JP3624642B2 - 流体計測装置 - Google Patents

流体計測装置 Download PDF

Info

Publication number
JP3624642B2
JP3624642B2 JP21151097A JP21151097A JP3624642B2 JP 3624642 B2 JP3624642 B2 JP 3624642B2 JP 21151097 A JP21151097 A JP 21151097A JP 21151097 A JP21151097 A JP 21151097A JP 3624642 B2 JP3624642 B2 JP 3624642B2
Authority
JP
Japan
Prior art keywords
output
gain control
control amplifier
gain
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21151097A
Other languages
English (en)
Other versions
JPH1151724A (ja
Inventor
裕治 中林
行夫 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP21151097A priority Critical patent/JP3624642B2/ja
Publication of JPH1151724A publication Critical patent/JPH1151724A/ja
Application granted granted Critical
Publication of JP3624642B2 publication Critical patent/JP3624642B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に気体または液体の、超音波流速計に関する。
【0002】
【従来の技術】
従来の超音波流速計は、図20に示すようなものが一般的であった。この装置は流体の流れる測定経路1に設置した超音波振動子2と、超音波振動子2を駆動する送信回路3と、送信回路3にスタート信号を出力し、また超音波の伝播時間を測定するタイマ4から測定データを受け取る制御部5と、超音波振動子2から送信した超音波を受ける超音波振動子6と、超音波振動子6の出力を制御部5の出力に応じた増幅率で増幅するゲインコントロールアンプ7と、ゲインコントロールアンプ7の出力と基準電圧とを比較し大小関係が反転したときにタイマ4を停止させるタイミング判定回路8と、ゲインコントロールアンプ7の出力レベルを検知し制御部に出力するレベル検知回路9を有していた。
【0003】
そして、上記超音波流速計は、制御部5からスタート信号を受けた送信回路3が超音波振動子2を一定時間パルス駆動を行うと同時にタイマ4は制御部5からの信号によってに時間計測始める。パルス駆動された超音波振動子2からは超音波が送信される。超音波振動子2から送信した超音波は被測定流体中を伝搬し超音波振動子6で受信される。超音波振動子6の受信出力は、ゲインコントロールアンプ7において制御部5が設定した増幅率によって増幅される。そしてゲインコントロールアンプ7の出力を受けたタイミング判定回路8で超音波の受信を判定しタイマ4を停止させる。そして制御部5ではタイマ4から得た時間情報tから(式1)によって流速を求める(タイマ4から得た測定時間をt、超音波振動子間の流れ方向の有効距離をL、音速をc、被測定流体の流速をvとする)。
【0004】
v=(L/t)−c・・・・・・(式1)
受信信号は、図21に示す受信信号の包絡線は図22に示すように緩やかに立ち上がる波形となっており、超音波振動子の温度特性や、流速によって受信信号のレベルが変化する。その場合タイミング判定回路8の動作が安定せず、測定精度が悪くなる。そこで、ゲインコントロールアンプ7の出力を受けているレベル検知回路9は入力信号のピークレベルを監視しており、ピーク値が小さいあるいは大きい場合に制御部5へ出力を行う。制御部5はゲインコントロールアンプ7の増幅率をレベル検知回路からの信号に対応しゲインコントロールアンプの出力がほぼ一定となるように設定する。そして次の受信信号はゲインコントロールアンプ7で目標の信号レベルへと増幅され、タイミング判定回路8に与えられる。このようにタイミング判定回路8へ与える信号のピークをほぼ一定とすることによって、受信時間の判定を行うタイミングを安定化していた。
【0005】
また、制御部5からゲインコントロールアンプ7への増幅率の制御はデジタルで行い一定間隔であった。そして図2に示すように増幅率の変化は制御部5から出力の変化に対して等差的な変化となってた。
【0006】
また、他の測定方法として受信判定回路8の判定結果をタイマ4ではなく、送信回路3に返し、再度送信を行う場合もあった。このようなシングアラウンド動作を決められた回数行う時間を測定し、その測定時間を元に(式2)の計算によって流速を求める方法もあった(シングアラウンドの回数をn、測定時間をts、超音波振動子間の流れ方向の有効距離をL,音速をc、被測定流体の流速をvとする)。
【0007】
v=L/(ts/n)−c・・・・・(式2)
この方法によれば(式1)の方法に比べ精度よく測定することができる。
【0008】
また、超音波振動子2と超音波振動子6とを切り替え、被測定流体の上流から下流と下流から上流へのそれぞれの伝搬時間を測定し、(式3)より速度vを求める方法もある(上流から下流への測定時間時間をt1、下流から上流への測定時間時間をt2とする)。
【0009】
v=L/2((1/t1)−(1/t2))・・・・(式3)
この方法によれば音速の変化の影響を受けずに流度を測定することが出来るので、流速・流量・距離などの測定に広く利用されている。
【0010】
【発明が解決しようとする課題】
しかしながら従来の構成では、ゲインコントロールアンプ7の増幅率の変化が等差的に変化するため単位あたりの増幅率の差が、受信信号における割合では増幅率が大きいときは増幅率の変化はわずかであるが、増幅率の小さいところでは、増幅率の変化は大きくなる。たとえば、増幅率10と増幅率11の変化率は10%であるが、増幅率5と増幅率6の場合では20%も変化してしまう。
【0011】
この場合ゲインコントロールアンプ7の出力電圧を許容範囲内にあわせるには、増幅率の変化率を許容範囲内に設定する必要がある。たとえば、出力電圧の許容値が±10%であれば、増幅率の最大変化率を20%以下としなければならず、できるだけ増幅率の変化幅を大きく取った場合であっても増幅率の変化は小さい方からA、1.2A、1.4A、1.6A・・・・とする必要がある。
【0012】
