JP3620192B2 - 無線通信システム - Google Patents

無線通信システム Download PDF

Info

Publication number
JP3620192B2
JP3620192B2 JP01000697A JP1000697A JP3620192B2 JP 3620192 B2 JP3620192 B2 JP 3620192B2 JP 01000697 A JP01000697 A JP 01000697A JP 1000697 A JP1000697 A JP 1000697A JP 3620192 B2 JP3620192 B2 JP 3620192B2
Authority
JP
Japan
Prior art keywords
frequency data
communication
hop frequency
signal
slave unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01000697A
Other languages
English (en)
Other versions
JPH10210552A (ja
Inventor
和也 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP01000697A priority Critical patent/JP3620192B2/ja
Priority to US09/012,824 priority patent/US6111909A/en
Publication of JPH10210552A publication Critical patent/JPH10210552A/ja
Application granted granted Critical
Publication of JP3620192B2 publication Critical patent/JP3620192B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns

Description

【0001】
【発明の属する技術分野】
本発明は、親機に無線接続される2台以上の子機を備え、子機同士間での直接通信が可能な無線通信システムに関する。
【0002】
【従来の技術】
従来のコードレス電話機は、例えば、周波数f1を使って親機が送信した情報を子機が受信すると共に、周波数f2を使って子機が送信した情報を親機が受信するといった仕組みによって、双方向通信を行っていた。
【0003】
【発明が解決しようとする課題】
しかしながら、上述の如き構成のコードレス電話機では、1台の親機に対して2台以上の子機を設けたとしても、第1の子機が周波数f2で送信した情報は、周波数f2を受信している親機で受信できるだけで、周波数f1を受信している第2の子機では受信できず、子機間で通信することはできなかった。
【0004】
また、従来、親機と子機との間で周波数ホッピング方式によりスペクトラム拡散通信を行うコードレス電話機が知られている。この種のコードレス電話機は、通信時に使用する周波数の切り替え順序(以下、ホッピングパターンという)が、予め特定のパターンに規定されており、常に親機及び子機が同じホッピングパターンに従って通信するようになっている。
【0005】
しかしながら、1台の親機に対して2台以上の子機を設けたとしても、子機同士で直接通信を行うと、親機から発信される制御信号との衝突が起こる等といった問題が発生する恐れがあるため、子機と子機とが直接通信することはできなかった。
【0006】
本発明は、上記問題を解決した新規な無線通信システムを提案するものであり、その目的は、親機−子機間での通信とは別に子機−子機間でも通信可能で、特に、親機−子機間と子機−子機間とで同一のホッピングパターンを用いながら、同時にそれぞれの通信が可能な無線通信システムを提供することにある。
【0007】
【課題を解決するための手段】
上述の目的を達成するため、本発明の無線通信システムは、請求項1記載の通り、
外部通信路に接続可能な1台の親機と、該親機との無線通信が可能な2台以上の子機とからなり、親機及び各子機には、所定のホップ周波数データを順次発生させるホップ周波数データ発生手段と、該ホップ周波数データ発生手段から与えられるホップ周波数データを使って、入力信号を拡散して送信信号にすると共に、受信信号を逆拡散して出力信号にする通信手段とが設けられ、周波数ホッピング方式により親機−子機間および子機−子機間で通信可能な無線通信システムにおいて、
前記ホップ周波数データ発生手段が、通信用ホップ周波数データ列と制御用ホップ周波数データ列を発生し、前記制御用ホップ周波数データ列は前記通信用ホップ周波数データ列の間に分散されて発生される。
【0008】
本発明の無線通信システムによれば、子機側のホップ周波数データ発生手段が、子機−子機間通信用のホップ周波数データ列を発生させ、そのホップ周波数データを使って、子機側の通信手段が、子機−子機間で周波数ホッピング方式により通信を行う。
【0009】
特に、本発明の無線通信システムにおいて、通信用ホップ周波数データ列の間に分散されて制御用ホップ周波数データ列が発生される。このため、親機−子機間あるいは子機−子機間で通信用ホップ周波数データ列を用いて、通信を行っている間に、通信用ホップ周波数データ列の間に分散されて配置された制御用ホップ周波数データ列を用いて、親機と各子機との間で同期を維持し、呼出等の制御を行うことができる。また、制御用ホップ周波数データ列は通信用ホップ周波数データ列の間に分散されているため、親機−子機間あるいは子機−子機間での通信を著しく妨げることはない。
【0010】
同期維持や呼出等の制御において送受するデータ量は通信時に送受するデータ量よりも少ないことから、制御用ホップ周波数データ列を用いて送受を行う回数は少なくてよい。このため、効率のよいデータ列を発生させるためには、請求項2記載の無線通信システムの如く、
前記制御用ホップ周波数データ列の方が、前記通信用ホップ周波数データ列よりも短いとよい。
【0011】
さらに、請求項3記載の無線通信システムの如く
通信用ホップ周波数は少なくとも2以上連続して発生されると、通信用ホップ周波数データ列を用いて大量のデータを効率よく伝送することができる。
【0012】
制御用ホップ周波数データ列を用いて同期を維持するためには、請求項4記載の無線通信システムの如く、
親機が、制御用ホップ周波数データ列を用いた送受信時を行う第1の制御フレームにおいて親機と子機との同期を維持するための同期信号が含まれた制御信号を発信し、
子機が、同期信号を受信して子機側での同期調整が正常に行われた場合に第1の制御フレームとは異なる制御フレームにおいて所定の制御信号を発信するようにすると、複数の子機が同期を維持する必要がある場合も、現在継続している通信用ホップ周波数データ列を用いた通信に著しい妨害を与えることなく、容易に同期を維持することができる。
【0013】
また、制御用ホップ周波数データ列を用いて同期を維持するためには、請求項5記載の無線通信システムの如く、
発呼機となる親機又は子機が、制御フレームにおいて着呼機となる親機又は子機との接続を要求する呼出信号が含まれた制御信号を発信し、前記着呼機が、発呼機と接続可能な場合に接続了承信号が含まれた制御信号を同一制御フレームにおいて発信するようにすると、同一制御フレームにおいて呼出、応答を行うことができ、次から発生される通信用ホップ周波数データ列を用いて直ちに通信を開始することができる。このため、呼出から通信開始までにかかる時間を極めて短くすることができる。
【0014】
子機−子機間で通信を行うために本発明の無線通信システムでは請求項6記載の如く、
子機側の通信用ホップ周波数データ発生手段が、親機−子機間通信用のホップ周波数データ列の発生位相をシフトさせてなる子機−子機間通信用のホップ周波数データ列を発生可能に構成され、子機が子機−子機間通信用のホップ周波数データを使って、入力信号を拡散して送信信号にすると共に、受信信号を逆拡散して出力信号にすることにより子機−子機間で直接通信を行うようにしている。
【0015】
すなわち、本発明の無線通信システムにおいて、子機−子機間通信用のホップ周波数データ列は、親機−子機間での通信時に用いる親機−子機間通信用のホップ周波数データ列の発生位相を所定だけシフトさせたものである。
【0016】
具体例を挙げて説明すると、例えば、親機−子機間通信用のホップ周波数データ列が、D1→D2→D3→D4→D5→D1→・・・(D1〜D5はそれぞれホップ周波数データ)、という繰り返しパターンで切り替わる場合に、この通信用ホップ周波数データ列の発生位相を2位相分だけシフトさせれば、D3→D4→D5→D1→D2→D3→・・・という繰り返しパターン、即ち、1周期分の中で使用する通信用ホップ周波数データの発生順序は同じながら、元の通信用ホップ周波数データ列と同時に同じ通信用ホップ周波数データを発生させることのない通信用ホップ周波数データ列になる。
【0017】
この様に発生位相をシフトさせた際に、親機−子機間チャネルと子機−子機間チャネルとで、互いの使用する周波数が重ならない様な設定(上記具体例では、D1≠D3≠D5且つD2≠D4)にしておけば、親機が使う周波数の影響を受けることなく、子機−子機間で直接通信を行うことができる。また、例えば3台以上の子機があれば、第3の子機と親機との間での通信が行われている場合でも、第1、第2の子機間で通信可能となり、複数台の子機を有効に運用することができる。
【0018】
特に、本発明の無線通信システムでは、全く別異な通信用ホップ周波数データ列を予め複数通り用意するのではなく、1つの通信用ホップ周波数データ列の発生位相だけをシフトさせることにより、親機−子機間チャネルと子機−子機間チャネルとで、互いに使用周波数が衝突しないようにしているので、ベースとなる通信用ホップ周波数データ列が1つだけで済む分、親機側及び子機側のホップ周波数データ発生手段をコンパクトにすることができ、しかも、同時に同じ周波数が偶然使われてしまうといったトラブルも起きにくい。さらに、制御用ホップ周波数データ列は通信用ホップ周波数データ列よりも規模ははるかに小さいため、親機側及び子機側の通信用および制御用ホップ周波数データ発生手段を非常にコンパクトにすることができる。
【0019】
なお、本発明の無線通信システムにおける親機及び子機の代表的な例としては、コードレス電話機の固定機(ベースセット)と移動機(ハンドセット)を挙げることができるが、この他にも、各種コンピュータやその周辺機器、ファクシミリ装置など、機器相互間で音声、画像、その他の各種データを送受信する装置が、本発明の親機及び子機として利用可能である。
【0020】
より具体的に説明すると、外部通信路となる公衆電話回線に接続可能なファクシミリ装置を親機とし、複数のコードレス送受話器を子機とすれば、親機−子機間通信によって各子機から外部との外線通話ができ、更に、親機−子機間通信又は子機−子機間通信によって親機又は子機を使って内線通話ができる。また、親機をコードレス電話機の固定機とした場合、複数の子機の内の1つをファクシミリ装置としてもよい。更に、外部通信路となる有線LANに接続可能な端末機を親機とし、複数のポータブルコンピュータを子機とすれば、親機−子機間通信により、各ポータブルコンピュータを使って上記有線LANに接続されたホストコンピュータとの間でデータ通信ができ、子機−子機間通信によって各ポータブルコンピュータ間でもデータ通信ができる。
【0021】
ところで、この種の無線通信システムでは、親機と子機とが所定のホップ周波数データ列を使って使用周波数を切り替えるに当たり、親機と子機とが正確に同期していることが重要であるため、通常は、親機側から発信する制御信号に含まれた同期信号に基づき、子機側で親機との同期調整を行っている。子機側では完全に同期がはずれる前に同期調整を行えば、親機との同期を維持できるが、より確実に同期調整を行うのであれば、請求項7記載の如く、
前記制御信号の送受信により、子機−子機間通信中も定期的に親機と子機との同期調整を行う構成にすると望ましい。こうすれば、定期的に同期のずれが解消され、子機−子機間通信中であるか否かを問わず、親機との同期を確実に維持できる。さらに、例えば外部通信路からの着呼等といった情報は、通常は、まず親機側で認識されて、更に親機−子機間通信によって子機へと伝えられるが、この種の情報が子機−子機間通信中の子機でも同期調整時に認識できるので便利である。
【0022】
ところで、子機の電池が切れたり、子機が親機からの電波の到達しない範囲まで離れたりした場合に、その後、電池を充電したり、親機に近づいても、直ちに同期を回復させることはできない。
【0023】
そこで、請求項8記載の如く、
子機側のホップ周波数データ発生手段が、同期回復用ホップ周波数データを発生可能に構成され、子機側のホップ周波数データ発生手段が前記同期回復用ホップ周波数データを発生させた際に、前記子機側の通信手段が、親機からの制御信号を受信可能な状態で待機する構成にするとよい。
【0024】
この様な無線通信システムであれば、何らかの事情で親機と子機との同期がはずれた場合に、子機は、同期回復用のホップ周波数データを使って、親機からの制御信号を受信可能な状態で待機するので、同期信号が含まれた制御信号が所定の周波数で親機から送信されてくれば、その時点から親機との同期を回復することができる。なお、子機側のホップ周波数データ発生手段は、通常は同期の回復に引き続き、親機−子機間通信用(又は制御用)ホップ周波数データ列を発生させ、通信可能な状態へ復帰する。
【0025】
更に、本発明の無線通信システムにおいて、請求項9記載の如く、
