JP3617837B2 - Bearing wall and steel house using the same - Google Patents

Bearing wall and steel house using the same Download PDF

Info

Publication number
JP3617837B2
JP3617837B2 JP2002316452A JP2002316452A JP3617837B2 JP 3617837 B2 JP3617837 B2 JP 3617837B2 JP 2002316452 A JP2002316452 A JP 2002316452A JP 2002316452 A JP2002316452 A JP 2002316452A JP 3617837 B2 JP3617837 B2 JP 3617837B2
Authority
JP
Japan
Prior art keywords
mat
design
bearing wall
load
face material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002316452A
Other languages
Japanese (ja)
Other versions
JP2004150126A (en
Inventor
喜満 村橋
繁明 藤内
浩史 田中
伊藤  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiha Corp
Nippon Steel Corp
Original Assignee
Nichiha Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002316452A priority Critical patent/JP3617837B2/en
Application filed by Nichiha Corp, Nippon Steel Corp filed Critical Nichiha Corp
Priority to AU2003227365A priority patent/AU2003227365A1/en
Priority to KR1020077024140A priority patent/KR100891209B1/en
Priority to TW092109586A priority patent/TWI266821B/en
Priority to KR1020057007740A priority patent/KR20050062785A/en
Priority to CNA038248263A priority patent/CN1694992A/en
Priority to PCT/JP2003/005287 priority patent/WO2004040075A1/en
Publication of JP2004150126A publication Critical patent/JP2004150126A/en
Application granted granted Critical
Publication of JP3617837B2 publication Critical patent/JP3617837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • B28B1/522Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement for producing multi-layered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • B28B1/527Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement by delivering the materials on a rotating drum, e.g. a sieve drum, from which the materials are picked up by a felt
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/08Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • C04B2111/2046Shock-absorbing materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Panels For Use In Building Construction (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Description

