JP2005270982A - Method for controlling cooling of material to be rolled in hot rolling - Google Patents

Method for controlling cooling of material to be rolled in hot rolling Download PDF

Info

Publication number
JP2005270982A
JP2005270982A JP2004083460A JP2004083460A JP2005270982A JP 2005270982 A JP2005270982 A JP 2005270982A JP 2004083460 A JP2004083460 A JP 2004083460A JP 2004083460 A JP2004083460 A JP 2004083460A JP 2005270982 A JP2005270982 A JP 2005270982A
Authority
JP
Japan
Prior art keywords
rolled
rolling
temperature
tip
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004083460A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sakurai
康広 桜井
Original Assignee
Jfe Steel Kk
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Kk, Jfeスチール株式会社 filed Critical Jfe Steel Kk
Priority to JP2004083460A priority Critical patent/JP2005270982A/en
Publication of JP2005270982A publication Critical patent/JP2005270982A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent uniform mechanical properties from being not given over the entire length and width of a metallic plate product and to prevent a material to be rolled (rolling stock) from cracking due to local excessive cooling, because supplied cooling water remains in some places of the rolling stock in a part with a worsened tip end shape so as to cause unevenness of cooling and fluctuation of winding temperature in the length and width directions of the rolling stock, in hot rolling in which a heated rolling stock is rolled, cooled and wound. <P>SOLUTION: In the method for controlling cooling of the material to be rolled in the hot rolling in which the heated material to be rolled is rolled, cooled and wound, the tip end shape of the rolling stock is measured after completion of the rolling so as to feed forward to the control of the winding temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱間圧延における被圧延材の冷却制御方法に関する。ここで、熱間圧延における被圧延材の冷却制御は、巻き取る前の被圧延材の温度すなわち巻取温度(CT:Coiling Temperature)を、被圧延材の材質と要求される機械的性質から決まる所望範囲に制御することで行われる。   The present invention relates to a cooling control method for a material to be rolled in hot rolling. Here, the cooling control of the material to be rolled in hot rolling is determined based on the material of the material to be rolled and the required mechanical properties, that is, the temperature of the material to be rolled before winding, that is, the coiling temperature (CT). This is done by controlling to a desired range.
例えば、帯鋼に代表される金属板(金属帯を含む)は、金属塊(スラブ)を数百から千数百℃の高温に加熱し、上下一対のロールで挟圧しつつ、その一対のロールを回転させることで薄く延ばすことにより製造される。   For example, a metal plate represented by a steel strip (including a metal strip) is a pair of rolls of metal lump (slab) heated to a high temperature of several hundred to several hundreds of degrees C and sandwiched between a pair of upper and lower rolls. It is manufactured by extending thinly by rotating.
熱間圧延ラインの例をいくつか図7乃至図11に示すが、図7に示す(a)半連続と呼ばれるタイプのほか、図8に示す(b)3/4連続と呼ばれるタイプのものが多い。一方、図示しないが、粗圧延機が5基以上もある完全連続と呼ばれるものもある。近年では、図9に示す如く、3/4連続の形を踏襲しながらも、圧延途中の金属材料の先端と尾端を互いに接合する、(c)熱間エンドレス圧延ライン、と呼ばれるタイプのものも登場してきている。このほか、図10に示す(d)ステッケルミル、と呼ばれるタイプのものや、図11に示す(e)ヌーコアタイプと呼ばれるものもある。   Several examples of the hot rolling line are shown in FIGS. 7 to 11. In addition to the type called (a) semi-continuous shown in FIG. 7, there is a type called (b) 3/4 continuous shown in FIG. Many. On the other hand, although not shown, there is also what is called complete continuous in which there are five or more rough rolling mills. In recent years, as shown in FIG. 9, (c) a type called a hot endless rolling line in which the tip and tail ends of a metal material in the middle of rolling are joined to each other while following a 3/4 continuous shape. Has also appeared. In addition, there is a type called (d) Steckel mill shown in FIG. 10 and a type called (e) Nucore type shown in FIG.
図7乃至図11中、1は加熱炉、2は粗圧延機、3はクロップシャー、4はデスケーリング装置、5は仕上圧延機、6は冷却ゾーン、7はコイラー(巻取装置)、9はメジャーリングロールである。各設備間には図示しない多数のテーブルローラがあり、これにより被圧延金属材(以下単に被圧延材と称する)8は搬送される。   7 to 11, 1 is a heating furnace, 2 is a roughing mill, 3 is a crop shear, 4 is a descaling device, 5 is a finishing mill, 6 is a cooling zone, 7 is a coiler (winding device), 9 Is a measuring roll. Between each facility, there are a large number of table rollers (not shown), whereby the metal material 8 (hereinafter simply referred to as the material to be rolled) 8 is conveyed.
粗圧延機2、仕上圧延機5は複数あるので、それぞれRougher、Finisherの頭文字を取り、各スタンドのナンバーを付与して、R1、R2、R3、F1、F2、…、F7等と略称される。コイラー7も同様に複数あって、号機ナンバーを付与して、DC1、DC2等と略称される。   Since there are a plurality of rough rolling mills 2 and finish rolling mills 5, the initials of Rougher and Finisher are taken, the numbers of the respective stands are given, and abbreviated as R1, R2, R3, F1, F2,. The Similarly, there are a plurality of coilers 7, which are abbreviated as DC1, DC2, etc., with unit numbers assigned.
(a)半連続と呼ばれるタイプでは、粗圧延機2による粗圧延は、熱間圧延ライン上流側から下流側に被圧延材8を搬送しつつ1パス圧延し、被圧延材8を搬送停止し、今度は下流側から上流側に被圧延材8を搬送しつつ1パス圧延する、という一連の動作を繰り返す、リバース圧延と呼ばれる往復圧延方式により行われる。粗圧延終了後の被圧延材8は、順次、仕上圧延機5で仕上圧延され、冷却ゾーン6で冷却され、コイラー7で巻き取られる。   (A) In the type called semi-continuous, the rough rolling by the rough rolling mill 2 performs one-pass rolling while transporting the material 8 from the upstream side to the downstream side of the hot rolling line, and stops conveying the material 8. This time, it is carried out by a reciprocating rolling method called reverse rolling, which repeats a series of operations of carrying out the one-pass rolling while conveying the material to be rolled 8 from the downstream side to the upstream side. The material to be rolled 8 after the completion of the rough rolling is sequentially finished and rolled by the finish rolling mill 5, cooled in the cooling zone 6, and taken up by the coiler 7.
(b)3/4連続と呼ばれるタイプでは、粗圧延機2が複数、例えば、多くの場合4機あり、そのうち一部、例えば、多くの場合1機が往復圧延し、残る圧延機が一方向圧延する。4機中3機が一方向圧延するタイプに限らず、例えば3機中2機が一方向圧延するタイプのものも含め、3/4連続という。   (B) In a type called 3/4 continuous, there are a plurality of rough rolling mills 2, for example, in many cases four, some of which, for example, in many cases one is reciprocating, and the remaining rolling mill is in one direction. Roll. It is not limited to the type in which 3 out of 4 machines are unidirectionally rolled.
(c)完全連続と呼ばれるタイプでは、5基以上もある各粗圧延機が、各1パス一方向圧延する。   (C) In a type called complete continuous, each rough rolling mill having 5 or more rolls performs one-pass unidirectional rolling.