子機側のホップ周波数データ発生手段が、子機−子機間通信用ホップ周波数データ列として、発生位相を互いに異なる位相へシフトさせてなる2以上のホップ周波数データ列を発生可能に構成され、子機側の通信手段が、2以上のホップ周波数データ列のいずれかを使用して送受信を行うことにより、2組以上の子機−子機間で同時に通信可能な2以上のチャネルを形成すると、
システム内に4台以上の子機が存在する場合に、2組以上の子機−子機間でも、互いに影響を受けることなく同時に通信できるのでより一層便利である。
【0026】
さて、本発明の無線通信システムにおいて、ホップ周波数データ発生手段は、親機−子機間通信用のホップ周波数データ列の他に、その発生位相を所定だけシフトさせた子機−子機間通信用のホップ周波数データ列および制御用ホップ周波数データ列を発生可能に構成されていればよいが、より具体的な構成の一例を挙げれば、例えば請求項10記載の如く、
ホップ周波数データ発生手段が、通信用ホップ周波数データ列と制御用ホップ周波数データ列を記憶するデータ記憶手段と、通信相手側機器に同期して逐次更新される指標値を保持する指標値保持手段と、指標値保持手段に保持された指標値に対して所定の補正を行い、補正指標値に変換する指標値補正手段とを備え、指標値補正手段に補正された補正指標値をパラメータにして、データ記憶手段に記憶されたデータを参照しホップ周波数データの発生位相を補正指標値に応じてシフトさせたホップ周波数データ列を発生させる構成を考えることができる。
【0027】
データ記憶手段は、通信用および制御用ホップ周波数データ列を記憶可能なROM、RAM、又はその他の記憶媒体で構成される。通信用および制御用ホップ周波数データ列を構成する個々のホップ周波数データは、それぞれ最終的に発信する周波数と1対1に対応付けられる値であり、指標値保持手段が保持する指標値は、上記ホップ周波数データ列の読み出し位置の指標となる。
【0028】
この指標値が逐次更新されるのに伴い、データ記憶手段から読み出される値も替わり、その読み出されたホップ周波数データによって、最終的に発信する周波数が逐次切り替わることになる。そして特に、本システムにおいては、指標値補正手段が、指標値を補正指標値に変換して、その補正指標値に基づいてホップ周波数データを読み出すので、例えば、指標値が1→2→3→・・・と更新される場合に、指標値補正手段が各指標値に2を加える補正を行えば、補正指標値は3→4→5→・・・と更新されることになり、この補正指標値をパラメータにして、データ記憶手段からホップ周波数データ列中のホップ周波数データを読み出すと、最終的に、通常よりも2位相分だけ先のホップ周波数データが発生することになる。
【0029】
特に、請求項11記載の如く、
ホップ周波数データ発生手段が、親機−子機間通信用又は制御用のいずれかのホップ周波数データ列を発生させる場合に、指標値補正手段は、指標値保持手段に保持された指標値をそのまま補正指標値とする一方、いずれかのホップ周波数データ列以外のホップ周波数データ列を発生させる場合に、指標値保持手段に保持された指標値と所定値との演算を行って補正指標値を算出する構成にすれば、最も頻繁に使われる可能性が高い親機−子機間通信用又は制御用のいずれかのホップ周波数データ列を発生させる場合に、指標値の補正が不要となり、処理が簡素化される。
【0030】
この様に、請求項10又は請求項11記載の無線通信システムによれば、読み出し位置となる指標値を補正するだけで、2通り以上の異なるホップ周波数データ列を発生させることができるので、2通り以上のホップ周波数データ列を、それぞれデータ記憶手段に直接記憶する様な場合に比べ、データの記憶に必要な記憶容量は格段に少なくなる。
【0031】
【発明の実施の形態】
次に、本発明の実施の形態として、本発明の無線通信システムの具体例を図面に基づいて説明する。なお、以下に説明する具体例は、本発明の実施の形態の一例に過ぎず、本発明の実施の形態が以下に例示する具体的な装置に限られる訳ではない。
【0032】
本無線通信システムは、図1に示す通り、外部通信路である電話回線に接続される1台の親機10と、親機10との無線通信が可能な3台の子機11〜13とで構成されている。
【0033】
これらの内、親機10及び子機11〜13はいずれも、図2に示す通り、所定のホッピングパターンで周波数を切り替えるために使われるホップ周波数データを発生させるホップ周波数データ発生部21と、ホップ周波数データ発生部21から与えられるホップ周波数データを使って、入力信号を拡散して送信信号にすると共に、受信信号を逆拡散して出力信号にする通信部22と、電話の場合、音声とディジタル信号との相互変換を行うコーデックおよび圧縮器から構成され、PC等のディジタル信号を扱う場合は、バッファやエラー訂正処理等を行うデータ変換器から構成されるインタフェース部48と、インターフェース部48からの信号で変調を行い、通信部22に入力信号として与え、通信部22からの出力信号を復調し、インターフェース部48に送る変復調器47とを備えている。
【0034】
ホップ周波数データ発生部21は、クロック30からの出力信号を入力する毎にカウントアップされるフレームカウンタ32と、フレームカウンタ32からホッピング開始信号を入力する毎にカウントアップされるホッピングカウンタ34と、ホッピングカウンタ34の出力信号を入力し、その信号(出力値)に対して所定の補正演算を行って得られる補正出力信号を出力するホッピングコントローラ35と、所定のホップ周波数データ列を記憶するホッピングテーブル36とを備え、逐次変動するホッピングコントローラ35からの出力値に応じてホッピングテーブル36からホップ周波数データを読み出し、そのホップ周波数データを出力信号として発生させている。これらのフレームカウンタ32、ホッピングカウンタ34、ホッピングコントローラ35、ホッピングテーブル36は、上述のように別体のものであってもよいが、周知のCPUによる論理演算に置換することも可能である。
【0035】
また、通信部22は、ホップ周波数データ発生部21からホップ周波数データが与えられると、それに応じた発振周波数fN’で発振する周波数シンセサイザ40を備え、周波数シンセサイザ40からの発振周波数fN’の信号と送話器側からの周波数fIFの入力信号をアップコンバータ41で混合し、アップコンバータ41から出力される周波数fN の送信信号をパワアンプ42で増幅し、その信号をアンテナスイッチ43を介してアンテナ23から発信するように構成されている。アップコンバータ41の主要構成部品はミキサであり、変調器47からの信号と周波数シンセサイザ40の信号が加え合わされる。周波数変換は1段で行う必要はなく、他の局部発振器も用いた2段構成でもよい。
【0036】
また一方、アンテナ23で受信した周波数fN の信号を、アンテナスイッチ43を介してローノイズアンプ45に入力して増幅し、その周波数fN の信号と上記周波数シンセサイザ40からの発振周波数fN’の信号をダウンコンバータ46で混合して、周波数fIFの出力信号を生成するように構成されている。ダウンコンバータ46の主要構成部品はミキサであり、ローノイズアンプ45からの信号から周波数シンセサイザ40の信号が減算される。周波数変換は1段で行う必要はなく、他の局部発振器も用いた2段構成でもよい。これらの送信又は受信動作は、アンテナスイッチ43の切り替え位置に応じていずれか一方が行われる。
【0037】
なお、親機10及び子機11〜13は、上記本発明における主要な構成の他に、それぞれ通常のコードレス電話機の親機及び子機が備える構成(例えば、受話器、送話器、ダイヤルキー、各種スイッチ等)を備えているが、これらは周知のものと全く同じなので、図示及び説明を省略する。
【0038】
次に、本無線通信システムにおける通信方法について説明する。
【0039】
本無線通信システムでは、TDD(時分割デュープレクス)を用いて双方向通信を行っている。即ち、親機10と子機11〜13のいずれかとの間で通信が行われる場合は、図3に示す様に、親機10は、周波数ホップ51、送信52、送受切り替え53、及び受信54の各フェーズからなるフレーム50を単位として動作する一方、子機11〜13は、周波数ホップ61、受信62、送受切り替え63、及び送信64の各フェーズからなるフレーム60を単位として動作する。これらの各フェーズは、それぞれフレーム内での開始から終了までのタイミングが予め決められており、上述の如くカウントアップされるフレームカウンタ32からの出力信号(出力値)に基づいて、次のフェーズへの切り替えが管理されている。
【0040】
これら各フェーズの内、周波数ホップフェーズは、フレームの切り替えに伴って遷移状態となる送受信周波数を安定させる期間で、各機器間で互いに送受信は行わない。
【0041】
また、親機10の送信フェーズ(即ち、子機11〜13の受信フェーズ)は、親機10から子機11〜13への信号が発信される期間で、ここで送信される信号には、送話器側からの入力信号の他に、制御信号として、親機10と子機11〜13とのフレームの同期を維持するために必要な同期信号、子機11〜13を呼び出す呼出信号、子機11〜13からの呼出を受け付けた旨を示す接続了承信号、親機10が通信中である旨を示すビジー信号などがある。
【0042】
同期信号は、全送信ビット中の特定位置に埋め込まれた特定パターンのビット列からなり、このビット列を子機11〜13が受信信号中から検出したら、そのビット列の位置が上記特定位置と一致するように、子機側のフレームカウンタ32をリセットする。即ち、例えば、フレームカウンタ32の値がmの時に親機10が上記特定パターンのビット列を送信し終えるとすると、これを受信した子機11〜13は、上記特定パターンのビット列を受信し終えた時点で、強制的にフレームカウンタ32の値をmに再設定する。
【0043】
これにより、子機側のフレームカウンタ32は親機側と一致し、以後は、親機10及び子機11〜13のそれぞれが、自身のクロック30からのパルス信号でフレームカウンタ32のカウントアップを管理するだけで、フレームを切り替えるタイミング等が親機10と子機11〜13とで一致する。この様な同期調整を適当なタイミングで実施すれば、親機10と各子機11〜13とで、それぞれのクロック30の出力するパルス間隔に多少の誤差があっても、フレームの切り替わるタイミングに大きなずれは生じない。
【0044】
呼出信号は、親機10が子機11〜13のいずれかとの通信を開始する際に、まず最初に発信する信号で、リンクすべき子機を指定するID等が含まれている。逆に、接続了承信号は、先に子機11〜13から送られて来ている呼出信号に対し、親機10が通信可能である場合に送信する信号で、この信号を送信したら次のフレームから呼出側の子機との通信が開始される。ビジー信号は、親機10が通信中であることを示す信号で、子機11〜13のいずれと通信中であるかを示すID等が含まれている。
【0045】
また、送受切り替えフェーズは、親機10及び子機11〜13のそれぞれにおいて、送信と受信が入れ替わる遷移期間で、各機器間で互いに送受信は行わない。
【0046】
また、親機10の受信フェーズ(即ち、子機11〜13の送信フェーズ)は、子機11〜13から親機10への信号が発信される期間で、ここで送信される信号には、任意の内容となる音声などのデータ信号の他に、制御信号として、子機11〜13側で親機10との同期が取れたことを返答する同期確認信号、親機10又は子機11〜13のいずれかを呼び出す呼出信号、親機10又は子機11〜13のいずれかからの呼出を受け付けた旨を示す接続了承信号、子機11〜13が通信中である旨を示すビジー信号などがある。
【0047】
同期確認信号は、正常に同期調整ができた場合に、その確認として送信される信号で、この信号が送信されてこなければ、応答のない子機11〜13について、同期が取れていないものと親機側で判断することができる。なお、呼出信号、接続了承信号、及びビジー信号は、子機11〜13が主体となること以外は、親機10の発信するものと同様の主旨の信号である。
【0048】
これら各フェーズにて構成されるフレームを単位として、1つのフレームにおいて送受信が行われ、この送受信が複数フレームにわたって繰り返し実行されることにより、機器間での双方向通信が実現される。
【0049】
なお、本無線通信システムでは、後から詳述する通り、子機−子機間での通信が可能であるが、子機−子機間で通信を開始した場合は、発呼側となる子機が、親機10と同様に、周波数ホップ51、送信52、送受切り替え53、及び受信54の各フェーズからなるフレーム50を単位として動作する。これにより、通常通り上記フレーム60を単位として動作している子機との間で、双方向通信が可能となる。
【0050】
また、送信フェーズでは、送信の必要な機器が送信動作を行うが、送信の不要な機器については、受信フェーズと同様に受信動作を行っている。
【0051】
次に、通信時に使用する周波数の切り替え方法について説明する。
【0052】
本無線通信システムでは、上述したフレームを単位として、フレーム毎に使用する周波数を切り替えながら、周波数ホッピング方式によりスペクトラム拡散通信を行っている。
【0053】
より具体的には、ホップ周波数データ発生部21では、フレームカウンタ32が、クロック30のパルス信号を0から所定値まで1ずつカウントし、所定値に達したら0(ゼロ)にリセットする動作を繰り返し実行している。この0(ゼロ)から所定値に達するまでの時間が、上記1フレームの長さに相当する。
【0054】