この設定では、制御部からの信号の単位あたりの変化に対する増幅率の変化が許容範囲に比べて小さいところが必ず発生し、このような低い変化付近の設定となる入力信号が入ってきた場合は、数個所の増幅率の設定で出力が許容範囲内に入るようになる。つまり設定範囲が重なり、変化範囲が小さく限定されてしまうため、より大きな増幅率の変化範囲を確保するためには回路構成を大きくし制御部の出力数を増やす必要があった。しかしそれでは回路が複雑になり、消費電力も増えるため、電池などを電源とし長時間動作しなければならない機器では最適な方法ではなかった。そこで、設定範囲が重なり合わないようにし、効率よく増幅率を変えるようにする必要があった。
【0013】
また、受信信号の振幅が許容範囲ぎりぎりの値であった場合頻繁にゲインコントロール動作が発生し、消費電力の低減、安定測定のためにも、必要最低限のゲイン切り換え動作とする必要があった。
【0014】
また、長期連続使用する流速計などの場合回路の低消費電力化のためにも、できるだけ簡単なレベル検知回路を実現するという課題があった。
【0015】
また、低消費電力化のために制御部の電源を非測定時に切るようにしており、毎回ゲインコントロールをやり直す必要があった。この問題を解決するために前回測定時のゲイン設定を低消費電力で保存する必要があった。
【0016】
【課題を解決するための手段】
ゲインコントロールアンプの増幅率が制御部からの単位信号変化に対して同じ変化率で変化するようにしている。
【0017】
これによって増幅率の大きい時と小さいときの増幅の変化率が一定であり、ゲインコントロールアンプのゲインの変化幅を広くすることができる。
【0018】
【発明の実施の形態】
(1)被測定流体中に配置され超音波を送受信する2つの超音波振動子と、一方の超音波振動子を駆動する送信回路と、他方の超音波振動子で受信した受信信号を設定された増幅率で増幅するゲインコントロールアンプと、前記ゲインコントロールアンプの出力から受信タイミングの判定を行うタイミング判定回路と、前記ゲインコントロールアンプの出力の振幅の大きさに対応した信号出力を行うレベル検知回路と、前記レベル検知回路の出力を受け前記ゲインコントロールアンプに制御信号を送信し前記増幅率を制御する制御部と、超音波の伝播時間を測定するタイマと、前記タイマから得たデータをもとに流速および/または流量を演算によって求める演算部を有し、前記制御信号は前記レベル検知回路の出力に対し設定された単位で値が変化し、記増幅率は、前記制御信号に対し常数が1より大きい指数関数的に変化することにより前記制御信号の単位値に対して同じ変化率で変化するようになっている。このため増幅率の大きい時と小さいときの増幅率の変化率が一定となり、ゲインコントロールアンプの増幅率の変化幅を広くすることができる。
【0019】
(2)また制御部は、前記レベル検知回路の出力が所定範囲でない場合、前記タイミング判定回路の判定レベルを変化させるようになっており、前記レベル検知回路で検知したレベルが目標値よりもわずかに大きいあるいは小さく、前記ゲインコントロールアンプの増幅率の変更を必要とするほどでない場合、前記タイミング判定回路は前記制御部からの信号によって判定レベルをわずかに大きくあるいは小さく変更するので、前記ゲインコントロールアンプの増幅率をわずかに大きくあるいは小さくした場合と同じ効果が得られる。このため、増幅率を設定している抵抗の精度から決まる分解能よりも大きい分解能を得ることができる。そして、同じ増幅率の変化幅で大きな増幅率変更範囲を得ることができる。
【0020】
(3)また送信回路に出力調整回路を設け、レベル検知回路の出力を受けた制御部によって受信出力がほぼ一定となるように前記送信回路の送信出力とゲインコントロールアンプのゲインをコントロールする。制御部は受信信号のレベルが変動した場合、前記ゲインコントロールアンプの増幅率によって補正を行うが、前記ゲインコントロールアンプので補正できる範囲以外の信号が入ってきた場合、前記送信回路の出力を増減させて前記ゲインコントロールアンプの出力をほぼ一定にコントロールする。
【0021】
このため、前記ゲインコントロールアンプのゲイン設定用抵抗の相対精度によって決まる分解能以上の分解能と受信信号を一定レベルに安定化可能な範囲を大きく取ることができると同時に、前記送信出力をコントロールしているので、S/Nを大きく取ることが必要な場合、つまり測定精度を高く取りたいときなど、送信出力を最大とし、ゲインコントロールアンプの増幅率を最適な値とすることによって対応することができる。
【0022】
ベル検出回路の出力が頻繁に大小交互に変化している場合、ハンチングが発生していると判断し、増幅率が変わらない範囲で前記レベル検出回路の検出レベルをわずかに大きくあるいは小さくし、同様に前記タイミング判定回路の判定レベルも同様に変化させるように制御する。このため、前記レベル検出回路の検出レベルとゲ前記ゲインコントロールアンプの出力信号のピーク値は離れるため、ハンチングは収まる。そして、前記タイミング判定回路はタイミング判定レベルも同時に変化させているので、レベル変更前と同じタイミングで判定を行うことができる。ハンチングによって増幅率が頻繁に変わることによって起こる回路動作の不安定要因、たとえば電源電圧や基準電圧の変動であるとか、消費電流の増大、測定時間の増大などを防ぐことができる。
【0023】
ベル検知回路が2つの比較器からなり、前記2つの比較器のうち第1の比較器の基準電圧をV1、第2の比較器の基準電圧をV2とし、V1>V2の関係とする。ゲインコントロールアンプの出力ピークがV1以上になった場合前記第1の比較器が反転しこの信号を受けた制御部は前記ゲインコントロールアンプの増幅率を小さく設定する。また、前記ゲインコントロールアンプの出力がV2より小さくなった場合前記第2の比較器は受信信号があっても反転しないのでこの場合前記制御部は前記ゲインコントロールアンプの増幅率を大きく再設定する。その結果前記ゲインコントロールアンプの出力信号のピークはV1〜V2の間となるように制御される。この方法によると簡単な構成で、設定電圧の範囲に前記ゲインコントロールアンプの出力信号を調節することがき、設定電圧の範囲に入っていれば、頻繁に増幅率を制御する必要がないため消費電力を少なくすることができる。
【0024】
べル検知回路が、比較器と、前記比較器の出力が反転している時間を測定する第2のタイマからなり、制御部は前記第2のタイマによる測定時間が一定となるようにゲインコントロールアンプの増幅率を制御する、ここで、レベル検知回路の入力信号はサイン波であるので、一定レベルを超える時間は振幅が大きいほど長くなるという一定の関係がある。たとえば、前記ゲインコントロールアンプの出力電圧のピーク値が大きくなると、前記第2のタイマの測定時間は長くなり、この情報を受けた制御部は前記ゲインコントロールアンプの増幅率を小さく再設定する。ゲインコントロールアンプの出力電圧のピーク値が小さくなった場合ではこの反対の動作を行い、その結果前記ゲインコントロールアンプの出力電圧のピークは一定に保たれる。この方法ではゲインコントロールアンプの出力電圧のピーク値をリニアに検出することが出来るので、より細かい増幅率の制御を行う事が出来る。