(a)半連続と呼ばれるタイプや、(b)3/4連続と呼ばれるタイプ、あるいは(c)完全連続と呼ばれるタイプでは、仕上圧延機5で被圧延材8の先端を噛み込み、圧延し、尾端を圧延し終わり、という動作を断続的に繰り返す熱間圧延を行う。このような圧延方式のことを、特に、バッチ圧延と称している。   In the type called (a) semi-continuous, the type called (b) 3/4 continuous, or the type called (c) full continuous, the finish rolling mill 5 bites the tip of the material 8 to be rolled, and rolls. Hot rolling is performed in which the operation of rolling the tail end is repeated intermittently. Such a rolling method is particularly referred to as batch rolling.
先にも述べた通り、近年では、圧延途中の金属材料の先端と尾端を互いに接合する、(d)熱間エンドレス圧延ライン、と呼ばれるタイプのものも登場してきている。これは、(b)3/4連続の形を踏襲しながらも、最下流粗圧延機と仕上圧延機の間に、先行被圧延材の尾端と後行被圧延材の先端を接合する接合装置35を設置し、仕上圧延機5とコイラー7の間に、先行被圧延材と後行被圧延材を切断して別々に巻き取るための切断装置71を設置する。   As described above, in recent years, a type called a (d) hot endless rolling line that joins the tip and tail ends of a metal material in the middle of rolling has also appeared. This is (b) a joint that joins the tail end of the preceding rolled material and the tip of the subsequent rolled material between the most downstream roughing mill and the finishing mill while following the 3/4 continuous shape. A device 35 is installed, and a cutting device 71 is installed between the finishing mill 5 and the coiler 7 for cutting the preceding rolled material and the subsequent rolled material and winding them separately.
圧延途中の金属材料の先端と尾端を互いに接合し、連続的に仕上圧延することをエンドレス圧延と称しており、先述のバッチ圧延と区別している。   Joining the tip and tail ends of a metal material in the middle of rolling and continuously finish rolling is called endless rolling, which is distinguished from the batch rolling described above.
この(d)熱間エンドレス圧延ラインは、先行被圧延材の尾端と後行被圧延材の先端を接合するために、接合装置35のほかにコイルボックス25、接合用クロップシャー31を設置する。そして接合し連続的に仕上圧延した後の被圧延材を切断する切断装置71を設置する。あるいは更に、バリ取り装置36、シートバーヒータ37、エッジヒータ38、接合部冷却装置39、高速通板装置72等を適宜設置してもよい。   This (d) hot endless rolling line is provided with a coil box 25 and a joining crop shear 31 in addition to the joining device 35 in order to join the tail end of the preceding rolled material and the tip of the following rolled material. . And the cutting apparatus 71 which cut | disconnects the to-be-rolled material after joining and carrying out finish rolling continuously is installed. Alternatively, a deburring device 36, a sheet bar heater 37, an edge heater 38, a joint cooling device 39, a high-speed plate device 72, and the like may be installed as appropriate.
(e)ステッケルミルと呼ばれるタイプのものは、仕上圧延機5が1基しかなく、これで、上流側から下流側に被圧延材を搬送しつつ1パス圧延し、被圧延材を搬送停止し、今度は下流側から上流側に被圧延材を搬送しつつ1パス圧延する、という一連の動作を繰り返す。被圧延材の温度降下による硬質化を避けるため、1パス圧延した被圧延材をファーネスコイラー40で巻き取り、該ファーネスコイラー40内で加熱する仕組になっている。   (E) The type called the stickel mill has only one finish rolling mill 5, which performs one-pass rolling while conveying the material to be rolled from the upstream side to the downstream side, and stops conveying the material to be rolled, This time, a series of operations are repeated in which the material to be rolled is conveyed from the downstream side to the upstream side for one pass rolling. In order to avoid hardening due to a temperature drop of the material to be rolled, the material to be rolled after one pass is wound up by the furnace coiler 40 and heated in the furnace coiler 40.
図11に示した(f)ヌーコアタイプと呼ばれるものは、被圧延材8をスラブ連続鋳造設備50で直接鋳造して加熱炉1に供給している。   In what is called (f) Nucore type shown in FIG. 11, the material to be rolled 8 is directly cast by the slab continuous casting equipment 50 and supplied to the heating furnace 1.
ところで、圧延された被圧延材は、巻取装置(7)により巻き取られ、コイル状に巻かれた金属板製品となるが、製品に要求される機械的性質を満足するために巻取温度が設定されており、巻取温度の制御には、被圧延材の全長、全幅にわたり、可及的に均一な機械的性質を得るために、被圧延材の長手方向および幅方向の巻取温度を可及的に均一にすることが求められる。   By the way, the rolled material to be rolled is wound up by a winding device (7) to become a metal plate product wound in a coil shape, but in order to satisfy the mechanical properties required for the product, the winding temperature In order to control the coiling temperature, the coiling temperature in the longitudinal and width directions of the material to be rolled is obtained in order to obtain as uniform mechanical properties as possible over the entire length and width of the material to be rolled. Is required to be as uniform as possible.
このような要求に応えるものとして、熱延鋼板の最先端部から定常部に至る間の非定常部における指令目標巻取温度に、目標板厚、最先端から定常部までの距離などからなるモデル式で表される先端部の巻取温度補正量を加算して補正する制御方法が特許文献1に提案されている。   In order to meet these requirements, a model consisting of the target target coiling temperature in the unsteady part between the most advanced part and the steady part of the hot-rolled steel sheet, the target plate thickness, the distance from the most advanced part to the steady part, etc. Patent Document 1 proposes a control method for correcting by adding up the winding temperature correction amount of the tip portion expressed by the equation.
また、寸法精度不良の観点から、熱間仕上圧延後の熱延鋼板の表面粗度をRa表示で1.0〜1.5μm程度に調整することにより、巻取温度の均一化を図ろうとする方法が、特許文献2に示されている。   Further, from the viewpoint of poor dimensional accuracy, the surface roughness of the hot rolled steel sheet after hot finish rolling is adjusted to about 1.0 to 1.5 μm in Ra display, thereby attempting to make the coiling temperature uniform. A method is shown in US Pat.
更に、熱延鋼板の巻取温度を均一にするために、先端の過冷却量を予測して巻取温度の被圧延材長手方向の目標パターンを設定し、冷却水量を被圧延材長手方向に変化させる方法が特許文献3に記載され、圧延時に被圧延材の速度変動があった場合でもフィードバック制御により適正に巻取温度を制御する方法が特許文献4に記載されている。   Furthermore, in order to make the coiling temperature of the hot-rolled steel sheet uniform, the amount of cooling water is set in the longitudinal direction of the material to be rolled by predicting the amount of supercooling at the tip and setting a target pattern in the longitudinal direction of the material to be rolled. A method of changing is described in Patent Document 3, and a method of appropriately controlling the coiling temperature by feedback control is described in Patent Document 4 even when the speed of the material to be rolled varies during rolling.
特開平6−71321号公報JP-A-6-71321 特許第3238569号公報Japanese Patent No. 3,238,569 特開2003−25008号公報JP 2003-25008 A 特開2003−48012号公報JP 2003-48012 A
しかしながら、特許文献1に記載の技術はモデル式による補正であって、すべての被圧延材に対して有効であるとは限らない。   However, the technique described in Patent Document 1 is correction based on a model formula, and is not necessarily effective for all materials to be rolled.
又、特許文献2には、先端の非定常部における記述はなされていない。ここで、非定常部とは、先端を最終圧延機(最終パス)で圧延後、まだ平坦度制御が十分に効かない部分、あるいは更に、先端が巻取装置に巻き付くまでの形状の平坦でない部分のことを指す。   Patent Document 2 does not describe the unsteady portion at the tip. Here, the unsteady portion is a portion where the flatness control is not sufficiently effective after rolling the tip with a final rolling mill (final pass), or further, the shape is not flat until the tip is wound around the winding device. Refers to the part.