また、ホッピングカウンタ34は、新たに周波数ホップフェーズに入るたびに1ずつカウントアップされる。周波数ホップフェーズに入ったことは、上記フレームカウンタ32が0(ゼロ)にリセットされることにより判断できる。ホッピングカウンタ34からは必要に応じて通信用のカウンタ値Nと制御用のカウンタ値Mとが出力される。そして、ホッピングカウンタ34のカウンタ値NおよびMも、予め定められた最大値nおよびmに達したら再び0(ゼロ)に戻る。
【0055】
また、ホッピングコントローラ35は、ホッピングカウンタ34のカウンタ値Nを補正して出力する。この補正方法については後で詳述するが、いずれにしても、ホッピングコントローラ35からは、ホッピングカウンタ34のカウンタ値N、Mが変化する毎に変化するホップ番号N、Mが出力される。
【0056】
また、ホッピングテーブル36には、図4(a)に示す様に、ホップ番号Nに対応付けられた複数のホップ周波数データd0 、d1 、d2 、・・・、dn 、・・・からなる通信用ホップ周波数データ列Dおよび、同図(b)に示すようにホップ番号Mに対応付けられた複数のホップ周波数データg0 、g1 、g2 、・・・、gn 、・・・からなる制御用ホップ周波数データ列Gが記憶されている。そして、同図(c)に示すように、制御用ホップ周波数データ列は通信用ホップ周波数データ列の間に分散されて発生される。従って、全体としてのホッピングテーブルは見かけ上同図(c)のようにホップ番号Cに対応付けられた周波数データFDからなる。ここで示した例では、制御用ホップ周波数データg0の後に、通信用ホップ周波数データがd1、d2、d3、d4、d5・・・d10と続き、再び制御用ホップ周波数g1および通信用ホップ周波数データがd11、d12、d13、d14、・・・d20が発生され、これが繰り返される。
【0057】
ここで、制御信号のデータ量は一般に通信データのデータ量よりも少ないため、制御用ホップ周波数データは通信用ホップ周波数データよりも少なくてよい。また、通信用ホップ周波数データの間に分散された制御用ホップ周波数データの長さは1フレーム分であるため、制御信号の送受により、一時通信は中断されるが、この中断は1フレームのみであるため、通信に与える妨害は非常に小さい。特に、音声データの通信時には1フレームの瞬断は耳では認識されず、実質上通信への影響はない。また、制御用ホップ周波数データの間に連続した通信用ホップ周波数データが発生されるため、データ通信時のエラー発生時の再送等を連続して行うことができ効率的である。
【0058】
この制御用ホップ周波数データの間で発生される連続した通信用ホップ周波数データの個数をp、使用する制御用ホップ周波数データの個数をm、使用する通信用ホップ周波数データの個数をnとすると、n=m×pを満足するように各個数を選ぶのが望ましい。これにより、1ホップ周期の間で全てのホップ周波数データが過不足なく発生され発生効率がよく、ホッピングテーブルをコンパクトにすることができる。なお、各ホップ周波数データは使用する個数のみ設定されていてもよいが、それより多く設定されているのが望ましい。これは、妨害等でエラーが多く発生した周波数は別の周波数に入れ替えることによりエラーが減少し、より信頼性の高い通信が可能となる。使用していない周波数データはこの周波数を入れ替えるための予備周波数データとして必要に応じて用いるのである。
【0059】
周波数シンセサイザ40は、例えば通信用ホップ周波数データdi が与えられると、発振周波数fdi’で発振し、この発振周波数fdi’の信号により、周波数fIFの入力信号が周波数fdi の送信信号に変換されて出力される一方、同じく発振周波数fdi’の信号により、周波数fdi の受信信号は周波数fIFの出力信号に変換される。制御用ホップ周波数データgi が与えられた場合も同様であり、発振周波数fgi’で発振し、fgi の送信信号が出力される。
【0060】
ホップ周波数データ発生部21が発生させるホップ周波数データは、上述の如く、ホップ番号NおよびMに対応して逐次変動するため、通信部22において最終的に送受信に使われる周波数fdi 、fgiも逐次切り替えられることになる。特に、ホップ周波数データdi 、giと送受信周波数fdi、fgi は、1対1に対応する値になっており、ホップ周波数データd1 〜dnおよびg1〜gmが擬似乱数値で設定されているため、送受信周波数fg0、fd1 〜fd5、fg1、・・・fn は予め定められた所定の周波数帯域内でランダムに変動(ホップ)する。
【0061】
ところで、上述の通り、ホッピングコントローラ35では、ホッピングカウンタ34のカウンタ値Nがホップ番号に変換されるが、この補正方法は、親機−子機間通信を行う場合と子機−子機間通信を行う場合とで異なる。
【0062】
より詳しく説明すると、まず、親機−子機間通信および制御信号の送受を行う場合には、ホッピングコントローラ35は、ホッピングカウンタ34のカウンタ値MおよびNをそのままホップ番号として出力する。こうすると、同期調整等も含めて最も頻繁に実行される可能性が高い親機−子機間通信においては、親機−子機間通信であることを判断するだけで面倒な変換処理は行わなくてもよい。
【0063】
一方、子機−子機間通信を行う場合には、ホッピングコントローラ35は、制御用ホップ周波数データの時だけは、ホッピングカウンタ34のカウンタ値Mをそのままホップ番号Mとして出力するが、通信用ホップ周波数データの時は、カウンタ値Nに所定値Sを加算した値をホップ番号Nとして出力する。
【0064】
上記所定値Sは、本システムの場合、2又は4のいずれかで、更に詳しく説明すると、子機11〜13に子機番号#1〜#3が付けられ、互いに通信を行う2台の子機の内の若い方の子機番号#1、#2に応じて、子機番号を2倍した値に相当する所定値S=2、4が選ばれる。例えば、S=2の場合のホッピングテーブルを図4(d)に示す。同図(c)と比べて、通信用ホップ周波数データの発生が2位相分シフトしている。なお、上記所定値Sの選択方法は任意であるが、この様な選び方であれば、2組の子機同士が同時に通信を行う場合に、その子機同士を如何なる組合せにしようとも、互いの子機番号だけに基づいて、確実に互いに2以上離れれた所定値Sを選択でき、しかも、子機番号を2倍しているので、各ホップ周波数データ列は、互いに2位相分以上シフトすることになり、2つのチャネルにおいて周波数を切り替えるタイミングにずれが発生しても、両チャネルで使用する周波数が同一になることはなく互いに通信を妨害することがない。
【0065】
ちなみに、他の選択方法を挙げれば、発呼側の子機番号に応じて所定値Sを選んでもよい。また、同時に組合せ可能な子機同士の組は、全子機の台数の半分(奇数台の場合は小数点以下切捨て)となるので、その組の数だけ所定値Sの取り得る値を予め決めておいてもよい。
【0066】
通信用ホップ周波数データの間に分散された制御用ホップ周波数データを用いて送受を行うフレーム(以下、制御フレームともいう)は、全機器間で各種制御信号の送受信を行うために設けてある。本システムの場合は、通信用ホップ周波数データがn=50個、制御用ホップ周波数データがm=5個用いられ、通信用ホップ周波数データはp=10個連続している。すなわち、n=m×pの関係を満足するようにn、m、pを定めると1ホップ周期の間で全てのホップ周波数データが過不足なく発生され発生効率がよく、ホッピングテーブルをコンパクトにすることができる。
【0067】
制御フレームが全部で5フレームになっているが、これは少なくとも親機の台数に子機の台数を加えた数となるように設定してある。子機の数を更に増設可能であれば、予め増設可能な最大数分だけ制御フレームを設定しておけばよい。
【0068】
この様な制御フレームでは、共通の周波数fg0 〜fg4 で送受信を行うため、全機器間で送受信が可能である。そのため、同時に2以上の機器が送信するのを防ぐため、親機10と子機11〜13との間で、予め取り決められた順序にしたがって送受信を行わねばならない。
【0069】
一方、制御フレーム以外のフレームでは、通信中の機器間でのみ送受信周波数が一致するので、当該機器間で取り決められた順序のみにしたがって送受信を行っても、他のチャネルとの衝突等は発生しない。
【0070】
なお、以下、ホッピングコントローラ35がホッピングカウンタ34のカウンタ値Nをそのままホップ番号Nとして出力した際に、ホップ周波数データ発生部21から出力されるデータ列をホップ周波数データ列Bという。また、ホッピングコントローラ35が、上記所定値S=2、4を使ってカウンタ値Nを補正してホップ番号Nを出力した際に、ホップ周波数データ発生部21から出力されるデータ列を、それぞれホップ周波数データ列H1、H2という。例えば図4(c)がホップ周波数データ列B、同図(d)がホップ周波数データ列H1を表す。
【0071】
次に、親機10で実行される送受信処理について説明する。なお、親機10での送受信は、ホップ周波数データ列Bを使って行われる。
【0072】
まず、図5に示す様に、ホッピングカウンタ34のカウンタ値MおよびNが0(ゼロ)にリセットされ(S101)、ホッピングテーブル36から制御用ホップ周波数データ列g0が選択されることにより(S102)、所定の周波数へホップする(S103)。これにより、制御フレームに入る。
【0073】
ここで、特定の子機を呼び出すか否かをチェックする(S104)。子機を呼び出さない場合には(S104:NO)、そのフレームの送信フェーズにおいて初期同期信号を送信する(S105)。初期同期信号は、一連の呼出制御を行う場合の基準となり、これ以降の制御フレームにおいて、順に親機10、子機11、12、13の呼出制御が行われる。この初期同期信号送信時に親機10が通信中(S106:YES)であれば、これを他の子機に通知するためビジー信号を送信する(S107)。
【0074】
この制御フレームの後は、通信用ホップ周波数データを用いた送受を行う通信フレームとなる。この通信フレームA1において、カウンタ値Nがカウントアップされ通信が継続されるが詳細については後述する。なお、カウンタ値Mもカウントアップされており、通信フレームを抜けて、制御用ホップ周波数データg1が選択され(S108)、次の周波数へホップし(S109)、そのフレームの受信フェーズにおいて子機11からの制御信号を受信する(S110)。
【0075】
子機11からの呼出がなければ(S120:NO)、再び通信フレームA1となり、カウンタ値Mがカウントアップされる。通信フレームを抜けると制御用ホップ周波数データFD=gm=g2が選択され(S121)、次の周波数へホップし(S122)、そのフレームの受信フェーズにおいて子機12からの制御信号を受信する(S123)。
【0076】
子機12からの呼出がなければ(S124:NO)、再び通信フレームA1となり、カウンタ値Mがカウントアップされる。通信フレームを抜けると制御用ホップ周波数データg3が選択され(S125)、次の周波数へホップし(S126)、そのフレームの受信フェーズにおいて子機13からの制御信号を受信する(S127)。
【0077】
子機13からの呼出がなければ(S128:NO)、再び通信フレームA1となり、カウンタ値Mがカウントアップされる。通信フレームを抜けると再び、制御用ホップ周波数データg4が選択され(S102)、以降以上説明したステップが繰り返される。
【0078】
各子機からの制御信号には、先に説明した同期確認信号が含まれ、また、親機10に対する呼出信号が含まれる可能性があり、親機10は子機からの呼出信号の有無をチェックする(S120)。以上のS102〜S128は繰り返し実行されるが、連続して行う必要はなく、所定の間隔で行うようにしてもよい。また、親機10は連続して行っても、子機11、12、13も毎回応答する必要はなく、所定の間隔で応答するようにしてもよい。これにより、応答するための送信回数が減少し、電池の消費を抑え長時間の送受が可能となる。
【0079】
一方、上記S120において、子機からの呼出があれば(S120:YES)、図6に示す様に、ホッピングカウンタ34のカウンタ値Mがカウントアップされて(S141)、Mが最大値Mmax=mを超えれば(S142:YES)、M=0とする(S143)。
【0080】
通信フレーム数カウンタjdを1にリセットし(S144)、通信用ホップ周波数データのカウント値NをカウントアップしN=N+1とし(S145)、カウント値Nが最大値Nmaxを越えれば(S146:YES)、N=0とする(S147)。
【0081】
通信用ホップ周波数データFD=dn=d1を選択し(S148)、次の周波数へホップし(S149)、そのフレームの送信フェーズにおいて接続了承信号を送信する(S150)。そして、そのフレームの受信フェーズにおいて確認信号を受信したら(S151)、親機−子機間通話が次のフレームから開始される。
【0082】
すなわち通信フレーム数カウンタjdがカウントアップされ(S152)、所定数jdmaxすなわち本実施例では5フレームだけ連続して通信用ホップ周波数データが発生されたら(S153:YES)、通信フレームを抜け、制御フレームに移行する。通信用ホップ周波数データが所定数jdmaxだけ連続して発生されていなければ(S153:NO)、通信用ホップ周波数データのカウント値Nをカウントアップし(S154)、カウント値Nが最大値Nmaxを越えれば(S155:YES)、N=0とする(S156)。この後、通信用ホップ周波数データFD=dnを選択し(S157)、次の周波数へホップし(S158)、通信中であれば(S160:YES)、そのフレームの送信フェーズにおいて通信信号を送信し(S161)、そのフレームの受信フェーズにおいて子機12からの通信信号を受信する(S162)。また、通信が終了した場合や通信中でない場合(S160:NO)は、各部を省電力状態に移行させてスリープ状態となる(S163)。これを所定数jdmaxだけ連続して通信用ホップ周波数データが発生されるまで繰り返す。
