. The method for producing a high-tensile steel sheet excellent in strength-elongation balance and toughness according to any one of claims 1 to 5, wherein the steel sheet is cooled to 550 ° C or less at an average temperature of the steel sheet. デスケーリング終了後の鋼板を冷却する際、鋼板表層の温度が300℃以上の範囲にあるとき、0.3秒以上の一時的に水冷されない時間を1回あるいは2回以上で合計の非水冷時間が1.5秒以上、15秒以下となるように設け、鋼板平均の冷却速度が4℃/s以上で冷却を行い、鋼板を鋼板平均温度で550℃以下まで冷却することを特徴とする請求項8に記載の強度−伸びバランスおよび靱性に優れた高張力鋼板の製造方法。   When cooling the steel sheet after descaling is completed, if the temperature of the steel sheet surface layer is in the range of 300 ° C. or higher, the total non-water cooling time is 0.3 or more seconds, which is not temporarily cooled with water once or twice or more. Is set to be 1.5 seconds or more and 15 seconds or less, cooling is performed at an average steel plate cooling rate of 4 ° C./s or more, and the steel plate is cooled to an average steel plate temperature of 550 ° C. or less. Item 9. A method for producing a high-tensile steel sheet excellent in strength-elongation balance and toughness according to Item 8. 前記冷却後に、さらに、500℃以上、700℃以下の温度で焼戻し処理を施すことを特徴とする請求項6〜9のいずれか一項に記載の強度−伸びバランスおよび靱性に優れた高張力鋼板の製造方法。
The high-tensile steel sheet excellent in strength-elongation balance and toughness according to any one of claims 6 to 9, further comprising a tempering treatment at a temperature of 500 ° C or higher and 700 ° C or lower after the cooling. Manufacturing method.
JP2012232895A 2011-12-21 2012-10-22 High strength steel plate with excellent strength-elongation balance and method for producing the same Active JP6094139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012232895A JP6094139B2 (en) 2011-12-21 2012-10-22 High strength steel plate with excellent strength-elongation balance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011279869 2011-12-21
JP2011279869 2011-12-21
JP2012232895A JP6094139B2 (en) 2011-12-21 2012-10-22 High strength steel plate with excellent strength-elongation balance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013147733A true JP2013147733A (en) 2013-08-01
JP6094139B2 JP6094139B2 (en) 2017-03-15

Family

ID=49045524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012232895A Active JP6094139B2 (en) 2011-12-21 2012-10-22 High strength steel plate with excellent strength-elongation balance and method for producing the same

Country Status (1)

Country Link
JP (1) JP6094139B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508776A (en) * 2017-12-24 2021-03-11 ポスコPosco Structural steel with excellent brittle crack propagation resistance and its manufacturing method
JP2021509144A (en) * 2017-12-26 2021-03-18 ポスコPosco Structural high-strength steel with excellent fatigue crack propagation suppression characteristics and its manufacturing method
JP2022513269A (en) * 2018-12-19 2022-02-07 ポスコ Structural steel with excellent brittle fracture resistance and its manufacturing method
CN114875321A (en) * 2022-05-06 2022-08-09 鞍钢股份有限公司 Steel plate for supporting evaporator of advanced nuclear power unit and manufacturing method thereof
CN115667561A (en) * 2020-05-28 2023-01-31 杰富意钢铁株式会社 Wear-resistant steel sheet and method for producing wear-resistant steel sheet