又、平坦度制御とは、最終圧延機で被圧延材先端の平坦度をセンサで捉えた後に、ベンダーやロールクロスあるいはロールシフトを走間制御して、フィードバック制御することを指す。   The flatness control refers to feedback control by controlling the bender, roll cloth, or roll shift while running after the flatness at the tip of the material to be rolled is captured by a sensor in the final rolling mill.
更に、上述のような巻取温度制御がなされても、圧延後の被圧延材は、圧延時のクラウン・形状制御の今現在の精度の水準から言って、特に先端から巻取装置に噛み込むまでに相当する被圧延材先端の部分(非定常部)について、全く平坦な形状のものにすることは容易ではなく、同部分の形状が悪くなることがあるが、このような形状が悪くなった部分において、その形状の凹凸から、図12に示すように、冷却ゾーン6において被圧延材8の冷却のために供給された冷却水がところどころ被圧延材上で水溜りとなって、被圧延材の長手方向、幅方向の冷却むらを生じ、被圧延材の長手方向、幅方向の巻取温度が変動し、製品金属板全長全幅にわたって均一な機械的性質が得られなくなったり、局所的な過冷却によって被圧延材が割れたりするのを抑制する必要があった。   Furthermore, even if the above-described winding temperature control is performed, the material to be rolled after rolling is bitten into the winding device particularly from the tip, in view of the current level of accuracy of crown and shape control during rolling. It is not easy to make the part (unsteady part) at the tip of the material to be rolled corresponding to a flat shape at all, and the shape of the part may be deteriorated, but such a shape is deteriorated. 12, the cooling water supplied for cooling the material to be rolled 8 in the cooling zone 6 becomes a pool of water on the material to be rolled, as shown in FIG. Uneven cooling in the longitudinal direction and width direction of the material occurs, the winding temperature in the longitudinal direction and width direction of the material to be rolled fluctuates, and uniform mechanical properties over the entire length of the product metal plate cannot be obtained, or localized The material to be rolled breaks due to overcooling. That there was a need to suppress.
本発明は、前記従来の問題点を解決するべくなされたもので、被圧延材の巻取温度を長手方向、幅方向に均一にし、製品金属板全長全幅にわたって均一な機械的性質を得ることを課題としている。   The present invention has been made to solve the above-mentioned conventional problems, and makes the winding temperature of the material to be rolled uniform in the longitudinal direction and the width direction, and obtains uniform mechanical properties over the entire length of the product metal plate. It is an issue.
本発明は、加熱した被圧延材を圧延し、冷却し、巻き取る熱間圧延において、圧延終了後の被圧延材の先端部の形状を測定し、巻取温度制御にフィードフォーワードすることを特徴とする熱間圧延における被圧延材の冷却制御方法により、前記課題を解決したものである。   In the present invention, the hot rolled material is rolled, cooled, and wound up. In hot rolling, the shape of the tip of the rolled material after rolling is measured, and feedforward control is performed for winding temperature control. The above-described problems are solved by the featured cooling control method for a material to be rolled in hot rolling.
本発明によれば、被圧延材の巻取温度を長手方向、幅方向に均一にし、製品金属板全長全幅にわたって均一な機械的性質を得られ、特に、高炭素鋼等の金属板で、仕上圧延終了直後の先端部の形状が平坦でない部分において、冷却水の水溜りが原因と思われる局所的な過冷却部分が割れを起こすのを抑制することが出来る。   According to the present invention, the winding temperature of the material to be rolled can be made uniform in the longitudinal direction and the width direction, and uniform mechanical properties can be obtained over the entire length of the product metal plate, in particular, with a metal plate such as high-carbon steel. In a portion where the shape of the tip portion immediately after the end of rolling is not flat, it is possible to suppress a local supercooled portion that is thought to be caused by a pool of cooling water from cracking.
冷却水により金属板表面を冷却する過程で、冷却水と金属板表面の両者の境界では、沸騰現象が、膜沸騰から遷移沸騰に変化するが、本発明では、そのことを金属板の温度を計算により予測する計算式に反映する。それには、冷却水により金属板表面を冷却する際の熱伝達係数αが、基準となる冷却水の温度Twにおいて、下記式(1)に示すαのように金属板表面温度Tsの関数f(Ts)で与えられるとする。 During the process of cooling the surface of the metal plate with cooling water, the boiling phenomenon changes from film boiling to transition boiling at the boundary between the cooling water and the surface of the metal plate. It is reflected in the calculation formula predicted by calculation. For this purpose, the heat transfer coefficient α at the time of cooling the metal plate surface with cooling water is a function of the metal plate surface temperature Ts as α 0 shown in the following equation (1) at the reference cooling water temperature Tw 0 . Suppose that it is given by f (Ts).
α= f(Ts) …(1) α 0 = f (Ts) (1)
ここで、f(Ts)は、遷移沸騰開始温度以下に金属板表面温度が低下するとともに増大する部分をもつ熱伝達係数を表す関数とする。これは、遷移沸騰開始温度以下に金属板表面温度が低下すると、熱伝達係数が増大することを関数で表したものである。冷却水により冷却する金属板が鋼板の場合を例に取ると、金属板表面温度が550℃から400℃までの領域において、熱伝達係数が、金属板表面温度の低下とともに増大する関数とする。金属板表面温度Tsと、冷却水により金属板表面を冷却する際の熱伝達係数αと、の関係を、金属板が鋼板の場合を例に、模式的に示したものが図1である。   Here, f (Ts) is a function representing a heat transfer coefficient having a portion that increases as the metal plate surface temperature falls below the transition boiling start temperature. This is a function that the heat transfer coefficient increases when the metal plate surface temperature falls below the transition boiling start temperature. Taking the case where the metal plate cooled by the cooling water is a steel plate as an example, in the region where the metal plate surface temperature is from 550 ° C. to 400 ° C., the heat transfer coefficient is a function that increases as the metal plate surface temperature decreases. FIG. 1 schematically shows the relationship between the metal plate surface temperature Ts and the heat transfer coefficient α when the metal plate surface is cooled by cooling water, taking the case where the metal plate is a steel plate as an example.
そして、そのこととは別に、従来から定性的にはよく知られているように、冷却水により金属板表面を冷却する際の熱伝達係数は冷却水の温度Tw(℃)が低くなるほど高くなる。このことを、金属板表面温度Tsと、冷却水により金属板表面を冷却する際の熱伝達係数αと、の関係として、模式的に示すと、図2のようになるが、例えばある基準となる冷却水の温度Twにおける熱伝達係数αに対して、冷却水により金属板表面を冷却する際の熱伝達係数αは、下記(2)式のような計算式で表されることになる。 Apart from that, as is well known qualitatively from the past, the heat transfer coefficient when cooling the metal plate surface with cooling water increases as the cooling water temperature Tw (° C.) decreases. . This is schematically shown in FIG. 2 as the relationship between the metal plate surface temperature Ts and the heat transfer coefficient α when the metal plate surface is cooled by cooling water. In contrast to the heat transfer coefficient α 0 at the cooling water temperature Tw 0, the heat transfer coefficient α when the surface of the metal plate is cooled by the cooling water is expressed by the following equation (2). Become.