【0083】
なお、通信用ホップ周波数データのカウント値Nをカウントアップする場合(145、S154)、Nがその使用個数Nmax=nを超えた場合(S146、S155:YES)、N=0にリセットする(S147、S156)。
【0084】
さて一方、図5に示した処理中、S104において、子機を呼び出す場合には(S104:YES)、図7に示す通り、そのフレームの送信フェーズにおいて初期同期信号と共に特定の子機に対する呼出信号を送信する(S170)。この呼出信号には、例えば子機12を指定するIDが含まれており、呼出信号自体は、全子機11〜13で受信されるが、各子機11〜13において、子機12に対する呼出信号であることを認識できる。なお、ここからは、子機12を呼び出したものとして説明を続ける。そのフレームの受信フェーズにおいて直ちに子機12からの接続了承信号を受信し(S171)、次から発生される通信フレームから直ちに通信を開始する。これにより、呼出から通信開始まで非常に短時間に移行することができる。
【0085】
続いて、ホッピングカウンタ34のカウンタ値Mがカウントアップされる(S172)。ここで、S173,S174の、MがMmaxを超えた場合M=0とする処理は以降同じであるため説明は省略する。
【0086】
続いて、通信フレーム数カウンタjdを1にリセットし(S175)、通信用ホップ周波数データのカウント値Nをカウントアップする(S176)。ここで、S177、S178の、通信用ホップ周波数データのカウント値Nをカウントアップする際、Nがその使用個数Nmax=nを超えた場合N=0にリセットする処理は以降も同様に行われるため説明は省略する。通信用ホップ周波数データFD=dnを選択し(S179)、次の周波数へホップし(S180)、そのフレームの送信フェーズにおいて通信信号を送信する(S181)。そして、そのフレームの受信フェーズにおいて子機12からの通信信号を受信する(S182)。 その後、通信フレーム数カウンタjdがカウントアップされ(S183)、所定数jdmaxだけ連続して通信用ホップ周波数データが発生されたら(S184:YES)、通信フレームを抜け、制御フレームに移行する。通信用ホップ周波数データが所定数jdmaxだけ連続して発生されていなければ(S184:NO)、通信用ホップ周波数データのカウント値Nをカウントアップし通信を継続する。これを所定数jdmaxだけ連続して通信用ホップ周波数データが発生されるまで繰り返す。
【0087】
なお、接続了承信号を受信できなければ、子機が通話中、子機との同期がはずれている、子機が通信可能範囲にいない、子機の電池切れ等、様々な要因が考えられるが、いずれにしても通話不能であり、例えば通話不能であることを示す音声信号を受話器から発する等の対処をする。
【0088】
ここで、通信中の親機10の動作について図8を用いて説明する。制御フレームから通信フレームA1に移行すると、ホッピングカウンタ34のカウンタ値Mがカウントアップされる(S190,S191、S192)。
【0089】
続いて、通信フレーム数カウンタjdを1にリセットし(S193)、通信用ホップ周波数データのカウント値Nをカウントアップし(S194、S195、S196)、通信用ホップ周波数データFD=dnを選択し(S197)、次の周波数へホップし(S198)、通信中であれば(S199:YES)、そのフレームの送信フェーズにおいて通信信号を送信し(S200)、そのフレームの受信フェーズにおいて子機12からの通信信号を受信する(S201)。また、通信が終了した場合や通信中でない場合(S199:NO)は、各部を省電力状態に移行させてスリープ状態となる(S202)。
【0090】
その後、通信フレーム数カウンタjdがカウントアップされ(S203)、所定数jdmaxだけ連続して通信用ホップ周波数データが発生されたら(S204:YES)、通信フレームを抜け、制御フレームに移行する。通信法ホップ周波数データが所定数jdmaxだけ連続して発生されていなければ(S204:NO)、通信用ホップ周波数データのカウント値Nをカウントアップし通信を継続する。これを所定数jdmaxだけ連続して通信用ホップ周波数データが発生されるまで繰り返す。
【0091】
さて、以上のような送受信処理を行う親機10に対し、各子機11〜13は、次のような送受信処理を実行する。なお、以下の説明は、子機12を例に説明するが、子機11、13も、それぞれ同様な送受信処理を行っている。
【0092】
まず、図9に示す様に、ホッピングカウンタ34のカウンタ値M、Nがリセットされて(S211)、所定の制御用ホップ周波数データgmが選択され(S212)、その周波数へホップし(S213)、その制御フレームの受信フェーズにおいて親機10からの制御信号を受信する(S214)。制御信号中には、同期信号が含まれ、また、親機10からの呼出信号が含まれている場合がある。
【0093】
ここで、親機10からの制御信号が初期同期信号であれば(S215:YES)、ここから一連の呼出制御が開始されるため、次のステップに移行する。初期同期信号でなければ(S215:NO)、一旦通信フレームA3に移行後、再び制御フレームに入り、親機10からの初期同期信号を受信するまでこれを繰り返す。この通信フレームA3において、カウンタ値Nがカウントアップされ通信が継続されるが、通信フレームA3での処理については後で詳細に説明する。
【0094】
親機10からの初期同期信号を受信し、一連の呼出制御が開始され、親機10からの呼出がない場合には(S216:NO)、通信用ホップ周波数データを用いた送受を行う通信フレームとなる。なお、カウンタ値Mもカウントアップされており、通信フレームを抜けて、次の制御用ホップ周波数データgmが選択され(S217) 、次の周波数へホップし(S218)、子機11を呼び出すか否かをチェックする(S220)。ここで、子機11を呼び出す場合は(S220:YES)、後述する子機−子機間通話が、次のフレームから開始される。一方、子機11を呼び出さない場合は、このフレームの受信/送信フェーズ双方とも受信状態で待機する(S222)。
【0095】
再び、通信フレームA3において、カウンタ値Mがカウントアップされ、通信フレームを抜けて、次の制御用ホップ周波数データgmが選択され(S223) 、次の周波数へホップし(S224)、その制御フレームの受信フェーズにおいて子機11又は子機13からの制御信号を受信する(S225)。ここで、子機からの呼出があれば(S226:YES)、後述する子機−子機間通話が、次のフレームから開始される。一方、子機からの呼出がなければ(S226:NO)、親機10を呼び出すか否かをチェックする(S228)。ここで、親機10を呼び出すのであれば(S228:YES)、後述する親機−子機間通話が、次のフレームから開始される。一方、親機10を呼び出さないのであれば(S228:NO)、このフレームの送信フェーズにおいて同期確認信号を送信する(S230)。
【0096】
続いて、通信フレームA3において、カウンタ値Mがカウントアップされ、通信フレームを抜けて、次の制御用ホップ周波数データgmが選択され(S231)、次の周波数へホップし(S232)、子機13を呼び出すか否かをチェックする(S234)。ここで、子機13を呼び出す場合は(S234:YES)、後述する子機−子機間通話が、次のフレームから開始される。一方、子機13を呼び出さない場合は、このフレームの受信/送信フェーズ双方とも受信状態で待機する(S236)。
【0097】
また続いて、通信フレームA3において、カウンタ値MがカウントアップされS212に戻り、同様の処理が繰り返される。なお、この一連の処理は連続して繰り返す必要はなく、S236が終了した時点で一旦、各部を省電力状態に移行させ所定の時間スリープ状態を保持してもよい。これにより、通信を行わないときの電池の消耗を抑えることができ、より長時間の通信が可能となる。スリープ状態を所定の時間保持した後、各部の省電力状態を解除してウェイクし、S212へと戻る。
【0098】
さて、上記S216において、親機10からの呼出がある場合には(S216:YES)、図10に示す様に、直ちにそのフレームの送信フェーズにおいて接続了承信号が送信される(S240)。そして、ホッピングカウンタ34のカウンタ値Mがカウントアップされて(S241)、このときMが最大値Mmax=mを超えれば(S242:YES)、M=0とする(S243)。
【0099】
続いて、通信フレーム数カウンタjdを1にリセットし(S244)、通信用ホップ周波数データのカウント値Nをカウントアップし(S245、S246、S247)、通信用ホップ周波数データFD=dnを選択し(S248)、次の周波数へホップし(S249)、通信中であれば(S250:YES)、そのフレームの受信フェーズにおいて親機10からの通信信号を受信し(S251)、そのフレームの送信フェーズにおいて親機10へ通信信号を送信する(S252)。また、通信が終了した場合や通信中でない場合(S250:NO)は、各部を省電力状態に移行させてスリープ状態となる(S253)。
【0100】
その後、通信フレーム数カウンタjdがカウントアップされ(S254)、所定数jdmaxだけ連続して通信用ホップ周波数データが発生されたら(S255:YES)、通信フレームを抜け、制御フレームに移行する。通信法ホップ周波数データが所定数jdmaxだけ連続して発生されていなければ(S255:NO)、通信用ホップ周波数データのカウント値Nをカウントアップし通信を継続する。これを所定数jdmaxだけ連続して通信用ホップ周波数データが発生されるまで繰り返す。
【0101】
さて次に、図9に示した処理中、S220又はS234において子機の呼出をする場合には(S220:YES、又は、S234:YES)、子機12の本来の送信/受信フェーズの順序を逆転させて以下の処理を行う。以下、子機13を呼び出す場合(S234:YES)を例にして説明を続けるが、子機11の場合も同様の処理である。
【0102】
まず、図11に示す様に、そのフレームの送信フェーズにおいて子機13に対する呼出信号を送信し(S300)、続く受信フェーズにおいて子機13からの接続了承信号を受信する(S302)。こうして、互いにリンク可能な状態であることを確認したら、ホッピングカウンタ34のカウンタ値Mがカウントアップされる(S304,S306、S308)。
【0103】
続いて、ホッピングカウンタ34のカウンタ値Nに対する所定値Sの加算を開始してその値をホップ番号Nとする(S310)。なお、ここでは、子機13との通話を想定しているため、所定値S=4を加算するが、子機11との通話の場合は所定値S=2を加算する。
【0104】
続いて、通信フレーム数カウンタjdを1にリセットし(S312)、カウンタ値Nがカウントアップされて(S314、S316、S318)、通信用ホップ周波数データFD=dnを選択し(S320)、次の周波数へホップし(S322)、通信中であれば(S324:YES)、そのフレームの送信フェーズにおいて通信信号を送信し(S326)、そのフレームの受信フェーズにおいて子機12からの通信信号を受信して(S328)、相互に通信を開始する。また、通信が終了した場合(S330:YES)は、カウンタ値Nへの所定値Sの加算を中止(S332)する。通信中でない場合(S324:NO)は、各部を省電力状態に移行させてスリープ状態となる(S334)。
【0105】
このフレームからは、通信を行っている間、子機12、13が、所定値S=4を加算してなるホップ番号Nに基づいて発生させた子機−子機間通信用ホップ周波数データ使って、送受信信号の周波数をホップさせているので、この時点で、従前通りの親機−子機間通信用ホップ周波数データ列を使って送受信信号の周波数をホップさせている親機10及び子機11に対し、ホップ周波数データの発生位相が4位相分だけシフトし、使用する周波数が一致しない全く別のチャネルが形成されることになる。したがって、この時、親機10と子機11との間で通信が開始されたとしても、互いに通信を妨害したりすることはない。
【0106】
その後、通信フレーム数カウンタjdがカウントアップされ(S336)、所定数jdmaxだけ連続して通信用ホップ周波数データが発生されたら(S338:YES)、通信フレームを抜け、図9に示した処理中、S212へ戻り、制御フレームに移行する。通信用ホップ周波数データが所定数jdmaxだけ連続して発生されていなければ(S338:NO)、通信用ホップ周波数データのカウント値Nをカウントアップし通信を継続する。これを所定数jdmaxだけ連続して通信用ホップ周波数データが発生されるまで繰り返す。
【0107】
さて次に、図9に示した処理中、S216において子機からの呼出がある場合には(S216:YES)、子機−子機間通話を開始する。以下、子機13から呼び出された場合を例にして説明を続けるが、子機11の場合も同様の処理である。
【0108】
まず、図12に示す様に、そのフレームの送信フェーズにおいて子機13に対して接続了承信号を送信する(S360)。そして、ホッピングカウンタ34のカウンタ値Mがカウントアップされて(S362)、このときMが最大値Mmax=mを超えれば(S364:YES)、M=0とする(S366)。
【0109】
続いて、通信フレーム数カウンタjdを1にリセットし(S368)、ホッピングカウンタ34のカウンタ値Nに対する所定値Sの加算を開始してその値をホップ番号Nとする(S370)。さらに続いて、カウンタ値Nがカウントアップされて(S372、S374、S376)、通信用ホップ周波数データFD=dnを選択し(S378)、次の周波数へホップし(S380)、通信中であれば(S382:YES)、そのフレームの受信フェーズにおいて子機13からの通信信号を受信し(S384)、そのフレームの送信フェーズにおいて子機13へ通信信号を送信して(S386)、相互に通信を開始する。また、通信が終了した場合(S388:YES)は、カウンタ値Nへの所定値Sの加算を中止する(S390)。通信中でない場合(S382:NO)は、各部を省電力状態に移行させてスリープ状態となる(S392)。