【0001】
【技術分野】
本発明は,形鋼を矩形状に枠組みしてなるスチール枠体と,該スチール枠体に固定された構造用面材とからなる耐力壁及びこれを用いたスチールハウスに関する。
【0002】
【従来技術】
従来より,形鋼を矩形状に枠組みしてなるスチール枠体と,該スチール枠体に固定された構造用面材とからなる耐力壁がある(特許文献1参照)。
即ち,該耐力壁は,通常の枠組壁工法(2×4工法)による壁構造の枠体を薄板軽量形鋼によって構成したものである。そして,構造用面材としては,通常9mm程度の厚みの木質合板が用いられている。
また,このような耐力壁を用いてスチールハウスを構成していた。
【0003】
【特許文献1】
特開2001−55807号公報
【0004】
【解決しようとする課題】
しかしながら,耐力壁が充分に配置できない建物等において耐力壁の高強度化が要求される場合には,上記木質合板を用いた耐力壁は,その耐震特性を充分に得ることが困難であるという問題がある。即ち,建築基準法に基く中規模地震を対象とした1次設計(許容応力度設計),及び大規模地震を対象とした2次設計(保有耐力設計)を満足するせん断強度特性を得ることが困難である。
【0005】
上記1次設計は,中規模地震により耐力壁が損傷を受けないような設計であり,上記2次設計は,大規模地震の際に振動エネルギーを吸収して建物の崩壊を防ぐ設計である。
即ち,せん断強度と振動エネルギー吸収性とが要求される。
【0006】
また,1次設計,2次設計に要求される値は,種々の条件によって異なる。1次設計に要求される値は,建物の形状や立地条件によって決まる。2次設計に要求される値は,構造用面材そのものの特性によって支配される。そして,構造用面材の降伏後,著しい耐力上昇や耐力低下が殆どなく,面材降伏後も充分に変形する(せん断変形角0.03rad)特性をもつ面材を使用した場合,2次設計の値は1次設計の値の約1.5倍となる。
即ち,このような特性をもつ面材を使用した場合,例えば,図11に示すごとく,耐力壁に与えた荷重とこれによるせん断変形角との関係を表すグラフにおいて,点P,点Qの示す値が,それぞれ1次設計,2次設計に要求される(実施例3参照)。
【0007】
ところが,上記構造用面材として木質合板を用いた場合には,2次設計の要求値が1次設計の値の約2.0倍と大きくなり,これを満足させる必要がある。
そこで,厚みを12mmと大きくした木質合板を用いて耐力壁を構成することにより,上記1次設計,2次設計を満足させることはできる。しかし,この場合,耐力壁の最大耐力は大きくなるが,この最大耐力に相当する荷重に充分耐えることができるスチール枠体やアンカーボルト,ホールダウン金物などの固定具等が必要となる。これは,建築基準法により,構造用面材の最大耐力に対応可能な枠体や固定具等の強度が定められているからである。従って,この場合にはコストアップにつながるという問題がある。
【0008】
そのため,上記耐力壁の荷重−変形曲線としては,図11の曲線L0に示すごとく,上記1次設計の要求値を通過すると共に2次設計の要求値に達した後,耐力が変化しない状態で変形が続くものであって,上記2次設計の要求値が大きすぎない(1次設計の要求値の約1.5倍程度)のものが理想である。以下これを「理想曲線」という。
逆に,かかる理想曲線に近似した荷重−変形曲線を実現することにより,せん断強度確保,振動エネルギー吸収性確保,及び低コストを実現することができるといえる。
【0009】
本発明は,かかる従来の問題点に鑑みてなされたもので,せん断強度に優れ,かつ振動エネルギーを充分に吸収することができる,安価な耐力壁,及びこれを用いたスチールハウスを提供しようとするものである。
【0010】
【課題の解決手段】
第1の発明は,薄板軽量形鋼を矩形状に枠組みしてなるスチール枠体と、該スチール枠体に固定された構造用面材とからなるスチールハウス用の耐力壁であって、
上記構造用面材は、セメント系無機材料とケイ酸含有物質と軽量骨材と補強繊維とを水に分散させてスラリーとし、該スラリーを抄造脱水して単層マットをフォーミングし、該単層マットをメイキングロールに巻き取り、所定の厚みになるまで複数層積層して積層マットを形成し、該積層マットを上記メイキングロールから切り離し、プレス成形してプレスマットを作製し、該プレスマットを硬化養生することにより得られたセメント板からなり、
上記耐力壁は、荷重−変形曲線において、下記の理想曲線に近似しており、
該理想曲線は、建築基準法に基づく1次設計(許容応力度設計)の要求値を通過すると共に建築基準法に基づく2次設計(保有耐力設計)の要求値に達した後、耐力が変化しない状態で変形が続くものであって、上記2次設計の要求値が上記1次設計の要求値の約1.5倍となる曲線であり、
かつ、上記構造用面材は、500×400mm、厚み12mmの試験体を用い、JIS A 1408に準じて測定したときの撓み量が8〜12mmであり、曲げ強度が8〜14N/mm2であることを特徴とするスチールハウス用耐力壁にある(請求項1)。
【0011】
次に,本発明の作用効果につき説明する。
上記構造用面材は,上記軽量骨材及び補強繊維を原料に混合させているため,上記単層マット1層あたりの強度を向上させることができる。
また,上記構造用面材は,上記のごとく,単層マットを積層した積層マットを形成することにより得られる。即ち,上記構造用面材は,層状に形成されるため,せん断強度,靱性に優れる。
【0012】
このように,上記のような原料及び方法で得られたセメント板からなる上記構造用面材は,充分なせん断強度を有すると共に充分な靱性を有する。
上記耐力壁は,かかるせん断強度及び靱性に優れた構造用面材を上記スチール枠体に固定してなるため,充分なせん断強度及び靱性を有する。そして靱性に優れていることにより上記耐力壁は比較的大きく撓むことができ,入力された振動エネルギーを充分に吸収することができる。
【0013】
また,上記セメント板からなる構造用面材は,例えば,上記積層マットの形成時において積層数や板厚を適宜調整することにより,最大耐力を必要充分な大きさに調整することができる。即ち,最大耐力を大きくしすぎることを防ぎ,上記スチール枠体やアンカーボルト,ホールダウン金物などの固定具等の強度を極端に大きくする必要性が生じることを防ぐことができる。それ故,安価な耐力壁及び構造躯体を得ることができる。
【0014】
また,上記の構成により,上記耐力壁の荷重−変形曲線に関しても,上述した理想曲線(図11の曲線L0参照)に近似したものとすることができる(実施例3参照)。特に,上記積層マットの形成時において積層数を適宜調整することにより,耐力壁の荷重−変形曲線を上記理想曲線に近付けることができる。
【0015】
以上のごとく,本発明によれば,せん断強度に優れ,かつ振動エネルギーを充分に吸収することができる,安価な耐力壁を提供することができる。
【0016】
第2の発明は,薄板軽量形鋼を矩形状に枠組みしてなるスチール枠体と、該スチール枠体に固定された構造用面材とからなる耐力壁を有するスチールハウスであって、
上記構造用面材は、セメント系無機材料とケイ酸含有物質と軽量骨材と補強繊維とを水に分散させてスラリーとし、該スラリーを抄造脱水して単層マットをフォーミングし、該単層マットをメイキングロールに巻き取り、所定の厚みになるまで複数層積層して積層マットを形成し、該積層マットを上記メイキングロールから切り離し、プレス成形してプレスマットを作製し、該プレスマットを硬化養生することにより得られたセメント板からなり、
上記耐力壁は、荷重−変形曲線において、下記の理想曲線に近似しており、
該理想曲線は、建築基準法に基づく1次設計(許容応力度設計)の要求値を通過すると共に建築基準法に基づく2次設計(保有耐力設計)の要求値に達した後、耐力が変化しない状態で変形が続くものであって、上記2次設計の要求値が上記1次設計の要求値の約1.5倍となる曲線であり、
かつ、上記構造用面材は、500×400mm、厚み12mmの試験体を用い、JIS A 1408に準じて測定したときの撓み量が8〜12mmであり、曲げ強度が8〜14N/mm2であることを特徴とするスチールハウスにある(請求項2)。
【0017】
本スチールハウスは,上述した理想曲線(図11の曲線L0)に近似した荷重−変形曲線を実現することができる耐力壁からなる(実施例3参照)。
従って,本発明によれば,せん断強度に優れ,かつ振動エネルギーを充分に吸収することができる,安価なスチールハウスを提供することができる。
【0018】
【発明の実施の形態】
上記第1の発明(請求項1)又は第2の発明(請求項2)において,上記形鋼として,例えば,厚さ0.8〜1.6mmの薄板を用いた薄板軽量形鋼を用いることができる。
また,上記セメント系無機材料は,例えば,ポルトランドセメント,高炉スラグセメント,フライアッシュセメント,シリカセメント,アルミナセメント,白色セメント等より選ばれる一種又は二種以上からなる。
【0019】
上記ケイ酸含有物質は,例えば,スラグ,フライアッシュ,ケイ砂,ケイ石粉,シリカフューム,珪藻土等より選ばれる一種又は二種以上からなる。
上記軽量骨材は,例えば,パーライト,バーミキュライト,シラスバルーン,セメント板の廃材粉砕物等より選ばれる一種又は二種以上からなる。
【0020】
上記補強繊維は,例えば,木質パルプ(NUKP,NBKP,LUKP,LBKP等),木粉,木質繊維束等の木質補強繊維,ポリプロピレン繊維,ビニロン繊維,アラミド繊維等の合成補強繊維,セピオライト,ワラストナイト等の鉱物補強繊維等より選ばれる一種又は二種以上からなる。
【0021】
また,上記スラリーを作製するに当っては,上記セメント系無機材料,ケイ酸含有物質,軽量骨材,補強繊維のほかに,例えば,蟻酸カルシウム,硫酸アルミニウム等の硬化促進剤,パラフィン,ワックス,界面活性剤等の防水剤や撥水剤等を分散させてもよい。
【0022】
また,上記スラリーの固形分濃度は,5〜20質量%とすることが好ましい。これにより,効率よく積層マットの所定の厚みを得ることができる。上記濃度が5質量%未満の場合には,単層マットの厚みが薄すぎて,所定の厚みになるまで多層に積層する必要があり,生産効率が低下するおそれがある。一方,20質量%を超えると,単層マットの厚みが厚すぎて,脱水効率が低下し,積層界面における密着性が低下するおそれがある。
【0023】
また,上記構造用面材は,例えば,厚み10〜15mm,比重0.8〜1.1,曲げ強度8〜14N/mmであることが好ましい。また,上記積層マットは,上記単層マットを5〜10枚積層してなることが好ましい。
【0024】
【実施例】
(実施例1)
本発明の実施例にかかる耐力壁及びこれを用いたスチールハウスにつき,図1〜図8を用いて説明する。
上記耐力壁1は,図1〜図3に示すごとく,形鋼21を矩形状に枠組みしてなるスチール枠体2(図4〜図6)と,該スチール枠体2に固定された構造用面材3とからなる。
【0025】
上記構造用面材3は,以下のようにして得られたセメント板からなる。
まず,セメント系無機材料とケイ酸含有物質と軽量骨材と補強繊維とを水に分散させてスラリー41とする。図7に示すごとく,該スラリー41を抄造脱水して単層マットをフォーミングする。該単層マットをメイキングロール51に巻き取り,所定の厚みになるまで複数層積層して積層マット43を形成する。該積層マット43を上記メイキングロール51から切り離す。この積層マット43をプレス成形してプレスマットを作製し,該プレスマットを硬化養生する。
その後,外形加工等を行うことにより,上記セメント板からなる構造用面材3を得る。
【0026】