α=kα=(1+r(Tw−Tw))α …(2)
ここに、
f(Ts):遷移沸騰開始温度以下に金属板表面温度が低下するとともに増大する部分をもつ熱伝達係数を表す関数
例1:f(Ts)= a + b exp( c Ts )
例2:f(Ts)=erfc(Ts)
Ts:金属板表面温度
Tw:基準となる冷却水の温度
α:基準となる冷却水の温度Twにおける熱伝達係数
Tw:冷却水の温度
:比例定数
をそれぞれ表すものとする。ちなみに冷却水の温度が1℃下がるごとに熱伝達係数が1%上昇する場合は、r=0.01となる。
α = kα 0 = (1 + r 1 (Tw 0 −Tw)) α 0 (2)
here,
f (Ts): function example 1 representing a heat transfer coefficient having a portion that increases as the metal plate surface temperature falls below the transition boiling start temperature 1: f (Ts) = a + b exp (c Ts)
Example 2: f (Ts) = erfc (Ts)
Ts: metal plate surface temperature Tw 0 : reference cooling water temperature α 0 : heat transfer coefficient Tw at reference cooling water temperature Tw 0 : cooling water temperature r 1 : proportionality constant. Incidentally, when the heat transfer coefficient increases by 1% every time the temperature of the cooling water decreases by 1 ° C., r 1 = 0.01.
そして、次の(3)式に従い、金属板の温度Tを予測計算する。   And according to following (3) Formula, the temperature T of a metal plate is estimated and calculated.
T=T-α(Ts- Tw)×t/c …(3)
ここに、
:予測計算前温度
t:経過時間
c:金属板の比熱
をそれぞれ表すものとする。
T = T 0 -α (Ts−Tw) × t / c (3)
here,
T 0 : Pre-prediction calculation temperature t: Elapsed time c: Specific heat of the metal plate.
そして、巻取温度の予測に対する実績の回帰を人手により行い、巻取温度の予測計算結果が実績に合うように、a,b,c,r等の定数を、金属板の品種によって最適化する。 Then, the results of the winding temperature prediction are manually returned, and the constants such as a, b, c, and r 1 are optimized according to the type of the metal plate so that the prediction calculation result of the winding temperature matches the results. To do.
の例でいえば、目標とする巻取り温度が550℃以上の場合には r=0.01 (1℃につき熱伝達係数が1%変化する)とし、巻取り温度が470℃以上550℃未満の場合にはr=0.02 (1℃につき2%変化する)とし、巻取り温度が470℃未満の場合にはr=0.03 (1℃につき3%変化する)とする等してよい。 In the example of r 1 , when the target winding temperature is 550 ° C. or higher, r 1 = 0.01 (the heat transfer coefficient changes by 1% per 1 ° C.), and the winding temperature is 470 ° C. or higher. When it is less than 550 ° C., r 1 = 0.02 (changes by 2% per 1 ° C.), and when the coiling temperature is less than 470 ° C., r 1 = 0.03 (changes by 3% per 1 ° C.) And so on.
以下、本発明を実際の熱間圧延ラインに適用する上での実施の形態の一例を図面に基づいて説明する。   Hereinafter, an example of an embodiment for applying the present invention to an actual hot rolling line will be described with reference to the drawings.
図3は、本発明に係る被圧延材の冷却制御方法が適用される、先述の図8にて説明した3/4連続の熱間圧延ラインの一部を抜き出して拡大した概略構成図である。図3において、熱間圧延ライン100は、被圧延材8の搬送方向上流から下流に向かう順に、加熱炉1、複数の粗圧延機2(R1〜R3)、クロップシャー3、デスケーリング装置4、複数の仕上圧延機5(F1〜F7)、冷却ゾーン6、及びコイラー7を順次配置して構成されている。そして、粗圧延機2の出側には粗出側温度計10が、仕上圧延機5の入側には仕上入側温度計11が、同じく最終F7スタンドには速度計12が、同じく仕上圧延機5の出側には平坦度計13、仕上出側板厚計14及び仕上出側温度計15が、コイラー7の入側には巻取温度計16が、それぞれ設置されている。図において、9は、被圧延材8をトラッキングするためのメジャーリングロール、81は上位計算機、82は計算機、83は制御装置である。   FIG. 3 is a schematic configuration diagram in which a part of the 3/4 continuous hot rolling line described with reference to FIG. 8 described above is extracted and enlarged, to which the method for controlling cooling of the material to be rolled according to the present invention is applied. . In FIG. 3, the hot rolling line 100 includes a heating furnace 1, a plurality of rough rolling mills 2 (R <b> 1 to R <b> 3), a crop shear 3, a descaling device 4, in the order from the transport direction upstream to the downstream of the material 8 to be rolled. A plurality of finishing rolling mills 5 (F1 to F7), a cooling zone 6, and a coiler 7 are sequentially arranged. A roughing side thermometer 10 is provided on the exit side of the roughing mill 2, a finishing input thermometer 11 is provided on the entrance side of the finishing mill 5, a speedometer 12 is also provided on the final F7 stand, and finish rolling is also shown. A flatness meter 13, a finishing delivery thickness gauge 14, and a finishing delivery thermometer 15 are installed on the exit side of the machine 5, and a winding thermometer 16 is installed on the entrance side of the coiler 7. In the figure, 9 is a measuring roll for tracking the material 8 to be rolled, 81 is a host computer, 82 is a computer, and 83 is a control device.
ここで、粗圧延機2で粗圧延された被圧延材8が粗出側温度計10の真下まで搬送されてきて、その先端が粗出側温度計10の真下に到達すると、被圧延材8の先端の温度は粗出側温度計10から計算機82に伝送される。計算機82内では、被圧延材8の先端の温度が所定の閾値以上であるか否かを判断し、前記温度が所定の閾値以上である場合には、被圧延材8の先端が粗出側温度計10の真下に到達したと判定する。そして、計算機82内では、被圧延材8の先端が粗出側温度計10の真下に到達した、と判定したことをトリガー信号として、計算機82よりも上位の上位計算機81から、被圧延材8の長手方向目標CTパターン(CTとは巻取温度:Coiling Tempertureを意味する)を設定し、それを達成するための被圧延材長手方向の注水バンクのスプレーパターン(注水バンクパターン)の計算が起動される。この注水バンクパターンの計算は、同じく上位計算機81から伝送される、被圧延材の長手方向目標FDTパターン(目標FDT。FDTとは仕上圧延機出側温度(仕上圧延後温度ともいう):Finisher Delivery Tempertureを意味する)、前記被圧延材の長手方向目標CTパターン(目標CT)、仕上圧延後の被圧延材厚み、図4に示す被圧延材8のスレッディング速度、及び被圧延材8のトップ速度に基づいて、行なわれる。   Here, when the material to be rolled 8 roughly rolled by the roughing mill 2 is conveyed to just below the roughening side thermometer 10 and the tip thereof reaches directly below the roughening side thermometer 10, the material to be rolled 8 The temperature at the tip of the is transmitted from the roughing side thermometer 10 to the computer 82. In the computer 82, it is determined whether or not the temperature of the tip of the material 8 to be rolled is equal to or higher than a predetermined threshold value. If the temperature is equal to or higher than the threshold value, the tip of the material 8 to be rolled is roughened. It is determined that the temperature has reached directly below the thermometer 10. Then, in the computer 82, the material to be rolled 8 from the host computer 81 higher than the computer 82 is triggered by determining that the tip of the material to be rolled 8 has reached directly below the roughening side thermometer 10. Set the target CT pattern in the longitudinal direction (CT means coiling temperature), and start the calculation of the spray pattern (water injection bank pattern) of the water injection bank in the longitudinal direction of the rolled material to achieve it Is done. This water injection bank pattern calculation is also transmitted from the host computer 81, and the longitudinal target FDT pattern of the material to be rolled (target FDT. FDT is the finish rolling mill exit side temperature (also referred to as post-finishing temperature): Finisher Delivery (Temperture), longitudinal target CT pattern (target CT) of the material to be rolled, thickness of the material after finish rolling, threading speed of the material 8 shown in FIG. 4, and top speed of the material 8 to be rolled Based on.