【0110】
このフレームからは、通信中は子機12、13が、所定値Sが加算されたホップ番号に基づいて発生させたホップ周波数データを使って、送受信信号の周波数をホップさせているので、この時点で、従前通りの親機−子機間通信用ホップ周波数データ列を使って送受信信号の周波数をホップさせている親機10及び子機11に対し、ホップ周波数データの発生位相が4位相分だけシフトし、使用する周波数が一致しない全く別のチャネルが形成されることになる。したがって、この時、親機10と子機11との間で通信が開始されたとしても、互いに通信を妨害したりすることはない。
【0111】
その後、通信フレーム数カウンタjdがカウントアップされ(S394)、所定数jdmaxだけ連続して通信用ホップ周波数データが発生されたら(S396:YES)、通信フレームを抜け、図9に示した処理中、S231へ戻り、制御フレームに移行する。通信用ホップ周波数データが所定数jdmaxだけ連続して発生されていなければ(S396:NO)、通信用ホップ周波数データのカウント値Nをカウントアップし通信を継続する。通信は所定数jdmaxだけ連続して通信用ホップ周波数データが発生されるまで継続される。
【0112】
さて次に、図9に示した処理中、S228において親機10の呼出をする場合には(S228:YES)、図13に示す様に、そのフレームの送信フェーズにおいて親機10に対して呼出信号を送信し(S410)、ホッピングカウンタ34のカウンタ値Mがカウントアップされる(S412,S414、S416)。
【0113】
続いて、通信フレーム数カウンタjdを1にリセットし(S418)、カウンタ値Nがカウントアップされて(S422、S424、S426)、通信用ホップ周波数データFD=dnを選択し(S428)、次の周波数へホップし(S430)、そのフレームの受信フェーズにおいて親機10からの接続了承信号を受信し(S432)、そのフレームの送信フレームにおいて、親機10へ確認信号を送信する(S434)。
【0114】
その後、通信フレーム数カウンタjdがカウントアップされ(S436)、所定数jdmaxだけ連続して通信用ホップ周波数データが発生されたら(S438:YES)、通信フレームを抜け、図9に示した処理中、S231へ戻り、制御フレームに移行する。通信用ホップ周波数データが所定数jdmaxだけ連続して発生されていなければ(S438:NO)、通信用ホップ周波数データのカウント値Nをカウントアップし(S440、S442、S444)、通信を継続する。この通信は所定数jdmaxだけ連続して通信用ホップ周波数データが発生されるまで継続される。
【0115】
通信用ホップ周波数データのカウント値Nがカウントアップされたら(S440、S442、S444)、通信用ホップ周波数データFD=dnを選択し(S446)、次の周波数へホップし(S448)、通信中であれば(S450:YES)、そのフレームの受信フェーズにおいて親機10からの通信信号を受信し(S452)、そのフレームの送信フェーズにおいて親機10へ通信信号を送信して(S454)、相互に通信を開始する。通信中でない場合(S450:NO)は、各部を省電力状態に移行させてスリープ状態となる(S460)。
【0116】
以上説明した親機10及び子機12(子機11、13も同様)の各処理により、親機−子機間および子機−子機間で、それぞれ独立して直接通信を行うことができる。
【0117】
ここで、通信中の子機10の通信動作A3について図14を用いて説明する。制御フレームから通信フレームA3に移行すると、ホッピングカウンタ34のカウンタ値Mがカウントアップされる(S500、S502、S504)。
【0118】
続いて、通信フレーム数カウンタjdを1にリセットし(S506)、通信用ホップ周波数データのカウント値Nをカウントアップし(S508、S510、S512)、通信用ホップ周波数データFD=dnを選択し(S514)、次の周波数へホップする(S516)。子機−子機間通信の発呼機となっている場合は、通信中であれば(S518:YES)、そのフレームの送信フェーズにおいて通信信号を送信し(S520)、そのフレームの受信フェーズにおいて通信信号を受信する(S522)。また、通信が終了した場合(S524:YES)は、カウンタ値Nへの所定値Sの加算を中止(S526)する。通信中でない場合(S518:NO)は、各部を省電力状態に移行させてスリープ状態となる(S528)。ただし、親機−子機間通信時や子機−子機間通信時の着呼機となる場合は、当然、S520で通信信号受信、S522で通信信号送信となる。
【0119】
その後、通信フレーム数カウンタjdがカウントアップされ(S530)、所定数jdmaxだけ連続して通信用ホップ周波数データが発生されたら(S532:YES)、通信フレームを抜け、制御フレームに移行する。通信法ホップ周波数データが所定数jdmaxだけ連続して発生されていなければ(S532:NO)、通信用ホップ周波数データのカウント値Nをカウントアップし通信を継続する。この通信はを所定数jdmaxだけ連続して通信用ホップ周波数データが発生されるまで継続される。
【0120】
次に、上記各処理により行われる通信動作の状態について、図15に示すタイミングチャートを使って説明する。
【0121】
初めに、親機10及び子機11〜13が待機状態にある場合について説明する。
【0122】
まず、ホッピングカウンタ34のカウンタ値M、Nが0になってフレームA0になると、親機10が初期同期信号を含む制御信号を周波数fB で送信し、この制御信号を子機11〜13が受信する。これにより、子機11〜13において、親機10との同期調整が行われる。図15において、四角形の印は信号の送信動作を意味し、送信動作を行っていない機器はすべて受信動作を行っている。周波数fB は、ホッピングコントローラ35による補正を受けていないホップ番号Nに基づいて発生させたホップ周波数データ列Bを使って切り替わる周波数であり、カウンタ値Mに応じてフレームが切り替わる毎にfg0 、fd1 、fd2 、・・・、fgm、・・・、fdn 、fg0 の順に循環して切り替わるが、図においては単にfB と表してある。
【0123】
続いて、通信フレームA1〜A5を抜け、カウンタ値Mが1になってフレームA6になると、子機11が同期確認信号を含む制御信号を周波数fB で送信し、この制御信号を親機10が受信する。以下、通信フレームを挟んでカウンタ値Mがカウントアップされる毎に次のフレームA12、A18へ切り替わり、子機12、13が順に同期確認信号を含む制御信号を周波数fB で送信し、この制御信号を親機10が受信する。
【0124】
なお、通信を行わない待機時においては、通信フレームではスリープ状態となって電力の消費を抑制する。また、以上の同期維持動作は連続して繰り返し行う必要はなく、子機11、12、13は所定の時間スリープ状態を保持し、間欠的に行ってもよい。
【0125】
次に、親機10から子機12を呼び出す場合について説明する。
【0126】
まず、制御フレームB0になると、親機10が初期同期信号及び呼出信号を含む制御信号を周波数fB で送信し、この制御信号を子機11〜13が受信する。同じフレームの後半のフェーズにおいて、直ちに子機12が同期確認信号及び接続了承信号を含む制御信号を周波数fB で送信し、この制御信号を親機10が受信する。次のフレームB1は通信フレームとなるため、直ちに子機12との通信を開始することができる。すなわち、前半のフェーズにおいて、親機10が通話信号を周波数fB で送信し、この通話信号を子機12が受信する。また、同じフレームの後半のフェーズにおいて、子機12が通話信号を周波数fB で送信し、この通話信号を親機10が受信する。以降、通信フレームが所定の数だけ発生させられ、フレームB5まで親機10と子機12の間で通話信号の送受信が継続して行われる。なお、子機11、13は、上述の通り、いずれも待機している。
【0127】
そして、カウンタ値Mが1になって制御フレームB6になると、子機11が同期確認信号を含む制御信号を周波数fB で送信し、この制御信号を親機10が受信する。これは、制御フレームが発生される毎に繰り返され、順に子機11、12、13が同期確認信号を含む制御信号を周波数fB で送信し、この制御信号を親機10が受信する。このとき、親機10と子機12の通信が一時中断されるが、中断期間が非常に短いため、通信に与える妨害は非常に小さい。特に音声データの通信を行っている場合、利用者の会話が途切れる様なことはない。
【0128】
続いて、制御フレームC0になると、親機10が初期同期信号及びビジー信号を含む制御信号を周波数fB で送信し、この制御信号を子機11〜13が受信する。そして、通信フレームC1〜C5の間親機10と子機12は通信を継続する。子機11、13は、親機10から子機12に対する呼出信号や、親機10からのビジー信号を受信しているので、親機10や子機12に対する発呼操作が行われれば、利用者に親機10や子機12が使用中である旨を通知することができる。
【0129】
次に、子機13が子機11を呼び出す場合について説明する。なお、ここでは、上記親機10と子機12の通話が継続している状態を想定しているが、親機10及び子機12が待機状態にあっても処理に変わりはない。
【0130】
まず、制御フレームC0になると、親機10が初期同期信号及びビジー信号を含む制御信号を周波数fB で送信し、この制御信号を子機11〜13が受信する。その後通信フレームC1〜C5において親機10と子機12の通信が継続される。続いて、制御フレームC6になると、前半のフェーズにおいて、子機13が呼出信号を周波数fB で送信し、この呼出信号を子機11が受信すると共に、同じフレームの後半のフェーズにおいて、子機11が接続了承信号を周波数fB で送信し、この接続了承信号を子機13が受信する。
【0131】
即ち、着呼側の子機が制御信号を送信するフレームにおいて、その着呼側の子機の受信フェーズに発呼側の子機が呼出信号を送信すると共に、引き続く着呼側の子機の送信フェーズに、発呼側の子機に対する接続了承信号が直ちに送信される。ただし、制御フレームの周波数は周波数fB、fH1共に共通であるため、図中では以降の通信フレームの周波数を考慮し、便宜的にfH1と表した。続いて、通信フレームC7になると、子機11及び子機13は、いずれも、カウンタ値Nに所定値Sを加算してホップ番号Nとし、それまで使用してきたホップ周波数データ列Bの発生位相をシフトさせ、ホップ周波数データ列H1を使い始める。なお、この場合は、子機11及び子機13が通信を行うので、所定値S=2となり、ホップ周波数データ列H1の発生位相は、ホップ周波数データ列Bに対し2位相分シフトする。
【0132】
通信フレームC7において、再び親機10と子機12との間の通話が開始され、前半のフェーズにおいて、親機10が通話信号を周波数fB で送信し、この通話信号を子機12が受信すると共に、同じフレームの後半のフェーズにおいて、子機12が通話信号を周波数fB で送信し、この通話信号を親機10が受信する。
【0133】
また、それと同時に、子機11と子機13との間の通話も開始され、前半のフェーズにおいて、子機13が通話信号を周波数fH1で送信し、この通話信号を子機11が受信すると共に、同じフレームの後半のフェーズにおいて、子機11が通話信号を周波数fH1で送信し、この通話信号を子機13が受信する。
【0134】
周波数fH1は、上述の如くホッピングコントローラ35で補正されたホップ番号Nに応じて、フレームが切り替わる毎にfg0 、fd3 、fd4 、fd5、fd6 、fd7 、fg1、fd8、・・・、fgm、・・・、fdn 、fd0 、fd1 、fd2 の順に循環して切り替わるが、図においては単にfH1と表してある。制御フレームの間は、送受信周波数としてfg0 〜fgm が使われるので、親機10からの制御信号を受信することができる。一方、通信フレームの間は、送受信周波数として2位相分だけシフトした周波数が使われるので、親機10と子機12、子機11と子機13の2組が同時に送受信を行っても、互いに通信を妨害することはない。
【0135】
こうして、以降通話終了まで、制御フレームの間は親機と全子機の間で制御信号の送受信、通信フレームの間は、リンクしている機器間で通話信号の送受信が繰り返される。
【0136】
なお、制御フレームになり、親機10が初期同期信号を含む制御信号を送信すると、この制御信号を子機11〜13が受信する。これにより、子機−子機間通信を行っている子機11、13も、親機10との同期調整が行われる。
【0137】
次に、子機12から親機10を呼び出す場合について説明する。
【0138】
まず、制御フレームD0になると、親機10が初期同期信号及び呼出信号を含む制御信号を周波数fB で送信し、この制御信号を子機11〜13が受信する。そして、制御フレームD6になると、子機11が同期確認信号を含む制御信号を周波数fB で送信し、この制御信号を親機10が受信する。
【0139】
続いて、制御フレームD12になると、子機12が同期確認信号及び呼出信号を含む制御信号を周波数fB で送信し、この制御信号を親機10が受信する。そして、通信フレームD13になると、前半のフェーズにおいて、親機10が接続了承信号を周波数fB で送信し、この接続了承信号を子機12が受信する。また、同じフレームの後半のフェーズにおいて、子機12が確認信号を周波数fB で送信し、この確認信号を親機10が受信する。