また,上記形鋼21としては,厚さ約1.0mm程度の薄板を用いた薄板軽量形鋼を用いる。そして,図5,図6に示すごとく,上記スチール枠体2における上下方向の縦材211としては,断面略C字形状のC形鋼を用い,左右方向の横材212としては,断面略コ字状の溝形鋼を用いる。
【0027】
また,図4,図6に示すごとく,上記スチール枠体2の左右側辺には,2本縦材211(C形鋼)を背面同士を重ねてビス11により固定したものをそれぞれ配する。そして,上記左右の縦材211の下方における内側には,耐力壁1を基礎に固定するためのホールダウン金物23が固定されている。
また,上記スチール枠体2の左右に関する略中央部には,縦材211(C形鋼)を配設している。
【0028】
また,図5に示すごとく,上記スチール枠体2の上辺及び下辺には,上記横材212(溝形鋼)がその開口面を向かい合わせるようにしてそれぞれ配されている。そして,該横材212と上記縦材211とは,ビス11により固定されている。
図1〜図3に示すごとく,上記スチール枠体2の片面に上記構造用面材3を固定することにより耐力壁1を得る。即ち,上記スチール枠体2の外形と略同形状の構造用面材3を,ビス12を用いて上記スチール枠体2に固定する。
【0029】
次に,上記構造用面材3の製造方法につき詳説する。
即ち,まず,上記セメント系無機材料としてのポルトランドセメント35質量%,上記ケイ酸含有物質としてのスラグ25質量%とフライアッシュ10質量%,上記軽量骨材としてのパーライト10質量%,上記補強繊維としての木質パルプ10質量%,及び軽量骨材としてのリジェクト10質量%を混合する。
この原料混合物を水に分散させて,固形分約12質量%のスラリー41とする。
【0030】
該スラリー41を,図7に示すフローオン式の抄造機5の原料ボックス52に投入する。該抄造機5は,上記メイキングロール51と,原料フローボックス56と,サクションボックス57と,上記メイキングロール51に接触すると共に上記原料フローボックス56の下方及び上記サクションボックス57の上面を通過しながら循環するフェルト55とを有する。
【0031】
上記原料ボックス52に投入されたスラリー41は,原料フローボックス56に供給され,該原料フローボックス56から上記フェルト55上に流される。フェルト55上に流されたスラリー41は,上記サクションボックス57による吸引によって脱水される。これにより,フェルト55上に薄い原料の層からなる単層マットが形成される。
【0032】
このようにしてフェルト55上に形成された単層マットは,メイキングロール51に巻き取られて積層されることにより,積層マット43が形成される。そして,単層マット7層分が積層された時点でカッター59によって切断,展開して,上記積層マット43をメイキングロール51から切り離す。その後,積層マット43をプレス成形してプレスマットとする。
【0033】
該プレスマットを,50〜80℃,湿度90〜100RHの条件で,時間7〜30時間硬化養生する。
その後,外形加工等を行うことにより,上記セメント板からなる構造用面材3を得る。該構造用面材3は,厚み10〜15mm,比重0.8〜1.1,曲げ強度8〜14N/mmである。
【0034】
また,図8に示すごとく,上記耐力壁1を複数用いて,これらを組み付けていくことにより,スチールハウス6を構築することができる。
【0035】
次に,本例の作用効果につき説明する。
上記構造用面材3は,上記軽量骨材及び補強繊維を原料に混合させているため,上記単層マット1層あたりの強度を向上させることができる。
また,上記構造用面材3は,上記のごとく,単層マットを積層した積層マットを形成することにより得られる。即ち,上記構造用面材3は,層状に形成されるため,せん断強度,靱性に優れる。
【0036】
このように,上記のような原料及び方法で得られたセメント板からなる上記構造用面材3は,充分なせん断強度を有すると共に充分な靱性を有する。
上記耐力壁1は,このようにせん断強度及び靱性に優れた構造用面材3を上記スチール枠体2に固定してなるため,充分なせん断強度及び靱性を有する。そして靱性に優れていることにより上記耐力壁1は比較的大きく撓むことができ,入力された振動エネルギーを充分に吸収することができる。
【0037】
また,上記セメント板からなる構造用面材3は,上記積層マットの形成時において積層数や板厚を適宜調整することにより,最大耐力を必要充分な大きさに調整することができる。即ち,最大耐力を大きくしすぎることを防ぎ,上記スチール枠体2やビス11,12等の強度を極端に大きくする必要性が生じることを防ぐことができる。それ故,安価な耐力壁を得ることができる。
【0038】
また,上記の構成により,上記耐力壁1の荷重−変形曲線に関しても,上述した理想曲線(図11の曲線L0)に近似したものとすることができる(実施例3参照)。特に,上記積層マットの形成時において積層数を適宜調整することにより,耐力壁1の荷重−変形曲線を上記理想曲線に近付けることができる。
【0039】
以上のごとく,本例によれば,せん断強度に優れ,かつ振動エネルギーを充分に吸収することができる,安価な耐力壁及びスチールハウスを提供することができる。
【0040】
(実施例2)
本例は,図9に示すごとく,構造用面材3を製造するに当り,いわゆるハチェック式の抄造機50を用いたものである。
該抄造機50は,メイキングロール51と,回転シリンダー53が配設された複数のインレットボックス54と,上記メイキングロール51と上記回転シリンダー53とに接触しながらこれらの間を循環するフェルト55とを有する。
【0041】
上記抄造機50の原料ボックス52に投入されたスラリー41は,各インレットボックス54に供給され,上記回転シリンダー53の外周表面において脱水されて薄い原料の層が形成される。この原料の層は,上記フェルト55に吸着されて単層マットを形成する。また,上記複数の回転シリンダー53の外周表面に形成された原料の層は,上記フェルト55上において重なる。
【0042】
このようにしてフェルト55上に形成された単層マットは,メイキングロール51に巻き取られて積層されることにより,積層マット43が形成される。そして,単層マット7層分が積層された時点でカッター59によって切断,展開して,上記積層マット43をメイキングロール51から切り離す。その後,積層マット43をプレス成形してプレスマットとする。
以下,実施例1と同様の方法で構造用面材3を製造する。
また,その他は実施例1と同様であり,本例によっても実施例1と同様の作用効果を得ることができる。
【0043】
(実施例3)
本例は,図10,図11に示すごとく,本発明の耐力壁の面内せん断強度特性につき評価した例である。
試験体として使用した耐力壁1は,実施例1に示したものである(図1〜図3)。該耐力壁1の外形寸法は,縦3030mm,横910mm。スチール枠体2の前後幅は92mm,構造用面材2の厚みは12mmである。
【0044】
上記ビス12の固定位置は,上記スチール枠体2における左右端の縦材211と,上辺,下辺の横材212に対しては,基本的に150mm間隔とする。また,上記スチール枠体2の左右に関する略中央部に配された縦材211に対しては,基本的に300mm間隔とする。また,ビス12の直径は,4.2mmである。
せん断試験方法は,(財)日本建築センター評定書BCJ−LS−395「KC型スチールハウス タイプA」に従った。
【0045】
具体的には,図10に示すごとく,上記耐力壁1をせん断試験機7にセットする。該せん断試験機7は,前後に対向配置された2つの固定台71,72と,一方の固定台71に対して左右方向に移動可能に取り付けられた可動押圧部73と,該可動押圧部73を移動させるシリンダ74とを有する。
上記可動押圧部73は,上記耐力壁1の上辺13に沿って左方又は右方へ向って荷重をかけていく。
【0046】
これにより,上記耐力壁1は,左方又は右方へ撓むように変形していく。このときの荷重とせん断変形角とを測定し,両者の関係を示したものが,図11に示す荷重−変形曲線である。本発明の耐力壁1についての荷重−変形曲線は,符号L1を付したものである。図11において,縦軸が上記荷重を耐力壁1の左右幅で割った値であり,横軸がせん断変形角である。縦軸の荷重は,耐力壁1の耐力に対応する。
【0047】
図11において,符号L0を付したものが,上述した理想曲線である。即ち,1次設計の要求値を通過すると共に2次設計の要求値に達した後,耐力が変化しない状態で変形が続くという変形特性をあらわす曲線である。
ここで,上記1次設計の要求値は,11.0kN/mであり,上記2次設計の要求値は,16.5kN/mである。
【0048】
図11に示すごとく,本発明の耐力壁1の変形曲線L1は,上記理想曲線L0に極めて近似している。このことから,本発明の耐力壁1によれば,せん断強度確保,振動エネルギー吸収性確保,及び低コストを実現することができることが分かる。
【0049】
(比較例)
本例は,比較のため,本発明品とは異なる他の種々の構造用面材を用いた耐力壁の面内せん断強度特性を測定した例である。実験方法は上記実施例3に示したとおりである。
【0050】
比較試料1としては,一般的に用いられる9mm木質合板を構造用面材として用いた例である。
比較試料2としては,12.5mm石こうボードを構造用面材として用いた例である。
比較試料3としては,12.5mm木質合板を構造用面材として用い,スチール枠体2に対する外周のビス固定間隔を75mmとした例である。比較例3については,直径4.8mmのビスを用いた。
その他は,実施例3と同様である。
【0051】
比較試料1,2,3について面内せん断強度特性を測定した結果は,それぞれ,図11における曲線L21,L22,L23に示す。
即ち,比較試料1(曲線L21)及び比較試料2(曲線L22)は,1次設計及び2次設計の要求値を大きく下回り,最大耐力も不充分であった。そして,上記理想曲線L0から大きく外れた荷重−変形曲線となった。
【0052】
また,比較試料3(曲線L23)は,1次設計及び2次設計の要求値を満たすが,その最大耐力が極めて大きく,上記理想曲線L0から大きく外れる。
従って,この最大耐力に充分耐えることができるスチール枠体やアンカーボルト,ホールダウン金物などの固定具等が必要となり,コストアップにつながるという問題が生ずる。
【0053】
(実施例4)
本例は,本発明の耐力壁に用いる構造用面材の物性について,他のセメント板と比較した例である。
即ち,実施例1において示した構造用面材2について,その撓み量と比重を測定した。撓み量は,破壊時における試験体の中央部の変位を測定したものである。
撓み量の測定については,JIS A 1408に準じ,試験体としては500×400mm,厚み12mmのものを用いた。
【0054】
比較として,以下の比較試料4,5についても同様の測定をした。
比較試料4としては,セメント75質量%,木片25質量%に適量の水を加えて混合した原料を,型板上に散布し,プレス成形した,いわゆる乾式製法によって製造したセメント板を用いた。即ち,軽量骨材,補強繊維が添加されておらず,湿式製法により得たものではない。
【0055】
比較試料5としては,乾式製法によって,表裏層とその間に配した芯材とからなる三層構造のセメント板を用いた。即ち,上記表裏層として,セメント40質量%,ケイ砂25質量%,木片15質量%,木粉5質量%,リジェクト15質量%に適量の水を加えて混合した原料を配し,上記芯材として,セメント35質量%,ケイ砂20質量%,木質繊維束10質量%,木片5質量%,リジェクト28質量%,発泡ポリスチレンビーズ2質量%に適量の水を加えて混合した原料を配したものである。
なお,各試料は,それぞれ5個ずつ用意し測定した(n=5)。測定の結果を表1に示す。
【0056】
【表1】