ここで、被圧延材8のスレッディング速度及びトップ速度とは、図4に示すように、被圧延材8を仕上圧延する際の加減速パターン中でいえば、被圧延材8の先端が次々と仕上圧延機5の各スタンドにオンしていくときの突っ掛け防止のための低い速度をスレッディング速度、また、更に被圧延材8の先端が進行し、コイラー7に巻き付いた直後に加速を開始するのであるが、被圧延材製品材質確保のための温度降下補償のための高い速度をトップ速度と称す。   Here, as shown in FIG. 4, the threading speed and the top speed of the material 8 to be rolled are, in the acceleration / deceleration pattern when the material 8 is finish-rolled, the tips of the material 8 to be rolled one after another. When turning on each stand of the finish rolling mill 5, the low speed for preventing the bumping is set to the threading speed, and further, the tip of the material 8 to be rolled advances, and the acceleration is started immediately after being wound around the coiler 7. However, a high speed for temperature drop compensation for securing the material of the material to be rolled is referred to as a top speed.
図4においては、被圧延材8の先端が仕上圧延機5のF1スタンドにオンしたとき(a)から前記先端がコイラー7に巻き付いたとき(b)までスレッディング速度で通板し、先端がコイラー7に巻き付いた直後に加速し、そしてトップ速度を被圧延材8の尾端がF1スタンドからオフするとき(c)まで維持し、さらに尾端の巻取りが完了する(d)まで減速して通板している。   In FIG. 4, when the tip of the material to be rolled 8 is turned on to the F1 stand of the finishing mill 5, the sheet is passed at a threading speed from (a) to when the tip is wound around the coiler 7 (b). Accelerate immediately after winding on 7, and maintain the top speed until (c) when the tail end of the material 8 is turned off from the F1 stand, and further decelerate until the tail end winding is completed (d) It is threading.
ここで、被圧延金属材の長手方向目標CTパターンは、上位計算機81内に設定テーブルを設け、被圧延材8の品種や仕上圧延後の厚み、幅等のデータをキーとし、被圧延材8の先端、中間、尾端ごとに設定される。しかし、これに限らず、計算機82内に設定テーブルを設けて、設定してもよい。   Here, the target CT pattern in the longitudinal direction of the metal material to be rolled is provided with a setting table in the host computer 81, and data such as the type of the material to be rolled 8, the thickness after finish rolling, and the width are used as keys. Set for each tip, middle, and tail. However, the present invention is not limited to this, and a setting table may be provided in the computer 82 for setting.
計算機82内で注水バンクパターンが計算されると、被圧延材8の先端領域の仕上圧延機出側温度FDT、被圧延材8の先端領域の巻取温度CT、及び、被圧延材8の先端領域が冷却ゾーン22を通過する際の注水長Lが予測される。   When the water injection bank pattern is calculated in the calculator 82, the finish rolling mill outlet temperature FDT at the tip region of the material 8 to be rolled, the winding temperature CT at the tip region of the material 8 to be rolled, and the tip of the material 8 to be rolled A water injection length L when the region passes through the cooling zone 22 is predicted.
計算機82は、新たな被圧延材8の先端が粗出側温度計10の真下に到達した、と判定するたびに、長手方向目標CTパターンを設定した後、この新たな長手方向目標CTパターンを達成するための注水バンクパターンの計算を行う。   Every time the calculator 82 determines that the tip of the new material 8 to be rolled has reached directly below the roughening side thermometer 10, the computer 82 sets the longitudinal target CT pattern, and then sets the new longitudinal target CT pattern. Calculate the water injection bank pattern to achieve.
この計算は、前記長手方向目標CTパターン、上位計算機81から伝送される、被圧延材8の長手方向目標FDTパターン、仕上圧延後の被圧延材8の厚み、被圧延材8のスレッディング速度、及び被圧延材8のトップ速度(図4参照)に基づいて、図5に示す如く、被圧延材8の長手方向の長さ数mピッチに仮想的に区分した連続した切板8aごとに、概略次に述べる計算ロジックにより計算される。   This calculation includes the longitudinal target CT pattern, the longitudinal target FDT pattern of the material 8 to be rolled, the thickness of the material 8 to be rolled after finish rolling, the threading speed of the material 8 to be rolled, On the basis of the top speed of the material 8 to be rolled (see FIG. 4), as shown in FIG. 5, for each continuous cut plate 8a virtually divided into several m pitches in the longitudinal direction of the material 8 to be rolled, It is calculated by the following calculation logic.
ここで、計算機82内での注水バンクパターンの計算によって予測された被圧延材8の先端領域の仕上圧延機出側温度FDTと、前記計算によって予測された被圧延材8の先端領域の巻取温度CTとの差は、被圧延材8先端部の、注水開始バンク入側温度−注水終了バンク出側温度の計算結果に相当し、また同じく、注水バンクパターンの計算によって求まる、注水開始バンク〜注水終了バンクの距離が注水長Lに相当する。   Here, the finishing mill exit side temperature FDT of the tip region of the rolled material 8 predicted by the calculation of the water injection bank pattern in the computer 82 and the winding of the tip region of the rolled material 8 predicted by the calculation The difference from the temperature CT corresponds to the calculation result of the water injection start bank entry side temperature-the water injection end bank exit side temperature at the tip of the material 8 to be rolled, and is also obtained by the water injection bank pattern calculation. The distance of the water injection end bank corresponds to the water injection length L.
注水バンクパターンの計算ロジックの概略であるが、まず、図5に示すように切板8aを取り上げて考え、その被圧延材8中の前記切板8aが長手方向のどこに位置するか、そして仕上圧延開始前の被圧延材8の状態ではどの位置に相当し、該位置での粗出側被圧延材温度実績はいくらだったのか(粗出側温度計10により測定される)、のデータをもとに以降の計算が行われる。前述のスレッディング速度、トップ速度、それに各構成設備間の機械的な距離をもとに、主要構成設備(F1、F7、冷却ゾーン6の入側及び出側)への到達までに要する時間を計算し、次にその所要時間をもとに冷却ゾーン6の入側へ到達するまでの放冷による被圧延材8の温度降下、デスケーリング装置4によるデスケーリング水や仕上圧延機5内のスタンド間に設置された冷却装置(図示せず)の冷却水噴射による被圧延材8の温度降下、仕上圧延中の加工発熱による被圧延材8の温度上昇などの温度変動をその切板8aごとに計算し、その切板8aが冷却ゾーン6の入側へ到達したときに何℃の温度になるかを計算する。そして、その温度をもとに、冷却ゾーン6を通過する際にどのバンクを冷却水噴射状態とすれば、前記切板8aを目標とする巻取温度CTまで冷却できるかを計算する。   Although it is the outline of the calculation logic of the water injection bank pattern, first, as shown in FIG. 5, the cut plate 8a is taken up and considered, where the cut plate 8a in the rolled material 8 is located in the longitudinal direction, and the finish Data indicating which position corresponds to the state of the rolled material 8 before the start of rolling, and how much the temperature of the roughed rolled material at that position was (measured by the roughened thermometer 10). Subsequent calculations are performed. Based on the above threading speed, top speed, and mechanical distance between each component, calculate the time required to reach the main components (F1, F7, cooling zone 6 entry and exit sides) Then, based on the required time, the temperature drop of the material to be rolled 8 due to cooling until reaching the entry side of the cooling zone 6, the descaling water by the descaling device 4, and the stands in the finishing mill 5 Temperature fluctuations such as a temperature drop of the material 8 due to cooling water injection from a cooling device (not shown) installed in the machine and a temperature rise of the material 8 due to heat generated during finish rolling are calculated for each cut plate 8a. Then, how much temperature is reached when the cut plate 8a reaches the entrance side of the cooling zone 6 is calculated. Then, based on the temperature, it is calculated which bank can be cooled to the target coiling temperature CT when the cooling water jet state is set when passing through the cooling zone 6.