【0140】
続いて、通信フレームD14になると、前半のフェーズにおいて、親機10が通信信号を周波数fB で送信し、この通信信号を子機12が受信する。また、同じフレームの後半のフェーズにおいて、子機12が通信信号を周波数fB で送信し、この通信信号を親機10が受信する。以降、通信フレームにおいて、親機10と子機12の間で通信信号の送受信が行われる。
【0141】
また、上記説明において、親機−子機間通話は、子機11〜13使って電話回線を介した外部との通話を行う場合と、親機10と子機11〜13との間で内線通話を行う場合の双方に該当する。また、子機−子機間通話は、子機11〜13を使って内線通話を行う場合に該当する。
【0142】
以上、本発明の具体例について説明したが、本発明の具体的な構成については上記具体例以外にも種々考えられる。以下、有用な変形例について説明する。
【0143】
また、上記具体例も含めて何らかの原因で、親機と子機との同期が取れなくなることはあるので、子機側のホップ周波数データ発生部21が、同期回復用ホップ周波数データを発生可能に構成されているとよい。この同期回復用ホップ周波数データは、親機10が同期信号を送信する周波数を受信し続けるためのもので、上記具体例の場合で言えば、ホップ周波数データ発生部21が、ホッピングカウンタ34のカウンタ値M、Nにかかわらず制御用ホップ周波数データg0 を発生させ続ければ、いずれ親機10が送信する同期信号を受信でき、その時点から正常な同期を補足し通信ができるようになる。同期回復用ホップ周波数データとしては制御用ホップ周波数データであればどれを用いてもよい。また、制御用ホップ周波数データの中からランダムに選択してもよい。これにより、同期回復時に妨害を受ける確率を平均的に減少させることができる。
【0144】
更に、上記具体例では、ホップ周波数データ列B、H1、H2を使って通信を行っていたが、親機10−全子機11〜13用(即ち、制御用)、親機10−子機11用、親機10−子機12用、親機10−子機13用、子機11−子機12用、子機11−子機13用、子機12−子機13用の全ての組合せについて、それぞれ異なる位相へベースとなるホップ周波数データ列をシフトさせることも可能である。
【0145】
また、通信用ホップ周波数データ列の間に分散されて発生される制御用ホップ周波数データは1フレーム分のみの場合について、説明したがこれに限定されない、例えば、2フレーム分続けて発生させてもよい。これにより、呼出信号の送受に妨害が発生し、エラーが生じた場合、次の初期同期信号を受信し、所定の制御フレームに達するまで待って呼出信号の再送を行う必要がなくなる。すなわち、エラーの発生した制御フレームに引き続き発生される制御フレームで呼出信号の再送を行えばよい。このように、複数の連続した制御フレームを発生させることにより複雑な制御を実行することができる。
【0146】
【発明の効果】
以上詳述したように、請求項1の無線通信システムは、外部通信路に接続可能な1台の親機と、該親機との無線通信が可能な2台以上の子機とからなり、親機及び各子機には、所定のホップ周波数データを順次発生させるホップ周波数データ発生手段と、該ホップ周波数データ発生手段から与えられるホップ周波数データを使って、入力信号を拡散して送信信号にすると共に、受信信号を逆拡散して出力信号にする通信手段とが設けられ、周波数ホッピング方式により親機−子機間および子機−子機間で通信可能な無線通信システムにおいて、前記ホップ周波数データ発生手段が、通信用ホップ周波数データ列と制御用ホップ周波数データ列を発生し、前記制御用ホップ周波数データ列は前記通信用ホップ周波数データ列の間に分散されて発生される。
【0147】
このため、親機−子機間での通信とは別に子機−子機間でも通信可能で、特に、親機−子機間と子機−子機間とで同一のホッピングパターンを用いながら、同時にそれぞれの通信が可能である。しかも、親機−子機間あるいは子機−子機間で通信用ホップ周波数データ列を用いて、通信を行っている間に、通信用ホップ周波数データ列の間に分散されて配置された制御用ホップ周波数データ列を用いて、親機と各子機との間で同期を維持し、呼出等の制御を行うことができる。また、制御用ホップ周波数データ列は通信用ホップ周波数データ列の間に分散されているため、親機−子機間あるいは子機−子機間での通信を著しく妨げることはない。
【0148】
また、請求項2の無線通信システムは、請求項1の構成において、前記制御用ホップ周波数データ列の方が前記通信用ホップ周波数データ列よりも短い。同期維持や呼出等の制御において送受するデータ量は通信時に送受するデータ量よりも少ないため、制御を充分行うことができるとともに、通信可能なデータ量を増大させることが可能である。
【0149】
また、請求項3の無線通信システムは、請求項1または2の構成において、通信用ホップ周波数は少なくとも2以上連続して発生される。このため、通信用ホップ周波数データ列を用いて大量のデータを効率よく伝送することができる。
【0150】
また、請求項4の無線通信システムは、請求項1〜3のいずれかの構成において、親機が、制御用ホップ周波数データ列を用いた送受信時を行う第1の制御フレームにおいて親機と子機との同期を維持するための同期信号が含まれた制御信号を発信し、子機が、同期信号を受信して子機側での同期調整が正常に行われた場合に第1の制御フレームとは異なる制御フレームにおいて所定の制御信号を発信する。
【0151】
このため、複数の子機が同期を維持する必要がある場合も、現在継続している通信用ホップ周波数データ列を用いた通信に著しい妨害を与えることなく、容易に同期を維持することができる。
【0152】
また、請求項5の無線通信システムは、請求項1〜4のいずれかの構成において、発呼機となる親機又は子機が、制御フレームにおいて着呼機となる親機又は子機との接続を要求する呼出信号が含まれた制御信号を発信し、前記着呼機が、発呼機と接続可能な場合に接続了承信号が含まれた制御信号を同一制御フレームにおいて発信する。
【0153】
このため、同一制御フレームにおいて呼出、応答を行うことができ、次から発生される通信用ホップ周波数データ列を用いて直ちに通信を開始することができる。このため、呼出から通信開始までにかかる時間を極めて短くすることができる。
【0154】
また、請求項6の無線通信システムは、請求項1〜5のいずれかの構成において、子機側の通信用ホップ周波数データ発生手段が、親機−子機間通信用のホップ周波数データ列の発生位相をシフトさせてなる子機−子機間通信用のホップ周波数データ列を発生可能に構成され、子機が子機−子機間通信用のホップ周波数データを使って、入力信号を拡散して送信信号にすると共に、受信信号を逆拡散して出力信号にすることにより、子機−子機間で直接通信を行う。
【0155】
子機−子機間通信用のホップ周波数データ列は、親機−子機間での通信時に用いる親機−子機間通信用のホップ周波数データ列の発生位相を所定だけシフトさせている。全く別異な通信用ホップ周波数データ列を予め複数通り用意するのではなく、1つの通信用ホップ周波数データ列の発生位相だけをシフトさせることにより、親機−子機間チャネルと子機−子機間チャネルとで、互いに使用周波数が衝突しないようにしているので、ベースとなる通信用ホップ周波数データ列が1つだけで済む分、親機側及び子機側のホップ周波数データ発生手段をコンパクトにすることができ、しかも、同時に同じ周波数が偶然使われてしまうといったトラブルも起きにくい。更に、制御用ホップ周波数データ列は通信用ホップ周波数データ列よりも規模ははるかに小さいため、親機側及び子機側の通信用および制御用ホップ周波数データ発生手段を非常にコンパクトにすることができる。
【0156】
また、請求項7の無線通信システムは、請求項1〜6のいずれかの構成において、前記制御信号の送受信により、子機−子機間通信中も定期的に親機と子機との同期調整を行っている。
【0157】
このため、定期的に同期のずれが解消され、子機−子機間通信中であるか否かを問わず、親機との同期を確実に維持できる。さらに、例えば外部通信路からの着呼等といった情報は、通常は、まず親機側で認識されて、更に親機−子機間通信によって子機へと伝えられるが、この種の情報が子機−子機間通信中の子機でも同期調整時に認識できるので便利である。
【0158】
また、請求項8の無線通信システムは、請求項1〜7のいずれかの構成において、子機側のホップ周波数データ発生手段が、同期回復用ホップ周波数データを発生可能に構成され、子機側のホップ周波数データ発生手段が前記同期回復用ホップ周波数データを発生させた際に、前記子機側の通信手段が、親機からの制御信号を受信可能な状態で待機するように構成される。
【0159】
このため、何らかの事情で親機と子機との同期がはずれた場合に、子機は、同期回復用のホップ周波数データを使って、親機からの制御信号を受信可能な状態で待機するので、同期信号が含まれた制御信号が所定の周波数で親機から送信されてくれば、その時点から親機との同期を回復することができる。
【0160】
また、請求項9の無線通信システムは、請求項1〜8のいずれかの構成において、子機側のホップ周波数データ発生手段が、子機−子機間通信用ホップ周波数データ列として、発生位相を互いに異なる位相へシフトさせてなる2以上のホップ周波数データ列を発生可能に構成され、子機側の通信手段が、2以上のホップ周波数データ列のいずれかを使用して送受信を行うことにより、2組以上の子機−子機間で同時に通信可能な2以上のチャネルを形成するものである。
【0161】
このため、システム内に4台以上の子機が存在する場合に、2組以上の子機−子機間でも、互いに影響を受けることなく同時に通信できるのでより一層便利である。
【0162】
また、請求項10の無線通信システムは、請求項1〜9のいずれかの構成において、ホップ周波数データ発生手段が、通信用ホップ周波数データ列と制御用ホップ周波数データ列を記憶するデータ記憶手段と、通信相手側機器に同期して逐次更新される指標値を保持する指標値保持手段と、指標値保持手段に保持された指標値に対して所定の補正を行い、補正指標値に変換する指標値補正手段とを備え、指標値補正手段に補正された補正指標値をパラメータにして、データ記憶手段に記憶されたデータを参照し、ホップ周波数データの発生位相を補正指標値に応じてシフトさせたホップ周波数データ列を発生させるように構成している。
【0163】
このため、指標値補正手段が、指標値を補正指標値に変換して、その補正指標値に基づいてホップ周波数データを読み出すので、例えば、指標値が1→2→3→・・・と更新される場合に、指標値補正手段が各指標値に2を加える補正を行えば、補正指標値は3→4→5→・・・と更新されることになり、この補正指標値をパラメータにして、データ記憶手段からホップ周波数データ列中のホップ周波数データを読み出すと、最終的に、通常よりも2位相分だけ先のホップ周波数データが発生することになる。従って、ホップ周波数データの発生が容易に行えるのである。また、読み出し位置となる指標値を補正するだけで、2通り以上の異なるホップ周波数データ列を発生させることができるので、2通り以上のホップ周波数データ列を、それぞれデータ記憶手段に直接記憶する様な場合に比べ、データの記憶に必要な記憶容量は格段に少なくなる。
【0164】
また、請求項11の無線通信システムは、請求項10の構成において、ホップ周波数データ発生手段が、親機−子機間通信用又は制御用のいずれかのホップ周波数データ列を発生させる場合に、指標値補正手段は、指標値保持手段に保持された指標値をそのまま補正指標値とする一方、いずれかのホップ周波数データ列以外のホップ周波数データ列を発生させる場合に、指標値保持手段に保持された指標値と所定値との演算を行って補正指標値を算出するように構成している。
【0165】
このため、最も頻繁に使われる可能性が高い親機−子機間通信用又は制御用のいずれかのホップ周波数データ列を発生させる場合に、指標値の補正が不要となり、処理が簡素化される。
【図面の簡単な説明】
【図1】具体例として示した無線通信システムの全体構成を示す概略構成図である。
【図2】親機及び子機の要部の回路構成を示すブロック図である。
【図3】双方向通信を行う際の通信単位となるフレームの説明図である。
【図4】ホップ周波数データ列を例示する説明図である。
【図5】親機の送受信処理を示す第1のフローチャートである。
【図6】親機の送受信処理を示す第2のフローチャートである。
【図7】親機の送受信処理を示す第3のフローチャートである。
【図8】親機の送受信処理を示す第4のフローチャートである。
【図9】子機の送受信処理を示す第1のフローチャートである。
【図10】子機の送受信処理を示す第2のフローチャートである。
【図11】子機の送受信処理を示す第3のフローチャートである。
【図12】子機の送受信処理を示す第4のフローチャートである。
【図13】子機の送受信処理を示す第5のフローチャートである。
【図14】子機の送受信処理を示す第6のフローチャートである。
【図15】親機及び子機の通信動作の状態を示すタイミングチャートである。
【符号の説明】
10・・・親機、11,12,13・・・子機、21・・・ホップ周波数データ発生部、22・・・通信部、23・・・アンテナ、30・・・クロック、32・・・フレームカウンタ、34・・・ホッピングカウンタ、35・・・ホッピングコントローラ、36・・・ホッピングテーブル、40・・・周波数シンセサイザ、41・・・アップコンバータ、46・・・ダウンコンバータ、42・・・パワアンプ,45・・・ローノイズアンプ、43・・・アンテナスイッチ。