Figure 0003617837
【0057】
表1から分かるように,本発明の構造用面材は,撓み量が大きく,比重が低い。撓み量が大きいことから,上記構造用面材は靱性が高いといえると考えられる。
また,比重が低いことは,振動エネルギーの吸収性,靱性の高さにつながると考えられる。
【図面の簡単な説明】
【図1】実施例1における,耐力壁の正面図。
【図2】実施例1における,耐力壁の側面図。
【図3】実施例1における,耐力壁の上面図。
【図4】実施例1における,スチール枠体の正面図。
【図5】実施例1における,スチール枠体の側面図。
【図6】図4のA−A線矢視断面図。
【図7】実施例1における,フローオン式の抄造機の説明図。
【図8】実施例1における,スチールハウスの一部の斜視図。
【図9】実施例2における,ハチェック式の抄造機の説明図。
【図10】実施例3における,せん断試験機の説明図。
【図11】実施例3における,各種耐力壁の面内せん断強度特性を表す線図。
【符号の説明】
1...耐力壁,
11,12...ビス,
2...スチール枠体,
21...形鋼,
3...構造用面材,
5,50...抄造機,
6...スチールハウス,
7...せん断試験機,[0001]
【Technical field】
The present invention relates to a load-bearing wall composed of a steel frame formed by framing shaped steel in a rectangular shape, and a structural face member fixed to the steel frame, and a steel house using the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is a load bearing wall composed of a steel frame formed by framing a shaped steel in a rectangular shape and a structural face material fixed to the steel frame (see Patent Document 1).
That is, the load-bearing wall is made of a thin lightweight steel plate made of a frame structure having a wall structure by a normal frame construction method (2 × 4 method). As the structural face material, a woody plywood having a thickness of about 9 mm is usually used.
Moreover, steel houses were constructed using such bearing walls.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-55807
[Problems to be solved]
However, when it is required to increase the strength of the bearing walls in buildings where the bearing walls cannot be arranged sufficiently, it is difficult to obtain the seismic characteristics of the bearing walls using the above-mentioned wooden plywood. There is. That is, it is possible to obtain shear strength characteristics that satisfy the primary design (allowable stress design) for medium-scale earthquakes based on the Building Standards Act and the secondary design (holding strength design) for large-scale earthquakes. Have difficulty.
[0005]
The primary design is a design that does not damage the bearing wall due to a medium-scale earthquake, and the secondary design is a design that absorbs vibration energy and prevents the building from collapsing during a large-scale earthquake.
That is, shear strength and vibration energy absorption are required.
[0006]
The values required for the primary design and the secondary design vary depending on various conditions. The value required for the primary design depends on the shape of the building and the location conditions. The values required for secondary design are governed by the characteristics of the structural face material itself. When a surface material is used that has a characteristic that there is almost no significant increase in yield strength or decrease in yield strength after yielding of the structural surface material and the material is sufficiently deformed after the surface material yield (shear deformation angle 0.03 rad). The value of is about 1.5 times the value of the primary design.
That is, when a face material having such characteristics is used, for example, as shown in FIG. 11, points P and Q are shown in a graph showing the relationship between the load applied to the bearing wall and the resulting shear deformation angle. Values are required for primary design and secondary design, respectively (see Example 3).
[0007]
However, when wood plywood is used as the structural face material, the required value of the secondary design becomes as large as about 2.0 times the value of the primary design, which needs to be satisfied.
Therefore, the primary design and the secondary design can be satisfied by constructing the bearing wall using a wood plywood having a thickness as large as 12 mm. However, in this case, the maximum proof stress of the load-bearing wall is increased, but a steel frame, an anchor bolt, a fixture such as a hole down hardware, etc. that can sufficiently withstand the load corresponding to the maximum proof stress is required. This is because the strength of the frame and the fixture that can cope with the maximum proof stress of the structural face material is determined by the Building Standard Law. Therefore, in this case, there is a problem that the cost is increased.
[0008]
Therefore, the load-deformation curve of the bearing wall is as shown in the curve L0 of FIG. 11 in a state in which the proof stress does not change after passing the required value of the primary design and reaching the required value of the secondary design. Ideally, the deformation continues and the required value of the secondary design is not too large (about 1.5 times the required value of the primary design). This is hereinafter referred to as an “ideal curve”.
Conversely, by realizing a load-deformation curve that approximates such an ideal curve, it can be said that shear strength, vibration energy absorption, and low cost can be achieved.
[0009]
The present invention has been made in view of such conventional problems, and is intended to provide an inexpensive bearing wall that has excellent shear strength and can sufficiently absorb vibration energy, and a steel house using the same. To do.
[0010]
[Means for solving problems]
The first invention is a load-bearing wall for a steel house , comprising a steel frame formed by forming a thin, lightweight steel frame into a rectangular shape, and a structural face material fixed to the steel frame,
The structural face material comprises a cement-based inorganic material, a silicic acid-containing substance, a lightweight aggregate, and reinforcing fibers dispersed in water to form a slurry, the slurry is made into paper and dehydrated to form a single layer mat, and the single layer The mat is wound around a making roll, and a plurality of layers are laminated to a predetermined thickness to form a laminated mat. The laminated mat is separated from the making roll, press-molded to produce a press mat, and the press mat is cured. It consists of cement board obtained by curing,
The load-bearing wall approximates the following ideal curve in the load-deformation curve,
The ideal curve passes the required value for primary design (allowable stress level design) based on the Building Standards Act, and the proof stress changes after reaching the required value for secondary design (Retained Strength Design) based on the Building Standards Act. Is a curve where the required value of the secondary design is about 1.5 times the required value of the primary design,
The structural face material is a test body having a size of 500 × 400 mm and a thickness of 12 mm. The amount of bending when measured in accordance with JIS A 1408 is 8 to 12 mm, and the bending strength is 8 to 14 N / mm 2 . It exists in the load-bearing wall for steel houses characterized by being (Claim 1).
[0011]
Next, the effects of the present invention will be described.
The structural face material can improve the strength per layer of the single-layer mat because the lightweight aggregate and the reinforcing fiber are mixed with the raw material.
Further, the structural face material can be obtained by forming a laminated mat in which single-layer mats are laminated as described above. That is, since the structural face material is formed in a layer shape, it is excellent in shear strength and toughness.
[0012]
Thus, the structural face material made of the cement board obtained by the raw materials and methods as described above has sufficient shear strength and sufficient toughness.
The bearing wall has sufficient shear strength and toughness because the structural face material excellent in shear strength and toughness is fixed to the steel frame. And since it is excellent in toughness, the said load-bearing wall can bend comparatively largely and can fully absorb the input vibration energy.
[0013]
Further, the structural face material made of the cement board can be adjusted to have a maximum proof stress to a necessary and sufficient size, for example, by appropriately adjusting the number of layers and the thickness of the laminated mat when the laminated mat is formed. That is, it is possible to prevent the maximum proof stress from being excessively increased, and to prevent the necessity of extremely increasing the strength of the steel frame, the anchor bolt, the fixture such as the hole-down hardware, or the like. Therefore, an inexpensive bearing wall and structural housing can be obtained.
[0014]
In addition, with the above configuration, the load-deformation curve of the bearing wall can be approximated to the ideal curve described above (see curve L0 in FIG. 11) (see Example 3). In particular, the load-deformation curve of the load-bearing wall can be brought close to the ideal curve by appropriately adjusting the number of layers when forming the layered mat.
[0015]
As described above, according to the present invention, it is possible to provide an inexpensive bearing wall that has excellent shear strength and can sufficiently absorb vibration energy.
[0016]
2nd invention is a steel house which has a load-bearing wall which consists of a steel frame formed by making a thin frame lightweight section steel into a rectangular frame, and a structural face material fixed to the steel frame,
The structural face material comprises a cement-based inorganic material, a silicic acid-containing substance, a lightweight aggregate, and reinforcing fibers dispersed in water to form a slurry, the slurry is made into paper and dehydrated to form a single layer mat, and the single layer The mat is wound around a making roll, and a plurality of layers are laminated to a predetermined thickness to form a laminated mat. The laminated mat is separated from the making roll, press-molded to produce a press mat, and the press mat is cured. It consists of cement board obtained by curing,
The load-bearing wall approximates the following ideal curve in the load-deformation curve,
The ideal curve passes the required value for primary design (allowable stress level design) based on the Building Standards Act, and the proof stress changes after reaching the required value for secondary design (Retained Strength Design) based on the Building Standards Act. Is a curve where the required value of the secondary design is about 1.5 times the required value of the primary design,
The structural face material is a test body having a size of 500 × 400 mm and a thickness of 12 mm. The amount of bending when measured in accordance with JIS A 1408 is 8 to 12 mm, and the bending strength is 8 to 14 N / mm 2 . It exists in the steel house characterized by being (Claim 2).
[0017]
This steel house is composed of a load bearing wall that can realize a load-deformation curve that approximates the ideal curve described above (curve L0 in FIG. 11) (see Example 3).
Therefore, according to the present invention, it is possible to provide an inexpensive steel house that has excellent shear strength and can sufficiently absorb vibration energy.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In the first invention (Invention 1) or the second invention (Invention 2), for example, a thin lightweight steel using a thin plate having a thickness of 0.8 to 1.6 mm is used as the shape steel. Can do.
The cement-based inorganic material is composed of one or more selected from, for example, Portland cement, blast furnace slag cement, fly ash cement, silica cement, alumina cement, and white cement.
[0019]
The silicic acid-containing substance is composed of one or more selected from, for example, slag, fly ash, quartz sand, quartzite powder, silica fume, diatomaceous earth, and the like.
The lightweight aggregate is composed of, for example, one or more selected from pearlite, vermiculite, shirasu balloon, crushed waste material of cement board, and the like.
[0020]
The reinforcing fibers include, for example, wood pulp (NUKP, NBKP, LUKP, LBKP, etc.), wood flour, wood fiber bundles such as wood fiber bundles, synthetic fiber such as polypropylene fiber, vinylon fiber, aramid fiber, sepiolite, wallast It consists of 1 type, or 2 or more types chosen from mineral reinforcement fibers, such as knight.
[0021]
In preparing the slurry, in addition to the cement-based inorganic material, silicate-containing substance, lightweight aggregate, reinforcing fiber, for example, hardening accelerators such as calcium formate and aluminum sulfate, paraffin, wax, A waterproofing agent such as a surfactant or a water repellent may be dispersed.
[0022]
Moreover, it is preferable that the solid content density | concentration of the said slurry shall be 5-20 mass%. Thereby, the predetermined thickness of the laminated mat can be obtained efficiently. When the concentration is less than 5% by mass, the thickness of the single-layer mat is too thin, and it is necessary to laminate the multilayer until a predetermined thickness is reached, which may reduce the production efficiency. On the other hand, if it exceeds 20% by mass, the thickness of the single-layer mat is too thick, the dehydration efficiency is lowered, and the adhesion at the laminated interface may be lowered.
[0023]
The structural face material preferably has, for example, a thickness of 10 to 15 mm, a specific gravity of 0.8 to 1.1, and a bending strength of 8 to 14 N / mm 2 . The laminated mat is preferably formed by laminating 5 to 10 single-layer mats.
[0024]
【Example】
(Example 1)
A bearing wall according to an embodiment of the present invention and a steel house using the same will be described with reference to FIGS.
As shown in FIGS. 1 to 3, the load-bearing wall 1 includes a steel frame 2 (FIGS. 4 to 6) formed by forming a shaped steel 21 into a rectangular shape, and a structural frame fixed to the steel frame 2. It consists of face material 3.
[0025]
The structural face material 3 is made of a cement board obtained as follows.
First, a cement-based inorganic material, a silicic acid-containing substance, a lightweight aggregate, and reinforcing fibers are dispersed in water to obtain a slurry 41. As shown in FIG. 7, the slurry 41 is formed and dehydrated to form a single layer mat. The single-layer mat is wound around a making roll 51, and a plurality of layers are laminated until a predetermined thickness is obtained, thereby forming a laminated mat 43. The laminated mat 43 is separated from the making roll 51. The laminated mat 43 is press-molded to produce a press mat, and the press mat is cured and cured.
Thereafter, the structural face material 3 made of the cement board is obtained by performing external processing or the like.
[0026]
Further, as the shape steel 21, a thin lightweight steel having a thickness of about 1.0 mm is used. As shown in FIGS. 5 and 6, as the vertical member 211 in the vertical direction in the steel frame 2, C-shaped steel having a substantially C-shaped cross section is used, and as the horizontal member 212 in the left and right direction, a substantially rectangular cross-section is used. Use a shaped channel steel.
[0027]
As shown in FIGS. 4 and 6, two vertical members 211 (C-shaped steel) are fixed to each other on the left and right sides of the steel frame 2 by overlapping the back surfaces thereof with screws 11. A hole-down hardware 23 for fixing the load bearing wall 1 to the foundation is fixed to the inner side below the left and right vertical members 211.
In addition, a vertical member 211 (C-shaped steel) is disposed at a substantially central portion regarding the left and right of the steel frame 2.
[0028]
Further, as shown in FIG. 5, the cross member 212 (grooved steel) is arranged on the upper side and the lower side of the steel frame 2 so that the opening surfaces thereof face each other. The cross member 212 and the vertical member 211 are fixed by screws 11.
As shown in FIG. 1 to FIG. 3, the bearing wall 1 is obtained by fixing the structural face material 3 to one side of the steel frame 2. That is, the structural face material 3 having substantially the same shape as the outer shape of the steel frame 2 is fixed to the steel frame 2 using screws 12.
[0029]
Next, the manufacturing method of the structural face material 3 will be described in detail.
That is, first, 35% by mass of Portland cement as the cement-based inorganic material, 25% by mass of slag and 10% by mass of fly ash as the silicate-containing substance, 10% by mass of pearlite as the lightweight aggregate, and as the reinforcing fiber 10% by mass of wood pulp and 10% by mass of reject as a lightweight aggregate are mixed.
This raw material mixture is dispersed in water to obtain a slurry 41 having a solid content of about 12% by mass.
[0030]
The slurry 41 is charged into a raw material box 52 of a flow-on type papermaking machine 5 shown in FIG. The papermaking machine 5 is in contact with the making roll 51, the raw material flow box 56, the suction box 57, and the making roll 51 and circulates while passing under the raw material flow box 56 and the upper surface of the suction box 57. And felt 55.
[0031]
Slurry 41 charged into the raw material box 52 is supplied to the raw material flow box 56 and flows from the raw material flow box 56 onto the felt 55. The slurry 41 flowing on the felt 55 is dehydrated by suction by the suction box 57. As a result, a single-layer mat made of a thin raw material layer is formed on the felt 55.
[0032]
The single-layer mat formed on the felt 55 in this manner is wound around the making roll 51 and stacked to form the stacked mat 43. Then, when the seven layers of the single-layer mat are laminated, they are cut and developed by the cutter 59, and the laminated mat 43 is separated from the making roll 51. Thereafter, the laminated mat 43 is press-molded to form a press mat.
[0033]
The press mat is cured and cured under conditions of 50 to 80 ° C. and humidity of 90 to 100 RH for 7 to 30 hours.
Thereafter, the structural face material 3 made of the cement board is obtained by performing external processing or the like. The structural face material 3 has a thickness of 10 to 15 mm, a specific gravity of 0.8 to 1.1, and a bending strength of 8 to 14 N / mm 2 .
[0034]
Further, as shown in FIG. 8, the steel house 6 can be constructed by using a plurality of the load-bearing walls 1 and assembling them.
[0035]
Next, the effect of this example will be described.
The structural face material 3 can improve the strength per layer of the single-layer mat because the lightweight aggregate and the reinforcing fiber are mixed in the raw material.
The structural face material 3 can be obtained by forming a laminated mat in which single-layer mats are laminated as described above. That is, since the structural face material 3 is formed in layers, it has excellent shear strength and toughness.
[0036]
Thus, the structural face material 3 made of the cement board obtained by the above raw materials and methods has sufficient shear strength and sufficient toughness.
The bearing wall 1 has sufficient shear strength and toughness because the structural face material 3 having excellent shear strength and toughness is fixed to the steel frame 2 in this manner. And since it is excellent in toughness, the said load-bearing wall 1 can bend comparatively greatly, and can fully absorb the input vibration energy.
[0037]
Moreover, the structural face material 3 made of the cement board can be adjusted to have a maximum proof stress to a necessary and sufficient size by appropriately adjusting the number of layers and the thickness of the laminated mat when the laminated mat is formed. That is, it is possible to prevent the maximum proof stress from being excessively increased and to prevent the necessity of extremely increasing the strength of the steel frame 2, the screws 11, 12 and the like. Therefore, an inexpensive bearing wall can be obtained.
[0038]
Further, with the above configuration, the load-deformation curve of the bearing wall 1 can be approximated to the ideal curve (curve L0 in FIG. 11) (see Example 3). In particular, the load-deformation curve of the load-bearing wall 1 can be brought close to the ideal curve by appropriately adjusting the number of layers when forming the layered mat.
[0039]
As described above, according to this example, it is possible to provide an inexpensive bearing wall and steel house that have excellent shear strength and can sufficiently absorb vibration energy.
[0040]
(Example 2)
In this example, as shown in FIG. 9, a so-called Hatchek type papermaking machine 50 is used to manufacture the structural face material 3.
The papermaking machine 50 includes a making roll 51, a plurality of inlet boxes 54 in which a rotating cylinder 53 is disposed, and a felt 55 that circulates between the making roll 51 and the rotating cylinder 53 while being in contact therewith. Have.
[0041]
The slurry 41 charged into the raw material box 52 of the papermaking machine 50 is supplied to each inlet box 54 and dehydrated on the outer peripheral surface of the rotating cylinder 53 to form a thin raw material layer. This raw material layer is adsorbed by the felt 55 to form a single layer mat. In addition, the raw material layers formed on the outer peripheral surfaces of the plurality of rotating cylinders 53 overlap on the felt 55.
[0042]
The single-layer mat formed on the felt 55 in this manner is wound around the making roll 51 and stacked to form the stacked mat 43. Then, when the seven layers of the single-layer mat are laminated, they are cut and developed by the cutter 59, and the laminated mat 43 is separated from the making roll 51. Thereafter, the laminated mat 43 is press-molded to form a press mat.
Thereafter, the structural face material 3 is manufactured in the same manner as in the first embodiment.
Others are the same as those in the first embodiment, and the same effects as those in the first embodiment can be obtained also in this example.
[0043]
(Example 3)
In this example, as shown in FIGS. 10 and 11, the in-plane shear strength characteristics of the bearing wall of the present invention were evaluated.
The bearing wall 1 used as a test body is the same as that shown in Example 1 (FIGS. 1 to 3). The outer dimensions of the bearing wall 1 are 3030 mm long and 910 mm wide. The front and rear width of the steel frame 2 is 92 mm, and the thickness of the structural face material 2 is 12 mm.
[0044]
The fixing positions of the screws 12 are basically 150 mm apart with respect to the vertical members 211 at the left and right ends of the steel frame 2 and the horizontal members 212 on the upper and lower sides. Moreover, with respect to the vertical member 211 arranged at the substantially central portion with respect to the left and right of the steel frame body 2, the interval is basically 300 mm. The diameter of the screw 12 is 4.2 mm.
The shear test method was in accordance with Japan Architecture Center Grade BCJ-LS-395 “KC Steel House Type A”.
[0045]
Specifically, as shown in FIG. 10, the load bearing wall 1 is set in the shear test machine 7. The shear test machine 7 includes two fixed bases 71 and 72 that are opposed to each other in the front-rear direction, a movable pressing part 73 that is attached to the one fixed base 71 so as to be movable in the left-right direction, and the movable pressing part 73. And a cylinder 74 for moving the.
The movable pressing portion 73 applies a load toward the left or the right along the upper side 13 of the bearing wall 1.
[0046]
Thereby, the load-bearing wall 1 is deformed so as to bend leftward or rightward. A load-deformation curve shown in FIG. 11 shows the relationship between the load and the shear deformation angle measured at this time. The load-deformation curve for the bearing wall 1 of the present invention is given the symbol L1. In FIG. 11, the vertical axis represents the value obtained by dividing the load by the left and right width of the bearing wall 1, and the horizontal axis represents the shear deformation angle. The load on the vertical axis corresponds to the proof stress of the load bearing wall 1.
[0047]
In FIG. 11, the reference curve L0 is the ideal curve described above. In other words, the curve represents a deformation characteristic in which the deformation continues after the required value of the primary design is passed and the required value of the secondary design is reached, and the proof stress is not changed.
Here, the required value of the primary design is 11.0 kN / m, and the required value of the secondary design is 16.5 kN / m.
[0048]
As shown in FIG. 11, the deformation curve L1 of the bearing wall 1 of the present invention is very close to the ideal curve L0. From this, it can be seen that according to the bearing wall 1 of the present invention, it is possible to achieve shear strength, vibration energy absorbability, and low cost.
[0049]
(Comparative example)
In this example, for comparison, in-plane shear strength characteristics of a load bearing wall using various other structural face materials different from those of the present invention are measured. The experimental method is as shown in Example 3 above.
[0050]
The comparative sample 1 is an example in which a commonly used 9 mm wood plywood is used as a structural face material.
The comparative sample 2 is an example in which a 12.5 mm gypsum board is used as a structural face material.
The comparative sample 3 is an example in which a 12.5 mm wood plywood is used as a structural face material and the outer peripheral screw fixing interval with respect to the steel frame 2 is 75 mm. For Comparative Example 3, a screw having a diameter of 4.8 mm was used.
Others are the same as in the third embodiment.
[0051]
The results of measuring the in-plane shear strength characteristics of Comparative Samples 1, 2, and 3 are shown by curves L21, L22, and L23 in FIG. 11, respectively.
That is, Comparative Sample 1 (curve L21) and Comparative Sample 2 (curve L22) were far below the required values for the primary design and the secondary design, and the maximum proof stress was insufficient. And it became a load-deformation curve greatly deviating from the ideal curve L0.
[0052]
Further, the comparative sample 3 (curve L23) satisfies the required values of the primary design and the secondary design, but its maximum proof stress is extremely large and deviates greatly from the ideal curve L0.
Accordingly, a steel frame body, anchor bolts, and fixtures such as hole-down hardware that can sufficiently withstand this maximum proof stress are required, resulting in a problem of increased costs.
[0053]
(Example 4)
In this example, the physical properties of the structural face material used for the bearing wall of the present invention are compared with other cement boards.
That is, the bending amount and specific gravity of the structural face material 2 shown in Example 1 were measured. The amount of deflection is a measure of the displacement of the central part of the specimen at the time of failure.
For the measurement of the amount of deflection, according to JIS A 1408, a specimen having a size of 500 × 400 mm and a thickness of 12 mm was used.
[0054]
For comparison, the same measurement was performed for the following comparative samples 4 and 5.
As the comparative sample 4, a cement board manufactured by a so-called dry manufacturing method in which a raw material obtained by adding and mixing an appropriate amount of water to 75 mass% of cement and 25 mass% of wood pieces was sprayed on a mold plate and press-molded was used. That is, lightweight aggregate and reinforcing fiber are not added, and it is not obtained by a wet manufacturing method.
[0055]
As the comparative sample 5, a three-layered cement board composed of front and back layers and a core material disposed therebetween was used by a dry process. That is, as the above-mentioned front and back layers, a raw material prepared by adding an appropriate amount of water to 40% by mass of cement, 25% by mass of silica sand, 15% by mass of wood pieces, 5% by mass of wood flour, and 15% by mass of rejects is arranged. As a raw material, 35% by weight cement, 20% by weight silica sand, 10% by weight wood fiber bundle, 5% by weight wood pieces, 28% by weight rejected, 2% by weight expanded polystyrene beads, and mixed raw materials are added. It is.
Each sample was prepared and measured (n = 5). The measurement results are shown in Table 1.
[0056]
[Table 1]
Figure 0003617837
[0057]
As can be seen from Table 1, the structural face material of the present invention has a large amount of deflection and a low specific gravity. Since the amount of bending is large, it can be said that the structural face material has high toughness.
Also, the low specific gravity is thought to lead to high vibration energy absorption and toughness.
[Brief description of the drawings]
FIG. 1 is a front view of a load bearing wall in Embodiment 1. FIG.
FIG. 2 is a side view of a load bearing wall according to the first embodiment.
3 is a top view of a load bearing wall in Embodiment 1. FIG.
4 is a front view of a steel frame body in Embodiment 1. FIG.
FIG. 5 is a side view of a steel frame body according to the first embodiment.
6 is a cross-sectional view taken along line AA in FIG.
7 is an explanatory diagram of a flow-on type papermaking machine in Embodiment 1. FIG.
FIG. 8 is a perspective view of a part of the steel house in the first embodiment.
FIG. 9 is an explanatory diagram of a Hatchek type papermaking machine in Embodiment 2.
10 is an explanatory diagram of a shear tester in Example 3. FIG.
11 is a diagram showing in-plane shear strength characteristics of various bearing walls in Example 3. FIG.
[Explanation of symbols]
1. . . Bearing wall,
11,12. . . Screw,
2. . . Steel frame,
21. . . Shape steel,
3. . . Structural facing,
5,50. . . Paper machine,
6). . . Steel house,
7). . . Shear testing machine,

Claims (2)

薄板軽量形鋼を矩形状に枠組みしてなるスチール枠体と、該スチール枠体に固定された構造用面材とからなるスチールハウス用の耐力壁であって、
上記構造用面材は、セメント系無機材料とケイ酸含有物質と軽量骨材と補強繊維とを水に分散させてスラリーとし、該スラリーを抄造脱水して単層マットをフォーミングし、該単層マットをメイキングロールに巻き取り、所定の厚みになるまで複数層積層して積層マットを形成し、該積層マットを上記メイキングロールから切り離し、プレス成形してプレスマットを作製し、該プレスマットを硬化養生することにより得られたセメント板からなり、
上記耐力壁は、荷重−変形曲線において、下記の理想曲線に近似しており、
該理想曲線は、建築基準法に基づく1次設計(許容応力度設計)の要求値を通過すると共に建築基準法に基づく2次設計(保有耐力設計)の要求値に達した後、耐力が変化しない状態で変形が続くものであって、上記2次設計の要求値が上記1次設計の要求値の約1.5倍となる曲線であり、
かつ、上記構造用面材は、500×400mm、厚み12mmの試験体を用い、JIS A 1408に準じて測定したときの撓み量が8〜12mmであり、曲げ強度が8〜14N/mm2であることを特徴とするスチールハウス用耐力壁。
It is a load-bearing wall for a steel house consisting of a steel frame formed by forming a thin lightweight steel frame into a rectangular shape and a structural face material fixed to the steel frame,
The structural face material comprises a cement-based inorganic material, a silicic acid-containing substance, a lightweight aggregate, and reinforcing fibers dispersed in water to form a slurry, the slurry is made into paper and dehydrated to form a single layer mat, and the single layer The mat is wound around a making roll, and a plurality of layers are laminated to a predetermined thickness to form a laminated mat. The laminated mat is separated from the making roll, press-molded to produce a press mat, and the press mat is cured. It consists of cement board obtained by curing,
The load-bearing wall approximates the following ideal curve in the load-deformation curve,
The ideal curve passes the required value for primary design (allowable stress level design) based on the Building Standards Act, and the proof stress changes after reaching the required value for secondary design (Retained Strength Design) based on the Building Standards Act. Is a curve where the required value of the secondary design is about 1.5 times the required value of the primary design,
The structural face material is a test body having a size of 500 × 400 mm and a thickness of 12 mm. The amount of bending when measured in accordance with JIS A 1408 is 8 to 12 mm, and the bending strength is 8 to 14 N / mm 2 . A bearing wall for steel houses , characterized by being.
薄板軽量形鋼を矩形状に枠組みしてなるスチール枠体と、該スチール枠体に固定された構造用面材とからなる耐力壁を有するスチールハウスであって、
上記構造用面材は、セメント系無機材料とケイ酸含有物質と軽量骨材と補強繊維とを水に分散させてスラリーとし、該スラリーを抄造脱水して単層マットをフォーミングし、該単層マットをメイキングロールに巻き取り、所定の厚みになるまで複数層積層して積層マットを形成し、該積層マットを上記メイキングロールから切り離し、プレス成形してプレスマットを作製し、該プレスマットを硬化養生することにより得られたセメント板からなり、
上記耐力壁は、荷重−変形曲線において、下記の理想曲線に近似しており、
該理想曲線は、建築基準法に基づく1次設計(許容応力度設計)の要求値を通過すると共に建築基準法に基づく2次設計(保有耐力設計)の要求値に達した後、耐力が変化しない状態で変形が続くものであって、上記2次設計の要求値が上記1次設計の要求値の約1.5倍となる曲線であり、
かつ、上記構造用面材は、500×400mm、厚み12mmの試験体を用い、JIS A 1408に準じて測定したときの撓み量が8〜12mmであり、曲げ強度が8〜14N/mm2であることを特徴とするスチールハウス。
A steel house having a load-bearing wall composed of a steel frame formed by forming a thin, lightweight steel frame into a rectangular shape, and a structural face material fixed to the steel frame,
The structural face material comprises a cement-based inorganic material, a silicic acid-containing substance, a lightweight aggregate, and reinforcing fibers dispersed in water to form a slurry, the slurry is made into paper and dehydrated to form a single layer mat, and the single layer The mat is wound around a making roll, and a plurality of layers are laminated to a predetermined thickness to form a laminated mat. The laminated mat is separated from the making roll, press-molded to produce a press mat, and the press mat is cured. It consists of cement board obtained by curing,
The load-bearing wall approximates the following ideal curve in the load-deformation curve,
The ideal curve passes the required value for primary design (allowable stress level design) based on the Building Standards Act, and the proof stress changes after reaching the required value for secondary design (Retained Strength Design) based on the Building Standards Act. Is a curve where the required value of the secondary design is about 1.5 times the required value of the primary design,
The structural face material is a test body having a size of 500 × 400 mm and a thickness of 12 mm. The amount of bending when measured in accordance with JIS A 1408 is 8 to 12 mm, and the bending strength is 8 to 14 N / mm 2 . A steel house characterized by being.
JP2002316452A 2002-10-30 2002-10-30 Bearing wall and steel house using the same Expired - Lifetime JP3617837B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002316452A JP3617837B2 (en) 2002-10-30 2002-10-30 Bearing wall and steel house using the same
KR1020077024140A KR100891209B1 (en) 2002-10-30 2003-04-24 Load bearing wall, and steel house using the load bearing wall
TW092109586A TWI266821B (en) 2002-10-30 2003-04-24 Bearing wall and a steel house utilizing the bearing wall
KR1020057007740A KR20050062785A (en) 2002-10-30 2003-04-24 Load bearing wall, and steel house using the load bearing wall
AU2003227365A AU2003227365A1 (en) 2002-10-30 2003-04-24 Load bearing wall, and steel house using the load bearing wall
CNA038248263A CN1694992A (en) 2002-10-30 2003-04-24 Load bearing wall, and steel house using the load bearing wall
PCT/JP2003/005287 WO2004040075A1 (en) 2002-10-30 2003-04-24 Load bearing wall, and steel house using the load bearing wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316452A JP3617837B2 (en) 2002-10-30 2002-10-30 Bearing wall and steel house using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003389481A Division JP2004150267A (en) 2003-11-19 2003-11-19 Bearing wall and steel house using the same