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480230A (en) * 1977-12-12 1979-06-26 Nippon Kokan Kk <Nkk> Manufacture of refined steel with above 60 kg/mm2 strength
JPS59177325A (en) * 1983-03-28 1984-10-08 Nippon Steel Corp Manufacture of hot rolled bainitic steel plate with high strength
JPH07256331A (en) * 1994-03-22 1995-10-09 Kawasaki Steel Corp Method for cooling thick plate
JPH0957327A (en) * 1995-08-22 1997-03-04 Sumitomo Metal Ind Ltd Scale removal method of steel plate
JPH10113713A (en) * 1996-10-09 1998-05-06 Kobe Steel Ltd Production of steel plate of controlled cooling
JPH10291023A (en) * 1997-04-16 1998-11-04 Nippon Steel Corp Descaling method for manufacturing steel sheet with thin scale
JP2002266048A (en) * 2001-03-08 2002-09-18 Kobe Steel Ltd High tensile strength thick steel plate having excellent weldability and uniform elongation
EP1375694A1 (en) * 2002-06-19 2004-01-02 Rautaruukki OYJ Hot-rolled steel strip and method for manufacturing the same
JP2005298962A (en) * 2004-03-16 2005-10-27 Jfe Steel Kk Method for manufacturing high-strength steel plate superior in workability
JP2006265577A (en) * 2005-03-22 2006-10-05 Jfe Steel Kk Method for producing high strength, high toughness steel sheet
JP2007039795A (en) * 2005-06-29 2007-02-15 Jfe Steel Kk Method for producing high strength steel having excellent fatigue crack propagation resistance and toughness
WO2009145328A1 (en) * 2008-05-26 2009-12-03 新日本製鐵株式会社 High-strength hot-rolled steel sheet for line pipe excellent in low-temperature toughness and ductile-fracture-stopping performance and process for producing the same
JP2010174342A (en) * 2009-01-30 2010-08-12 Jfe Steel Corp Thick and high tension hot-rolled steel plate excellent in low temperature toughness, and producing method therefor
US20100258219A1 (en) * 2007-12-04 2010-10-14 Posco High-Strength Steel Sheet with Excellent Low Temperature Toughness and Manufacturing Method Thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480230A (en) * 1977-12-12 1979-06-26 Nippon Kokan Kk <Nkk> Manufacture of refined steel with above 60 kg/mm2 strength
JPS59177325A (en) * 1983-03-28 1984-10-08 Nippon Steel Corp Manufacture of hot rolled bainitic steel plate with high strength
JPH07256331A (en) * 1994-03-22 1995-10-09 Kawasaki Steel Corp Method for cooling thick plate
JPH0957327A (en) * 1995-08-22 1997-03-04 Sumitomo Metal Ind Ltd Scale removal method of steel plate
JPH10113713A (en) * 1996-10-09 1998-05-06 Kobe Steel Ltd Production of steel plate of controlled cooling
JPH10291023A (en) * 1997-04-16 1998-11-04 Nippon Steel Corp Descaling method for manufacturing steel sheet with thin scale
JP2002266048A (en) * 2001-03-08 2002-09-18 Kobe Steel Ltd High tensile strength thick steel plate having excellent weldability and uniform elongation
EP1375694A1 (en) * 2002-06-19 2004-01-02 Rautaruukki OYJ Hot-rolled steel strip and method for manufacturing the same
JP2005298962A (en) * 2004-03-16 2005-10-27 Jfe Steel Kk Method for manufacturing high-strength steel plate superior in workability
JP2006265577A (en) * 2005-03-22 2006-10-05 Jfe Steel Kk Method for producing high strength, high toughness steel sheet
JP2007039795A (en) * 2005-06-29 2007-02-15 Jfe Steel Kk Method for producing high strength steel having excellent fatigue crack propagation resistance and toughness
US20100258219A1 (en) * 2007-12-04 2010-10-14 Posco High-Strength Steel Sheet with Excellent Low Temperature Toughness and Manufacturing Method Thereof
WO2009145328A1 (en) * 2008-05-26 2009-12-03 新日本製鐵株式会社 High-strength hot-rolled steel sheet for line pipe excellent in low-temperature toughness and ductile-fracture-stopping performance and process for producing the same
JP2010174342A (en) * 2009-01-30 2010-08-12 Jfe Steel Corp Thick and high tension hot-rolled steel plate excellent in low temperature toughness, and producing method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508776A (en) * 2017-12-24 2021-03-11 ポスコPosco Structural steel with excellent brittle crack propagation resistance and its manufacturing method
JP7082204B2 (en) 2017-12-24 2022-06-07 ポスコ Structural steel with excellent brittle crack propagation resistance and its manufacturing method
US11572600B2 (en) 2017-12-24 2023-02-07 Posco Co., Ltd Structural steel having excellent brittle crack propagation resistance, and manufacturing method therefor
JP2021509144A (en) * 2017-12-26 2021-03-18 ポスコPosco Structural high-strength steel with excellent fatigue crack propagation suppression characteristics and its manufacturing method
JP7096338B2 (en) 2017-12-26 2022-07-05 ポスコ Structural high-strength steel with excellent fatigue crack propagation suppression characteristics and its manufacturing method
US11591677B2 (en) 2017-12-26 2023-02-28 Posco Co., Ltd High-strength structural steel material having excellent fatigue crack propagation inhibitory characteristics and manufacturing method therefor
JP2022513269A (en) * 2018-12-19 2022-02-07 ポスコ Structural steel with excellent brittle fracture resistance and its manufacturing method
JP7348947B2 (en) 2018-12-19 2023-09-21 ポスコ カンパニー リミテッド Structural steel material with excellent brittle fracture resistance and its manufacturing method
CN115667561A (en) * 2020-05-28 2023-01-31 杰富意钢铁株式会社 Wear-resistant steel sheet and method for producing wear-resistant steel sheet
CN114875321A (en) * 2022-05-06 2022-08-09 鞍钢股份有限公司 Steel plate for supporting evaporator of advanced nuclear power unit and manufacturing method thereof
CN114875321B (en) * 2022-05-06 2023-01-17 鞍钢股份有限公司 Steel plate for supporting evaporator of advanced nuclear power unit and manufacturing method thereof