Claims (11)

  1. 外部通信路に接続可能な1台の親機と、該親機との無線通信が可能な2台以上の子機とからなり、親機及び各子機には、所定のホップ周波数データを順次発生させるホップ周波数データ発生手段と、該ホップ周波数データ発生手段から与えられるホップ周波数データを使って、入力信号を拡散して送信信号にすると共に、受信信号を逆拡散して出力信号にする通信手段とが設けられ、周波数ホッピング方式により親機−子機間および子機−子機間で通信可能な無線通信システムにおいて、
    前記ホップ周波数データ発生手段が、通信用ホップ周波数データ列と制御用ホップ周波数データ列を発生し、前記制御用ホップ周波数データ列は前記通信用ホップ周波数データ列の間に分散されて発生される
    ことを特徴とする無線通信システム。
  2. 請求項1記載の無線通信システムにおいて、
    前記制御用ホップ周波数データ列の方が、前記通信用ホップ周波数データ列よりも短い
    ことを特徴とする無線通信システム。
  3. 請求項1または2に記載の無線通信システムにおいて、
    前記通信用ホップ周波数は少なくとも2以上連続して発生される
    ことを特徴とする無線通信システム。
  4. 請求項1〜3のいずれかに記載の無線通信システムにおいて、前記親機が、前記制御用ホップ周波数データ列を用いた送受信時を行う第1の制御フレームにおいて親機と子機との同期を維持するための同期信号が含まれた制御信号を発信し、
    前記子機が、前記同期信号を受信して子機側での同期調整が正常に行われた場合に第1の制御フレームとは異なる制御フレームにおいて所定の制御信号を発信する
    ことを特徴とする無線通信システム。
  5. 請求項1〜4のいずれかに記載の無線通信システムにおいて、発呼機となる親機又は子機が、制御フレームにおいて着呼機となる親機又は子機との接続を要求する呼出信号が含まれた制御信号を発信し、
    前記着呼機が、発呼機と接続可能な場合に接続了承信号が含まれた制御信号を同一制御フレームにおいて発信する
    ことを特徴とする無線通信システム。
  6. 請求項1〜5のいずれかに記載の無線通信システムにおいて、
    前記子機側の通信用ホップ周波数データ発生手段が、
    前記親機−子機間通信用のホップ周波数データ列の発生位相をシフトさせてなる子機−子機間通信用のホップ周波数データ列を発生可能に構成され、
    前記子機側が、前記子機−子機間通信用のホップ周波数データを使って、入力信号を拡散して送信信号にすると共に、受信信号を逆拡散して出力信号にすることにより、子機−子機間で直接通信を行う
    ことを特徴とする無線通信システム。
  7. 請求項1〜請求項6のいずれかに記載の無線通信システムにおいて、
    前記制御フレームにおける制御信号の送受信により、子機−子機間通信中も定期的に親機と子機との同期調整を行う
    ことを特徴とする無線通信システム。
  8. 請求項1〜請求項7のいずれかに記載の無線通信システムにおいて、
    前記子機側のホップ周波数データ発生手段が、同期回復用ホップ周波数データを発生可能に構成され、
    前記子機側のホップ周波数データ発生手段が前記同期回復用ホップ周波数データを発生させた際に、前記子機側の通信手段が、親機からの制御信号を受信可能な状態で待機する
    ことを特徴とする無線通信システム。
  9. 請求項1〜請求項8のいずれかに記載の無線通信システムにおいて、
    前記子機側のホップ周波数データ発生手段が、前記子機−子機間通信用ホップ周波数データ列として、発生位相を互いに異なる位相へシフトさせてなる2以上のホップ周波数データ列を発生可能に構成され、
    前記子機側の通信手段が、前記2以上のホップ周波数データ列のいずれかを使用して送受信を行うことにより、2組以上の子機−子機間で同時に通信可能な2以上のチャネルを形成する
    ことを特徴とする無線通信システム。
  10. 請求項1〜請求項9のいずれかに記載の無線通信システムにおいて、
    前記ホップ周波数データ発生手段が、
    通信用ホップ周波数データ列と制御用ホップ周波数データ列を記憶するデータ記憶手段と、
    通信相手側機器に同期して逐次更新される指標値を保持する指標値保持手段と、
    該指標値保持手段に保持された指標値に対して所定の補正を行い、補正指標値に変換する指標値補正手段とを備え、
    該指標値補正手段に補正された補正指標値をパラメータにして、前記データ記憶手段に記憶されたデータを参照し、通信用ホップ周波数データの発生位相を前記補正指標値に応じてシフトさせた通信用ホップ周波数データ列を発生させる
    ことを特徴とする無線通信システム。
  11. 請求項10記載の無線通信システムにおいて、
    前記ホップ周波数データ発生手段が、前記親機−子機間通信用又は制御用のいずれかのホップ周波数データ列を発生させる場合に、前記指標値補正手段は、前記指標値保持手段に保持された指標値をそのまま補正指標値とする一方、前記いずれかのホップ周波数データ列以外のホップ周波数データ列を発生させる場合に、前記指標値保持手段に保持された指標値と所定値との演算を行って補正指標値を算出する
    ことを特徴とする無線通信システム。
JP01000697A 1997-01-23 1997-01-23 無線通信システム Expired - Fee Related JP3620192B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP01000697A JP3620192B2 (ja) 1997-01-23 1997-01-23 無線通信システム
US09/012,824 US6111909A (en) 1997-01-23 1998-01-23 Wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01000697A JP3620192B2 (ja) 1997-01-23 1997-01-23 無線通信システム