ここで、冷却ゾーン6を通過する際にどのバンクを冷却水噴射とすれば、前記切板8aを目標とする巻取温度CTまで冷却できるか、あるバンク1つから冷却水噴射した場合、そのバンクに相当するゾーンをその切板8aが通過するのに要する時間を前述のスレッディング速度、トップ速度、それに各構成設備間の機械的な距離をもとに計算した結果とから、その時間でその切板8aが何℃まで冷却されるかを求め、それがまだ目標とする巻取り温度CTよりも、ある一定以上高い値であれば、その直下流のバンクも噴射した場合はどうか、を次に計算する、という一連の計算プロセスを繰り返す収束計算により求めてもよい。   Here, which bank is used for cooling water injection when passing through the cooling zone 6, the cutting plate 8 a can be cooled to the target winding temperature CT, or when cooling water injection is performed from one bank, The time required for the cut plate 8a to pass through the zone corresponding to the bank is calculated based on the above-mentioned threading speed, top speed, and mechanical distance between each component equipment. Determine how many degrees C the cut plate 8a is cooled to, and if it is still higher than a target coiling temperature CT by a certain value, determine if the bank immediately downstream is also injected. You may obtain | require by the convergence calculation which repeats a series of calculation processes of calculating to.
それらの計算の際に、上記式(1)乃至(3)の要領で計算する。   At the time of those calculations, the calculation is performed according to the above formulas (1) to (3).
なお、本発明において、先端部とは、平坦度制御を行っている場合は、仕上圧延機5の最終圧延機F7のロール軸芯から平坦度計13の測定中心部までの機械長に実質的に等しいとするのが好ましい。実質的にとは、平坦度計13に被圧延材の最先端が達してから、実際に平坦度制御が効きはじめるまでの時間的な遅れに相当する間に搬送される被圧延材長(被圧延材毎の搬送速度にも依存する)の分を加算する場合も含めることを意味する。   In addition, in this invention, when performing flatness control, the front-end | tip part is substantially equal to the machine length from the roll axial center of the final rolling mill F7 of the finishing mill 5 to the measurement center part of the flatness meter 13. Is preferably equal to. Substantially, the length of the material to be rolled (conveyed during the time corresponding to the time delay until the flatness control actually starts after the leading edge of the material to be rolled reaches the flatness meter 13. This also includes the case of adding the amount of (which also depends on the conveyance speed for each rolled material).
平坦度制御を行っていない場合は、仕上圧延機5の最終圧延機F7のロール軸芯からコイラー7のうち仕上圧延機5に最も近いものDC1の入口(図示していないがピンチロールが設置されるため、その軸芯)までの機械長を超えない限度において、例えば5mとか10mとか30mとか、固定的に適宜な値に決めておくのが好ましい。がしかし、平坦度制御を行っている場合もそうでない場合も、これらの決め方に限るものではない。   When flatness control is not performed, the DC1 inlet (not shown, but a pinch roll is installed) of the coiler 7 closest to the finishing mill 5 from the roll axis of the final rolling mill F7 of the finishing mill 5 For this reason, it is preferable to determine a fixed appropriate value, for example, 5 m, 10 m, or 30 m, as long as it does not exceed the mechanical length up to the axis). However, whether the flatness control is performed or not is not limited to these determination methods.
本発明では、圧延終了後の被圧延材の先端部の形状を測定し、巻取温度制御にフィードフォーワードする。   In this invention, the shape of the front-end | tip part of the to-be-rolled material after completion | finish of rolling is measured, and it feeds forward to coiling temperature control.
それには、図8に示すような3/4連続の熱間圧延ラインの例で言えば、仕上圧延機5の最終スタンドF7の出側に設置した平坦度計13にて測定した被圧延材の先端部の形状を計算機82に伝送し、計算機82内では、例えば、先述の(2)式に、例えば、次に述べる形で反映し、結果的に、巻取温度制御にフィードフォーワードする。   For example, in the case of a 3/4 continuous hot rolling line as shown in FIG. 8, the material to be rolled measured by the flatness meter 13 installed on the exit side of the final stand F7 of the finishing mill 5 is used. The shape of the tip is transmitted to the computer 82, and in the computer 82, for example, it is reflected in the above-mentioned equation (2), for example, in the form described below, and as a result, feedforward control is performed.
被圧延材の先端部の形状は、図6に示すように、長手方向の板波の高さhを波長lで割った急峻度λで表すものとし、先述の(2)式中のrを(1+λ)倍に補正して、
α=(1+(1+λ)r(Tw−Tw))α …(4)
とした、上記(4)式を(2)式の代わりに用いるようにする。
As shown in FIG. 6, the shape of the tip portion of the material to be rolled is represented by a steepness λ obtained by dividing the height h of the plate wave in the longitudinal direction by the wavelength l, and r 1 in the above equation (2). Is corrected to (1 + λ) times,
α = (1+ (1 + λ) r 1 (Tw 0 −Tw)) α 0 (4)
The above equation (4) is used instead of the equation (2).
但し、あくまで一例であり、適宜な定数a、bを用いて、
α=(1+(a(1+λ)+b)r(Tw−Tw))α …(5)
とした、上記(5)式や、あるいは、ここに紹介しない全く別の式を(2)式の代わりに用いるようにする等してもよい。
However, it is only an example, and using appropriate constants a 1 and b 1 ,
α = (1+ (a 1 (1 + λ) + b 1 ) r 1 (Tw 0 −Tw)) α 0 (5)
The above formula (5) or a completely different formula not introduced here may be used instead of the formula (2).
このような計算された注水バンクパターンは制御装置83に伝送され、制御装置83は、この伝送された注水バンクパターンにより冷却ゾーン6による被圧延材8の冷却を制御する。具体的には、冷却水を噴射するバンクと対象の切板8aの計算機設定に基づいて多くのデータを制御装置83に伝送し、制御装置83は、リアルタイムにその切板8aの冷却水を噴射する各バンクへの到達をメジャーリングロール9と速度計12の両者を用いたトラッキングに基づいて判定し、バルブ開閉から冷却水の噴射開始及び噴射停止までの遅延時間などを適宜考慮した上で、その到達タイミングに合わせて各バンクの各ヘッダの冷却水の噴射開始及び噴射停止のためのバルブ開閉を制御する。バルブ開指令から冷却水の噴射、バルブ閉指令から冷却水の停止までのタイムラグの分、早目に指令を出すようにしてもよい。   Such a calculated water injection bank pattern is transmitted to the control device 83, and the control device 83 controls cooling of the material 8 to be rolled by the cooling zone 6 by the transmitted water injection bank pattern. Specifically, a lot of data is transmitted to the control device 83 based on the computer setting of the bank for injecting the cooling water and the target cutting plate 8a, and the control device 83 injects the cooling water for the cutting plate 8a in real time. The arrival at each bank is determined based on tracking using both the measuring roll 9 and the speedometer 12, and the delay time from the opening and closing of the valve to the start and stop of injection of cooling water is appropriately considered, In accordance with the arrival timing, the opening and closing of the valves for starting and stopping the injection of the cooling water in each header of each bank is controlled. The command may be issued earlier by the time lag from the valve opening command to the cooling water injection and from the valve closing command to the cooling water stop.
