JP3613139B2 - Method for producing hot-dip galvanized steel sheet - Google Patents

Method for producing hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP3613139B2
JP3613139B2 JP2000161312A JP2000161312A JP3613139B2 JP 3613139 B2 JP3613139 B2 JP 3613139B2 JP 2000161312 A JP2000161312 A JP 2000161312A JP 2000161312 A JP2000161312 A JP 2000161312A JP 3613139 B2 JP3613139 B2 JP 3613139B2
Authority
JP
Japan
Prior art keywords
temperature
rolling
steel sheet
hot
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000161312A
Other languages
Japanese (ja)
Other versions
JP2001335841A (en
Inventor
直光 水井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000161312A priority Critical patent/JP3613139B2/en
Publication of JP2001335841A publication Critical patent/JP2001335841A/en
Application granted granted Critical
Publication of JP3613139B2 publication Critical patent/JP3613139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、プレス加工等により様々な形状に成形され、自動車の構造部材等に用いられる溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造法に関する。
【0002】
【従来の技術】
低炭素−Alキルド鋼をベースとした薄鋼板を製造する場合、熱延工程における鋼板の長手方向の温度の変動に伴う特性の変動を如何に小さくするかが肝要である。変動の原因は、概ね以下のような点にある。
(1) スラブを均熱炉において加熱する際に、炉内でスキッド(スラブを支える桁)に接している部分は加熱されにくく、接していない部分よりも温度が低くなる。
(2) スラブを熱間で粗圧延して、粗圧延材となした後、熱間仕上げ圧延するまでの間に、粗圧延材の後端が輻射により冷却される。
(3) 巻取りに際し、鋼板の先端は巻取機の軸に接して冷却され、また後端は巻取り後の輻射により鋼板の中央部よりも速く冷却される。
【0003】
上記の変動原因中で最も大きい影響を有するのは、(3)の巻取りに伴う変動である。特に、巻取り温度が650℃を超える高温の場合に、この変動が顕著になる。これは、巻取り後の鋼板中で析出するセメンタイトとAlNの析出形態に差が生じるためである。すなわち、巻取り温度が低い部分では、セメンタイトが微細に析出したり、AlNの析出が不十分なために、その後の冷間圧延や再結晶焼鈍時における結晶粒の成長が悪く、延性および深絞り性の劣った部分を有する冷延鋼板および溶融亜鉛めっき鋼板が製造されることとなる。
【0004】
これらの問題に対して、特開昭59−162227号公報には、ストリップ長手方向の両端部の巻取り温度を長手方向中央部のまきとり温度よりも高くし、かつ両端部の巻取り温度およびその温度での巻取り長さを一定の関係式にしたがって制御する方法が開示されている。特開平5−43946号公報には、コイルの先端部および尾端部について、各々ストリップ全長の3%以上の部分の巻取り温度を680〜850℃とし、巻き緩みがないように巻取ることにより、先端部および尾端部の冷却を550℃以上から冷却速度3℃/分以下とすることを特徴とする冷延鋼板あるいは連続溶融亜鉛めっき鋼板の製造方法が開示されている。
【0005】
しかし、先端部は高温で巻取り機の軸に押しつけられるので、最先端は急冷されて硬くなり、そのすぐ外側に巻き付けられる部分は高温のままで軟らかいため、長手方向の少し中央側に寄った1〜3巻き目の部分に凹みができる。この理由は、急冷された硬い先端部が、その外側に巻き付けられ押圧される軟らかい鋼板に押し込まれるためである。
【0006】