Publications (2)

Publication Number Publication Date
JP2004150126A JP2004150126A (en) 2004-05-27
JP3617837B2 true JP3617837B2 (en) 2005-02-09

Family

ID=32211684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316452A Expired - Lifetime JP3617837B2 (en) 2002-10-30 2002-10-30 Bearing wall and steel house using the same

Country Status (6)

Country Link
JP (1) JP3617837B2 (en)
KR (2) KR100891209B1 (en)
CN (1) CN1694992A (en)
AU (1) AU2003227365A1 (en)
TW (1) TWI266821B (en)
WO (1) WO2004040075A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720823B1 (en) * 2005-10-18 2007-05-23 대한주택공사 Staggered wall-beam srtucure system and apartment house using the same
JP5098052B2 (en) * 2006-04-11 2012-12-12 新日鐵住金株式会社 Wall panels
JP4161002B1 (en) * 2006-12-05 2008-10-08 積水化学工業株式会社 building
IE86614B1 (en) * 2009-07-23 2016-01-13 Vision Modular Systems Uk Ltd A structural module for construction of buildings
CN102011442A (en) * 2009-09-07 2011-04-13 初明进 Light steel-concrete combination structure shear wall and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153554A (en) * 1989-11-13 1991-07-01 Toyo Pairu Fume Kan Seisakusho:Kk Production of fiber reinforced lightweight cement plate
JP2001055807A (en) * 1999-08-13 2001-02-27 Kawasaki Steel Corp Bearing wall and steel house
JP3482369B2 (en) * 2000-01-27 2003-12-22 ニチハ株式会社 Manufacturing method of lightweight inorganic plate

Also Published As

Publication number Publication date
CN1694992A (en) 2005-11-09
WO2004040075A1 (en) 2004-05-13
JP2004150126A (en) 2004-05-27
KR20050062785A (en) 2005-06-27
KR20070114827A (en) 2007-12-04
TWI266821B (en) 2006-11-21
TW200406525A (en) 2004-05-01
AU2003227365A8 (en) 2004-05-25
KR100891209B1 (en) 2009-04-02
AU2003227365A1 (en) 2004-05-25

Similar Documents

Publication Publication Date Title
CA2616615C (en) A bearing wall board and a method of producing the same
Maheri et al. The effects of pre and post construction moisture condition on the in-plane and out-of-plane strengths of brick walls
Sathiparan et al. Effect of void area on hollow cement masonry mechanical performance
JP3617837B2 (en) Bearing wall and steel house using the same
Shaheen et al. Characteristics of ferrocement lightweight wall
Ghosh A review on paper Crete: a sustainable building material
Ali et al. Flexural behavior of one-way ferrocement slabs with fibrous cementitious matrices
JPS6014701B2 (en) Lightweight exterior wall material and its manufacturing method
US20220332643A1 (en) Improved fiber cement products and methods for the production thereof
KR102596627B1 (en) Eco hybrid timber slab
JP2004150267A (en) Bearing wall and steel house using the same
JP4219852B2 (en) Bearing wall and steel house
Acharya et al. Full-scale flexural testing of slabs made of modular structural concrete insulated panels.
JPH10292610A (en) Sound-proof floor structure
JP4757371B2 (en) Inorganic load-bearing face material and method for producing inorganic load-bearing face material
WO1993016244A1 (en) Method for improving the sound insulation quality of a hollow-core slab and a combination hollow-core with high sound insulation quality
US2261480A (en) Building structure
Silva et al. Mechanical behavior and durability of compression moulded sisal fiber cement mortar laminates (SFCML)
CN206917071U (en) Assembled low energy consumption integrated wall
CN110219397A (en) First fill assembled steel screen frame pearlite concrete heat preservation and soundproof fire-resisting partition plate
Mohammad et al. Flexural Behavior of RC Two-Way Slabs With Opening Strengthened With Cfrp Sheets
JP2001048630A5 (en)
JPH08232375A (en) Partition wall
JPH021108B2 (en)
JP2758449B2 (en) Fire-resistant hardened asbestos-free gypsum body and method for producing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

R150 Certificate of patent or registration of utility model

Ref document number: 3617837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term