JP4757371B2 - Inorganic load-bearing face material and method for producing inorganic load-bearing face material - Google Patents

Inorganic load-bearing face material and method for producing inorganic load-bearing face material Download PDF

Info

Publication number
JP4757371B2
JP4757371B2 JP2000166771A JP2000166771A JP4757371B2 JP 4757371 B2 JP4757371 B2 JP 4757371B2 JP 2000166771 A JP2000166771 A JP 2000166771A JP 2000166771 A JP2000166771 A JP 2000166771A JP 4757371 B2 JP4757371 B2 JP 4757371B2
Authority
JP
Japan
Prior art keywords
mass
raw material
layer
bearing face
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000166771A
Other languages
Japanese (ja)
Other versions
JP2001048630A (en
JP2001048630A5 (en
Inventor
彰 大和田
美徳 羽藤
之典 山崎
博文 上田
耕平 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
Original Assignee
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp filed Critical A&A Material Corp
Priority to JP2000166771A priority Critical patent/JP4757371B2/en
Publication of JP2001048630A publication Critical patent/JP2001048630A/en
Publication of JP2001048630A5 publication Critical patent/JP2001048630A5/ja
Application granted granted Critical
Publication of JP4757371B2 publication Critical patent/JP4757371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/186Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step
    • C04B28/188Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step the Ca-silicates being present in the starting mixture
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/30Nailable or sawable materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、木造住宅用耐力面材等として広く使用されている木質構造用合板の代替として使用する無機質耐力面材およびその製造方法に関する。
【0002】
【従来の技術】
一般に住宅は、地震や風圧により横からの荷重を受けることがあり、このような荷重を考慮した設計をする必要がある。そのため、木造の住宅では耐力面材として、強度を増すために、木質構造用合板が広く使われている。
これに対し、無機質系材料としては、従来からけい酸カルシウム板などの繊維補強セメント板、石膏ボードあるいは木毛セメント板などの木繊維補強セメント板などが用いられているが、耐力面材としての強度が不足しているため、構造用合板の代替品として使用可能な性能が得られていないのが実状である。
【0003】
【発明が解決しようとする課題】
ところで、木質構造用合板は、可燃物であり耐久性に優れているとは言い難い。また、森林伐採による環境破壊および接着剤による住環境上の問題も指摘されている。
一方、けい酸カルシウム板などの繊維補強セメント板、石膏ボードあるいは木毛セメント板などの窯業系ボード類は、耐力面材としての強度が不足しており、材質が脆いため、釘打ちに対する釘打性が悪くかつ釘の保持力も低いという問題を抱えている。
【0004】
そこで、本発明の第1の目的は、不燃性であり、耐久性に優れ、釘保持力が高く且つ長さ変化率が小さい耐力面材として使用可能な無機質耐力面材を提供することである。
また、本発明の第2の目的は、不燃性であり、耐久性に優れ、釘保持力が高く且つ長さ変化率が小さい耐力面材として使用可能な無機質耐力面材の製造方法を提供することである。
【0005】
【課題を解決するための手段】
請求項1記載の発明では、無機質耐力面材が、セメント20〜60質量%、予め石灰質原料とシリカ質原料を水熱合成してなるけい酸カルシウム系軽量水熱合成物5〜50質量%、且つかさ比重0.05〜0.3、補強繊維3〜18質量%であり、且つこの補強繊維のうちパルプ繊維が3〜15質量%を占め、および充填材0〜60質量%からなる配合物を湿式成形して得られ、かさ比重0.5〜1.2、曲げ強度10〜30N/mm2および壁倍率2.5以上であることにより、前記第1の目的を達成する。
【0006】
請求項2記載の発明では、無機質耐力面材が、セメント20〜60質量%、予め石灰質原料とシリカ質原料を水熱合成してなるけい酸カルシウム系軽量水熱合成物5〜50質量%、且つかさ比重0.05〜0.3、補強繊維3〜18質量%であり、且つこの補強繊維のうちパルプ繊維が3〜15質量%を占め、および充填材0〜60質量%からなる配合物を湿式成形して得られ、1種または2種以上のグリーンシートを複数層積層してなり、かさ比重0.5〜1.2、曲げ強度10〜30N/mm2および壁倍率2.5以上であることにより、前記第1の目的を達成する。
【0007】
請求項3記載の発明では、請求項2記載の発明において、1種または2種以上のグリーンシートを複数層積層してなるグリーンシート層に、ネット層を1層以上含むことを特徴とする。
【0008】
請求項4記載の発明では、請求項1、請求項2または請求項3記載の発明において、予め石灰質原料とシリカ質原料を水熱合成してなるけい酸カルシウム系軽量水熱合成物はかさ比重0.05〜0.3であることを特徴とする。
【0009】
請求項5記載の発明では、請求項1、請求項2、請求項3または請求項4記載の発明において、補強繊維としては、パルプ繊維が3〜15質量%およびヤング率5kN/mm2以上の繊維が0〜2質量%およびヤング率5kN/mm2未満の繊維が0〜2質量%からなることを特徴とする。
【0010】
請求項6記載の発明では、無機質耐力面材を、セメント20〜60質量%、予め石灰質原料とシリカ質原料を水熱合成してなるけい酸カルシウム系軽量水熱合成物5〜50質量%、且つかさ比重0.05〜0.3、補強繊維3〜18質量%であり、且つこの補強繊維のうちパルプ繊維が3〜15質量%を占め、および充填材0〜60質量%からなる配合物を湿式成形してなる単層または複層のグリーンシートを、1〜20N/mm2のプレス圧で加圧成形したのち養生してなることにより、前記第2の目的を達成する。
【0011】
請求項7記載の発明では、無機質耐力面材を、セメント20〜60質量%、予め石灰質原料とシリカ質原料を水熱合成してなるけい酸カルシウム系軽量水熱合成物5〜50質量%、且つかさ比重0.05〜0.3、補強繊維3〜18質量%であり、且つこの補強繊維のうちパルプ繊維が3〜15質量%を占め、および充填材0〜60質量%からなる配合物を湿式成形してなる単層または複層で、少なくとも1層以上のネット層を含むグリーンシートを、1〜20N/mm2のプレス圧で加圧成形したのち養生してなることにより、前記第2の目的を達成する。
【0012】
【発明の実施の形態】
以下、本発明の好適な実施の形態を図1ないし図10を参照して、詳細に説明する。
図1は、本発明の一実施の形態に係る単層無機質耐力面材の断面図であり、図2は、3層無機質耐力面材の断面図である。
また、図3は、ネット2層を含む3層無機質耐力面材の断面図である。
これらの無機質耐力面材は、セメント20〜60質量%、予め石灰質原料とシリカ質原料を水熱合成してなるトバモライト系および・またはゾノトライト系等を主体とした、けい酸カルシウム系軽量水熱合成物5〜50質量%、補強繊維3〜18質量%および充填材0〜60質量%からなる配合物を湿式成形して得られるグリーンシートを、1種類の配合による単層構造とすること(図1)、同グリーンシートを1種類の配合または2種類以上の配合による複層構造とすること(図2)、前記単層構造および複層構造に1層以上のネット層5を設けた構造とすること(図3)で、かさ比重0.5〜1.2、曲げ強度10〜30N/mm2および長さ変化率の小さい壁倍率2.5以上としてある。
【0013】
これらの無機質耐力面材で用いるけい酸カルシウム系軽量水熱合成物は、予め石灰質原料とシリカ質原料を用い、シリカに対する酸化カルシウムのモル比が0.55〜1.10である5〜15%濃度のスラリーを撹拌式オートクレーブを用いて150〜230℃で水熱合成してなり、かさ比重0.05〜0.3である。
シリカ質原料としては珪石、けい藻土、シリカヒューム等があり、石灰質原料としては生石灰等の汎用原料が用いられる。これらのけい酸カルシウム系軽量水熱合成物は、トバモライト系および・またはゾノトライト系等であり、かさ比重は0.05〜0.3であり、その配合量は5〜50%である。
【0014】
ここで、けい酸カルシウム系軽量水熱合成物のかさ比重が0.05未満では、耐力面材としての必要強度および釘の保持力が得られず、一方、0.3を超えると、耐力面材の軽量化および良好な釘打ち性の確保が困難である。
また、けい酸カルシウム系軽量水熱合成物の配合量は、5質量%未満では耐力面材の軽量化および良好な釘打ち性の確保が困難であり、長さ変化率が大きくなる。一方、50質量%を超えると耐力面材としての必要強度および釘の保持力を得ることができない。
【0015】
補強繊維としては、パルプ3〜15質量%およびヤング率5kN/mm2以上の繊維が0〜2質量%およびヤング率5kN/mm2未満の繊維が0〜2質量%配合してある。
パルプは、無機質耐力面材の曲げ強度の向上に必要であり、且つ釘打ちに対する亀裂や割れを防止しさらに釘保持力を向上させるのに特に有効である。パルプの配合量は3質量%未満では釘打ち加工性に対し充分でなく、一方、15質量%を超えると、長さ変化率が大きくなり耐久性が劣ってしまう。
【0016】
また、パルプ以外の繊維として、耐力面材としての曲げ強度および壁倍率等を向上させるために、耐力面材を構成するマトリックスの曲げヤング率より高いヤング率を有する5kN/mm2以上の繊維を配合する。加えて、耐衝撃性の向上や釘打ちに対する亀裂や割れを防止しさらに釘保持力に対する性能を向上させるために、耐力面材の曲げヤング率よりも低いヤング率を有する5kN/mm2未満の繊維を配合する。
ここで、ヤング率5kN/mm2以上の繊維としては、ポリビニルアルコール繊維、ポリノジック繊維、アラミド繊維、麻繊維等の有機繊維およびガラス繊維、炭素繊維等の無機繊維等がある。一方、ヤング率5kN/mm2未満の繊維としては、ポリプロピレン繊維、ポリエステル繊維、ポリアミド繊維、レーヨン繊維、ポリ塩化ビニル繊維等の有機繊維がある。
【0017】
繊維長は、3〜12mmであり、好ましくは3〜6mmである。これらパルプ以外の繊維の配合量は3質量%を超えると繊維分が過剰となり表面性が劣る。また、パルプも含む繊維量合計が18重量%を超えると、不燃性を得ることができない。
【0018】
本実施の形態は、これらの構成材料を用いて軽量であり、曲げ強度が高く、長さ変化率の小さい釘打ち性や釘保持力に優れた壁倍率2.5以上であることを特徴とする耐力面材を達成し得る。さらに、複層化することにより壁倍率性能を向上することができる。
複層化としては、2〜3層構造が好ましい。複層化の方法としては、抄造過程においてグリーンシート状態にて積層する方法から各層を単板として硬化させた後、無機および・または有機質のバインダーにより各層を接合する方法まで任意に選択することができる。
けい酸カルシウム系軽量水熱合成物を配合した無機質耐力面材は、かさ比重が0.5〜1.2であり、複層化した場合には各層のかさ比重はこの範囲で実施できる。また、複層化した場合の各層の配合はそれぞれの必要性能により本発明の配合の範囲内で任意の配合が選択可能である。
【0019】
この無機質耐力面材の製造方法としては、セメント、けい酸カルシウム系水熱合成物および補強繊維からなる配合物をスラリー状にして抄造法によりグリーンシートを成形し、1〜20N/mm2のプレス圧で加圧成形したのち養生して無機質耐力面材を得る。
この製造には、丸網式抄造機、長網式抄造機、フローオン抄造機等の連続式抄造法および脱水プレス法等のバッチ式成形法等の汎用の製造方法が用いられる。これらの方法の単独または組合せにより単層または複層構造の無機質耐力面材を得ることができる。
成形圧は、1N/mm2未満では必要強度、釘保持力および表面平滑性が得られず、一方、20N/mm2 を超えると軽量化が図れず釘打ち性も困難となる。 無機質耐力面材の養生としては、自然養生、湿潤養生、蒸気養生およびオートクレーブ養生があるが、養生時間の短縮および釘打性等の加工性のためには蒸気養生が好ましい。
【0020】
図3に示すように、必要に応じて性能向上のためネットを単層または複層の層内および・または層間に複合することができる。ネットの複合化は、無機質耐力面材の性能向上、特に壁倍率の向上に有効である。また、ネットを複合させることにより補強繊維の配合量を減じることが可能となる。
図4から図6は、ネットを含む無機質耐力面材の製造方法を示した図である。
図4は、フローオン抄造装置を用いてネット1層を形成する無機質耐力面材の製造方法を示した図であり、図5は、フローオン抄造装置と丸網式抄造装置を複数機組み合わせて用いたネット2層を含む無機質耐力面材製造方法を示した図であり、図6は、フローオン抄造装置を複数機組み合わせて用いたネット2層を含む無機質耐力面材製造方法を示した図である。
【0021】
ここで、ネットを挿入する方法としては、抄造時および抄造過程においてグリーンシート状態にて積層する際に挿入する方法がある。この際には、ネットと成形層との密着性の向上のため、セメントペースト、水ガラス、シリカフューム、シリカゲルおよびアルミナゲル等の無機質バインダーやアクリル系エマルジョン、SBR等の合成ゴムラテックスおよび酢酸ビニル系エマルジョン等の有機質バインダーおよびこれらを複合させたバインダーの使用が有効である。
また、各層を単板として硬化させた後無機および有機質のバインダーを使い、各層を板材のみであるいはネット層を挟み込む形で接合することも可能である。
【0022】
ネットとしては、ポリビニルアルコール繊維、ポリノジック繊維、アラミド繊維、ポリプロピレン繊維、ポリエステル繊維、ポリアミド繊維、レーヨン繊維、ポリ塩化ビニル繊維、麻繊維等の有機繊維、ガラス繊維、炭素繊維等の無機繊維および金属繊維等からなるものがある。ネットは板全体に挿入すること、および・またはネットテープ状としたものを四周および・または中間部に挿入する。
この図3に示すネットを挿入した無機質耐力面材の製造方法としては、セメント20〜60質量%、予め用意されたけい酸カルシウム系軽量水熱合成物5〜50質量%、補強繊維3〜18質量%および充填材0〜60質量%からなる配合物を水で混練してスラリーとし、丸網式抄造機、長網式抄造機、フローオン抄造機、脱水プレス成形機等により湿式成形して得られるグリーンシートを、1種類の配合による単層構造とすること、同グリーンシートを1種類の配合または2種類以上の配合による複層構造とすること、前記単層構造および複層構造に1層以上のネット層を設けた構造の複合グリーンシートを1〜20N/mm2のプレス圧で加圧成形したのち養生して板材を得る。
また、前記複層構造において各層を単板として硬化させた後無機および・または有機質のバインダーにより各層を板材のみであるいはネット層を挟み込む形で接合し、1〜10N/mm2のプレス圧で圧着したのち養生して板材を得る。
この圧着は、図4から図6に示すように、吸着積層装置10により積層した後、プレス機11で圧力をかけることにより行う。
【0023】
けい酸カルシウム系軽量水熱合成物は、予め石灰質原料とシリカ質原料を用い、シリカに対する酸化カルシウムのモル比が0.55〜1.10である5〜15%濃度のスラリーを撹拌式オートクレーブを用いて150〜230℃で水熱合成してなるトバモライト系および・またはゾノトライト系統を主体とし、かさ比重0.05〜0.3であることを特徴とする。シリカ質原料としては珪石等および石灰質原料は生石灰等の汎用原料が用いられる。
【0024】
次に、図7から図10に示した表を参照して、実施例1から14を説明する。
実施例1〜14は、図7に示す原料配合および製造条件に基づいて製造した。原料配合は全体を質量%で表示してある。
実施例1および実施例5〜14は、各原料配合による混合物に6倍の水を加えてスラリーとし、このスラリーを用いてフローオン抄造機により得られた単層のグリーンシートを図7の製造条件に示す5〜20N/mm2のプレス圧で加圧成形し、厚さ10mm程度の単層板を得た。この板を蒸気養生後自然養生して硬化させ供試体とした。
【0025】
実施例2は、図7に示す配合の内、表・裏面層を構成する配合物に10倍の水を加えてスラリーとし、このスラリーを用いて丸網式抄造機により得られた単層のグリーンシートを1N/mm2のプレス圧で加圧成形し、厚さ1.6mmの表層用および裏層用の生板を得た。
さらに、図7に示す配合の内、中間層を構成する配合物に6倍の水を加えてスラリーとし、このスラリーを用いてフローオン抄造機により得られた6mmのグリーンシートを裏層用の生板の上に積層し、さらにその上に表層生板を積層したものを10N/mm2のプレス圧で加圧成形し、合計厚さ8mmの生積層板を得た。この生板を蒸気養生後自然養生して硬化させて供試体とした。
【0026】
実施例3は、実施例2と同様の方法で、厚さ1.7mmの表層用および裏層用の生板および7mmの中間層用生板を得た。これを積層する際に、開口5×5mmのビニロンネットを裏層と中間層の間および中間層と表層の間に挟み込み、10N/mm2のプレス圧で加圧成形し、合計厚さ9mmの生積層板を得た。この生板を蒸気養生後自然養生して硬化させて供試体とした。
【0027】
実施例4は、図7に示す配合の内、表・裏面層を構成する配合物に10倍の水を加えてスラリーとし、このスラリーを用いて丸網式抄造機により得られた単層のグリーンシートを10N/mm2のプレス圧で加圧成形し、蒸気養生後自然養生して硬化させ、厚さ1.5mmの表層用および裏層用の硬化板を得た。さらに、図7に示す配合の内、中間層を構成する配合物に6倍の水を加えて得られるスラリーを用いてフローオン抄造機により得られた6mmのグリーンシートを6N/mm2のプレス圧で加圧成形し、蒸気養生後自然養生して硬化させ、6mmの硬化板を得た。
次に、裏層用の硬化板の上にセメントペーストにSBRラテックス10%を混合したバインダーを塗布し、その上に開口5×5mmの耐アルカリガラス繊維ネットを重ね、中間層硬化板を積層し、さらにその上にセメントペーストにSBRラテックス10%を混合したバインダーを塗布し、開口5×5mmの耐アルカリガラス繊維ネットを重ね、表層硬化板を積層し、3N/mm2のプレス圧で加圧成形し、合計厚さ10mmの生積層板を得た。この積層板を再度蒸気養生後自然養生して硬化させて供試体とした。
これらの板を乾燥して試験を行った。結果を図8の表に示してある。
【0028】
比較例1〜8は、図9に示す原料配合および製造条件に基づいて製造した。各原料配合による混合物に6倍の水を加えてスラリーとし、このスラリーを用いてフローオン抄造機により得られた単層のグリーンシートを図9の製造条件に示す10〜25N/mm2のプレス圧で加圧成形し、厚さ10mm程度の単層板を得た。この板を蒸気養生後自然養生して硬化させて供試体とした。
なお、けい酸カルシウム系軽量水熱合成物のゾノトライト系はかさ比重0.15のものを用いたが、比較例5のみ水熱合成が不十分なかさ比重0.40の水熱合成物を使用した。
比較例9は、市販されているかさ比重0.8で厚さ8mmの無石綿けい酸カルシウム板を使用した。
比較例10は、市販されている厚さ9mmの構造用合板を使用した。
実施例と同様にこれらの板を乾燥して試験を行った。結果を図10の表に示してある。
【0029】
図9、図10の表に示すとおり、実施例は比較例に比べて軽量かつ曲げ強度に優れ、釘打性および釘保持力にも優れており、軽量にも関わらず壁倍率については大幅な向上が図られている。比較例4は繊維量が多すぎるために不燃性が得られず、実施例は比較例10に比べ、曲げ強度はほぼ近似したものであり、長さ変化率が大幅に低減され壁倍率も同等以上の性能が得られた。不燃性についても比較例10の可燃物に対しいずれの実施例も準不燃材料以上であった。また、けい酸カルシウム系軽量水熱合成物以外の軽量材としてパーライトを用いた比較例6は、比重は小さいが曲げ強度が低く長さ変化率も大きい。
以上の通り、各実施例は、従来の無機質板に比べ大幅に品質が向上し、構造用合板の代替として充分に優れた性能を有しているといえる。
【0030】
なお、図7、図9の表のけい酸カルシウム系軽量水熱合成物は、粉末珪石と生石灰を原料とし、酸化カルシウム/シリカモル比0.83とし、10%のスラリー濃度で撹拌式オートクレ−ブにより水熱合成した。トバモライト系は180℃で3時間水熱合成し、かさ比重0.13のものを用いた。また、ゾノトライト系は195℃で4時間水熱合成し、かさ比重0.15のものを用いた。
比較例5に用いた水熱合成物は140℃で5時間水熱合成し、かさ比重0.40のものを用いた。
比重試験は、JIS A 5430に従って測定した。
曲げ試験は、JIS A 5430に従って測定した。
長さ変化率は、JIS A 5430に従って測定した。
釘打性:壁倍率試験体作成の際、目視により釘打ちによる試験板の割れ、亀裂を観察し釘打ち性の評価とした。異常がなく良好なものを○、やや異常があるものを△、異常なものを×で示した。
釘保持力は、壁倍率試験後の試験体の釘打ち部を目視により観察し、釘穴の拡大、割れ、亀裂を観察し釘保持力の評価とした。異常がなく良好なものを○、やや異常があるものを△、異常なものを×で示した。
壁倍率は、(財)日本建築センター「低層建築物の構造耐力評定に関する技術規定(木質系)」の日本式に従って実施した。
防火材料試験は、不燃材料は昭和45年建設省告示第1828号に規定する方法に従って実施した。また、準不燃材料および難燃材料は昭和51年建設省告示第1231号に規定する方法に従って実施した。
【0031】
【発明の効果】
請求項1から請求項5記載の発明では、軽量、不燃性、寸法安定性、壁倍率、釘打ち性に優れており、軽量無機質材としては高強度性を有した無機質耐力面材を得ることができ、構造用合板の代替として使用することができる。
特に、請求項3記載の発明では、ネット層を設けてあることで、より高強度の無機質耐力面材を得ることがる。
【0032】
請求項6および請求項7記載の発明では、不燃性であり、耐久性に優れ、釘保持力が高く且つ長さ変化率が小さい耐力面材として使用可能な無機質耐力面材を製造ことができる。
【図面の簡単な説明】
【図1】単層無機質耐力面材の断面図である。
【図2】3層無機質耐力面材の断面図である。
【図3】ネット2層を含む3層無機質耐力面材の断面図である。
【図4】フローオン抄造装置を用いたネット1層を含む無機質耐力面材製造方法を示した図である。
【図5】フローオン抄造装置と丸網式抄造装置を複数機組み合わせて用いたネット2層を含む無機質耐力面材製造方法を示した図である。
【図6】フローオン抄造装置を複数機組み合わせて用いたネット2層を含む無機質耐力面材製造方法を示した図である。
【図7】本発明の実施例を表にした図である。
【図8】本発明の実施例を表にした図である。
【図9】本発明の比較例を表にした図である。
【図10】本発明の比較例を表にした図である。
【符号の説明】
1 単層板
2 表層
3 中間層
4 裏層
5 ネット
6 原料スラリー
7 サクションボックス
8 フェルト
9 ロールプレス
10 吸着積層装置
11 プレス機
12 メーキングロール
13 スラリーバット
14 ワイヤーシリンダー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inorganic load bearing face material used as an alternative to a wood structure plywood widely used as a load bearing face material for a wooden house and the like, and a method for manufacturing the same.
[0002]
[Prior art]
In general, a house may receive a load from the side due to an earthquake or wind pressure, and it is necessary to design in consideration of such a load. For this reason, wood-structured plywood is widely used as a load-bearing surface material in wooden houses in order to increase strength.
On the other hand, as inorganic materials, fiber reinforced cement boards such as calcium silicate boards and wood fiber reinforced cement boards such as gypsum boards and wood wool cement boards have been used. Since the strength is insufficient, the performance that can be used as a substitute for structural plywood is not obtained.
[0003]
[Problems to be solved by the invention]
By the way, it is hard to say that the wood structure plywood is a combustible material and excellent in durability. In addition, environmental damage caused by deforestation and problems in the living environment due to adhesives have been pointed out.
On the other hand, fiber reinforced cement boards such as calcium silicate boards, ceramic boards such as gypsum boards and wood wool cement boards are insufficient in strength as load-bearing face materials, and the materials are brittle. It has the problem of poor nature and low nail retention.
[0004]
Accordingly, a first object of the present invention is to provide an inorganic load bearing material that is nonflammable, excellent in durability, has a high nail holding power, and can be used as a load bearing material with a small rate of change in length. .
The second object of the present invention is to provide a method for producing an inorganic load bearing material that is nonflammable, has excellent durability, has a high nail holding power, and has a low rate of change in length, and can be used as a load bearing material. That is.
[0005]
[Means for Solving the Problems]
In the invention of claim 1, the inorganic load-bearing face material is 20 to 60% by mass of cement, 5 to 50% by mass of a calcium silicate-based lightweight hydrothermal compound obtained by hydrothermal synthesis of a calcareous raw material and a siliceous raw material in advance, And a bulk specific gravity of 0.05 to 0.3 , a reinforcing fiber of 3 to 18% by mass , and a pulp fiber occupying 3 to 15% by mass of the reinforcing fiber and a filler of 0 to 60% by mass. Is obtained by wet molding and has a bulk specific gravity of 0.5 to 1.2, a bending strength of 10 to 30 N / mm 2 and a wall magnification of 2.5 or more, thereby achieving the first object.
[0006]
In the invention according to claim 2, the inorganic load-bearing face material is 20 to 60% by mass of cement, 5 to 50% by mass of a calcium silicate-based lightweight hydrothermal compound obtained by hydrothermal synthesis of a calcareous raw material and a siliceous raw material in advance, And a bulk density of 0.05 to 0.3, a reinforcing fiber of 3 to 18% by mass , a pulp fiber occupying 3 to 15% by mass of the reinforcing fiber, and a filler of 0 to 60% by mass Obtained by wet-molding and laminating one or more kinds of green sheets in multiple layers, bulk specific gravity 0.5-1.2, bending strength 10-30 N / mm 2 and wall magnification 2.5 or more. Thus, the first object is achieved.
[0007]
The invention according to claim 3 is characterized in that, in the invention according to claim 2, one or more net layers are included in the green sheet layer formed by laminating one or more kinds of green sheets.
[0008]
The invention according to claim 4 is the invention according to claim 1, claim 2 or claim 3, wherein the calcium silicate-based lightweight hydrothermal composition obtained by hydrothermal synthesis of a calcareous raw material and a siliceous raw material in advance has a bulk specific gravity. It is 0.05-0.3.
[0009]
In the invention of claim 5, in the invention of claim 1, claim 2, claim 3 or claim 4, as the reinforcing fiber, the pulp fiber is 3 to 15% by mass and the Young's modulus is 5 kN / mm 2 or more. The fibers are characterized by comprising 0 to 2% by mass and fibers having a Young's modulus of less than 5 kN / mm 2 consisting of 0 to 2% by mass.
[0010]
In the invention of claim 6, the inorganic load-bearing face material, cement 20 to 60% by mass, calcium silicate-based lightweight hydrothermal compound 5 to 50% by mass obtained by hydrothermal synthesis of a calcareous raw material and a siliceous raw material in advance, And a bulk density of 0.05 to 0.3, a reinforcing fiber of 3 to 18% by mass , a pulp fiber occupying 3 to 15% by mass of the reinforcing fiber, and a filler of 0 to 60% by mass The second object is achieved by curing a single-layer or multi-layer green sheet formed by wet-molding with a press pressure of 1 to 20 N / mm 2 and then curing.
[0011]
In the invention of claim 7, the inorganic load-bearing face material, cement 20 to 60% by mass, calcium silicate-based lightweight hydrothermal compound 5 to 50% by mass obtained by hydrothermal synthesis of a calcareous raw material and a siliceous raw material in advance, And a bulk density of 0.05 to 0.3, a reinforcing fiber of 3 to 18% by mass , a pulp fiber occupying 3 to 15% by mass of the reinforcing fiber, and a filler of 0 to 60% by mass The green sheet containing at least one net layer in a single layer or a plurality of layers formed by wet molding is molded by pressing with a press pressure of 1 to 20 N / mm 2 and then cured. Achieve the purpose of 2.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIGS.
FIG. 1 is a cross-sectional view of a single-layer inorganic load-bearing face material according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a three-layer inorganic load-bearing face material.
FIG. 3 is a cross-sectional view of a three-layer inorganic load-bearing face material including two net layers.
These inorganic load-bearing face materials are composed of 20 to 60 % by mass of cement, calcium silicate light hydrothermal synthesis mainly composed of tobermorite and / or zonotlite based on hydrothermal synthesis of calcareous raw material and siliceous raw material in advance. objects 5 to 50 mass%, a green sheet obtained by wet molding the reinforcement fiber 3 to 18 weight percent and the formulation comprising a filler 0 to 60 wt%, be a single layer structure according to one formulation (FIG. 1) The green sheet is made into a multilayer structure by one kind of blending or two or more kinds of blending (FIG. 2), a structure in which one or more net layers 5 are provided in the single layer structure and the multilayer structure; By doing (FIG. 3), the bulk specific gravity is 0.5 to 1.2, the bending strength is 10 to 30 N / mm 2, and the wall magnification is 2.5 or more with a small length change rate.
[0013]
The calcium silicate-based lightweight hydrothermal composition used in these inorganic load bearing materials uses a calcareous raw material and a siliceous raw material in advance, and the molar ratio of calcium oxide to silica is 0.55 to 1.10. A slurry having a concentration is hydrothermally synthesized at 150 to 230 ° C. using a stirring autoclave and has a bulk specific gravity of 0.05 to 0.3.
Silica materials include silica, diatomaceous earth, silica fume, and the like, and general-purpose materials such as quick lime are used as the calcareous materials. These calcium silicate-based lightweight hydrothermal compositions are tobermorite-based and / or zonotlite-based, and have a bulk specific gravity of 0.05 to 0.3 and a blending amount of 5 to 50%.
[0014]
Here, if the bulk specific gravity of the calcium silicate-based lightweight hydrothermal composition is less than 0.05, the required strength and the holding force of the nail cannot be obtained as the load bearing surface material, while if it exceeds 0.3, the load bearing surface It is difficult to reduce the weight of the material and ensure good nailing properties.
Further, if the amount of calcium silicate-based lightweight hydrothermal composition is less than 5 % by mass, it is difficult to reduce the weight of the load bearing member and to ensure good nailing properties, and the rate of change in length becomes large. On the other hand, when it exceeds 50 mass%, the required strength as a load bearing member and the holding power of the nail cannot be obtained.
[0015]
As the reinforcing fibers, pulp 3-15 wt% and a Young's modulus 5 kN / mm 2 or more fibers 0-2 wt% and a Young's modulus 5 kN / mm 2 less fibers are blended 0-2 wt%.
Pulp is necessary for improving the bending strength of the inorganic load-bearing face material, and is particularly effective for preventing cracking and cracking against nail driving and further improving the nail holding force. If the blending amount of the pulp is less than 3 % by mass, it is not sufficient for nailing workability. On the other hand, if it exceeds 15 % by mass , the rate of change in length becomes large and the durability is inferior.
[0016]
Further, as fibers other than pulp, in order to improve the bending strength and wall magnification as a load bearing face, fibers of 5 kN / mm 2 or more having a Young's modulus higher than the bending Young's modulus of the matrix constituting the load bearing face. Blend. In addition, in order to improve impact resistance and prevent cracking and cracking due to nailing, and further improve performance against nail holding force, less than 5 kN / mm 2 having a Young's modulus lower than the bending Young's modulus of the bearing face Blend fiber.
Here, the fibers having a Young's modulus of 5 kN / mm 2 or more include organic fibers such as polyvinyl alcohol fibers, polynosic fibers, aramid fibers, hemp fibers, and inorganic fibers such as glass fibers and carbon fibers. On the other hand, examples of fibers having a Young's modulus of less than 5 kN / mm 2 include organic fibers such as polypropylene fibers, polyester fibers, polyamide fibers, rayon fibers, and polyvinyl chloride fibers.
[0017]
The fiber length is 3 to 12 mm, preferably 3 to 6 mm. If the blending amount of fibers other than these pulps exceeds 3 % by mass, the fiber content becomes excessive and surface properties are inferior. Moreover, if the total amount of fibers including pulp exceeds 18 % by weight , nonflammability cannot be obtained.
[0018]
The present embodiment is characterized in that it is lightweight by using these constituent materials, has a high bending strength, has a small rate of change in length, and has a nailability and a nail holding force of a wall magnification of 2.5 or more. To achieve a load bearing face. Furthermore, wall magnification performance can be improved by making it multilayer.
As the multilayering, a 2-3 layer structure is preferable. The method of layering can be arbitrarily selected from the method of laminating in the green sheet state in the paper making process to the method of bonding each layer with an inorganic and / or organic binder after curing each layer as a single plate. it can.
The inorganic load-bearing face material blended with the calcium silicate-based lightweight hydrothermal composition has a bulk specific gravity of 0.5 to 1.2, and when it is formed into multiple layers, the bulk specific gravity of each layer can be implemented within this range. Moreover, the mixing | blending of each layer at the time of multilayering can select arbitrary mixing | blendings within the range of the mixing | blending of this invention by each required performance.
[0019]
As a method for producing this inorganic load-bearing face material, a green sheet is formed by a paper-making method using a mixture of cement, calcium silicate hydrothermal composition and reinforcing fiber as a slurry, and a press of 1 to 20 N / mm 2 After being pressure-molded with pressure, it is cured to obtain an inorganic load-bearing face material.
For this production, a general-purpose production method such as a continuous type paper making method such as a round net type paper machine, a long net type paper machine, a flow-on paper machine, or a batch type molding method such as a dehydrating press method is used. An inorganic load bearing face material having a single-layer or multi-layer structure can be obtained by one or a combination of these methods.
If the molding pressure is less than 1 N / mm 2 , the required strength, nail holding force and surface smoothness cannot be obtained. On the other hand, if the molding pressure exceeds 20 N / mm 2 , the weight cannot be reduced and nailability becomes difficult. As the curing of the inorganic load-bearing face material, there are natural curing, wet curing, steam curing and autoclave curing, but steam curing is preferable for shortening the curing time and processability such as nailing.
[0020]
As shown in FIG. 3, the net can be combined in a single layer or multiple layers and / or between layers as needed to improve performance. The composite of the net is effective for improving the performance of the inorganic load bearing member, particularly for improving the wall magnification. Moreover, it becomes possible to reduce the compounding quantity of a reinforcement fiber by combining a net | network.
4 to 6 are views showing a method for manufacturing an inorganic load-bearing face material including a net.
FIG. 4 is a diagram showing a manufacturing method of an inorganic load-bearing face material that forms a net layer using a flow-on papermaking apparatus, and FIG. 5 is a combination of a plurality of flow-on papermaking apparatuses and a round net-type papermaking apparatus. It is the figure which showed the inorganic yield strength face material manufacturing method containing the net | network 2 layer used, and FIG. 6 is the figure which showed the inorganic yield strength face material production method containing the net | network 2 layer which used two or more flow-on papermaking apparatuses in combination. It is.
[0021]
Here, as a method of inserting a net, there is a method of inserting when laminating in a green sheet state at the time of papermaking and in the papermaking process. In this case, in order to improve the adhesion between the net and the molding layer, an inorganic binder such as cement paste, water glass, silica fume, silica gel and alumina gel, acrylic emulsion, synthetic rubber latex such as SBR, and vinyl acetate emulsion It is effective to use organic binders such as these and binders in which these are combined.
Further, after curing each layer as a single plate, it is also possible to use inorganic and organic binders and bond each layer only by a plate material or sandwiching a net layer.
[0022]
As nets, polyvinyl alcohol fibers, polynosic fibers, aramid fibers, polypropylene fibers, polyester fibers, polyamide fibers, rayon fibers, polyvinyl chloride fibers, organic fibers such as hemp fibers, inorganic fibers such as glass fibers and carbon fibers, and metal fibers There is something that consists of etc. The net is inserted into the entire plate, and / or the net tape is inserted into the four circumferences and / or the middle part.
As a manufacturing method of the inorganic load-bearing face material in which the net shown in FIG. 3 is inserted , 20 to 60 % by mass of cement , 5 to 50 % by mass of calcium silicate-based lightweight hydrothermal composite prepared in advance, and 3 to 18 reinforcing fibers. A blend of 0 % to 60 % by mass and a filler is kneaded with water to form a slurry, which is wet-formed by a round netting machine, a long netting machine, a flow-on papermaking machine, a dehydration press molding machine, or the like. The obtained green sheet has a single layer structure by one kind of blending, the green sheet has a single layer structure or a multilayer structure by two or more kinds of blending, and the single layer structure and the multilayer structure have 1 A composite green sheet having a structure in which a net layer of at least one layer is provided is molded by pressing at a press pressure of 1 to 20 N / mm 2 and then cured to obtain a plate material.
Further, after curing each layer as a single plate in the multilayer structure, each layer is joined with an inorganic and / or organic binder only with a plate material or with a net layer sandwiched between them, and crimped with a press pressure of 1 to 10 N / mm 2. After that, it is cured and a board is obtained.
As shown in FIGS. 4 to 6, the pressure bonding is performed by applying pressure with a press machine 11 after being stacked by the adsorption stacking apparatus 10.
[0023]
Calcium silicate based lightweight hydrothermal synthesis comprises, using a pre-calcareous material and siliceous material, the molar ratio of calcium oxide to silica is a stirred autoclave with 5-15% concentration of the slurry is from 0.55 to 1.10 It is characterized by having a bulk specific gravity of 0.05 to 0.3, mainly composed of a tobermorite system and / or a zonotrite system obtained by hydrothermal synthesis at 150 to 230 ° C. As the siliceous raw material, general-purpose raw materials such as quartzite and calcareous raw material are used.
[0024]
Next, Examples 1 to 14 will be described with reference to the tables shown in FIGS.
Examples 1 to 14 were produced based on the raw material composition and production conditions shown in FIG. The raw material composition is shown in mass% as a whole.
In Example 1 and Examples 5 to 14, a 6-fold water was added to a mixture of each raw material mixture to form a slurry, and a single-layer green sheet obtained by a flow-on machine using this slurry was produced as shown in FIG. A single-layer plate having a thickness of about 10 mm was obtained by press molding at a press pressure of 5 to 20 N / mm 2 shown in the conditions. The plate was steam-cured and then naturally cured to obtain a specimen.
[0025]
Example 2, of the formulation shown in FIG. 7, a slurry by adding 10 volumes of water to the formulation which constitutes the front and back surface layers, a single layer obtained by round net type paper-making machine by using the slurry The green sheet was press-molded with a press pressure of 1 N / mm 2 to obtain raw plates for a surface layer and a back layer having a thickness of 1.6 mm.
Further, among the formulations shown in FIG. 7, 6 times water is added to the formulation constituting the intermediate layer to form a slurry, and a 6 mm green sheet obtained by a flow-on machine using this slurry is used for the back layer. A laminate obtained by laminating on a green plate and further laminating a surface green plate thereon was press-molded with a press pressure of 10 N / mm 2 to obtain a green laminate having a total thickness of 8 mm. The raw plate was steam-cured and then naturally cured and cured to obtain a specimen.
[0026]
In Example 3, a raw plate for a surface layer and a back layer having a thickness of 1.7 mm and a green plate for an intermediate layer having a thickness of 7 mm were obtained in the same manner as in Example 2. When laminating this, a vinylon net having an opening of 5 × 5 mm was sandwiched between the back layer and the intermediate layer and between the intermediate layer and the surface layer, and was press-molded with a press pressure of 10 N / mm 2 , and the total thickness was 9 mm. A raw laminate was obtained. The raw plate was steam-cured and then naturally cured and cured to obtain a specimen.
[0027]
Example 4, of the formulation shown in FIG. 7, a slurry by adding 10 volumes of water to the formulation which constitutes the front and back surface layers, a single layer obtained by round net type paper-making machine by using the slurry The green sheet was pressure-molded with a press pressure of 10 N / mm 2 , and after curing with steam, was naturally cured and cured to obtain cured plates for the surface layer and the back layer having a thickness of 1.5 mm. Further, among the blends shown in FIG. 7, a 6 mm green sheet obtained by a flow-on machine using a slurry obtained by adding 6 times water to the blend constituting the intermediate layer is pressed with 6 N / mm 2 . It was pressure-molded with pressure, cured naturally after steam curing, and a 6 mm cured plate was obtained.
Next, a binder prepared by mixing 10% of SBR latex with cement paste is applied on the cured plate for the back layer, and an alkali-resistant glass fiber net having an opening of 5 × 5 mm is laminated thereon, and an intermediate layer cured plate is laminated. Furthermore, a binder in which 10% of SBR latex is mixed with cement paste is applied thereon, an alkali-resistant glass fiber net having an opening of 5 × 5 mm is stacked, a surface-hardened plate is laminated, and pressed with a press pressure of 3 N / mm 2. Molded to obtain a green laminate having a total thickness of 10 mm. This laminate was steam cured and then naturally cured and cured to give a specimen.
These plates were dried and tested. The results are shown in the table of FIG.
[0028]
Comparative Examples 1-8 were manufactured based on the raw material composition and manufacturing conditions shown in FIG. A water layer of 6 times is added to the mixture of each raw material to form a slurry, and a single-layer green sheet obtained using a flow-on paper machine using this slurry is pressed at 10 to 25 N / mm 2 shown in the production conditions of FIG. A single layer plate having a thickness of about 10 mm was obtained by pressure molding. This plate was steam-cured and then naturally cured and cured to give a specimen.
The calcium silicate-based lightweight hydrothermal composite used in the zonotlite system had a bulk specific gravity of 0.15, but only Comparative Example 5 used a hydrothermal composite with a bulk specific gravity of 0.40 that was insufficient in hydrothermal synthesis. .
In Comparative Example 9, a commercially available asbestos-free calcium silicate plate having a bulk specific gravity of 0.8 and a thickness of 8 mm was used.
In Comparative Example 10, a commercially available structural plywood having a thickness of 9 mm was used.
These plates were dried and tested as in the examples. The results are shown in the table of FIG.
[0029]
As shown in the tables of FIG. 9 and FIG. 10, the example is lighter in weight and superior in bending strength than the comparative example, is excellent in nailing performance and nail holding force, and has a large wall magnification despite its light weight. Improvements are being made. In Comparative Example 4, the non-flammability cannot be obtained because the amount of fibers is too large, and the bending strength is almost similar to that in Comparative Example 10, and the rate of change in length is greatly reduced and the wall magnification is also equal. The above performance was obtained. Regarding the incombustibility, all the examples were more than the semi-incombustible material with respect to the combustible material of Comparative Example 10. Further, Comparative Example 6 using pearlite as a lightweight material other than the calcium silicate-based lightweight hydrothermal composition has a low specific gravity but a low bending strength and a high rate of change in length.
As described above, it can be said that each example has significantly improved quality as compared with the conventional inorganic board and has sufficiently excellent performance as a substitute for the structural plywood.
[0030]
7 and 9, the calcium silicate-based lightweight hydrothermal composition is made from powdered silica and quicklime, and has a calcium oxide / silica molar ratio of 0.83 and a stirring autoclave at a slurry concentration of 10%. Was hydrothermally synthesized. The tobermorite system was hydrothermally synthesized at 180 ° C. for 3 hours and a bulk specific gravity of 0.13 was used. The zonotlite system was hydrothermally synthesized at 195 ° C. for 4 hours and used with a bulk specific gravity of 0.15.
The hydrothermal compound used in Comparative Example 5 was hydrothermally synthesized at 140 ° C. for 5 hours, and a bulk specific gravity of 0.40 was used.
The specific gravity test was measured according to JIS A 5430.
The bending test was measured according to JIS A 5430.
The rate of change in length was measured according to JIS A 5430.
Nailability: When the wall magnification test specimen was prepared, the test plate was visually observed for cracks and cracks, and the nailability was evaluated. Good with no abnormalities were indicated by ○, slightly abnormal by Δ, and abnormal by ×.
The nail holding force was evaluated by observing the nailing portion of the specimen after the wall magnification test with the naked eye, and observing the expansion, cracking, and cracking of the nail hole. Good with no abnormalities were indicated by ○, slightly abnormal by Δ, and abnormal by ×.
Wall magnification was carried out in accordance with the Japanese style of the Japan Architecture Center “Technical Rules for Assessment of Structural Strength of Low-Rise Buildings (Wooden)”.
The fire-proof material test was performed according to the method prescribed in Ministry of Construction Notification No. 1828 for non-combustible materials. Moreover, the semi-incombustible material and the flame retardant material were carried out in accordance with the method prescribed in Ministry of Construction Notification No. 1231 in 1976.
[0031]
【The invention's effect】
In invention of Claim 1-5, it is excellent in light weight, nonflammability, dimensional stability, wall magnification, and nailing property, and obtains the inorganic strength bearing surface material which has high strength as a lightweight inorganic material. Can be used as an alternative to structural plywood.
In particular, in the invention described in claim 3, by providing the net layer, it is possible to obtain a higher strength inorganic bearing material.
[0032]
In the inventions according to claims 6 and 7, an inorganic load-bearing face material that can be used as a load-bearing face material that is nonflammable, has excellent durability, has a high nail holding force, and has a small rate of change in length can be manufactured. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a single-layer inorganic load-bearing face material.
FIG. 2 is a cross-sectional view of a three-layer inorganic load-bearing face material.
FIG. 3 is a cross-sectional view of a three-layer inorganic load-bearing face material including two net layers.
FIG. 4 is a view showing a method for producing an inorganic load-bearing face material including a net layer using a flow-on papermaking apparatus.
FIG. 5 is a view showing a method for producing an inorganic load-bearing face material including two layers of nets using a combination of a plurality of flow-on paper making devices and a round net paper making device.
FIG. 6 is a diagram showing a method for producing an inorganic load-bearing face material including two net layers using a combination of a plurality of flow-on papermaking apparatuses.
FIG. 7 is a table showing examples of the present invention.
FIG. 8 is a table showing examples of the present invention.
FIG. 9 is a table showing a comparative example of the present invention.
FIG. 10 is a table showing a comparative example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Single layer board 2 Surface layer 3 Middle layer 4 Back layer 5 Net 6 Raw material slurry 7 Suction box 8 Felt 9 Roll press 10 Adsorption laminating device 11 Press machine 12 Making roll 13 Slurry bat 14 Wire cylinder

Claims (7)

セメント20〜60質量%、予め石灰質原料とシリカ質原料を水熱合成してなるけい酸カルシウム系軽量水熱合成物5〜50質量%、且つかさ比重0.05〜0.3、補強繊維3〜18質量%であり、且つこの補強繊維のうちパルプ繊維が3〜15質量%を占め、および充填材0〜60質量%からなる配合物を湿式成形して得られ、かさ比重0.5〜1.2、曲げ強度10〜30N/mm2および壁倍率2.5以上であることを特徴とする無機質耐力面材。Cement 20-60 mass%, calcium silicate light hydrothermal composition 5-50 mass% obtained by hydrothermal synthesis of calcareous raw material and siliceous raw material in advance, bulk specific gravity 0.05-0.3 , reinforcing fiber 3 It is obtained by wet-molding a composition comprising pulp fibers occupying 3 to 15% by mass, and fillers 0 to 60% by mass , and having a bulk specific gravity of 0.5 to An inorganic load bearing surface material having a bending strength of 10 to 30 N / mm 2 and a wall magnification of 2.5 or more. セメント20〜60質量%、予め石灰質原料とシリカ質原料を水熱合成してなるけい酸カルシウム系軽量水熱合成物5〜50質量%、且つかさ比重0.05〜0.3、補強繊維3〜18質量%であり、且つこの補強繊維のうちパルプ繊維が3〜15質量%を占め、および充填材0〜60質量%からなる配合物を湿式成形して得られ、1種または2種以上のグリーンシートを複数層積層してなり、かさ比重0.5〜1.2、曲げ強度10〜30N/mm2および壁倍率2.5以上であることを特徴とする無機質耐力面材。Cement 20-60 mass%, calcium silicate-based lightweight hydrothermal composition obtained by hydrothermal synthesis of calcareous raw material and siliceous raw material in advance 5-50 mass%, bulk specific gravity 0.05-0.3, reinforcing fiber 3 It is obtained by wet-molding a composition comprising 1 to 18% by mass , and pulp fibers occupying 3 to 15% by mass of the reinforcing fibers, and 0 to 60% by mass of fillers. An inorganic load-bearing face material comprising a plurality of green sheets laminated and having a bulk specific gravity of 0.5 to 1.2, a bending strength of 10 to 30 N / mm 2 and a wall magnification of 2.5 or more. 1種または2種以上のグリーンシートを複数層積層してなるグリーンシート層に、ネット層を1層以上含むことを特徴とする請求項2記載の無機質耐力面材。  The inorganic load-bearing face material according to claim 2, wherein the green sheet layer formed by laminating a plurality of one or more kinds of green sheets includes at least one net layer. 予め石灰質原料とシリカ質原料を水熱合成してなるけい酸カルシウム系軽量水熱合成物はかさ比重0.05〜0.3であることを特徴とする請求項1、請求項2または請求項3記載の無機質耐力面材。  The calcium silicate-based lightweight hydrothermal composition obtained by hydrothermally synthesizing a calcareous raw material and a siliceous raw material in advance has a bulk specific gravity of 0.05 to 0.3. 3. An inorganic bearing surface material according to 3. 補強繊維としては、パルプ繊維が3〜15質量%およびヤング率5kN/mm2以上の繊維が0〜2質量%およびヤング率5kN/mm2未満の繊維が0〜2質量%からなることを特徴とする請求項1、請求項2、請求項3または請求項4記載の無機質耐力面材。The reinforcing fiber is composed of 3 to 15% by mass of pulp fiber , 0 to 2% by mass of fiber having a Young's modulus of 5 kN / mm 2 or more, and 0 to 2% by mass of fiber having a Young's modulus of less than 5 kN / mm 2. The inorganic load-bearing face material according to claim 1, claim 2, claim 3 or claim 4. セメント20〜60質量%、予め石灰質原料とシリカ質原料を水熱合成してなるけい酸カルシウム系軽量水熱合成物5〜50質量%、且つかさ比重0.05〜0.3、補強繊維3〜18質量%であり、且つこの補強繊維のうちパルプ繊維が3〜15質量%を占め、および充填材0〜60質量%からなる配合物を湿式成形してなる単層または複層のグリーンシートを、1〜20N/mm2のプレス圧で加圧成形したのち養生してなることを特徴とする無機質耐力面材の製造方法。Cement 20-60 mass%, calcium silicate-based lightweight hydrothermal composition obtained by hydrothermal synthesis of calcareous raw material and siliceous raw material in advance 5-50 mass%, bulk specific gravity 0.05-0.3, reinforcing fiber 3 A single-layer or multi-layer green sheet that is formed by wet-molding a composition comprising 1 to 18% by mass of pulp fiber, 3 to 15% by mass of the reinforcing fibers, and 0 to 60% by mass of a filler. A method for producing an inorganic load-bearing face material, which is obtained by pressure-molding with a press pressure of 1 to 20 N / mm 2 and then curing. セメント20〜60質量%、予め石灰質原料とシリカ質原料を水熱合成してなるけい酸カルシウム系軽量水熱合成物5〜50質量%、且つかさ比重0.05〜0.3、補強繊維3〜18質量%であり、且つこの補強繊維のうちパルプ繊維が3〜15質量%を占め、および充填材0〜60質量%からなる配合物を湿式成形してなる単層または複層で、少なくとも1層以上のネット層を含むグリーンシートを、1〜20N/mm2のプレス圧で加圧成形したのち養生してなることを特徴とする無機質耐力面材の製造方法。Cement 20-60 mass%, calcium silicate-based lightweight hydrothermal composition obtained by hydrothermal synthesis of calcareous raw material and siliceous raw material in advance 5-50 mass%, bulk specific gravity 0.05-0.3, reinforcing fiber 3 A single layer or multiple layers formed by wet-molding a composition consisting of 3 to 15% by mass of pulp fiber and 0 to 60% by mass of a filler. A method for producing an inorganic load bearing material, comprising: forming a green sheet including one or more net layers by pressing with a press pressure of 1 to 20 N / mm 2 and then curing.
JP2000166771A 1999-06-02 2000-06-02 Inorganic load-bearing face material and method for producing inorganic load-bearing face material Expired - Lifetime JP4757371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000166771A JP4757371B2 (en) 1999-06-02 2000-06-02 Inorganic load-bearing face material and method for producing inorganic load-bearing face material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP15574299 1999-06-02
JP11-155742 1999-06-02
JP1999155742 1999-06-02
JP2000166771A JP4757371B2 (en) 1999-06-02 2000-06-02 Inorganic load-bearing face material and method for producing inorganic load-bearing face material

Publications (3)

Publication Number Publication Date
JP2001048630A JP2001048630A (en) 2001-02-20
JP2001048630A5 JP2001048630A5 (en) 2007-06-28
JP4757371B2 true JP4757371B2 (en) 2011-08-24

Family

ID=26483669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000166771A Expired - Lifetime JP4757371B2 (en) 1999-06-02 2000-06-02 Inorganic load-bearing face material and method for producing inorganic load-bearing face material

Country Status (1)

Country Link
JP (1) JP4757371B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5162067B2 (en) * 2001-09-05 2013-03-13 株式会社エーアンドエーマテリアル Calcium silicate hydrate slurry
JP5162068B2 (en) * 2001-09-21 2013-03-13 株式会社エーアンドエーマテリアル Inorganic bearing material and method for producing the same
JP2012215059A (en) * 2011-03-31 2012-11-08 A & A Material Corp Construction method of plastered wall
JP7210132B2 (en) * 2017-09-28 2023-01-23 ニチハ株式会社 Inorganic board and manufacturing method thereof
EP4428110A1 (en) * 2021-11-02 2024-09-11 Kuraray Co., Ltd. Porous molded plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190852A (en) * 1982-04-30 1983-11-07 日本インシュレーション株式会社 Calcium silicate formed body and manufacture
JPH02275741A (en) * 1989-04-14 1990-11-09 Sekisui Chem Co Ltd Cement composition and production of molded article of cement
JPH02296758A (en) * 1989-05-12 1990-12-07 Kubota Corp Lightweight building material
JP3753388B2 (en) * 1995-08-15 2006-03-08 株式会社エーアンドエーマテリアル Method for manufacturing plate-shaped composite recycled building material
JP3677325B2 (en) * 1995-09-13 2005-07-27 住友林業株式会社 Method for producing dehydrated press molded body

Also Published As

Publication number Publication date
JP2001048630A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
TW583079B (en) Composite building material
KR101833870B1 (en) Lightweight Gypsum Wallboard
US20060043627A1 (en) Wood cement board and method for the manufacturing thereof
US7128965B2 (en) Cementitious product in panel form and manufacturing process
JP5392469B2 (en) Composite board
CA2703358A1 (en) High hydroxyethylated starch and high dispersant levels in gypsum wallboard
KR100921164B1 (en) A bearing wall board and a method of producing the same
WO2004063113A2 (en) Fiber cement composite materials using bleached cellulose fibers
JP2014514240A (en) Fiber blended in three modes in high toughness cementitious composites
JP4757371B2 (en) Inorganic load-bearing face material and method for producing inorganic load-bearing face material
TWI257968B (en) Composite panel and method of making the same
Eires et al. New eco-friendly hybrid composite materials for civil construction
JP2001048630A5 (en)
JP5162068B2 (en) Inorganic bearing material and method for producing the same
JP7210132B2 (en) Inorganic board and manufacturing method thereof
JP4468760B2 (en) Inorganic papermaking board and method for producing the same
JP4090015B2 (en) Inorganic board and method for producing the same
JP3282920B2 (en) Manufacturing method of inorganic plate
KR20160112216A (en) Incombustible board and Manufacturing method thereof
KR200435418Y1 (en) Construction grassFiber cement board
WO2022146345A2 (en) Lime-pozzolan mortars with bio-aggregate for sound absorption and therm at, insulation purposes
WO2000006849A1 (en) Building board and its production
JPH0717427B2 (en) Hydraulic inorganic papermaking product and method for producing the same
JPS61143134A (en) Air-permeable incombustible heat-insulating material
JP2003003592A (en) 2' x 4' wooden structure and structural plane material thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4757371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term