この部分では、歪み取り焼鈍と同じ様な現象が生じ、異常粒成長が起こり易い。このような部位は冷間圧延中に破断しやすいため、仮に特性が良くても、冷延前に切り落とさざるを得ない。また、先端および後端では、巻取り温度が高くなるに伴い、巻取り後のスケールの成長も促進され、酸洗性が劣化するばかりでなく、溶融亜鉛めっき性に有害な鋼板中のSi等の元素の表面への濃化が進み、溶融亜鉛めっき鋼板の表面品質を劣化させるという欠点を有する。
上記の変動原因(1)のスラブ加熱に関しては、特開昭63−277724号公報に、S含有量に対して定められる温度以下で、1050℃以上の温度にて低温加熱することにより微細なMnSの数を減少させ、深絞り性、時効特性を向上させる冷延鋼板の製造方法が開示されている。ここでは、S含有量の低下に伴いスラブ加熱温度を下げる必要性も示されている。
【0007】
スラブ加熱温度の低下は、スキッドによる冷却の影響を低減させ、したがって、鋼板特性の均一化につながるが、完全な均一化は望めない。また、本製造法においても、鋼板を650℃以上で巻取ることが前提となっている。さらに、スラブ加熱温度を下げ過ぎると、熱間仕上げ圧延工程内に最も温度低下の大きい部分がAr変態点を下回り、特性の劣化を招く。すなわち、S含有量の少ない鋼では、本製造法は有効な方法とはいえない。
【0008】
これに対して、特開平10−195542号公報には、巻取り温度が650℃以下であっても、コイル長手方向に均一で良好な特性が得られる鋼板の製造方法が開示されている。この方法では、完全にMnSを析出させることを目的として、スラブを1150℃以下に加熱した後に熱間で粗圧延を行い、粗圧延材を一旦950℃以下にした後、980℃以上に再加熱し、熱間仕上げ圧延を行うものである。
【0009】
この場合、熱間仕上げ圧延中に最も温度低下の大きい部分がAr変態点を下回る危険性はなくなると同時に、上記の変動原因(2)の影響も低減できる。しかし、S含有量が少ないほど、粗圧延材を低い温度まで冷却する必要が生じる。そのため、エネルギー効率が悪く、さらに、熱間仕上げ圧延後の冷却過程におけるAlNの析出促進効果が期待できない。
【0010】
【発明が解決しようとする課題】
昨今、量産されている低炭素−Alキルド鋼中のS含有量は、製鋼技術の進歩により低下している。また、最近の薄板製造工程では、連続鋳造後、スラブは直ちに加熱炉に装入されるので、余程のスラブ低温加熱を行わない限り、特性の向上は期待できない。
【0011】
本発明は、上記の従来技術における問題点を解決するためになされたものであり、その課題は、比較的S含有量の少ない低炭素−Alキルド鋼を用いて、過度にスラブを低温加熱することなく、比較的低い巻取り温度においても、良好で均一な特性を有する溶融亜鉛めっき鋼板を製造できる方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明の要旨はつぎのとおりである。
【0013】
(1) 質量%で、C:0.01〜0.2%、Si:0.1%以下、Mn:0.05〜2%、P:0.1%以下、S:0.02%以下、酸可溶Al:0.005〜0.1%、N:0.0005〜0.008%、残部がFeおよび不純物からなる連続鋳造鋳片を熱間圧延する際に、仕上げ圧延出側温度をAr3点以上とし仕上げ圧延工程の下記式(1)で与えられるAx(℃)以下の温度域で、最終板厚の20%以上の圧下率で圧下し、500〜550℃で巻取り、圧下率50〜85%で冷間圧延した後、連続溶融亜鉛めっきラインにて溶融亜鉛めっきを行うことを特徴とする溶融亜鉛めっき鋼板の製造方法。
Ax(℃)=Ar3+30+103×Al−104×N ・・・・ (1)
ここで、
Al:酸可溶Al含有量(%)
N :N含有量(%)
なお、鋼成分の含有量は質量%を表す。
【0014】
また、熱間圧延において、最終板厚の20%以上の圧下率とは、下記式(2)により算出される値をいう。
R=(H1−H2)/H3×100 ・・・・・・・・・(2)
ここで、
R :熱間圧延における圧下率(%)。
H1:複数のスタンドで構成される圧延機の場合は、鋼板が該当温度域に達した後、最初に通過する後段スタンド入側での鋼板の厚さ(mm)。
なお、後段スタンドとは、例えば、7スタンドの圧延機の場合は、少なくとも4スタンド以降のスタンドをいう。
1スタンドで構成される圧延機の場合は、鋼板が該当温度域に達した後、最初に通過する後段パスの入側での鋼板の厚さ(mm)。
H2:複数のスタンドで構成される圧延機の場合は、鋼板が該当温度域にあって、最後に通過する後段スタンド出側での鋼板の厚さ(mm)。
1スタンドで構成される圧延機の場合は、鋼板が該当温度域にあって最後に通過する後段パスの出側での鋼板の厚さ(mm)。
H3:熱間圧延における最終板厚(mm)。
【0015】
(2) 本発明の鋼板の製造方法は、上記(1)の方法において、さらに、鋼に質量%で、0.0002〜0.003%のBを含有しても良い。