Also Published As

Publication number Publication date
JP6094139B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
KR102269845B1 (en) Hot-rolled steel sheet and its manufacturing method
KR101492753B1 (en) High strength hot rolled steel sheet having excellent fatigue resistance and method for manufacturing the same
JP5365216B2 (en) High-strength steel sheet and its manufacturing method
JP5487682B2 (en) High-toughness high-tensile steel plate with excellent strength-elongation balance and method for producing the same
JP5487683B2 (en) High-toughness high-tensile steel plate with excellent strength-elongation balance and method for producing the same
JP5573265B2 (en) High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same
JP6303782B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP4858221B2 (en) High-tensile steel with excellent ductile crack initiation characteristics
JP6725020B2 (en) Valve plate and method for manufacturing valve plate
JP2013091845A (en) High-tensile steel plate giving welding heat-affected zone with excellent low-temperature toughness, and method for producing the same
JP2012012623A (en) High-strength steel sheet superior in processability and method for manufacturing the same
JP6252291B2 (en) Steel sheet and manufacturing method thereof
JP6094139B2 (en) High strength steel plate with excellent strength-elongation balance and method for producing the same
JP2020510749A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature and method for producing the same
JP2012072472A (en) Steel sheet for high strength steel pipe having high toughness and high deformability, and method for producing the same
JP2022548144A (en) High-strength extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method
JP2016183387A (en) Thick steel plate for low temperature and production method therefor
JP5082475B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance
JP2015190008A (en) Non-heat treated low yield ratio high tensile thick steel sheet excellent in weld heat-affected zone toughness and production method therefor
JP5439889B2 (en) Thick steel plate for thick and high toughness steel pipe material and method for producing the same
JP2008208406A (en) Steel material having small material anisotropy and excellent fatigue crack propagation properties, and producing method therefor
JP2006283126A (en) High-strength and high-toughness bainitic non-heat-treated steel sheet with small acoustic anisotropy
JP3737300B2 (en) Non-tempered low yield ratio high tensile strength steel plate with excellent weldability
JP6684905B2 (en) High-strength cold-rolled steel sheet excellent in shear workability and method for producing the same
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170130

R150 Certificate of patent or registration of utility model

Ref document number: 6094139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250