Publications (2)

Publication Number Publication Date
JPH10210552A JPH10210552A (ja) 1998-08-07
JP3620192B2 true JP3620192B2 (ja) 2005-02-16

Family

ID=11738329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01000697A Expired - Fee Related JP3620192B2 (ja) 1997-01-23 1997-01-23 無線通信システム

Country Status (2)

Country Link
US (1) US6111909A (ja)
JP (1) JP3620192B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433901B1 (ko) * 1998-02-21 2004-11-06 삼성전자주식회사 이동통신시스템의시간스위칭송신다이버시티장치
US6400751B1 (en) * 1998-07-01 2002-06-04 Itt Manufacturing Enterprises, Inc. Adaptive frequency sharing method and apparatus
US6259722B1 (en) 1998-07-10 2001-07-10 Siemens Information And Communication Networks, Inc. Method and system for table implemented frequency selection in a frequency hopping cordless telephone system
US6741633B1 (en) * 1999-03-11 2004-05-25 Itt Manufacturing Enterprises, Inc. Hop overlay signal structure for including additional signaling channels in code division multiple access communication and navigation systems
US6321095B1 (en) * 1999-03-26 2001-11-20 Sherman Gavette Wireless communications approach
GB9918250D0 (en) * 1999-08-04 1999-10-06 Koninkl Philips Electronics Nv Generating a cyclic sequence of frequencies
US7310529B1 (en) * 2000-01-24 2007-12-18 Nortel Networks Limited Packet data traffic control for cellular wireless networks
DE60128132T2 (de) 2000-12-11 2007-12-27 Sharp K.K. Funkkommunikationssystem
JP3983994B2 (ja) * 2001-04-13 2007-09-26 株式会社日立製作所 無線伝送システム及びその伝送装置
US7379992B2 (en) * 2004-12-20 2008-05-27 Mitac Technology Corp. Network system and method for reducing power consumption
US9344335B2 (en) 2011-09-09 2016-05-17 Microsoft Technology Licensing, Llc Network communication and cost awareness
US9998536B2 (en) * 2013-05-29 2018-06-12 Microsoft Technology Licensing, Llc Metered network synchronization
US11575408B2 (en) * 2020-10-19 2023-02-07 Hyundai Mobis Co., Ltd. UWB system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425051A (en) * 1992-11-09 1995-06-13 Norand Corporation Radio frequency communication network having adaptive parameters
US5142534A (en) * 1990-10-17 1992-08-25 O'neill Communications, Inc. Wireless integrated voice-data communication system
US5459760A (en) * 1993-11-05 1995-10-17 Matsushita Electric Industrial Co., Ltd. Transmitting and receiving apparatus
JPH08265358A (ja) * 1995-03-20 1996-10-11 Hitachi Ltd 無線lanシステム及びその基地局装置、無線端末装置及び情報フレームの中継方法
JP2746190B2 (ja) * 1995-04-27 1998-04-28 住友電気工業株式会社 スペクトラム拡散通信装置

Also Published As

Publication number Publication date
JPH10210552A (ja) 1998-08-07
US6111909A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
JP3620192B2 (ja) 無線通信システム
Rodoplu et al. An energy-efficient MAC protocol for underwater wireless acoustic networks
JP4124568B2 (ja) マルチプルピコネットへの同時接続性
El-Hoiydi Interference between Bluetooth networks-upper bound on the packet error rate
KR101161194B1 (ko) 협동 및 비협동 모드의 동작에 관한 통신 방법 및 장치
KR100313704B1 (ko) 동기화 전용 무선 통신 시스템 및 전용 무선 전화 기지국에 의한 비컨 채널 전송 타이밍 방법.
WO2011057884A1 (en) Wake-up radio system for a short range slave device
US6928263B2 (en) Local data delivery through beacons
US8913598B2 (en) Adaptive scheduling
JP4389575B2 (ja) 無線中継装置
EP1774724A1 (en) Peer connectivity in ad-hoc communications systems
JPH08102977A (ja) 同期通信環境を提供するための方法および装置
KR20090009888A (ko) 초-광대역 통신을 위한 매체 액세스 제어
CN101836402A (zh) 跳频通信系统中先前丢失的连接的自动重连
JP3752724B2 (ja) 無線通信システム
US20110038252A1 (en) Double linked wireless sensor network being capable of bidirectional communication and method thereof
US6151352A (en) Wireless communication using a frequency hopping method
JP3752723B2 (ja) 無線通信システム
JP3642102B2 (ja) 無線通信システム
JP3752722B2 (ja) 無線通信システム
JPH10210551A (ja) 無線通信システム
Chin Pairwise: a time hopping medium access control protocol for wireless sensor networks
JP4507572B2 (ja) 無線通信装置
CN114629526B (zh) 跳频同步方法、装置及系统
JP2007013543A (ja) 無線通信システム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees