JP2001048630A - Inorganic bearing face material and its production - Google Patents

Inorganic bearing face material and its production

Info

Publication number
JP2001048630A
JP2001048630A JP2000166771A JP2000166771A JP2001048630A JP 2001048630 A JP2001048630 A JP 2001048630A JP 2000166771 A JP2000166771 A JP 2000166771A JP 2000166771 A JP2000166771 A JP 2000166771A JP 2001048630 A JP2001048630 A JP 2001048630A
Authority
JP
Japan
Prior art keywords
mass
inorganic
layer
bearing surface
calcium silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000166771A
Other languages
Japanese (ja)
Other versions
JP4757371B2 (en
JP2001048630A5 (en
Inventor
Akira Owada
彰 大和田
Yoshinori Hado
美徳 羽藤
Yukinori Yamazaki
之典 山崎
Hirobumi Ueda
博文 上田
Kohei Ota
耕平 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asano Slate Co Ltd
Original Assignee
Asano Slate Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asano Slate Co Ltd filed Critical Asano Slate Co Ltd
Priority to JP2000166771A priority Critical patent/JP4757371B2/en
Publication of JP2001048630A publication Critical patent/JP2001048630A/en
Publication of JP2001048630A5 publication Critical patent/JP2001048630A5/ja
Application granted granted Critical
Publication of JP4757371B2 publication Critical patent/JP4757371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/186Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step
    • C04B28/188Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step the Ca-silicates being present in the starting mixture
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/30Nailable or sawable materials

Abstract

PROBLEM TO BE SOLVED: To produce an inorganic bearing face material which can be used as an incombustible bearing face material having excellent durability, high nail holding force and small change rate of the length. SOLUTION: This inorganic bearing face material is produced in the following process. A compounded material consisting of 20 to 60 m% cement, 5 to 50 m% calcium silicate-based lightweight hydrothermally synthesized material essentially comprising tobermolite and/or xonotlite preliminarily prepared by hydrothermal synthesis of a lime source material and silica source material, 3 to 18 m% reinforcing fiber and 0 to 60 m% filler is molded in a wet process to obtain a green sheet as a single layer structure of one kind of a compounded material. Or the green sheet is produced as a multilayered structure of one or more kinds of compounded materials. Then, one or more net layers 5 are formed in the single layer structure or multilayer structure. The obtained structure has 0.5 to 1.2 bulk specific gravity, 10 to 30 N/mm bending strength and >=2.5 wall ratio with a small change rate in the length.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、木造住宅用耐力面
材等として広く使用されている木質構造用合板の代替と
して使用する無機質耐力面材およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inorganic load-bearing surface material used as a substitute for a plywood for a wooden structure, which is widely used as a load-bearing surface material for wooden houses, and a method for producing the same.

【0002】[0002]

【従来の技術】一般に住宅は、地震や風圧により横から
の荷重を受けることがあり、このような荷重を考慮した
設計をする必要がある。そのため、木造の住宅では耐力
面材として、強度を増すために、木質構造用合板が広く
使われている。これに対し、無機質系材料としては、従
来からけい酸カルシウム板などの繊維補強セメント板、
石膏ボードあるいは木毛セメント板などの木繊維補強セ
メント板などが用いられているが、耐力面材としての強
度が不足しているため、構造用合板の代替品として使用
可能な性能が得られていないのが実状である。
2. Description of the Related Art In general, a house may receive a load from the side due to an earthquake or wind pressure, and it is necessary to design the house in consideration of such a load. For this reason, plywood for wooden structures is widely used as a load bearing surface material in wooden houses in order to increase strength. On the other hand, as the inorganic material, conventionally, a fiber reinforced cement board such as a calcium silicate board,
Gypsum board or wood fiber reinforced cement board such as wood wool cement board is used, but the strength as a bearing surface material is insufficient, and the performance that can be used as a substitute for structural plywood has been obtained. There is no actual situation.

【0003】[0003]

【発明が解決しようとする課題】ところで、木質構造用
合板は、可燃物であり耐久性に優れているとは言い難
い。また、森林伐採による環境破壊および接着剤による
住環境上の問題も指摘されている。一方、けい酸カルシ
ウム板などの繊維補強セメント板、石膏ボードあるいは
木毛セメント板などの窯業系ボード類は、耐力面材とし
ての強度が不足しており、材質が脆いため、釘打ちに対
する釘打性が悪くかつ釘の保持力も低いという問題を抱
えている。
However, it is difficult to say that plywood for wooden structures is a combustible material and has excellent durability. In addition, environmental destruction due to deforestation and problems on the living environment due to adhesives have been pointed out. On the other hand, ceramic boards such as fiber reinforced cement boards such as calcium silicate boards, gypsum boards, and wood wool cement boards have insufficient strength as load-bearing surface materials and are brittle. There is a problem that the property is poor and the holding power of the nail is low.

【0004】そこで、本発明の第1の目的は、不燃性で
あり、耐久性に優れ、釘保持力が高く且つ長さ変化率が
小さい耐力面材として使用可能な無機質耐力面材を提供
することである。また、本発明の第2の目的は、不燃性
であり、耐久性に優れ、釘保持力が高く且つ長さ変化率
が小さい耐力面材として使用可能な無機質耐力面材の製
造方法を提供することである。
Accordingly, a first object of the present invention is to provide an inorganic bearing surface material which is nonflammable, has excellent durability, has a high nail holding force, and can be used as a bearing surface material having a small rate of change in length. That is. A second object of the present invention is to provide a method for producing an inorganic bearing surface material which is nonflammable, has excellent durability, has a high nail holding force, and can be used as a bearing surface material having a small rate of change in length. That is.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明で
は、無機質耐力面材が、セメント20〜60質量%、予
め石灰質原料とシリカ質原料を水熱合成してなるけい酸
カルシウム系軽量水熱合成物5〜50質量%、補強繊維
3〜18質量%および充填材0〜60質量%からなる配
合物を湿式成形して得られ、かさ比重0.5〜1.2、
曲げ強度10〜30N/mm2および壁倍率2.5以上
であることにより、前記第1の目的を達成する。
According to the first aspect of the present invention, the calcium silicate-based lightweight water is obtained by hydrothermally synthesizing a calcareous material and a siliceous material in advance by 20 to 60% by mass of cement. A composition comprising 5 to 50% by mass of the thermally synthesized product, 3 to 18% by mass of reinforcing fibers and 0 to 60% by mass of a filler is obtained by wet molding, and has a bulk specific gravity of 0.5 to 1.2.
The first object is achieved by having a bending strength of 10 to 30 N / mm 2 and a wall magnification of 2.5 or more.

【0006】請求項2記載の発明では、無機質耐力面材
が、セメント20〜60質量%、予め石灰質原料とシリ
カ質原料を水熱合成してなるけい酸カルシウム系軽量水
熱合成物5〜50質量%、補強繊維3〜18質量%およ
び充填材0〜60質量%からなる配合物を湿式成形して
得られ、1種または2種以上のグリーンシートを複数層
積層してなり、かさ比重0.5〜1.2、曲げ強度10
〜30N/mm2および壁倍率2.5以上であることに
より、前記第1の目的を達成する。
According to the second aspect of the present invention, the inorganic bearing surface material is 20 to 60% by mass of cement, and a calcium silicate-based lightweight hydrothermal composition obtained by previously hydrothermally synthesizing a calcareous material and a siliceous material. % By weight, a mixture comprising 3 to 18% by mass of reinforcing fibers and 0 to 60% by mass of a filler is obtained by wet molding, and one or two or more types of green sheets are laminated in a plurality of layers. 0.5 to 1.2, bending strength 10
The first object is achieved by setting the wall magnification to 3030 N / mm 2 and a wall magnification of 2.5 or more.