【0025】
ベル検知回路が、第1の比較器と、入力信号の中心値に比較基準信号をもつ第2の比較器と、前記第1の比較器が反転してから前記第2の比較器が反転するまでの時間を測定する第2のタイマを有し、ゲインコントロールアンプの出力信号のピークが大きくなると、前記第1の比較器が反転するタイミングが早くなる。また前記第2の比較基準電圧は入力信号の中心点であるので、前記第2の比較器の反転するタイミングは変わらない。よって、前記第2のタイマの測定時間は長くなる。制御部では前記第2タイマの測定時間が長くなると、前記ゲインコントロールアンプの増幅率を前記第2のタイマの測定時間が設定値となるまで小さくする。ゲインコントロールアンプの出力電圧のピーク値が小さくなった場合ではこの反対の動作を行い、その結果前記ゲインコントロールアンプの出力電圧はほぼ一定に保たれる。そのため、簡単な構成で安定した測定が可能となり、精度の高い流速測定をおこなうことができる。
【0026】
ベル検知回路が、それぞれV1>V2>V3、V1−V2≒V2−V3の関係となる基準電圧を持つ第1、第2、第3の比較器と、前記第1の比較器が反転してから前記第2の比較器が反転するまでの時間を測定する第2のタイマと、前記第2の比較器が反転してから前記第3の比較器が反転するまでの時間を測定する第3のタイマを有する。そして、前記第1、前記第2の比較器が受信波の同じ山で反転した場合前記第2のタイマの測定時間は、そうでない時と比較して短い。同様に前記第3のタイマの測定時間から前記第2の比較器と前記第3の比較器が反転するタイミングが、受信波の同じ山かそうでないかを制御部は時間をあらかじめ入力した設定値と比較し検知する事が出来る。この結果によって、前記第2、第3のタイマの計測時間が時間が設定時間以下となるようにゲインコントロールアンプの増幅率を制御することによって、ゲインコントロールアンプの出力電圧のピークをほぼ一定とする事ができるので、安定した精度の良い測定ができる。
【0027】
御部からゲインコントロールアンプへの信号線の途中にカウンタを設け、前記制御部から前記ゲインコントロールを行う場合、前記カウンタのカウントをUPあるいはDOWNさせることによってゲインコントロールを行う。そしてカウンタ経の電源供給は常に行われているので、データは制御部の電源が切れても失われることはなく毎回ゲイン設定をやり直す必要はない。また前記ゲインコントロールアンプの制御線が何本必要であっても、前記カウンタのビット数を増やすだけで対応でき、前記制御部から前記カウンタへゲインコントロールのための信号線の数は1本となるので、構造を簡略化できる。
【0028】
【実施例】
以下本発明の実施例について図を用いて説明する。なお図面中で同一符号を付しているものは同一の構成要素として説明する。
【0029】
(実施例1)
図1は実施例1のブロック図である。また図2はゲインコントロールアンプの制御入力と増幅率を示した図である。
【0030】
被測定流体中に配置され超音波を送信あるいは受信する二つの超音波振動子10、11、と、一方の超音波振動子10を駆動する送信回路12と、前記超音波振動子から送信された超音波を受ける他方の超音波振動子11と、超音波振動子11から受けた受信信号を設定された増幅率で増幅するゲインコントロールアンプ13と、ゲインコントロールアンプ13の出力を受け受信タイミングの判定を行うタイミング判定回路14と、ゲインコントロールアンプ13の出力を受け振幅の大きさに対応した信号出力を行うレベル検知回路15と、超音波の送信開始からタイミング判定回路14の出力が発生するまでの時間を測定するタイマ16と、送信回路12に送信開始信号を送り、なおかつレベル検知回路15の出力を受けゲインコントロールアンプ13の増幅率を制御する制御部17と、さらにタイマ16から得たデータをもとに流速を演算によって求める演算部18を有した構成となっている。
【0031】
ゲインコントロールアンプ13の出力を受けたレベル検知回路15は、入力信号のピークレベルがあらかじめ設定された範囲から外れた場合制御部17にエラー信号を出力する。たとえば入力信号が大きい場合、制御部17はゲインコントロールアンプ13のゲインを下げ信号のピークが設定範囲に入るようにする。ここでゲインコントロールアンプ13のゲイン変化は制御信号に対して指数的に変化するようにしてある。図2はゲインの変化の様子を示す。この図のように制御部17からの単位信号変化に対して同じ変化率で変化するようになっている。このため増幅率の大きい時であっても小さいときの増幅率の変化率と同じで変化率が一定となり、ゲインコントロールアンプ13の増幅率の変化を入力信号に対して比例させた場合に比べゲインの変化率を広くとることができる。
【0032】
(実施例2)
図3及び図4は実施例2を示する図であり、実施例1と異なる部分のみ説明する。
【0033】
制御部17がレベル検知回路15の出力に応じて、ゲインコントロールアンプ13の増幅率とタイミング判定回路14の判定レベルを制御するようになっている。
【0034】
制御部17はレベル検知回路15で検知したレベルが目標値よりも大きいあるいは小さい場合、ゲインコントロールアンプ13のゲインを変化させ受信信号レベルを目標範囲の値に調節する。しかし図4A,B,Cに示すように信号レベルが目標範囲に対してわずかに大きいあるいは小さい場合、タイミング判定回路14は制御部17からの信号によって判定レベル(Vth)をa、b、cのようにわずかに大あるいは小のへ変更させるので、ゲインコントロールアンプ13の増幅率をわずかに大きくあるいは小さくした場合と同じ効果が得られる。このため、増幅率を設定している抵抗の精度で決まる分解能よりも大きい分解能を得ることができる。そして、同じ増幅率の変化幅で大きな増幅率変更範囲を得ることができる。また、ゲインコントロールアンプ13のゲインを補正した場合では、ゲインコントロールアンプ13の入出力の特性が変化しているので、ゼロ点補正を行わなければならないが、判定レベルを変化させた場合ではその必要はないので、ゼロ点補正を頻繁に行う必要がなく、測定の安定化と消費電力の低減を行うことができる。
【0035】
(実施例3)
図5及び図6は実施例3を示する図であり、実施例1と異なる部分のみ説明する。送信回路12に出力調整回路19を設け、レベル検知回路15の出力を受けた制御部17によって受信出力がほぼ一定となるように送信出力とゲインコントロールアンプ13のゲインを制御する。