(3) また、上記(1)または(2)の製造方法において、粗圧延の後に、粗圧延材を965℃以上の温度で、粗圧延材内の温度の不均一が140℃以内となるように加熱し、仕上げ圧延すると、さらに一層の効果が得られる。
【0016】
【発明の実施の形態】
本発明者は、熱延低温巻取りした低炭素−Alキルド鋼の特性に及ぼす組成および熱間圧延条件の影響を詳細に調査し、(1)熱間圧延の最終圧下温度がAr3変態点以上かAx(℃)以下の範囲であって、(2)熱間圧延の最終圧下量が多いほど、深絞り性が向上することを見出した。
【0017】
同一組成で、深絞り性の良い材料と悪い材料を比較調査した結果、前者では、セメンタイトが粗大化し、かつAlNの析出量も多いこと、後者では、セメンタイトが微細化し、かつAlNの析出量もすくないことが明らかとなった。その理由を明らかにするため、圧縮式の熱間加工シミュレーターを使用して、種々の温度および圧下率において熱間加工試験を行い、その後の変態挙動を調査した。
【0018】
その結果、変態温度とAlNの析出量の間に相関のあることが明らかになった。これは、再結晶が生じにくい低温のオーステナイトに大きな歪みを加えると、フェライト変態が促進され、変態に伴い進行するAlNの析出が促進されたためと推定される。また、巻取り後最終的にはセメンタイトに変態するオーステナ
イトの量がより高温で少なくなり、最終的にセメンタイトが粗大化したためと推定される。
【0019】
その後、AlおよびN含有量の影響についても調査した結果、鋼中のAl含有量が多いほど、また、N含有量が少ないほど、深絞り性が向上することが明らかになった。同じ深絞り性を得ることを前提とした場合、Al含有量の増加は、最終圧下温度を上げるのと同様の効果があり、また、N含有量の増加は最終圧下温度を下げるのと同様の効果がある。これらの結果に基づき、熱間圧延で低温巻取りを行った低炭素−Alキルド鋼において良好な深絞り性を得るために必要な熱間圧延条件を、AlおよびN含有量との関係から明らかにした。
成分組成の限定理由および圧延条件等の限定理由について詳述する。
【0020】
(a) 成分組成の限定理由
C: Cは鋼中に不可避的に含有されるもので、0.01%未満とすると極低炭化しない限り、連続焼鈍では常温歪み時効を実用上問題がない程度まで抑制できない。また、0.2%を超える含有量ではセメンタイトの体積率が大きすぎ、加工用冷間圧延鋼板に必要な延性が得られない。好ましくは、0.01〜0.035%であり、さらに好ましくは、0.015〜0.025%である。
【0021】
Si: Siは鋼中に不可避的に含有されるもので、少ないほど好ましい。多くなると鋼板の深絞り性を劣化させるばかりか、溶融亜鉛との反応を劣化させるので、上限を0.1%とした。好ましくは、0.03%以下である。
【0022】
Mn: Mnは鋼中に不可避的に含有されるSがFeSを形成して、熱間脆性を引き起こすのを防止するために添加される。0.04%未満ではその効果が得られない。2%を超えると、熱延工程における巻取り時のセメンタイト粗大化促進効果が得られず、また、固溶炭素と共存することにより再結晶抑制効果が過大となり、深絞り性に好ましい再結晶集合組織が容易に得られなくなる。したがって、0.04〜2%とする。
【0023】
P: 鋼板を強化する作用があり、使用目的に応じて引張強度を上昇させるために積極的に添加されても良く、また、不可避的不純物として含有されていても良い。しかし、含有量が0.1%を超えると鋼を脆化させるため、この値を上限とする。
【0024】
S: Sは鋼中に不可避的に含有されるもので、少ないほど好ましい。MnSとして析出させるが、MnSが多過ぎても特性が劣化するので、0.02%以下とする。好ましくは、0.008%以下、さらに好ましくは、0.004%以下である。
【0025】
N: Nは鋼中に不可避的に含有されるもので、少ないほど好ましい。現在の製鋼技術により容易かつ安定して製造可能な0.0005%を下限とする。また、0.008%を超えると必要なAlの添加量が増大して、製造コストが高くなる。好ましくは、0.003%以下であり、さらに好ましくは、0.002%以下である。
【0026】
酸可溶Al: Alは脱酸および鋼中のNを窒化アルミニウムとして固定するために添加される。質量%の比でN含有量の10倍以上を添加する必要があるので、0.005%を下限とした。また、0.1%を超えて添加すると、非金属介在物が増加し、延性が阻害されるので、これを上限とした。
【0027】
B: BはAlNとして析出させることのできないNをBNとして固定するために添加される。しかし、固溶状態のBは、熱間仕上げ圧延後のフェライト変態を抑制するため、固溶状態のN含有量に応じた量が添加されるのが好ましい。0.0002%未満では効果が得られないので、これを下限とした。また、0.003%を超えると、熱間仕上げ圧延前にFeのB化合物が析出し、BNを形成しないばかりか、延性を阻害するのでこれを上限とした。
(b) 圧延条件等の限定理由
熱間仕上げ圧延入側までの温度条件: 本発明が対象とする低S鋼では、スラブの低温加熱による効果はあまり期待できないので、加熱温度は特に限定しない。熱間仕上げ圧延機の入側の温度は、低い方が好ましいが、熱間仕上げ圧延をオーステナイト域で完了する必要性から、965℃を下限とした。その際の板内の温度のバラツキが140℃を超えると、冷延・再結晶焼鈍後の特性変動が大きくなるのでこれを上限とした。好ましくは60℃以内であり、さらに好ましくは30℃以内である。
【0028】
熱間仕上げ圧延条件: 熱間仕上げ圧延条件は本発明の最も重要な構成要件である。フェライト域で熱間圧延すると、深絞り性を劣化させる再結晶集合組織の形成の原因となる圧延集合組織が鋼板表層に生成するので、Ar変態点を下限とした。フェライト変態が促進し、本発明の効果を発揮させるに足る歪みを付与するために、前記の式(1)で与えられるAx(℃)以下の温度域において圧下を行う。
フェライト変態直前の圧下によって加えた歪みが増加すると、熱延鋼板の結晶粒径が小さくなり、最終製品である冷延鋼板の深絞り性が向上する。また、圧下によって加えた歪みが増加すると、鋼板はAlの拡散の速い高温のフェライト域に留まる時間が長くなり、AlNの析出が促進されて深絞り性が向上する。これらの効果を得るために必要な圧下率は、試験による調査から、前記の式(2)により与えられる圧下率で20%以上との結果を得た。
これらをもとに、仕上げ圧延工程内の後段において、Ar点以上、式(1)で与えられるAx(℃)以下の温度域で、最終板厚の20%以上の圧下率で圧下を行うこととする。
また、大圧下の場合には、鋼板の平坦度が低下する可能性のあることから、式(2)により与えられる圧下率は250%以内とすることが望ましい。
【0029】
熱間圧延巻取り温度: 熱間圧延巻取り温度が650℃を超えると、鋼板の先端および後端と中央部の特性の差が大きくなる。さらに、熱延板のスケールが厚くなり、それに伴って、Si等の元素が鋼板とスケールの界面に濃化し、溶融亜鉛めっき性を阻害するので、この温度を上限とした。一方、巻取り温度が低下すると、冷却水による鋼板の冷却形態が膜沸騰による冷却から核沸騰による冷却に変わり、冷却が不均一となって熱延鋼板の平坦度が低下する可能性がある。これらから、好ましくは、450〜600℃、さらに好ましくは、500〜550℃とする。
【0030】
冷間圧延の圧下率: 圧下率が50%未満では、深絞り性に好ましい再結晶集合組織が生成せず、一方、85%を超えると、深絞り性を阻害する別の再結晶集合組織が生成するため、50〜85%とした。
【0031】
冷間圧延された鋼板は、通常の連続溶融亜鉛めっきラインにて、焼鈍、めっきされ、必要に応じて、再加熱して合金化処理され、さらに、必要に応じて調質圧延を施され、出荷される。
【0032】
【実施例】
本発明の実施例について説明する。なお、これは本発明の実施例の例示であって、本発明はこれに制限されるものではない。
【0033】
実験用真空溶解炉において、表1に示される成分組成を有する鋼を溶解した。
【0034】
【表1】

Figure 0003613139
ここで、同表中のAr変態点は、直径8mm、高さ12mmの円筒形の試料を用いて以下に示す方法により求めた。
【0035】
試料鋼を1250℃に5分間加熱後、900℃までを10℃/sの冷却速度で冷却した後、同温度で30秒間保持し、さらに、圧下率30%で圧下した。その後、10℃/sで冷却する過程において試料の高さの変化を連続的に測定することにより求めた。
【0036】
また、Axは、前記の式(1)により算出した。
【0037】
対象鋼に熱間鍛造を施し、幅100mm、厚さ25mmの実験用スラブとした。
【0038】
次に、これらのスラブを電気炉中で1250℃において1時間加熱した後、1030〜800℃の温度範囲において、1スタンドで構成される実験用熱間圧延機により3パスの圧延を行い、厚さ3mmの熱延鋼板を得た。
【0039】
巻取りのシュミレーションとして、上記の熱延鋼板を直ちに水スプレー冷却により、700〜500℃の温度まで冷却し、継いで、同温度に保持した電気炉中に装入し、さらにその温度で1時間保持した後に、20℃/hの冷却速度で炉冷却した。
【0040】
得られた熱延鋼板を酸洗し、厚さ0.8mmまで冷間圧延した。
【0041】
このようにして得られた冷延鋼板を赤外線加熱炉中で、10℃/sの昇温速度にて820℃まで加熱し、同温度で40秒間保持後、10℃/sの冷却速度で450℃まで冷却し、30秒間保持後、50℃/sの昇温速度で500℃まで再加熱し、30秒間保持後、10℃/sの冷却速度で室温まで冷却した。
【0042】
これらを焼鈍後、伸び率1.2%の調質圧延を施した後、JIS5号引張試験片による引張試験に供した。
【0043】
表2に、各試験についての圧延条件、巻取り温度および械的特性の測定結果を示す。表中のr値は、圧延方向の測定値を示す。
【0044】
【表2】
Figure 0003613139
表3に、熱間圧延温度、圧下率、巻取り温度を変化させた場合の試験結果を示す。表中の偏差r値は、表2中のA鋼およびB鋼のr値との偏差を示す。
【0045】
【表3】
Figure 0003613139
図1は、870℃で圧延の最終パス(第3パス)を開始した場合の試験番号1〜5について、破断伸びおよびr値におよぼす温度Axの影響を示したグラフであ
る。
【0046】
試験番号1、2、3、5は、後段における圧下に相当する最終パスの開始温度がそれぞれ鋼A、B、C、EのAr点以上、温度Ax以下の範囲内であるため、r値は1.4を超えて高く、良好な深絞り性を示している。これに対して、試験番号4は、鋼Dの温度Axが最終パスの開始温度よりも低いことから、r値が低く、良好な深絞り性が得られないことが明らかである。
【0047】
試験番号6は特にS含有量の低い鋼Fを用いた場合であり、試験番号7はNをさらに好ましい範囲で含有するとともにBを含有する鋼Gを用いた場合である。何れの場合も良好な深絞り性が得られている。
試験番号11は、第1パス開始温度が大幅に低下したことによって最終パス開始温度がAr点以下となった場合を示している。r値が低下している。
【0048】
試験番号10は、最終パス開始温度を900℃に上昇させた場合である。最終パス開始温度が、温度Axを超えているため、破断伸びが低下している。
【0049】
図2は、r値および偏差r値におよぼす最終パス圧下率の影響を示すグラフであり、試験番号1、8、9の結果を整理したものである。なお、偏差r値は、最終パス圧下率が50%の試験番号1からの偏差を表す。
同図の結果から、後段における圧下に相当する最終パスの圧下率が20%以上において良好な深絞り性の得られることが明らかである。一方、最終パスの圧下率が20%未満の場合には、深絞り性および偏差r値ともに悪化している。
図3は、r値および偏差r値におよぼす巻取り温度の影響を示すグラフであり、試験番号2、12、13、14の結果を整理したものである。なお、偏差r値は、巻取り温度が600℃の試験番号2からの偏差を示す。
【0050】
巻取り温度が650℃以下では、700℃で巻取った場合ほどr値の絶対値は高くないが、偏差r値に示されるように巻取り温度によるr値の変動が小さく、コイル面内のr値の均一性が確保されている。一方、650℃を超えると、r値は高いものの、巻取り温度が不均一となるため、鋼板のエッジ部等で650℃を下回ることが避けられず、コイル面内のr値が不均一となる。
【0051】
図4は、破断伸び、r値および偏差r値におよぼす第1パス開始温度の影響を示すグラフである。試験番号1、15、16、17、18を整理したものである。
この試験は、実験用スラブの温度を変化させることにより第1パス開始温度を変化させ、実機における鋼板面内の温度の不均一による影響をシミュレートしたものである。
例えば、1030℃を第1パスの開始温度の基準とした場合、温度の不均一を140℃以内(±70℃以内)とすることによりr値の不均一はほぼ0.3以内に低減することができる。さらに、温度の不均一を60℃(±30℃以内)とすることによりr値の不均一はほぼ0.1以内に低減することができる。
【0052】
【発明の効果】
以上詳述したとおり、本発明の製造方法によれば、比較的低い巻取り温度においても良好で均一な深絞り性を有する溶融亜鉛めっき鋼板が製造可能であり、本方法は、めっき鋼板のコスト低減および品質向上に寄与するところ大である。
【図面の簡単な説明】
【図1】870℃で最終パスを開始した場合の破断伸びおよびr値におよぼす温度Axの影響を示すグラフである。
【図2】r値および偏差r値におよぼす最終パス圧下率の影響を示すグラフである。
【図3】r値および偏差r値におよぼす巻取り温度の影響を示すグラフである。
【図4】破断伸び、r値および偏差r値におよぼす第1パス開始温度の影響を示すグラフである。[0001]
[Industrial application fields]
The present invention relates to a method for producing a hot dip galvanized steel sheet and an alloyed hot dip galvanized steel sheet which are formed into various shapes by press working or the like and used for a structural member of an automobile.