【0007】請求項3記載の発明では、請求項2記載の
発明において、1種または2種以上のグリーンシートを
複数層積層してなるグリーンシート層に、ネット層を1
層以上含むことを特徴とする。
According to a third aspect of the present invention, in the second aspect of the present invention, one or more green sheets are laminated on a green sheet layer, and one net layer is formed on the green sheet layer.
It is characterized by including more than one layer.

【0008】請求項4記載の発明では、請求項1、請求
項2または請求項3記載の発明において、予め石灰質原
料とシリカ質原料を水熱合成してなるけい酸カルシウム
系軽量水熱合成物はかさ比重0.05〜0.3であるこ
とを特徴とする。
According to a fourth aspect of the present invention, in the first, second or third aspect of the invention, a calcium silicate-based lightweight hydrothermal compound is obtained by previously hydrothermally synthesizing a calcareous material and a siliceous material. It is characterized by a bulk specific gravity of 0.05 to 0.3.

【0009】請求項5記載の発明では、請求項1、請求
項2、請求項3または請求項4記載の発明において、補
強繊維としては、パルプ3〜15質量%およびヤング率
5kN/mm2以上の繊維が0〜2質量%およびヤング
率5kN/mm2未満の繊維が0〜2質量%からなるこ
とを特徴とする。
According to a fifth aspect of the present invention, in the first, second, third, or fourth aspect of the present invention, the reinforcing fibers include pulp of 3 to 15% by mass and a Young's modulus of 5 kN / mm 2 or more. Of fibers having a Young's modulus of less than 5 kN / mm 2 and 0 to 2% by mass.

【0010】請求項6記載の発明では、無機質耐力面材
を、セメント20〜60質量%、予め石灰質原料とシリ
カ質原料を水熱合成してなるけい酸カルシウム系軽量水
熱合成物5〜50質量%、補強繊維3〜18質量%およ
び充填材0〜60質量%からなる配合物を湿式成形して
なる単層または複層のグリーンシートを、1〜20N/
mm2のプレス圧で加圧成形したのち養生して製造する
ことにより、前記第2の目的を達成する。
[0010] In the invention according to claim 6, the inorganic proof surface material is 20 to 60% by mass of cement, and a calcium silicate-based lightweight hydrothermal composition obtained by hydrothermally synthesizing a calcareous material and a siliceous material in advance. A single-layer or multi-layer green sheet obtained by wet molding a composition consisting of 3 to 18% by mass of a reinforcing fiber, 3 to 18% by mass of a reinforcing fiber, and 0 to 60% by mass of a filler is 1 to 20 N /
The above-mentioned second object is achieved by press-molding with a press pressure of mm 2 and then curing.

【0011】請求項7記載の発明では、無機質耐力面材
を、セメント20〜60質量%、予め石灰質原料とシリ
カ質原料を水熱合成してなるけい酸カルシウム系軽量水
熱合成物5〜50質量%、補強繊維3〜18質量%およ
び充填材0〜60質量%からなる配合物を湿式成形して
なる単層または複層で、少なくとも1層以上のネット層
を含むグリーンシートを、1〜20N/mm2のプレス
圧で加圧成形したのち養生して製造することにより、前
記第2の目的を達成する。
[0011] In the invention according to claim 7, the inorganic proof surface material is 20 to 60% by mass of cement, and a calcium silicate-based lightweight hydrothermal composition obtained by hydrothermal synthesis of a calcareous material and a silica material in advance. A green sheet containing at least one or more net layers as a single layer or a multi-layer obtained by wet-molding a composition comprising 3 to 18 mass% of a reinforcing fiber and 0 to 60 mass% of a filler, The above-mentioned second object is achieved by press-molding with a press pressure of 20 N / mm 2 and then curing.

【0012】[0012]

【発明の実施の形態】以下、本発明の好適な実施の形態
を図1ないし図10を参照して、詳細に説明する。図1
は、本発明の一実施の形態に係る単層無機質耐力面材の
断面図であり、図2は、3層無機質耐力面材の断面図で
ある。また、図3は、ネット2層を含む3層無機質耐力
面材の断面図である。これらの無機質耐力面材は、セメ
ント20〜60m%、予め石灰質原料とシリカ質原料を
水熱合成してなるトバモライト系および・またはゾノト
ライト系等を主体とした、けい酸カルシウム系軽量水熱
合成物5〜50m%、補強繊維3〜18%および充填材
0〜60m%からなる配合物を湿式成形して得られるグ
リーンシートを、1種類の配合による単層構造とするこ
と(図1)、同グリーンシートを1種類の配合または2
種類以上の配合による複層構造とすること(図2)、前
記単層構造および複層構造に1層以上のネット層5を設
けた構造とすること(図3)で、かさ比重0.5〜1.
2、曲げ強度10〜30N/mm2および長さ変化率の
小さい壁倍率2.5以上としてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to FIGS. FIG.
1 is a cross-sectional view of a single-layer inorganic load-bearing face material according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a three-layer inorganic load-bearing face material. FIG. 3 is a cross-sectional view of a three-layer inorganic bearing surface material including two net layers. These inorganic load-bearing surface materials are made of a calcium silicate-based lightweight hydrothermal compound mainly composed of tobermorite-based and / or zonotlite-based materials obtained by hydrothermally synthesizing a calcareous material and a siliceous material in advance of 20 to 60 m% of cement. A green sheet obtained by wet molding a composition comprising 5 to 50 m%, a reinforcing fiber of 3 to 18% and a filler of 0 to 60 m% has a single-layer structure by one kind of blending (FIG. 1). One type of green sheet or 2
A single-layer structure and a single-layer structure and a multi-layer structure provided with at least one net layer 5 (FIG. 3) have a bulk specific gravity of 0.5. ~ 1.
2. The bending strength is 10 to 30 N / mm 2 and the wall magnification is 2.5 or more, which has a small rate of change in length.

【0013】これらの無機質耐力面材で用いるけい酸カ
ルシウム系軽量水熱合成物は、予め石灰質原料とシリカ
質原料を用い、シリカに対する酸化カルシウムのモル比
が0.55〜1.10である5〜15%濃度のスラリー
を撹拌式オートグレープを用いて150〜230℃で水
熱合成してなり、かさ比重0.05〜0.3である。シ
リカ質原料としては珪石、けい藻土、シリカヒューム等
があり、石灰質原料としては生石灰等の汎用原料が用い
られる。これらのけい酸カルシウム系軽量水熱合成物
は、トバモライト系および・またはゾノトライト系等で
あり、かさ比重は0.05〜0.3であり、その配合量
は5〜50%である。
The calcium silicate-based lightweight hydrothermal composition used in these inorganic bearing surface materials uses a calcareous material and a siliceous material in advance, and has a molar ratio of calcium oxide to silica of 0.55 to 1.10. A slurry having a concentration of 1515% is hydrothermally synthesized at 150 to 230 ° C. using a stirring type auto grape, and has a bulk specific gravity of 0.05 to 0.3. Siliceous materials include silica stone, diatomaceous earth, silica fume, and the like, and calcareous materials include general-purpose materials such as quicklime. These calcium silicate-based lightweight hydrothermal compounds are tobermorite-based and / or zonotolite-based, and have a bulk specific gravity of 0.05 to 0.3 and a blending amount of 5 to 50%.