【0036】
図6に示すように制御部17は受信信号のレベルが変動した場合、ゲインコントロールアンプ13の増幅率によって補正を行うが、ゲインコントロールアンプ13で補正できる範囲以外の信号が入ってきた場合、送信回路12の出力強、弱と変化させてゲインコントロールアンプ13の出力がほぼ一定となるように制御する。
【0037】
このため、ゲインコントロールアンプ13のゲイン設定の精度によって決まる分解能以上の分解能と受信信号を一定レベルに安定化可能な範囲を大きく取ることができると同時に、送信出力をコントロールしているので、S/Nを大きく取ることが必要な場合、つまり測定精度を高く取りたい場合は、送信出力を最大とし、ゲインコントロールアンプ13の増幅率を適当な値とすることによって対応することができる。また、ゲインコントロールアンプ13のゲインを補正した場合では、ゲインコントロールアンプ13の入出力の特性が変化しているので、ゼロ点補正を行わなければならないが、送信出力を変化させた場合ではその必要はないので、ゼロ点補正を頻繁に行う必要がなく、測定の安定化と消費電力の低減を行うことができる。
【0038】
(実施例
、図は実施例4を示する図であり、実施例1と異なる部分のみ説明する。
【0039】
に示すようにレベル検出回路15の出力を監視しハンチングを検出するハンチング検知回路21を有した構成としている。
【0040】
に示すようにレベル検出回路15の出力が頻繁に大小交互に変化している場合、ハンチング検知回路はハンチングが発生していると判断し、増幅率が変化しない範囲までレベル検出回路15の検出レベル範囲ΔVpをわずかに大きくあるいは小さくし、同様にタイミング判定回路14の判定レベルVthも同様に大小変化させるように制御する。このため、レベル検出回路15の検出レベルとゲインコントロールアンプ13の出力信号のピーク値は離れた値となるため、ハンチングは収まる。そして、タイミング判定回路14はタイミング判定レベルも同時に変化させているので、レベル変更前と同じタイミングで判定を行うことができる。よって、ハンチングによって増幅率が頻繁に変わることによって起こる回路動作の不安定要因、たとえば電源電圧や基準電圧の変動であるとか、消費電流の増大、測定時間の増大などを防ぐことができる。
【0041】
(実施例
図1及び図は実施例を示する図であり、実施例1と異なる部分のみ説明する。
【0042】
レベル検知回路が2つの比較器によって構成されており、2つの比較器のうち第1の比較器22の基準電圧をVH、第2の比較器23の基準電圧をVLとし、VH>VLの関係とする。ゲインコントロールアンプの出力ピークがVH以上になった場合前記第1の比較器が反転しこの信号を受けた制御部は前記ゲインコントロールアンプの増幅率を小さく設定する。また、前記ゲインコントロールアンプの出力がVLより小さくなった場合前記第2の比較器は受信信号があっても反転しないのでこの場合前記制御部は前記ゲインコントロールアンプの増幅率を大きく再設定する。その結果前記ゲインコントロールアンプの出力信号のピークはVH〜VLの間となるように制御される。この方法によると簡単な構成で、設定電圧の範囲に前記ゲインコントロールアンプの出力信号を調節することがき、設定電圧の範囲に入っていれば、頻繁に増幅率を制御する必要がないため消費電力を少なくすることができる。
【0043】
(実施例
図1及び図10、図11、図12は実施例を示する図であり、実施例と異なる部分のみ説明する。
【0044】
レべル検知回路15が、ゲインコントロールアンプ13の出力電圧と比較電圧V1とを比較し出力する比較器24と、比較器24の出力が反転している時間を測定する第2のタイマ25からなり、制御部17は第2のタイマ25による測定時間が一定の時間範囲となるようにゲインコントロールアンプ13の増幅率を制御する。
【0045】
11はレベル検知回路15の入力信号と各部設定電圧の関係を示した図である。ここでVpはゲインコントロールアンプ出力電圧のピーク電圧、ΔVはVpの目標電圧レベルの幅である。
【0046】
ここでレベル検知回路15の入力信号はサイン波であるのでVpが大きいほど比較電圧V1を超える時間は長くなるという一定の関係がある。図12にVpと第2のタイマで計測する時間tとの関係を示す。たとえば、Vpが大きくなると、第2のタイマ25の測定時間は長くなり、Vpが小さくなると短くなる。図12から、VpをΔVの幅の中にあわせるには、第2のタイマ25の計測時間がt1〜t2の間にあればよいことがわかる。そこで、第2のタイマ25の測定時間を受けた制御部17はその時間が、t1より短ければゲインコントロールアンプ13の増幅率を大きくし、t2より長ければゲインコントロールアンプ13の増幅率を小さくする。その結果VpはΔVの中に入るように制御される。
【0047】
この方法によれば、ゲインコントロールアンプの出力電圧のピーク値を簡単な構成でリニアに検出することが出来、かつt1、t2の設定はソフト的に容易に変更することができるので、測定条件に合わせより細かい出力信号の制御を行う事が出来る。
【0048】
(実施例
図1及び図13、図14実施例7を示する図であり、実施例と異なる部分のみ説明する。
【0049】
13はレベル検地回路15の詳細なブロック図である。レベル検知回路15は、ゲインコントロールアンプ13の出力電圧と比較電圧V1とを比較する第1の比較器26と、ゲインコントロールアンプ13の出力電圧と入力信号の平均電圧V0とを比較する第2の比較器27と、前記第1の比較器26が反転してから前記第2の比較器27が反転するまでの時間を測定する第2のタイマ28を有する。
【0050】
14にゲインコントロールアンプ13の出力信号と各比較器の出力信号の関係を示す。実線で示す波形がゲインコントロールアンプの出力目標とするレベルの信号を表し、破線で示す波形が目標のレベルより大きくなった場合の信号を表している。図13からもわかるように、目標とする信号レベルの時と比較しゲインコントロールアンプ13の出力信号レベルが大きい場合、第1の比較器が反転するタイミングが早くなる。そのため、第2のタイマ28で計測する時間がt1からt2に変化する。この測定結果を受け取った制御部17では徐々にゲインコントロールアンプ13の増幅率を小さくするように制御を行うので、t2は徐々に短くなる。そしてt1と等しくなった時に制御部17はゲインコントロールアンプ13の制御を停止する。また、ゲインコントロールアンプの信号レベルが小さくなった場合ではこの反対の動作を行い、その結果前記ゲインコントロールアンプ13の信号レベルは一定に保たれる。
【0051】
この方法によれば、ゲインコントロールアンプ13の出力の最大値でなくても出力信号のレベルを合わせることができる。たとえば図13のように立ち上がり途中の波形のピークを目標値にあわせることができるので、遅れてきた信号(反射波など)との干渉を避けることができるため正確な測定を行うことができる。
【0052】
(実施例
図1及び図15、図16、図17、図18実施例8を示する図であり、実施例と異なる部分のみ説明する。
【0053】
15に示すようにレベル検知回路15が、それぞれV1>V2>V3、V1−V2≒V2−V3という関係の比較電圧を持つ第1、第2、第3の比較器29、30、31と、第1の比較器29が反転してから第2の比較器30が反転するまでの時間t1を測定し制御部に出力する第2のタイマ32と、第2の比較器30が反転してから第3の比較器31が反転するまでの時間t2を測定し制御部に出力する第3のタイマ33を有する。
【0054】
16、図17、図18にゲインコントロールアンプ13の出力信号と各比較電圧レベルと出力信号を示す。図16に示すように、第1の比較器29、第2の比較器30、第3の比較器31が受信波の同じ周期の山で反転した場合第2のタイマ32と前期第3のタイマ33の測定時間t1、t2はおおよそtaという短い時間となる。この場合ゲインコントロールアンプ13の増幅率は変えない。また図17に示すようにゲインコントロールアンプ13の出力信号の振幅が小さくなり第1の比較器29が1つあとの周期の山で反転した場合、t1≒tb、t2≒taとなり、この情報を受け取った制御部17はゲインコントロールアンプ13の増幅率をt1、t2≒taとなるまで大きくする。反対にゲインコントロールアンプ13の出力が大きくなった場合の信号の関係を図18に示す。このようにt1≒ta、t2≒tbとなり、制御部は図17の場合と反対の動作を行いゲインコントロールアンプ13の出力は一定のレベルに保たれる。
【0055】
この方法によれば、ゲインコントロールアンプ13の出力の最大値でなくても出力信号のレベルを合わせることができる。たとえば図16のように立ち上がり途中の波形のピークを目標値にあわせることができるので、遅れてきた信号(反射波など)との干渉を避けることができるため正確な測定を行うことができる。さらに、タイマの分解能が実施例8の方法に比べ粗いものでよいので、より容易に構成することができる。また、比較器30がタイミング判定回路を兼ねる構成とすることによって、確実に目的のタイミングで受信検知を行うことができるので、正確な流速測定を行うことができる。
【0056】
(実施例
図1及び図19は実施例を示する図であり、実施例1と異なる部分のみ説明する。
【0057】
ゲインコントロールアンプ13はデジタル信号によって増幅率を変化させるものであり、制御部17からゲインコントロールアンプ13への信号線の途中にUP・DOWNカウンタ34を設け、制御部17からUP・DOWNカウンタ34へパルス信号を出力しゲインコントロールを行う。
【0058】
この場合UP・DOWNカウンタ34のカウントをUPあるいはDOWNさせることによってゲインコントロールを行うので、ゲインコントロールアンプ13の制御線が何本必要であっても、UP・DOWNカウンタ13のビット数を増やすだけで対応でき、制御部17からUP・DOWNカウンタ13への増幅率制御のためのの信号線の数は2本でよいので構造を簡略化できる。さらにまた、電源の供給を絞って低消費電力化を行う場合においても、UP・DOWNカウンタ13にのみ内部情報が保持できる最低限の電力さえ供給すればよく、直前の増幅率情報をメモリーに欠き込む必要がないので、簡単な構成で、低消費電力化を行うことができる。
【0059】
上説明したように本発明の実施例における超音波流速計によれば次の効果を奏する。
【0060】
(1)制御信号は前記レベル検知回路の出力に対し設定された単位で値が変化し、前記増幅率は、前記制御信号に対し常数が1より大きい指数関数的に変化することにより前記制御信号の単位値に対して同じ変化率で変化するようになっている。このため増幅率の大きい時と小さいときの増幅率の変化率が一定となり、より幅広い範囲の受信信号に対して安定に受信検知をすることができ、安定した流速の測定が可能である。
【0061】
(2)また制御部は、前記レベル検知回路の出力が所定範囲でない場合、前記タイミング判定回路の判定レベルを変化させる。よって、前記タイミング判定回路は前記制御部からの信号によって判定レベルをわずかに大きくあるいは小さく変更するので、前記ゲインコントロールアンプの増幅率をわずかに大きくあるいは小さくした場合と同じ効果が得られる。このため、増幅率を設定している抵抗の精度から決まる分解能よりも大きい分解能を得る。したがって同じ増幅率の変化幅で大きな増幅率変更範囲を得、より広い範囲の流速の測定が可能である。
【0062】
(3)送信回路に出力調整回路を設け、レベル検知回路の出力を受けた制御部によって受信出力がほぼ一定となるように送信出力とゲインコントロールアンプのゲインをコントロールする。制御部は受信信号のレベルが変動した場合、前記ゲインコントロールアンプの増幅率によって補正を行うが、前記ゲインコントロールアンプので補正できる範囲以外の信号が入ってきた場合、前記送信回路の出力を増減させて前記ゲインコントロールアンプの出力をほぼ一定にコントロールする。
【0063】
このため、前記ゲインコントロールアンプのゲイン設定用抵抗の相対精度によって決まる分解能以上の分解能と受信信号を一定レベルに安定化可能な範囲を大きく取ることができると同時に、前記送信出力をコントロールしているので、S/Nを大きく取ることが必要な場合、つまり測定精度を高く取りたいときなど、送信出力を最大とし、ゲインコントロールアンプの増幅率を最適な値とすることで対応するので、広い範囲の流速の測定を精度よく行うことができる。
【0064】
)増幅率が変わらない範囲で前記レベル検出回路の検出レベルをわずかに大きくあるいは小さくし、同様に前記タイミング判定回路の判定レベルも同様に変化させるように制御する。このため、前記レベル検出回路の検出レベルとゲ前記ゲインコントロールアンプの出力信号のピーク値は離れるため、ハンチングは収まる。そして、前記タイミング判定回路はタイミング判定レベルも同時に変化させているので、レベル変更前と同じタイミングで判定を行うことができる。ハンチングによって増幅率が頻繁に変わることによって起こる回路動作の不安定要因、たとえば電源電圧や基準電圧の変動であるとか、消費電流の増大、測定時間の増大などを防ぐことができる。
【0065】
)またレベル検知回路が2つの比較器からなり、前記2つの比較器のうち第1の比較器の基準電圧をV1、第2の比較器の基準電圧をV2とし、V1>V2の関係とする。ゲインコントロールアンプの出力ピークがV1以上になった場合前記第1の比較器が反転しこの信号を受けた制御部は前記ゲインコントロールアンプの増幅率を小さく設定する。また、前記ゲインコントロールアンプの出力がV2より小さくなった場合前記第2の比較器は受信信号があっても反転しないのでこの場合前記制御部は前記ゲインコントロールアンプの増幅率を大きく再設定する。その結果前記ゲインコントロールアンプの出力信号のピークはV1〜V2の間となるように制御される。この方法によると簡単な構成で、設定電圧の範囲に前記ゲインコントロールアンプの出力信号を調節することがき、設定電圧の範囲に入っていれば、頻繁に増幅率を制御する必要がないため消費電力を少なくすることができる。
【0066】
)またレべル検知回路が、比較器と、前記比較器の出力が反転している時間を測定する第2のタイマからなり、制御部は前記第2のタイマによる測定時間が一定となるようにゲインコントロールアンプの増幅率を制御する、ここで、レベル検知回路の入力信号はサイン波であるので、一定レベルを超える時間は振幅が大きいほど長くなるという一定の関係がある。たとえば、前記ゲインコントロールアンプの出力電圧のピーク値が大きくなると、前記第2のタイマの測定時間は長くなり、この情報を受けた制御部は前記ゲインコントロールアンプの増幅率を小さく再設定する。ゲインコントロールアンプの出力電圧のピーク値が小さくなった場合ではこの反対の動作を行い、その結果前記ゲインコントロールアンプの出力電圧のピークは一定に保たれる。この方法ではゲインコントロールアンプの出力電圧のピーク値をリニアに検出することが出来るので、より細かい増幅率の制御を行う事が出来、精度の良い測定を行うことができる。
【0067】
)レベル検知回路が、第1の比較器と、入力信号の中心値に比較基準信号をもつ第2の比較器と、前記第1の比較器が反転してから前記第2の比較器が反転するまでの時間を測定する第2のタイマを有し、ゲインコントロールアンプの出力信号のピークが大きくなると、前記第1の比較器が反転するタイミングが早くなる。また前記第2の比較基準電圧は入力信号の中心点であるので、前記第2の比較器の反転するタイミングは変わらない。よって、前記第2のタイマの測定時間は長くなる。制御部では前記第2タイマの測定時間が長くなると、前記ゲインコントロールアンプの増幅率を前記第2のタイマの測定時間が設定値となるまで小さくする。ゲインコントロールアンプの出力電圧のピーク値が小さくなった場合ではこの反対の動作を行い、その結果前記ゲインコントロールアンプの出力電圧はほぼ一定に保たれる。そのため簡単な構成で安定した流量計を実現できる。
【0068】
)レベル検知回路が、それぞれV1>V2>V3、V1−V2≒V2−V3の関係となる基準電圧を持つ第1、第2、第3の比較器と、前記第1の比較器が反転してから前記第2の比較器が反転するまでの時間を測定する第2のタイマと、前記第2の比較器が反転してから前記第3の比較器が反転するまでの時間を測定する第3のタイマを有する。そして、前記第1、前記第2の比較器が受信波の同じ山で反転した場合前記第2のタイマの測定時間は、そうでない時と比較して短い。同様に前記第3のタイマの測定時間から前記第2の比較器と前記第3の比較器が反転するタイミングが、受信波の同じ山かそうでないかを制御部は時間をあらかじめ入力した設定値と比較し検知する事が出来る。この結果によって、前記第2、第3のタイマの計測時間が時間が設定時間以下となるようにゲインコントロールアンプの増幅率を制御することによって、ゲインコントロールアンプの出力電圧のピークをほぼ一定とする事が出来、安定した流量計を簡単な構成で実現できる。
【0069】
)また制御部からゲインコントロールアンプへの信号線の途中にUP・DOWNを設け、前記制御部から前記ゲインコントロールを行う。そして、前記カウンタの電源は常に通電されているので、制御部の電源が切れてもゲイン設定のデータは失われることがなく、制御部の電源を切るごとに毎回ゲイン調節をする必要がない。また、前記カウンタのカウントを変化させることによってゲインコントロールを行うので、前記ゲインコントロールアンプの制御線が何本必要であっても、前記カウンタのビット数を増やすだけで対応でき、前記制御部から前記カウンタへゲインコントロールのためのの信号線の数は1本となるので、構造を簡略化できる。
【0070】
【発明の効果】
以上説明したように本発明の超音波流速計によれば、制御信号は前記レベル検知回路の出力に対し設定された単位で値が変化し、前記増幅率は、前記制御信号に対し常数が1より大きい指数関数的に変化することにより前記制御信号の単位値に対して同じ変化率で変化するようになっている。このため増幅率の大きい時と小さいときの増幅率の変化率が一定となり、より幅広い範囲の受信信号に対して安定に受信検知をすることができ、安定した流速の測定が可能である。
【図面の簡単な説明】
【図1】本発明の実施例1の超音波流速計全体のブロック図
【図2】同流速計のゲインコントロールアンプの特性を示す図
【図3】本発明の実施例2の超音波流速計全体のブロック図
【図4】同流速計のタイミング判定レベルと信号を示す図
【図5】本発明の実施例3の超音波流速計全体のブロック図
【図6】同流速計のゲイン設定とゲインコントロールアンプの出力信号を示す図
【図】本発明の実施例の超音波流速計全体のブロック図
【図】同流速計の各部信号レベルとゲインコントロールアンプの出力信号を示す図
【図】本発明の実施例の超音波流速計のレベル検地回路の図
【図10】本発明の実施例の超音波流速計のレベル検地回路の図
【図11】同流速計の各部信号とゲインコントロールアンプの出力信号を示す図
【図12】同流速計のゲインコントロールアンプの出力信号と測定時間の関係を示す図
【図13】本発明の実施例の超音波流速計全体のブロック図
【図14】同流速計の各部信号とゲインコントロールアンプの出力信号を示す図
【図15】本発明の実施例の超音波流速計全体のブロック図
【図16】同流速計の各部信号とゲインコントロールアンプの出力信号を示す図
【図17】同流速計の各部信号とゲインコントロールアンプの出力信号を示す図
【図18】同流速計の各部信号とゲインコントロールアンプの出力信号を示す図
【図19】本発明の実施例の超音波流速計全体のブロック図
【図20】従来の超音波流速計の全体のブロック図
【図21】同流速計の受信信号とその包絡線を示す図
【図22】同流速計のゲインコントロールアンプの出力信号とタイミング判定レベルを示す図
【符号の説明】
10、11 2つの超音波振動子
12 送信回路
13 ゲインコントロールアンプ
14 タイミング判定回路
15 レベル検知回路
16 タイマ
17 制御部
18 演算部
19 出力調整回路
20 増幅率調節機構
21 ハンチング検知回路
22 第1の比較器
23 第2の比較器
24 比較器
25 第2のタイマ
26 第1の比較器
27 第2の比較器
28 第2のタイマ
29 第1の比較器
30 第2の比較器
31 第3の比較器
32 第2のタイマ
33 第3のタイマ
34 アップダウンカウンタ

Claims (9)

  1. 被測定流体中に配置され超音波を送受信する2つの超音波振動子と、一方の超音波振動子を駆動する送信回路と、他方の超音波振動子で受信した受信信号を設定された増幅率で増幅するゲインコントロールアンプと、前記ゲインコントロールアンプの出力から受信タイミングの判定を行うタイミング判定回路と、前記ゲインコントロールアンプの出力の振幅の大きさに対応した信号出力を行うレベル検知回路と、前記レベル検知回路の出力を受け前記ゲインコントロールアンプに制御信号を送信し前記増幅率を制御する制御部と、超音波の伝播時間を測定するタイマと、前記タイマから得たデータをもとに流速および/または流量を演算によって求める演算部を有し、前記制御信号は前記レベル検知回路の出力に対し設定された単位で値が変化し、記増幅率は、前記制御信号に対し常数が1より大きい指数関数的に変化することにより前記制御信号の単位値に対して同じ変化率で変化する流体計測装置。
  2. 制御部は、前記レベル検知回路の出力が所定範囲でない場合、前記タイミング判定回路の判定レベルを変化させる請求項1記載の流体計測装置。
  3. 前記送信回路に出力調整回路を設け、前記レベル検知回路の出力を受けた前記制御部によって前記送信回路の送信出力をコントロールする請求項1記載の流体計測装置。
  4. ベル検知回路の出力を監視しハンチングを検出するハンチング検知回路を設け、前記ハンチング検知回路の出力によってタイミング判定回路の判定レベルをコントロールする請求項1〜3のいずれか1項記載の流体計測装置。
  5. ベル検知回路が2つの比較器からなる請求項1〜3のいずれか1項記載の流体計測装置。
  6. べル検知回路は、前記ゲインコントロールアンプの出力と一定の電圧を比較する比較器と、前記比較器の出力が反転している時間を測定する第2のタイマを備え、前記制御部は前記第2のタイマの測定時間が一定の時間範囲となるように前記ゲインコントロールアンプの増幅率を制御する請求項1〜3のいずれか1項記載の流体計測装置。
  7. ベル検知回路は、前記ゲインコントロールアンプの出力電圧と一体の電圧を比較する第1の比較器と、前記ゲインコントロールアンプの出力電圧と入力信号の平均電圧を比較する前記第2の比較器と、前記第1の比較器が反転してから前記第2の比較器が反転するまでの時間を測定する第2のタイマを備え、前記制御部は前記第2のタイマの測定時間が一定の時間範囲となるように前記ゲインコントロールアンプの増幅率を制御する請求項1〜3のいずれか1項記載の流体計測装置。
  8. ベル検知回路は、前記ゲインコントロールアンプの出力電圧とそれぞれ異なる値の基準電圧を比較する複数の比較器と、前記複数の比較器が反転する時間を測定するそれぞれのタイマを備え、前記それぞれのタイマの測定時間によって前記ゲインコントロールアンプの増幅率を変化する請求項1〜3のいずれか1項記載の流体計測装置。
  9. 前記制御部からゲインコントロールアンプへの信号線の途中にカウンタを設けた請求項1〜3のいずれか1項記載の流体計測装置。
JP21151097A 1997-08-06 1997-08-06 流体計測装置 Expired - Lifetime JP3624642B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21151097A JP3624642B2 (ja) 1997-08-06 1997-08-06 流体計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21151097A JP3624642B2 (ja) 1997-08-06 1997-08-06 流体計測装置

Publications (2)

Publication Number Publication Date
JPH1151724A JPH1151724A (ja) 1999-02-26
JP3624642B2 true JP3624642B2 (ja) 2005-03-02

Family

ID=16607125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21151097A Expired - Lifetime JP3624642B2 (ja) 1997-08-06 1997-08-06 流体計測装置

Country Status (1)

Country Link
JP (1) JP3624642B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070902A1 (ja) 2008-12-19 2010-06-24 パナソニック株式会社 ガス遮断装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325880C (zh) 2002-08-05 2007-07-11 松下电器产业株式会社 流量计量装置
JP2005249641A (ja) * 2004-03-05 2005-09-15 Matsushita Electric Ind Co Ltd 流れ計測装置
JP2005315717A (ja) * 2004-04-28 2005-11-10 Toyo Gas Meter Kk ガスメータ
JP5092413B2 (ja) * 2007-01-16 2012-12-05 パナソニック株式会社 流速または流量計測装置
JP5092414B2 (ja) * 2007-01-16 2012-12-05 パナソニック株式会社 流速または流量計測装置
JP5034510B2 (ja) * 2007-01-19 2012-09-26 パナソニック株式会社 流速または流量計測装置とそのプログラム
JP2008180566A (ja) * 2007-01-24 2008-08-07 Matsushita Electric Ind Co Ltd 流速または流量計測装置とそのプログラム
JP5262891B2 (ja) * 2009-03-23 2013-08-14 パナソニック株式会社 流速または流量計測装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070902A1 (ja) 2008-12-19 2010-06-24 パナソニック株式会社 ガス遮断装置
US8522815B2 (en) 2008-12-19 2013-09-03 Panasonic Corporation Gas shutoff device

Also Published As

Publication number Publication date
JPH1151724A (ja) 1999-02-26

Similar Documents

Publication Publication Date Title
KR101269284B1 (ko) 초음파 유량 측정 방법 및 초음파 유량계
JP2987156B2 (ja) 速度測定装置
JP3624642B2 (ja) 流体計測装置
EP2515089B1 (en) Flow rate measuring device
EP2224219B1 (en) Ultrasonic flow measurement device
JP2014224684A (ja) 流量計測装置
JP3468233B2 (ja) 流量計測装置
WO2014006881A1 (ja) 流量計測装置
JP3427762B2 (ja) 超音波流量計
CN109073430B (zh) 流量测量装置
JP2006343292A (ja) 超音波流量計
JP4572546B2 (ja) 流体の流れ計測装置
JP2004069524A (ja) 流量計測装置
JP3624743B2 (ja) 超音波流量計
JP4075526B2 (ja) 超音波流量計
JP5135806B2 (ja) 流体の流れ計測装置
JP5135807B2 (ja) 流体の流れ計測装置
JP4140095B2 (ja) 超音波流速計
JP3622613B2 (ja) 超音波流量計
JP3651110B2 (ja) 超音波流速計
JP4013697B2 (ja) 流量計測装置
JPH10197302A (ja) 超音波流量計
JP3473491B2 (ja) 超音波流量計
JPH0117090B2 (ja)
JP4236479B2 (ja) 超音波送受信装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040310

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040520

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

EXPY Cancellation because of completion of term