以上、本発明の実施形態について説明してきたが、本発明はこれに限定されず、種々の変更を行うことができる。例えば、図3に示すように、仕上圧延機5の入側に設置された仕上入側温度計11及び仕上圧延機5の出側に設置された仕上出側温度計15のそれぞれの直下に切板8aが到達したときのその切板8aの温度を予め計算によって求めておき、前記切板8aの仕上入側温度計11による仕上入側温度実績と計算された仕上入側温度との偏差と、前記切板8aの仕上出側温度計15による仕上出側温度実績と計算された仕上出側温度との偏差とをとらえて、適宜なゲインを掛け算して冷却ゾーン6における冷却水噴射バンク数を加減調整するフィードフォワード制御を併用してもよく、また、冷却ゾーン6の出側に設置された巻取温度計16の直下に切板8aが到達したときのその切板8aの温度を予め計算によって求めておき、前記切板8aの巻取温度計16による巻取温度実績CTと計算された巻取温度CTとの偏差をとらえて、適宜なゲインを掛け算して冷却ゾーン6における冷却水噴射バンク数を加減調整するフィードバック制御を併用してもよい。あるいはまた、粗出側温度計10ではなく、仕上入側温度計11の真下に被圧延材8の先端が到達したときに被圧延材長手方向の注水バンクパターンの補正計算を起動する等しても勿論よい。   As mentioned above, although embodiment of this invention has been described, this invention is not limited to this, A various change can be made. For example, as shown in FIG. 3, it is cut directly under each of a finishing entry thermometer 11 installed on the entry side of the finishing mill 5 and a finishing delivery thermometer 15 installed on the exit side of the finishing mill 5. The temperature of the cut plate 8a when the plate 8a arrives is calculated in advance, and the deviation between the actual finish side temperature measured by the finish input side thermometer 11 of the cut plate 8a and the calculated finish side temperature The number of cooling water injection banks in the cooling zone 6 is obtained by taking the deviation between the finished delivery side temperature record by the finished delivery side thermometer 15 of the cut plate 8a and the calculated finished delivery side temperature and multiplying by an appropriate gain. The feed forward control may be used in combination with the adjustment of the feed rate, and the temperature of the cut plate 8a when the cut plate 8a reaches directly below the winding thermometer 16 installed on the exit side of the cooling zone 6 is previously determined. Obtained by calculation, the cutting plate 8a It uses feedback control that adjusts the number of cooling water injection banks in the cooling zone 6 by taking the deviation between the actual winding temperature CT by the taking thermometer 16 and the calculated winding temperature CT and multiplying by an appropriate gain. May be. Alternatively, when the tip of the material to be rolled 8 arrives directly under the finish input side thermometer 11 instead of the roughing side thermometer 10, the correction calculation of the water injection bank pattern in the longitudinal direction of the material to be rolled is started. Of course.
また、本発明の実施の形態は、図8に示す3/4連続の熱間圧延ラインに適用対象を限定するものではなく、図7に示す半連続や、図示しない完全連続、あるいは図9に示す熱間エンドレス圧延ライン、図10に示すようなステッケルミル、あるいは薄スラブを連続鋳造し、粗圧延を経ずに直接仕上圧延する、図11に示すような熱間圧延ライン(ヌーコアタイプ)等のその他の形式の熱間圧延ラインにも適用でき、また、被圧延材8も鋼に限定する必要はなく、アルミニウムその他の金属であっても勿論よい。   Further, the embodiment of the present invention does not limit the application target to the 3/4 continuous hot rolling line shown in FIG. 8, and is semi-continuous shown in FIG. 7, completely continuous not shown, or FIG. A hot endless rolling line as shown in FIG. 10, a stickel mill as shown in FIG. 10, or a thin slab is continuously cast and finish-rolled directly without rough rolling, a hot rolling line as shown in FIG. The present invention can be applied to other types of hot rolling lines, and the material 8 to be rolled need not be limited to steel, but may be aluminum or other metals.
本発明によれば、圧延終了後の被圧延材の先端部の形状を測定し、巻取温度制御にフィードフォーワードするようにしたから、先端形状が悪くても、割れが発生するのを抑制することが出来る。   According to the present invention, the shape of the tip of the material to be rolled after rolling is measured, and feedforward is performed for the coiling temperature control. I can do it.
仕上圧延後の厚みが2.0mm、幅が1000mmで目標CT670℃、許容差±50℃の低炭素鋼を圧延する場合を例にとり、本発明の効果を実証した。   The effect of the present invention was proved by taking as an example the case of rolling a low carbon steel having a thickness of 2.0 mm and a width of 1000 mm after finish rolling and having a target CT of 670 ° C. and a tolerance of ± 50 ° C.
表1に先端部の形状と本発明のフィードフォーワード制御実施の有無、割れ発生の有無をまとめる。表1に示すように先端部の形状が悪くてもフィードフォーワード制御の実施によって割れが発生するのを抑制できることがわかる。   Table 1 summarizes the shape of the tip, whether or not the feedforward control of the present invention is performed, and whether or not cracking occurs. As shown in Table 1, it can be seen that even if the shape of the tip portion is bad, it is possible to suppress the occurrence of cracks by performing feedforward control.
熱間圧延における被圧延材の冷却制御方法において、被圧延材の割れの発生を抑制し、安定的に高品質の製品金属板を製造するのに広く寄与する。   In the method of controlling the cooling of the material to be rolled in hot rolling, the present invention contributes widely to suppressing the occurrence of cracks in the material to be rolled and stably producing a high-quality product metal plate.
本発明の原理を説明するための、金属板表面温度と熱伝達係数の関係を示す図The figure which shows the relationship between the metal plate surface temperature and a heat transfer coefficient for demonstrating the principle of this invention. 同じく金属板表面温度と熱伝達係数の関係の冷却水温による変化を示す図The figure which similarly shows the change with the cooling water temperature of the relation between the metal plate surface temperature and the heat transfer coefficient 本発明の実施の形態を説明するためのブロック図Block diagram for describing an embodiment of the present invention 被圧延材のスレッディング速度及びトップ速度について説明するための図Diagram for explaining threading speed and top speed of material to be rolled 仮想的な切板を示す平面図Top view showing a virtual cutting board 被圧延材の先端の形状の急峻度について説明するための図Diagram for explaining the steepness of the shape of the tip of the material to be rolled 半連続の熱間圧延ラインの概略を示した図Diagram showing the outline of a semi-continuous hot rolling line 3/4連続の熱間圧延ラインの概略を示した図Diagram showing outline of 3/4 continuous hot rolling line 熱間エンドレス圧延ラインの概略を示した図Diagram showing outline of hot endless rolling line ステッケルミルの概略を示した図Diagram showing the outline of the Steckel mill ヌーコアタイプの熱間圧延ラインの概略を示した図Diagram showing the outline of a Noucore type hot rolling line 従来技術の問題について説明するための斜視図Perspective view for explaining problems of the prior art
符号の説明Explanation of symbols
1…加熱炉
2…粗圧延機
3…クロップシャー
4…デスケーリング装置
5…仕上圧延機
6…冷却ゾーン
7…コイラー(巻取装置)
8…被圧延材
9…メジャーリングロール
10…粗出側温度計
11…仕上入側温度計
12…速度計
13…平坦度計
15…仕上出側温度計
16…巻取温度計
80…制御装置
81…上位計算機
82…計算機
DESCRIPTION OF SYMBOLS 1 ... Heating furnace 2 ... Rough rolling mill 3 ... Crop shear 4 ... Descaling device 5 ... Finishing rolling mill 6 ... Cooling zone 7 ... Coiler (winding device)
DESCRIPTION OF SYMBOLS 8 ... Rolled material 9 ... Measuring roll 10 ... Roughening side thermometer 11 ... Finishing input side thermometer 12 ... Speed meter 13 ... Flatness meter 15 ... Finishing side thermometer 16 ... Winding thermometer 80 ... Control apparatus 81 ... Host computer 82 ... Computer

Claims (1)

  1. 加熱した被圧延材を圧延し、冷却し、巻き取る熱間圧延において、圧延終了後の被圧延材の先端部の形状を測定し、巻取温度制御にフィードフォーワードすることを特徴とする熱間圧延における被圧延材の冷却制御方法。   In hot rolling to roll, cool, and wind up the heated material to be rolled, heat measured by measuring the shape of the tip of the material to be rolled after rolling and feeding forward to coiling temperature control A cooling control method for a material to be rolled in hot rolling.
JP2004083460A 2004-03-22 2004-03-22 Method for controlling cooling of material to be rolled in hot rolling Pending JP2005270982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083460A JP2005270982A (en) 2004-03-22 2004-03-22 Method for controlling cooling of material to be rolled in hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004083460A JP2005270982A (en) 2004-03-22 2004-03-22 Method for controlling cooling of material to be rolled in hot rolling

Publications (1)

Publication Number Publication Date
JP2005270982A true JP2005270982A (en) 2005-10-06

Family

ID=35171177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083460A Pending JP2005270982A (en) 2004-03-22 2004-03-22 Method for controlling cooling of material to be rolled in hot rolling

Country Status (1)

Country Link
JP (1) JP2005270982A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453194C (en) * 2005-12-07 2009-01-21 首钢总公司 Control cooling method of resolving self-break while producing high-carbon wire rod
JP2010017723A (en) * 2008-07-08 2010-01-28 Kobe Steel Ltd Method of predicting temperature of nose part of rolled stock
CN102387874A (en) * 2009-04-09 2012-03-21 西门子Vai金属科技有限责任公司 Method and device for preparing hot-rolling stock
JP2013180321A (en) * 2012-03-01 2013-09-12 Jfe Steel Corp Temperature prediction method, cooling control method, and cooling control device of metal plate in hot rolling
JP2014000593A (en) * 2012-06-20 2014-01-09 Nippon Steel & Sumitomo Metal Temperature unevenness prediction method of hot rolled steel sheet, flatness control method, temperature unevenness control method and manufacturing method
CN104772346A (en) * 2015-04-07 2015-07-15 首钢总公司 Method for reducing tensile strength of steel hot-rolled wire rod for flexible copper-clad steel wire
CN106424159A (en) * 2016-11-18 2017-02-22 首钢京唐钢铁联合有限责任公司 Method for improving rough rolling rhythm of strip steel
JP2017224091A (en) * 2016-06-14 2017-12-21 東芝三菱電機産業システム株式会社 Mathematical model calculation device for rolling line and temperature controller for rolled material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453194C (en) * 2005-12-07 2009-01-21 首钢总公司 Control cooling method of resolving self-break while producing high-carbon wire rod
JP2010017723A (en) * 2008-07-08 2010-01-28 Kobe Steel Ltd Method of predicting temperature of nose part of rolled stock
CN102387874A (en) * 2009-04-09 2012-03-21 西门子Vai金属科技有限责任公司 Method and device for preparing hot-rolling stock
US8950227B2 (en) 2009-04-09 2015-02-10 Siemens Vai Metals Technologies Gmbh Method and device for preparing hot-rolling stock
JP2013180321A (en) * 2012-03-01 2013-09-12 Jfe Steel Corp Temperature prediction method, cooling control method, and cooling control device of metal plate in hot rolling
JP2014000593A (en) * 2012-06-20 2014-01-09 Nippon Steel & Sumitomo Metal Temperature unevenness prediction method of hot rolled steel sheet, flatness control method, temperature unevenness control method and manufacturing method
CN104772346A (en) * 2015-04-07 2015-07-15 首钢总公司 Method for reducing tensile strength of steel hot-rolled wire rod for flexible copper-clad steel wire
JP2017224091A (en) * 2016-06-14 2017-12-21 東芝三菱電機産業システム株式会社 Mathematical model calculation device for rolling line and temperature controller for rolled material
CN106424159A (en) * 2016-11-18 2017-02-22 首钢京唐钢铁联合有限责任公司 Method for improving rough rolling rhythm of strip steel
CN106424159B (en) * 2016-11-18 2019-07-23 首钢京唐钢铁联合有限责任公司 A method of promoting Strip Roughing rhythm

Similar Documents

Publication Publication Date Title
JP2005270982A (en) Method for controlling cooling of material to be rolled in hot rolling
JP5217516B2 (en) Cooling control method in hot rolling and manufacturing method of hot rolled metal strip
JP2004237346A (en) Method for controlling width of rolling stock in hot rolling
JP2005034875A (en) Method for controlling width of rolling stock in hot rolling
JP2004331992A (en) Method for predicting temperature of and cooling metal sheet in hot rolling
JP5310965B1 (en) Hot-rolled steel sheet cooling method
JP5310966B1 (en) Hot-rolled steel sheet cooling device
JP6447836B2 (en) Hot-rolled steel strip manufacturing method and hot-rolled steel strip manufacturing equipment
JP6233613B2 (en) Production line for hot-rolled steel strip and method for producing hot-rolled steel strip
JP2006051512A (en) Method for controlling width of material to be rolled in hot rolling and method for manufacturing hot-rolled metallic sheet
KR100496824B1 (en) Cooling control method of hot strip using intermediate pyrometer on run-out table
JP2003025008A (en) Control method for cooling metallic material to be rolled in hot rolling
KR100891869B1 (en) Method for Manufacturing Hot-Rolled Steel Sheet
JP2011147967A (en) Method of controlling plate thickness in hot rolling mill
JP2004122162A (en) Equipment train for continuously casting / manufacturing hot-rolled steel strip and method for manufacturing hot-rolled steel strip
JP2006281280A (en) Method for operating slab heating furnace
JP4691836B2 (en) Hot endless rolling method and manufacturing method of hot endless rolled product
JP2003275805A (en) Method for hot-rolling high carbon steel
JP6233614B2 (en) Production line for hot-rolled steel strip and method for producing hot-rolled steel strip
JP4846680B2 (en) Thermal crown prediction method and thermal crown prediction apparatus
JP2004261838A (en) Method for manufacturing steel plate to be divided in hot rolling mill line, steel plate to be divided, apparatus, computer program and computer-readable recording medium
JP2017177200A (en) Hot-finishing rolling method
JP2003048012A (en) Method for controlling cooling of metallic material to be rolled in hot rolling
JP2005046852A (en) Method for manufacturing hot-rolled steel strip
JPH1071412A (en) Method for controlling temperature or rolled stock in continuous hot rolling and cotinuous hot rolling equipment