【0014】ここで、けい酸カルシウム系軽量水熱合成
物のかさ比重が0.05未満では、耐力面材としての必
要強度および釘の保持力が得られず、一方、0.3以上
では、耐力面材の軽量化および良好な釘打ち性の確保が
困難である。また、けい酸カルシウム系軽量水熱合成物
の配合量は、5%未満では耐力面材の軽量化および良好
な釘打ち性の確保が困難であり、長さ変化率が大きくな
る。一方、50%以上では耐力面材としての必要強度お
よび釘の保持力を得ることができない。
Here, if the bulk specific gravity of the calcium silicate-based lightweight hydrothermal composition is less than 0.05, the required strength as a load-bearing surface material and the holding power of the nail cannot be obtained. It is difficult to reduce the weight of the load-bearing surface material and secure good nailing properties. If the amount of the calcium silicate-based lightweight hydrothermal compound is less than 5%, it is difficult to reduce the weight of the load-bearing surface material and secure good nailing properties, and the length change rate becomes large. On the other hand, if it is 50% or more, it is not possible to obtain the necessary strength as a load-bearing surface material and the nail holding force.

【0015】補強繊維としては、パルプ3〜15m%お
よびヤング率5kN/mm2以上の繊維が0〜2%およ
びヤング率5kN/mm2未満の繊維が0〜2m%配合
してある。パルプは、無機質耐力面材の曲げ強度の向上
に必要であり、且つ釘打ちに対する亀裂や割れを防止し
さらに釘保持力を向上させるのに特に有効である。パル
プの配合量は3%未満では釘打ち加工性に対し充分でな
く、一方、15m%以上では、長さ変化率が大きくなり
耐久性が劣ってしまう。
As the reinforcing fibers, 3 to 15 m% of pulp and 0 to 2% of fibers having a Young's modulus of 5 kN / mm 2 or more and 0 to 2 m% of fibers having a Young's modulus of less than 5 kN / mm 2 are blended. Pulp is necessary for improving the bending strength of the inorganic load-bearing surface material, and is particularly effective for preventing cracking and cracking due to nailing, and for further improving nail holding power. If the blending amount of pulp is less than 3%, it is not sufficient for nailing workability. On the other hand, if it is 15m% or more, the length change rate becomes large and the durability is inferior.

【0016】また、パルプ以外の繊維として、耐力面材
としての曲げ強度および壁倍率等を向上させるために、
耐力面材を構成するマトリックスの曲げヤング率より高
いヤング率を有する5kN/mm2以上の繊維を配合す
る。加えて、耐衝撃性の向上や釘打ちに対する亀裂や割
れを防止しさらに釘保持力に対する性能を向上させるた
めに、耐力面材の曲げヤング率よりも低いヤング率を有
する5kN/mm2未満の繊維を配合する。ここで、ヤ
ング率5kN/mm2以上の繊維としては、ポリビニル
アルコール繊維、ポリノジック繊維、アラミド繊維、麻
繊維等の有機繊維およびガラス繊維、炭素繊維等の無機
繊維等がある。一方、ヤング率5kN/mm2未満の繊
維としては、ポリプロピレン繊維、ポリエステル繊維、
ポリアミド繊維、レーヨン繊維、ポリ塩化ビニル繊維等
の有機繊維がある。
Further, as a fiber other than pulp, in order to improve the bending strength and wall ratio as a bearing surface material,
5 kN / mm 2 or more fibers having a Young's modulus higher than the bending Young's modulus of the matrix constituting the load-bearing face material are blended. In addition, in order to improve impact resistance, prevent cracking and cracking due to nailing, and further improve performance with respect to nail holding force, the material has a Young's modulus lower than the bending Young's modulus of the bearing surface material and is less than 5 kN / mm 2 . Mix the fibers. Here, the fibers having a Young's modulus of 5 kN / mm 2 or more include organic fibers such as polyvinyl alcohol fiber, polynosic fiber, aramid fiber, and hemp fiber, and inorganic fibers such as glass fiber and carbon fiber. On the other hand, fibers having a Young's modulus of less than 5 kN / mm 2 include polypropylene fibers, polyester fibers,
There are organic fibers such as polyamide fiber, rayon fiber and polyvinyl chloride fiber.

【0017】繊維長は、3〜12mmであり、好ましく
は3〜6mmである。これらパルプ以外の繊維の配合量
は3%以上では繊維分が過剰となり表面性が劣る。ま
た、パルプも含む繊維量合計が18w%t以上では、不
燃性を得ることができない。
The fiber length is 3 to 12 mm, preferably 3 to 6 mm. If the compounding amount of these fibers other than pulp is 3% or more, the fiber content becomes excessive and the surface properties are poor. When the total amount of fibers including pulp is 18 w% t or more, nonflammability cannot be obtained.

【0018】本実施の形態は、これらの構成材料を用い
て軽量であり、曲げ強度が高く、長さ変化率の小さい釘
打ち性や釘保持力に優れた壁倍率2.5以上であること
を特徴とする耐力面材を達成し得る。さらに、複層化す
ることにより壁倍率性能を向上することができる。複層
化としては、2〜3層構造が好ましい。複層化の方法と
しては、抄造過程においてグリーンシート状態にて積層
する方法から各層を単板として硬化させた後、無機およ
びまたは有機質のバインダーにより各層を接合する方法
まで任意に選択することができる。けい酸カルシウム系
軽量水熱合成物を配合した無機質耐力面材は、かさ比重
が0.5〜1.2であり、複層化した場合には各層のか
さ比重はこの範囲で実施できる。また、複層化した場合
の各層の配合はそれぞれの必要性能により本発明の配合
の範囲内で任意の配合が選択可能である。
In the present embodiment, a wall magnification of 2.5 or more is obtained by using these constituent materials, which is lightweight, has high bending strength, has a small rate of change in length, and has excellent nailing and nail holding power. It is possible to achieve a load bearing surface material characterized by the following. Further, the wall magnification performance can be improved by forming a multilayer structure. The multilayer structure is preferably a two- or three-layer structure. The method of forming the multilayer can be arbitrarily selected from a method of laminating in a green sheet state in a papermaking process, a method of curing each layer as a single plate, and a method of bonding each layer with an inorganic and / or organic binder. . The inorganic bearing surface material containing the calcium silicate-based lightweight hydrothermal composition has a bulk specific gravity of 0.5 to 1.2, and when formed into multiple layers, the bulk specific gravity of each layer can be set within this range. In addition, the composition of each layer in the case of a multi-layer structure can be arbitrarily selected within the range of the composition of the present invention depending on the required performance.

【0019】この無機質耐力面材の製造方法としては、
セメント、けい酸カルシウム系水熱合成物および補強繊
維からなる配合物をスラリー状にして抄造法によりグリ
ーンシートを成形し、1〜20N/mm2のプレス圧で
加圧成形したのち養生して無機質耐力面材を得る。この
製造には、丸網式抄造機、長網式抄造機、フローオン抄
造機等の連続式抄造法および脱水プレス法等のバッチ式
成形法等の汎用の製造方法が用いられる。これらの方法
の単独または組合せにより単層または複層構造の無機質
耐力面材を得ることができる。成形圧は、1N/mm2
未満では必要強度、釘保持力および表面平滑性が得られ
ず、一方、20N/mm2以上では軽量化が図れず釘打
ち性も困難となる。無機質耐力面材の養生としては、自
然養生、湿潤養生、蒸気養生およびオートクレープ養生
があるが、養生時間の短縮および釘打性等の加工性のた
めには蒸気養生が好ましい。
As a method for producing this inorganic bearing surface material,
A green sheet is formed by slurrying a composition comprising cement, a calcium silicate-based hydrothermal composition and reinforcing fibers, formed into a green sheet by a papermaking method, press-formed at a press pressure of 1 to 20 N / mm 2 , and then cured to obtain an inorganic material. Obtain a load-bearing face material. For this production, a general-purpose production method such as a continuous papermaking method such as a round-mesh paper machine, a fourdrinier paper machine, a flow-on paper machine, and a batch molding method such as a dewatering press method is used. By using these methods alone or in combination, an inorganic load-bearing surface material having a single-layer or multilayer structure can be obtained. The molding pressure is 1 N / mm 2
If it is less than the required strength, nail holding power and surface smoothness cannot be obtained, while if it is more than 20 N / mm 2 , the weight cannot be reduced and the nailing property is difficult. Curing of the inorganic bearing surface material includes natural curing, wet curing, steam curing and autoclave curing, and steam curing is preferred for shortening the curing time and workability such as nailing.

【0020】図3に示すように、必要に応じて性能向上
のためネットを単層または複層の層内およびまたは層間
に複合することができる。ネットの複合化は、無機質耐
力面材の性能向上、特に壁倍率の向上に有効である。ま
た、ネットを複合させることにより補強繊維の配合量を
減じることが可能となる。図4から図6は、ネットを含
む無機質耐力面材の製造方法を示した図である。図4
は、フローオン抄造装置を用いてネット1層を形成する
無機質耐力面材の製造方法をし示した図であり、図5
は、フローオン抄造装置と丸網式抄造装置を複数機組み
合わせて用いたネット2層を含む無機質耐力面材製造方
法を示した図であり、図6は、フローオン抄造装置を複
数機組み合わせて用いたネット2層を含む無機質耐力面
材製造方法を示した図である。
As shown in FIG. 3, nets can be combined within and / or between single or multiple layers to improve performance, if desired. The compounding of the net is effective for improving the performance of the inorganic load-bearing surface material, particularly for improving the wall magnification. Further, by compounding the net, it is possible to reduce the compounding amount of the reinforcing fiber. 4 to 6 are views showing a method for manufacturing an inorganic load-bearing surface material including a net. FIG.
FIG. 5 is a view showing a method for producing an inorganic load-bearing face material forming one layer of a net using a flow-on papermaking apparatus.
FIG. 6 is a view showing a method for producing an inorganic load-bearing surface material including two layers of a net using a combination of a plurality of flow-on papermaking apparatuses and a round-mesh papermaking apparatus. It is a figure showing an inorganic bearing surface material manufacturing method including two nets used.

【0021】ここで、ネットを挿入する方法としては、
抄造時および抄造過程においてグリーンシート状態にて
積層する際に挿入する方法がある。この際には、ネット
と成形層との密着性の向上のため、セメントペースト、
水ガラス、シリカフューム、シリカゲルおよびアルミナ
ゲル等の無機質バインダーやアクリル系エマルジョン、
SBR等の合成ゴムラテックスおよび酢酸ビニル系エマ
ルジョン等の有機質バインダーおよびこれらを複合させ
たバインダーの使用が有効である。また、各層を単板と
して硬化させた後無機および有機質のバインダーを使
い、各層を板材のみであるいはネット層を挟み込む形で
接合することも可能である。
Here, as a method of inserting a net,
There is a method of inserting when laminating in a green sheet state during papermaking and during the papermaking process. At this time, in order to improve the adhesion between the net and the molding layer, cement paste,
Inorganic binders such as water glass, silica fume, silica gel and alumina gel, and acrylic emulsions,
It is effective to use an organic binder such as a synthetic rubber latex such as SBR and a vinyl acetate emulsion and a binder obtained by combining these. Further, after each layer is cured as a single plate, it is also possible to bond each layer with only a plate material or with a net layer sandwiched therebetween using inorganic and organic binders.

【0022】ネットとしては、ポリビニルアルコール繊
維、ポリノジック繊維、アラミド繊維、ポリプロピレン
繊維、ポリエステル繊維、ポリアミド繊維、レーヨン繊
維、ポリ塩化ビニル繊維、麻繊維等の有機繊維、ガラス
繊維、炭素繊維等の無機繊維および金属繊維等からなる
ものがある。ネットは板全体に挿入すること、および・
またはネットテープ状としたものを四周および・または
中間部に挿入する。この図3に示すネットを挿入した無
機質耐力面材の製造方法としては、セメント、セメント
20〜60%、予め用意されたけい酸カルシウム系軽量
水熱合成物5〜50%、補強繊維3〜18%および充填
材0〜60%からなる配合物を水で混練してスラリーと
し、丸網式抄造機、長網式抄造機、フローオン抄造機、
脱水プレス成形機等により湿式成形して得られるグリー
ンシートを、1種類の配合による単層構造とすること、
同グリーンシートを1種類の配合または2種類以上の配
合による複層構造とすること、前記単層構造および複層
構造に1層以上のネット層を設けた構造の複合グリーン
シートを1〜20N/mm2のプレス圧で加圧成形した
のち養生して板材を得る。また、前記複層構造において
各層を単板として硬化させた後無機およびまたは有機質
のバインダーにより各層を板材のみであるいはネット層
を挟み込む形で接合し、1〜10N/mm2のプレス圧
で圧着したのち養生して板材を得る。この圧着は、図4
から図6に示すように、吸着積層装置10により積層し
た後、プレス機11で圧力をかけることにより行う。
Examples of the net include organic fibers such as polyvinyl alcohol fiber, polynosic fiber, aramid fiber, polypropylene fiber, polyester fiber, polyamide fiber, rayon fiber, polyvinyl chloride fiber and hemp fiber, and inorganic fibers such as glass fiber and carbon fiber. And metal fibers. The net is inserted into the whole board, and
Alternatively, insert a net tape into the circumference and / or middle part. As a method of manufacturing the inorganic load-bearing surface material into which the net shown in FIG. 3 is inserted, cement, 20 to 60% of cement, 5 to 50% of a calcium silicate-based lightweight hydrothermal compound prepared in advance, and reinforcing fibers 3 to 18 % And a filler consisting of 0 to 60% of a filler are kneaded with water to form a slurry, a round-mesh machine, a long-mesh machine, a flow-on machine,
A green sheet obtained by wet molding with a dehydration press molding machine or the like to have a single layer structure by one kind of blending,
The green sheet may have a multi-layer structure of one kind or two or more kinds, and a composite green sheet having a structure in which one or more net layers are provided in the single-layer structure and the multi-layer structure may be 1 to 20 N / After press molding with a press pressure of mm 2 , curing is performed to obtain a plate material. In addition, after each layer was cured as a single plate in the multilayer structure, each layer was joined with an inorganic and / or organic binder using only a plate material or sandwiching a net layer, and pressed with a press pressure of 1 to 10 N / mm 2 . After curing, a board material is obtained. This crimping is shown in FIG.
As shown in FIG. 6, after laminating by the adsorption laminating apparatus 10, the pressure is applied by the press machine 11.

【0023】けい酸カルシウム系軽量水熱合成物は、予
め石灰質原料とシリカ質原料を用い、シリカに対する酸
化カルシウムのモル比が0.55〜1.10である5〜
15%濃度のスラリーを撹拌式オートグレープを用いて
150〜230℃で水熱合成してなるトバモライト系お
よびまたはゾノトライト系統を主体とし、かさ比重0.
05〜0.3であることを特徴とする。シリカ質原料と
しては珪石等および石灰質原料は生石灰等の汎用原料が
用いられる。
The calcium silicate-based lightweight hydrothermal composition is prepared using a calcareous material and a siliceous material in advance, and the molar ratio of calcium oxide to silica is 0.55 to 1.10.
A tobermorite-based and / or zonotlite-based slurry obtained by hydrothermally synthesizing a 15% -concentration slurry at 150 to 230 ° C. using a stirring type autogrape is mainly used.
05 to 0.3. As the siliceous raw material, general-purpose raw materials such as silica stone and the calcareous raw material such as quicklime are used.

【0024】次に、図7から図10に示した表1から表
4を参照して、実施例1から14を説明する。実施例1
〜14は、図7に示す原料配合および製造条件に基づい
て製造した。原料配合は全体を質量%(m%)で表示し
てある。実施例1および実施例5〜14は、各原料配合
による混合物に6倍の水を加えてスラリーとし、このス
ラリーを用いてフローオン抄造機により得られた単層の
グリーンシートを表1の製造条件に示す5〜20N/m
2のプレス圧で加圧成形し、厚さ10mm程度の単層
板を得た。この板を蒸気養生後自然養生して硬化させ供
試体とした。
Next, Embodiments 1 to 14 will be described with reference to Tables 1 to 4 shown in FIGS. Example 1
Nos. To 14 were manufactured based on the raw material composition and manufacturing conditions shown in FIG. The entire raw material composition is indicated by mass% (m%). In Example 1 and Examples 5 to 14, the mixture obtained by mixing each raw material was mixed with 6 times water to form a slurry, and a single-layer green sheet obtained by a flow-on papermaking machine using this slurry was manufactured as shown in Table 1. 5 to 20 N / m shown in the conditions
Press molding was performed with a press pressure of m 2 to obtain a single-layer plate having a thickness of about 10 mm. This plate was cured by natural curing after steam curing to obtain a specimen.

【0025】実施例2は、図7に示す配合の内、表・裏
面相を構成する配合物に10倍の水を加えてスラリーと
し、このスラリーを用いて丸網式抄造機により得られた
単層のグリーンシートを1N/mm2のプレス圧で加圧
成形し、厚さ1.6mmの表層用および裏層用の生板を
得た。さらに、図7に示す配合の内、中間層を構成する
配合物に6倍の水を加えてスラリーとし、このスラリー
を用いてフローオン抄造機により得られた6mmのグリ
ーンシートを裏層用の生板の上に積層し、さらにその上
に表層生板を積層したものを10N/mm2のプレス圧
で加圧成形し、合計厚さ8mmの生積層板を得た。この
生板を蒸気養生後自然養生して硬化させて供試体とし
た。
In Example 2, a slurry was prepared by adding 10 times the amount of water to the composition constituting the front and back phases of the composition shown in FIG. 7, and this slurry was used to obtain a slurry by a round-mesh paper machine. The single-layer green sheet was press-formed at a press pressure of 1 N / mm 2 to obtain a 1.6 mm-thick raw sheet for the surface layer and the back layer. Further, of the composition shown in FIG. 7, 6 times water was added to the composition constituting the intermediate layer to form a slurry, and a 6 mm green sheet obtained by a flow-on paper machine using this slurry was used for the back layer. A green laminate was laminated on a green plate, and a surface green plate was further laminated on the green plate with a press pressure of 10 N / mm 2 to obtain a green laminate having a total thickness of 8 mm. This green plate was cured naturally by steam curing and then cured to obtain a specimen.

【0026】実施例3は、実施例2と同様の方法で、厚
さ1.7mmの表層用および裏層用の生板および7mm
の中間層用生板を得た。これを積層する際に、開口5×
5mmのビニロンネットを裏層と中間層の間および中間
層と表層の間に挟み込み、10N/mm2のプレス圧で
加圧成形し、合計厚さ9mmの生積層板を得た。この生
板を蒸気養生後自然養生して硬化させて供試体とした。
Example 3 is a method similar to that of Example 2, except that a 1.7 mm thick raw sheet for the surface layer and a
Was obtained. When laminating this, the opening 5 ×
A 5 mm vinylon net was sandwiched between the back layer and the intermediate layer and between the intermediate layer and the surface layer, and pressed and formed with a press pressure of 10 N / mm 2 to obtain a raw laminate having a total thickness of 9 mm. This green plate was cured naturally by steam curing and then cured to obtain a specimen.

【0027】実施例4は、図7に示す配合の内、表・裏
面相を構成する配合物に10倍の水を加えてスラリーと
し、このスラリーを用いて丸網式抄造機により得られた
単層のグリーンシートを10N/mm2のプレス圧で加
圧成形し、蒸気養生後自然養生して硬化させ、厚さ1.
5mmの表層用および裏層用の硬化板を得た。さらに、
図7に示す配合の内、中間層を構成する配合物に6倍の
水を加えて得られるスラリーを用いてフローオン抄造機
により得られた6mmのグリーンシートを6N/mm2
のプレス圧で加圧成形し、蒸気養生後自然養生して硬化
させ、6mmの硬化板を得た。次に、裏層用の硬化板の
上にセメントペーストにSBRラテックス10%を混合
したバインダーを塗布し、その上に開口5×5mmの耐
アルカリガラス繊維ネットを重ね、中間層硬化板を積層
し、さらにその上にセメントペーストにSBRラテック
ス10%を混合したバインダーを塗布し、開口5×5m
mの耐アルカリガラス繊維ネットを重ね、表層硬化板を
積層し、3N/mm2のプレス圧で加圧成形し、合計厚
さ10mmの生積層板を得た。この積層板を再度蒸気養
生後自然養生して硬化させて供試体とした。これらの板
を乾燥して試験を行った。結果を図8の表に示してあ
る。
In Example 4, a slurry was prepared by adding 10 times the amount of water to the composition constituting the front and back phases of the composition shown in FIG. 7, and the slurry was used to obtain a slurry using a round-mesh paper machine. A single-layer green sheet is press-formed at a press pressure of 10 N / mm 2 , cured naturally after steam curing, and cured to a thickness of 1.
5 mm of cured plates for the surface layer and the back layer were obtained. further,
Among the formulations shown in FIG. 7, a 6 mm green sheet obtained by a flow-on paper machine using a slurry obtained by adding 6 times the amount of water to the composition constituting the intermediate layer was used to obtain 6 N / mm 2.
And then cured naturally by steam curing and then cured to obtain a 6 mm cured plate. Next, a binder in which 10% of SBR latex was mixed with cement paste was applied on a hardened plate for a back layer, and an alkali-resistant glass fiber net having an opening of 5 × 5 mm was stacked thereon, and a hardened plate for an intermediate layer was laminated. Then, a binder obtained by mixing 10% of SBR latex with cement paste is applied thereon, and the opening is 5 × 5 m.
m of alkali-resistant glass fiber nets were laminated, a surface-layer cured plate was laminated, and pressed with a press pressure of 3 N / mm 2 to obtain a green laminate having a total thickness of 10 mm. The laminate was steam-cured again, cured naturally, and cured to obtain a test sample. The plates were dried and tested. The results are shown in the table of FIG.

【0028】比較例1〜8は、図9に示す原料配合およ
び製造条件に基づいて製造した。各原料配合による混合
物に6倍の水を加えてスラリーとし、このスラリーを用
いてフローオン抄造機により得られた単層のグリーンシ
ートを図9の製造条件に示す10〜25N/mm2のプ
レス圧で加圧成形し、厚さ10mm程度の単層板を得
た。この板を蒸気養生後自然養生して硬化させて供試体
とした。なお、けい酸カルシウム系軽量水熱合成物のゾ
ノトライト系はかさ比重0.15のものを用いたが、比
較例6のみ水熱合成が不十分なかさ比重0.40の水熱
合成物を使用した。比較例9は、市販されているかさ比
重0.8で厚さ8mmの無石綿けい酸カルシウム板を使
用した。比較例10は、市販されている厚さ9mmの構
造用合板を使用した。実施例と同様にこれらの板を乾燥
して試験を行った。結果を図11の表4に示してある。
Comparative Examples 1 to 8 were manufactured based on the raw material composition and manufacturing conditions shown in FIG. Six times the amount of water was added to the mixture of each raw material to form a slurry, and a single-layer green sheet obtained by a flow-on paper machine using this slurry was pressed at a pressure of 10 to 25 N / mm 2 under the production conditions shown in FIG. Pressure molding was performed under pressure to obtain a single-layer plate having a thickness of about 10 mm. This plate was steam cured, naturally cured, and cured to obtain a specimen. The calcium silicate-based lightweight hydrothermal composition zonotlite used had a bulk specific gravity of 0.15, but only the comparative example 6 used a hydrothermal composition having an insufficient bulk specific gravity of 0.40. . In Comparative Example 9, an asbestos-free calcium silicate plate having a bulk specific gravity of 0.8 and a thickness of 8 mm was used. In Comparative Example 10, a commercially available structural plywood having a thickness of 9 mm was used. These plates were dried and tested as in the examples. The results are shown in Table 4 of FIG.

【0029】図9、図10の表に示すとおり、実施例は
比較例に比べて軽量かつ曲げ強度に優れ、釘打性および
釘保持力にも優れており、軽量にも関わらず壁倍率につ
いては大幅な向上が図られている。比較例4は繊維量が
多すぎるために不燃性が得られず、実施例は比較例10
に比べ、曲げ強度はほぼ近似したものであり、長さ変化
率が大幅に低減され壁倍率も同等以上の性能が得られ
た。不燃性についても比較例10の可燃物に対しいずれ
の実施例も準不燃材料以上であった。また、けい酸カル
シウム系軽量水熱合成物以外の軽量材としてパーライト
を用いた比較例6は、比重は小さいが曲げ強度が低く長
さ変化率も大きい。以上の通り、各実施例は、従来の無
機質板に比べ大幅に品質が向上し、構造用合板の代替と
して充分に優れた性能を有しているといえる。
As shown in the tables of FIGS. 9 and 10, the examples are lighter and have better bending strength, better nailing properties and better nail holding power than the comparative examples, and the wall magnification is notwithstanding the light weight. Has been greatly improved. In Comparative Example 4, incombustibility was not obtained because the amount of fibers was too large.
In comparison with the above, the bending strength was almost similar, the rate of change in length was significantly reduced, and the performance with the same or higher wall magnification was obtained. Regarding the incombustibility, all of the combustibles of Comparative Example 10 were more than the semi-combustible materials. In Comparative Example 6 using pearlite as a lightweight material other than the calcium silicate-based lightweight hydrothermal composition, the specific gravity was small, but the bending strength was low and the length change rate was large. As described above, each of the examples has significantly improved quality as compared with the conventional inorganic plate, and can be said to have sufficiently excellent performance as a substitute for structural plywood.

【0030】なお、図7、図9の表のけい酸カルシウム
系軽量水熱合成物は、粉末珪石と生石灰を原料とし、酸
化カルシウム/シリカモル比0.83とし、10%のス
ラリー濃度で撹拌式オートクレ−プにより水熱合成し
た。トバモライト系は180℃で3時間水熱合成し、か
さ比重0.13のものを用いた。また、ゾノトライト系
は195℃で4時間水熱合成し、かさ比重0.15のも
のを用いた。比較例5に用いた水熱合成物は140℃で
5時間水熱合成し、かさ比重0.40のものを用いた。
比重試験は、JIS A 5430に従って測定した。
曲げ試験は、JIS A 5430に従って測定した。
長さ変化率は、JIS A 5430に従って測定し
た。 釘打性:壁倍率試験体作成の際、目視により釘打ちによ
る試験板の割れ、亀裂を観察し釘打ち性の評価とした。
異常がなく良好なものを○、やや異常があるものを△、
異常なものを×で示した。釘保持力は、壁倍率試験後の
試験体の釘打ち部を目視により観察し、釘穴の拡大、割
れ、亀裂を観察し釘保持力の評価とした。異常がなく良
好なものを○、やや異常があるものを△、異常なものを
×で示した。壁倍率は、(財)日本建築センター「低層
建築物の構造耐力評定に関する技術規定(木質系)」の
日本式に従って実施した。防火材料試験は、不燃材料は
昭和45年建設省告示第1828号に規定する方法に従
って実施した。また、準不燃材料および難燃材料は昭和
51年建設省告示第1231号に規定する方法に従って
実施した。
The calcium silicate lightweight hydrothermal composition shown in the tables of FIGS. 7 and 9 is made of powdered silica and quick lime as raw materials, has a calcium oxide / silica molar ratio of 0.83, and is stirred at a slurry concentration of 10%. Hydrothermal synthesis was performed by autocreep. The tobermorite system was hydrothermally synthesized at 180 ° C. for 3 hours and had a bulk specific gravity of 0.13. The zonotolite system was hydrothermally synthesized at 195 ° C. for 4 hours and had a bulk specific gravity of 0.15. The hydrothermal composition used in Comparative Example 5 was hydrothermally synthesized at 140 ° C. for 5 hours and had a bulk specific gravity of 0.40.
The specific gravity test was measured according to JIS A 5430.
The bending test was measured according to JIS A 5430.
The length change rate was measured according to JIS A 5430. Nailability: At the time of preparing a wall magnification test body, cracks and cracks of the test plate due to nailing were visually observed, and the nailability was evaluated.
Good if there is no abnormality ○, slightly abnormal if △,
Abnormal ones are indicated by x. The nail holding force was evaluated by visually observing the nailed portion of the test specimen after the wall magnification test, observing the expansion, cracking, and cracking of the nail hole.も の indicates that there was no abnormality and was good, や indicates that there was some abnormality, and X indicates that was abnormal. The wall magnification was measured in accordance with the Japanese style of the Japan Building Center, "Technical Regulations for Evaluation of Structural Strength of Low-Rise Buildings (Woody)". The fire prevention material test was performed on the non-combustible material according to the method specified in Notification No. 1828 of the Ministry of Construction, 1970. The semi-combustible material and the flame-retardant material were used in accordance with the method specified in Notification No. 1231 of the Ministry of Construction in 1976.

【0031】[0031]

【発明の効果】請求項1から請求項5記載の発明では、
軽量、不燃性、寸法安定性、壁倍率、釘打ち性に優れて
おり、軽量無機質材としては高強度性を有した無機質耐
力面材を得ることができ、構造用合板の代替として使用
することができる。特に、請求項3記載の発明では、ネ
ット層を設けてあることで、より高強度の無機質耐力面
材を得ることがる。
According to the first to fifth aspects of the present invention,
Lightweight, non-flammable, excellent in dimensional stability, excellent wall magnification, excellent nailing performance. As a lightweight inorganic material, it is possible to obtain a high strength inorganic load-bearing surface material, which can be used as a substitute for structural plywood. Can be. In particular, according to the third aspect of the present invention, by providing the net layer, a higher strength inorganic load-bearing surface material can be obtained.

【0032】請求項6および請求項7記載の発明では、
不燃性であり、耐久性に優れ、釘保持力が高く且つ長さ
変化率が小さい耐力面材として使用可能な無機質耐力面
材を製造ことができる。
[0032] In the invention according to claims 6 and 7,
It is possible to produce an inorganic load-bearing surface material that is nonflammable, has excellent durability, has a high nail holding force, and can be used as a load-bearing surface material having a small rate of change in length.

【図面の簡単な説明】[Brief description of the drawings]

【図1】単層無機質耐力面材の断面図である。FIG. 1 is a sectional view of a single-layer inorganic load-bearing face material.

【図2】3層無機質耐力面材の断面図である。FIG. 2 is a sectional view of a three-layer inorganic load-bearing face material.

【図3】ネット2層を含む3層無機質耐力面材の断面図
である。
FIG. 3 is a sectional view of a three-layer inorganic load-bearing face material including two nets.

【図4】フローオン抄造装置を用いたネット1層を含む
無機質耐力面材製造方法を示した図である。
FIG. 4 is a view showing a method for producing an inorganic load-bearing face material including one layer of a net using a flow-on papermaking apparatus.

【図5】フローオン抄造装置と丸網式抄造装置を複数機
組み合わせて用いたネット2層を含む無機質耐力面材製
造方法を示した図である。
FIG. 5 is a diagram showing a method for producing an inorganic load-bearing surface material including two nets using a combination of a plurality of flow-on papermaking apparatuses and a round-mesh papermaking apparatus.

【図6】フローオン抄造装置を複数機組み合わせて用い
たネット2層を含む無機質耐力面材製造方法を示した図
である。
FIG. 6 is a diagram showing a method for producing an inorganic load-bearing surface material including two nets using a combination of a plurality of flow-on papermaking apparatuses.

【図7】本発明の実施例を表にした図である。FIG. 7 is a table showing examples of the present invention.

【図8】本発明の実施例を表にした図である。FIG. 8 is a table showing examples of the present invention.

【図9】本発明の比較例を表にした図である。FIG. 9 is a table showing a comparative example of the present invention.

【図10】本発明の比較例を表にした図である。FIG. 10 is a table showing comparative examples of the present invention.

【符号の説明】[Explanation of symbols]

1 単層板 2 表層 3 中間層 4 裏層 5 ネット 6 原料スラリー 7 サクションボックス 8 フェルト 9 ロールプレス 10 吸着積層装置 11 プレス機 12 メーキングロール 13 スラリーバット 14 ワイヤーシリンダー DESCRIPTION OF SYMBOLS 1 Single-layer board 2 Surface layer 3 Intermediate layer 4 Back layer 5 Net 6 Raw material slurry 7 Suction box 8 Felt 9 Roll press 10 Adsorption lamination apparatus 11 Press machine 12 Making roll 13 Slurry vat 14 Wire cylinder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 16:02 16:06) 111:28 111:30 111:40 (72)発明者 山崎 之典 東京都港区芝大門2丁目12番10号 浅野ス レート株式会社内 (72)発明者 上田 博文 東京都港区芝大門2丁目12番10号 浅野ス レート株式会社内 (72)発明者 太田 耕平 東京都港区芝大門2丁目12番10号 浅野ス レート株式会社内 Fターム(参考) 4G012 PA22 PA24 PC11 PC12 PC14 PC15 PE03 PE05 4G052 GA02 GA05 GA11 GA17 GA25 GB53 GB76 GC03 GC06 GC08 4G054 AA01 AA15 AB01 AC04 BA02 DA02 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 16:02 16:06) 111: 28 111: 30 111: 40 (72) Inventor Yonori Yamazaki Tokyo 2-12-10, Shiba-Daimon, Minato-ku Asano Slate Co., Ltd. (72) Inventor Hirofumi Ueda 2-12-10, Shiba-Daimon, Minato-ku, Tokyo Inside Asano Slate Co., Ltd. (72) Kohei Ota, Minato-ku, Tokyo 2-12-10 Shiba Daimon Asano Slate Co., Ltd. F-term (reference) 4G012 PA22 PA24 PC11 PC12 PC14 PC15 PE03 PE05 4G052 GA02 GA05 GA11 GA17 GA25 GB53 GB76 GC03 GC06 GC08 4G054 AA01 AA15 AB01 AC04 BA02 DA02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 セメント20〜60質量%、予め石灰質
原料とシリカ質原料を水熱合成してなるけい酸カルシウ
ム系軽量水熱合成物5〜50質量%、補強繊維3〜18
質量%および充填材0〜60質量%からなる配合物を湿
式成形して得られ、 かさ比重0.5〜1.2、曲げ強度10〜30N/mm
2および壁倍率2.5以上であることを特徴とする無機
質耐力面材。
1. A cement containing 20 to 60% by mass, 5 to 50% by mass of a calcium silicate-based lightweight hydrothermal composition obtained by previously hydrothermally synthesizing a calcareous material and a siliceous material, and 3 to 18 reinforcing fibers.
% By mass and a filler consisting of 0 to 60% by mass of a filler are obtained by wet molding, and have a bulk specific gravity of 0.5 to 1.2 and a bending strength of 10 to 30 N / mm.
Inorganic strength surface material characterized by at 2 and walls magnification 2.5 or more.
【請求項2】 セメント20〜60質量%、予め石灰質
原料とシリカ質原料を水熱合成してなるけい酸カルシウ
ム系軽量水熱合成物5〜50質量%、補強繊維3〜18
質量%および充填材0〜60質量%からなる配合物を湿
式成形して得られ、1種または2種以上のグリーンシー
トを複数層積層してなり、 かさ比重0.5〜1.2、曲げ強度10〜30N/mm
2および壁倍率2.5以上であることを特徴とする無機
質耐力面材。
2. 20 to 60% by mass of cement, 5 to 50% by mass of a calcium silicate-based lightweight hydrothermal composition obtained by previously hydrothermally synthesizing a calcareous material and a siliceous material, and 3 to 18 reinforcing fibers.
% By weight and a mixture comprising 0 to 60% by weight of a filler is obtained by wet molding, and one or two or more types of green sheets are laminated in a plurality of layers, with a bulk specific gravity of 0.5 to 1.2, bending. Strength 10-30N / mm
Inorganic strength surface material characterized by at 2 and walls magnification 2.5 or more.
【請求項3】 1種または2種以上のグリーンシートを
複数層積層してなるグリーンシート層に、ネット層を1
層以上含むことを特徴とする請求項2記載の無機質耐力
面材。
3. A green sheet layer formed by laminating a plurality of one or more kinds of green sheets, and a net layer
The inorganic load-bearing face material according to claim 2, comprising at least two layers.
【請求項4】 予め石灰質原料とシリカ質原料を水熱合
成してなるけい酸カルシウム系軽量水熱合成物はかさ比
重0.05〜0.3であることを特徴とする請求項1、
請求項2または請求項3記載の無機質耐力面材。
4. The calcium silicate-based lightweight hydrothermal composition obtained by previously hydrothermally synthesizing a calcareous raw material and a siliceous raw material has a bulk specific gravity of 0.05 to 0.3.
The inorganic load bearing surface material according to claim 2 or 3.
【請求項5】 補強繊維としては、パルプ3〜15質量
%およびヤング率5kN/mm2以上の繊維が0〜2質
量%およびヤング率5kN/mm2未満の繊維が0〜2
質量%からなることを特徴とする請求項1、請求項2、
請求項3または請求項4記載の無機質耐力面材。
The 5. reinforcing fibers, pulp 3-15 wt% and a Young's modulus 5 kN / mm 2 or more fibers is 0-2 wt% and a Young's modulus 5 kN / mm 2 less than fibers 0-2
3. The method according to claim 1, wherein
The inorganic load bearing surface material according to claim 3 or 4.
【請求項6】 セメント20〜60質量%、予め石灰質
原料とシリカ質原料を水熱合成してなるけい酸カルシウ
ム系軽量水熱合成物5〜50質量%、補強繊維3〜18
質量%および充填材0〜60質量%からなる配合物を湿
式成形してなる単層または複層のグリーンシートを、1
〜20N/mm2のプレス圧で加圧成形したのち養生し
てなることを特徴とする無機質耐力面材の製造方法。
6. Cement: 20 to 60% by mass, 5 to 50% by mass of a calcium silicate-based lightweight hydrothermal composition obtained by previously hydrothermally synthesizing a calcareous material and a siliceous material, and 3 to 18 reinforcing fibers.
A single-layer or multi-layer green sheet obtained by wet molding a composition comprising 1% by mass and 0-60% by mass of a filler
A method for producing an inorganic load-bearing surface material, which is formed by press-molding with a press pressure of 2020 N / mm 2 and then curing.
【請求項7】 セメント20〜60質量%、予め石灰質
原料とシリカ質原料を水熱合成してなるけい酸カルシウ
ム系軽量水熱合成物5〜50質量%、補強繊維3〜18
質量%および充填材0〜60質量%からなる配合物を湿
式成形してなる単層または複層で、少なくとも1層以上
のネット層を含むグリーンシートを、1〜20N/mm
2のプレス圧で加圧成形したのち養生してなることを特
徴とする無機質耐力面材の製造方法。
7. 20 to 60% by mass of cement, 5 to 50% by mass of a calcium silicate-based lightweight hydrothermal composition obtained by preliminarily hydrothermally synthesizing a calcareous material and a siliceous material, and 3 to 18 reinforcing fibers.
A green sheet containing at least one or more net layers as a single layer or a multi-layer formed by wet molding a composition comprising 0% to 60% by mass of a filler and 0 to 60% by mass is used.
2. A method for producing an inorganic load-bearing surface material, which is formed by press-molding with a press pressure of 2 , followed by curing.
JP2000166771A 1999-06-02 2000-06-02 Inorganic load-bearing face material and method for producing inorganic load-bearing face material Expired - Lifetime JP4757371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000166771A JP4757371B2 (en) 1999-06-02 2000-06-02 Inorganic load-bearing face material and method for producing inorganic load-bearing face material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP15574299 1999-06-02
JP1999155742 1999-06-02
JP11-155742 1999-06-02
JP2000166771A JP4757371B2 (en) 1999-06-02 2000-06-02 Inorganic load-bearing face material and method for producing inorganic load-bearing face material