[0002]
[Prior art]
When manufacturing a thin steel plate based on a low carbon-Al killed steel, it is important how to reduce the variation in characteristics accompanying the variation in temperature in the longitudinal direction of the steel plate in the hot rolling process. The causes of fluctuations are generally as follows.
(1) When a slab is heated in a soaking furnace, the part in contact with the skid (girder supporting the slab) in the furnace is not easily heated, and the temperature is lower than the part not in contact.
(2) After rough rolling the slab hot to form a rough rolled material, the rear end of the rough rolled material is cooled by radiation before hot finish rolling.
(3) At the time of winding, the front end of the steel sheet is cooled in contact with the shaft of the winder, and the rear end is cooled faster than the central part of the steel sheet by radiation after winding.
[0003]
It is the fluctuation accompanying the winding of (3) that has the largest influence among the above fluctuation causes. In particular, when the coiling temperature is higher than 650 ° C., this variation becomes significant. This is because a difference occurs in the precipitation form of cementite and AlN precipitated in the steel sheet after winding. That is, in the part where the coiling temperature is low, cementite is finely precipitated or AlN is not sufficiently precipitated, so that the crystal grain growth is poor during the subsequent cold rolling or recrystallization annealing, and the ductility and deep drawing are reduced. Cold-rolled steel sheets and hot-dip galvanized steel sheets having inferior parts are produced.
[0004]
In order to solve these problems, Japanese Patent Application Laid-Open No. 59-162227 discloses that the winding temperature at both ends in the longitudinal direction of the strip is higher than the winding temperature at the center in the longitudinal direction, A method for controlling the winding length at the temperature according to a certain relational expression is disclosed. Japanese Patent Laid-Open No. 5-43946 discloses that the winding temperature of the portion of 3% or more of the total length of the strip is set to 680 to 850 ° C. at the tip and tail ends of the coil so that there is no winding looseness. A method for producing a cold-rolled steel sheet or a continuous hot-dip galvanized steel sheet, characterized in that the cooling of the tip and tail ends is 550 ° C. or higher and the cooling rate is 3 ° C./min or lower is disclosed.
[0005]
However, since the tip is pressed against the winder shaft at high temperature, the cutting edge is quenched and hardened, and the part wound just outside is soft at high temperature, so it is slightly closer to the center in the longitudinal direction. A dent is made in the first to third rolls. The reason for this is that the rapidly cooled hard tip is pushed into a soft steel plate that is wound and pressed around the outside.
[0006]
In this part, the same phenomenon as the strain relief annealing occurs, and abnormal grain growth is likely to occur. Since such a part is easily broken during cold rolling, even if the characteristics are good, it must be cut off before cold rolling. In addition, at the leading and trailing ends, as the winding temperature increases, the growth of scale after winding is promoted, not only the pickling performance is deteriorated, but also Si in the steel sheet which is harmful to hot dip galvanizing properties. Concentration of the element on the surface proceeds, and the surface quality of the hot dip galvanized steel sheet is deteriorated.
Regarding the slab heating of the above cause of variation (1), Japanese Patent Application Laid-Open No. 63-277724 discloses a fine MnS by heating at a low temperature at a temperature of 1050 ° C. or lower at a temperature not higher than the temperature determined for the S content. The manufacturing method of the cold-rolled steel sheet which improves the deep drawability and aging characteristics is disclosed. Here, the necessity of lowering the slab heating temperature as the S content decreases is also shown.
[0007]
Lowering the slab heating temperature reduces the effect of cooling by the skid and thus leads to uniform steel sheet properties, but complete homogenization cannot be expected. Also in this production method, it is assumed that the steel sheet is wound at 650 ° C. or higher. Furthermore, if the slab heating temperature is lowered too much, the portion with the greatest temperature drop in the hot finish rolling process falls below the Ar 3 transformation point, leading to deterioration of characteristics. In other words, this manufacturing method cannot be said to be an effective method for steel with a low S content.
[0008]
On the other hand, Japanese Patent Application Laid-Open No. 10-195542 discloses a method for producing a steel sheet that can obtain uniform and good characteristics in the coil longitudinal direction even when the coiling temperature is 650 ° C. or less. In this method, for the purpose of completely depositing MnS, the slab is heated to 1150 ° C. or lower and then hot rolled, and the rough rolled material is once heated to 950 ° C. or lower and then reheated to 980 ° C. or higher. Then, hot finish rolling is performed.
[0009]
In this case, there is no risk that the portion where the temperature drop is greatest during the hot finish rolling falls below the Ar 3 transformation point, and at the same time, the influence of the variation cause (2) can be reduced. However, the smaller the S content, the more the rough rolled material needs to be cooled to a lower temperature. Therefore, the energy efficiency is poor, and further, the effect of promoting precipitation of AlN in the cooling process after hot finish rolling cannot be expected.
[0010]
[Problems to be solved by the invention]
In recent years, the S content in low-carbon-Al killed steel that is mass-produced is decreasing due to the progress of steelmaking technology. Further, in the recent thin plate manufacturing process, after continuous casting, the slab is immediately charged into the heating furnace, and therefore, improvement in characteristics cannot be expected unless excessive slab low-temperature heating is performed.
[0011]
The present invention has been made in order to solve the above-described problems in the prior art, and the problem is that a low carbon-Al killed steel having a relatively low S content is used to excessively heat the slab at a low temperature. It is another object of the present invention to provide a method capable of producing a hot-dip galvanized steel sheet having good and uniform characteristics even at a relatively low coiling temperature.
[0012]
[Means for Solving the Problems]
The gist of the present invention is as follows.
[0013]
(1) By mass%, C: 0.01 to 0.2%, Si: 0.1% or less, Mn: 0.05 to 2%, P: 0.1% or less, S: 0.02% or less , Acid-soluble Al: 0.005 to 0.1%, N: 0.0005 to 0.008%, the finish rolling exit temperature when hot-rolling a continuous cast slab consisting of Fe and impurities in the balance Is reduced to Ar 3 points or more, and is reduced at a reduction rate of 20% or more of the final plate thickness in a temperature range of Ax (° C.) or less given by the following formula (1) of the finish rolling process, and wound at 500 to 550 ° C. A method for producing a hot dip galvanized steel sheet, characterized by performing hot dip galvanization in a continuous hot dip galvanizing line after cold rolling at a rolling reduction of 50 to 85%.
Ax (° C.) = Ar 3 + 30 + 10 3 × Al−10 4 × N (1)
here,
Al: Acid-soluble Al content (%)
N: N content (%)
In addition, content of a steel component represents the mass%.
[0014]
In the hot rolling, the rolling reduction of 20% or more of the final plate thickness refers to a value calculated by the following formula (2).
R = (H1-H2) / H3 × 100 (2)
here,
R: Reduction ratio (%) in hot rolling.
H1: In the case of a rolling mill composed of a plurality of stands, the thickness (mm) of the steel sheet on the entry side of the rear stage stand that first passes after the steel sheet reaches the corresponding temperature range.
In addition, a back | latter stage stand means the stand after at least 4 stands in the case of a 7 stand rolling mill, for example.
In the case of a rolling mill composed of one stand, the thickness (mm) of the steel plate on the entry side of the subsequent pass that first passes after the steel plate reaches the corresponding temperature range.
H2: In the case of a rolling mill composed of a plurality of stands, the thickness (mm) of the steel plate at the outlet side of the rear stage stand that passes through the steel plate in the corresponding temperature range and passes through last.
In the case of a rolling mill composed of one stand, the thickness (mm) of the steel plate on the exit side of the latter stage pass through which the steel plate passes at the end in the corresponding temperature range.
H3: Final plate thickness (mm) in hot rolling.
[0015]
(2) The method for producing a steel sheet of the present invention may further include 0.0002 to 0.003% B in mass% in the steel in the method (1).
(3) Moreover, in the manufacturing method of said (1) or (2), after rough rolling, a rough rolling material is made into the temperature of 965 degreeC or more, and the nonuniformity of the temperature in rough rolling material is set to 140 degrees C or less. When heated to finish rolling, further effects can be obtained.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present inventor investigated in detail the effects of composition and hot rolling conditions on the properties of hot rolled cold rolled low carbon-Al killed steel, and (1) the final rolling temperature of hot rolling is the Ar 3 transformation point. a range on either one Ax following (℃) hereinafter, (2) the more final rolling reduction of hot rolling, deep drawability can be improved.