Publications (3)

Publication Number Publication Date
JP2001048630A true JP2001048630A (en) 2001-02-20
JP2001048630A5 JP2001048630A5 (en) 2007-06-28
JP4757371B2 JP4757371B2 (en) 2011-08-24

Family

ID=26483669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000166771A Expired - Lifetime JP4757371B2 (en) 1999-06-02 2000-06-02 Inorganic load-bearing face material and method for producing inorganic load-bearing face material

Country Status (1)

Country Link
JP (1) JP4757371B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081671A (en) * 2001-09-05 2003-03-19 A & A Material Corp Calcium silicate hydrate slurry
JP2003095727A (en) * 2001-09-21 2003-04-03 A & A Material Corp Inorganic stress-proof facial material, and production method therefor
JP2012215059A (en) * 2011-03-31 2012-11-08 A & A Material Corp Construction method of plastered wall
KR20200035465A (en) * 2017-09-28 2020-04-03 니치하 가부시키가이샤 Inorganic plate and its manufacturing method
WO2023080122A1 (en) * 2021-11-02 2023-05-11 株式会社クラレ Porous molded plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190852A (en) * 1982-04-30 1983-11-07 日本インシュレーション株式会社 Calcium silicate formed body and manufacture
JPH02275741A (en) * 1989-04-14 1990-11-09 Sekisui Chem Co Ltd Cement composition and production of molded article of cement
JPH02296758A (en) * 1989-05-12 1990-12-07 Kubota Corp Lightweight building material
JPH0952751A (en) * 1995-08-15 1997-02-25 Ask:Kk Planar regenerated building material and its production
JPH0976217A (en) * 1995-09-13 1997-03-25 Sumitomo Forestry Co Ltd Dehydrate press molded form and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190852A (en) * 1982-04-30 1983-11-07 日本インシュレーション株式会社 Calcium silicate formed body and manufacture
JPH02275741A (en) * 1989-04-14 1990-11-09 Sekisui Chem Co Ltd Cement composition and production of molded article of cement
JPH02296758A (en) * 1989-05-12 1990-12-07 Kubota Corp Lightweight building material
JPH0952751A (en) * 1995-08-15 1997-02-25 Ask:Kk Planar regenerated building material and its production
JPH0976217A (en) * 1995-09-13 1997-03-25 Sumitomo Forestry Co Ltd Dehydrate press molded form and manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081671A (en) * 2001-09-05 2003-03-19 A & A Material Corp Calcium silicate hydrate slurry
JP2003095727A (en) * 2001-09-21 2003-04-03 A & A Material Corp Inorganic stress-proof facial material, and production method therefor
JP2012215059A (en) * 2011-03-31 2012-11-08 A & A Material Corp Construction method of plastered wall
KR20200035465A (en) * 2017-09-28 2020-04-03 니치하 가부시키가이샤 Inorganic plate and its manufacturing method
KR102123226B1 (en) 2017-09-28 2020-06-16 니치하 가부시키가이샤 Inorganic plate and its manufacturing method
WO2023080122A1 (en) * 2021-11-02 2023-05-11 株式会社クラレ Porous molded plate

Also Published As

Publication number Publication date
JP4757371B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
TW583079B (en) Composite building material
DK1809830T3 (en) NEW PLASTICS AND SYSTEMS INCLUDING IT
AU2002211394A1 (en) Composite building material
US7128965B2 (en) Cementitious product in panel form and manufacturing process
KR100921164B1 (en) A bearing wall board and a method of producing the same
US8852338B2 (en) Cementitious binders and wood particles-based incombustible coloured composite panel with structural high performance
JP2009132078A (en) Non-combustible board and manufacturing method of the same
JP2001048630A (en) Inorganic bearing face material and its production
JP2001048630A5 (en)
JP5162068B2 (en) Inorganic bearing material and method for producing the same
JP3251565B2 (en) Lightweight calcium silicate plate and method for producing the same
JPH11314980A (en) Production of refractory composite building material
JP3302959B2 (en) Composite cured materials and composite building materials
WO2022146345A2 (en) Lime-pozzolan mortars with bio-aggregate for sound absorption and therm at, insulation purposes
JP2001132212A (en) Free-access-floor and its foundation material
JPS59107985A (en) Manufacture of floor board
JP2003003592A (en) 2' x 4' wooden structure and structural plane material thereof
JP2001159202A (en) Face member for structure and bearing wall using the same
JP2001152573A (en) Internal wall substrate, and wall structure using it
BG2888U1 (en) Magnesium sulphate tile
JP2001152603A (en) Wall panel
AU2006246450A1 (en) Composite building material
JP2001115398A (en) Composite cured product and composite building material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4757371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term