[0017]
As a result of comparing and investigating materials having the same composition and good deep drawability, the former shows that cementite is coarsened and the amount of precipitated AlN is large, and in the latter, cementite is refined and the amount of precipitated AlN is It became clear that it was not good. To clarify the reason, hot working tests were conducted at various temperatures and reduction ratios using a compression hot working simulator, and the subsequent transformation behavior was investigated.
[0018]
As a result, it has been clarified that there is a correlation between the transformation temperature and the precipitation amount of AlN. This is presumably because the ferrite transformation was promoted when a large strain was applied to the low-temperature austenite where recrystallization hardly occurs, and precipitation of AlN proceeding with the transformation was promoted. In addition, it is presumed that the amount of austenite that finally transforms into cementite after winding is reduced at higher temperatures, and finally cementite is coarsened.
[0019]
Then, as a result of investigating also about the influence of Al and N content, it became clear that deep drawing property improves, so that there is much Al content in steel, and N content is small. Assuming that the same deep drawability is obtained, an increase in Al content has the same effect as raising the final reduction temperature, and an increase in N content is the same as lowering the final reduction temperature. effective. Based on these results, the hot rolling conditions necessary for obtaining good deep drawability in a low carbon-Al killed steel that was cold rolled by hot rolling were clarified from the relationship with the Al and N contents. I made it.
The reasons for limiting the component composition and the reasons for limiting the rolling conditions will be described in detail.
[0020]
(A) Reason for limitation of component composition C: C is inevitably contained in steel, and if it is less than 0.01%, unless it is extremely low carbonized, continuous annealing does not have any practical problems with normal temperature strain aging. Can not be suppressed until. On the other hand, if the content exceeds 0.2%, the volume fraction of cementite is too large, and the ductility necessary for the cold-rolled steel sheet for processing cannot be obtained. Preferably, it is 0.01 to 0.035%, and more preferably 0.015 to 0.025%.
[0021]
Si: Si is inevitably contained in steel, and the smaller the better. If it increases, not only the deep drawability of the steel sheet is deteriorated but also the reaction with molten zinc is deteriorated, so the upper limit was made 0.1%. Preferably, it is 0.03% or less.
[0022]
Mn: Mn is added to prevent S contained inevitably in the steel from forming FeS and causing hot brittleness. If it is less than 0.04%, the effect cannot be obtained. If it exceeds 2%, the effect of promoting the cementite coarsening at the time of winding in the hot rolling process cannot be obtained, and the coexistence with solute carbon makes the recrystallization suppressing effect excessive, which is preferable for deep drawability. The organization cannot be easily obtained. Therefore, it is set to 0.04 to 2%.
[0023]
P: There exists an effect | action which strengthens a steel plate, In order to raise tensile strength according to a use purpose, you may add positively and you may contain as an unavoidable impurity. However, if the content exceeds 0.1%, the steel becomes brittle, so this value is made the upper limit.
[0024]
S: S is inevitably contained in the steel, and the smaller the better. Although it is precipitated as MnS, the properties deteriorate even if there is too much MnS, so the content is made 0.02% or less. Preferably, it is 0.008% or less, more preferably 0.004% or less.
[0025]
N: N is inevitably contained in the steel, and the smaller the better. The lower limit is 0.0005%, which can be easily and stably produced by the current steelmaking technology. On the other hand, if it exceeds 0.008%, the necessary addition amount of Al increases and the production cost increases. Preferably, it is 0.003% or less, more preferably 0.002% or less.
[0026]
Acid-soluble Al: Al is added to deoxidize and fix N in the steel as aluminum nitride. Since it is necessary to add 10 times or more of the N content in a mass% ratio, 0.005% was set as the lower limit. Further, if added over 0.1%, non-metallic inclusions increase and ductility is inhibited, so this was made the upper limit.
[0027]
B: B is added to fix N which cannot be precipitated as AlN as BN. However, it is preferable that B in the solid solution state is added in an amount corresponding to the N content in the solid solution state in order to suppress the ferrite transformation after the hot finish rolling. If less than 0.0002%, no effect can be obtained, so this was made the lower limit. Moreover, when it exceeds 0.003%, the B compound of Fe precipitates before hot finish rolling, and not only does not form BN, but also inhibits ductility, so this was made the upper limit.
(B) Reasons for limiting rolling conditions and the like Temperature conditions up to the hot finish rolling entry side: In the low S steel targeted by the present invention, the effect of low-temperature heating of the slab cannot be expected so much, so the heating temperature is not particularly limited. Although it is preferable that the temperature on the entry side of the hot finish rolling mill is low, 965 ° C. is set as the lower limit because it is necessary to complete the hot finish rolling in the austenite region. If the variation in temperature in the plate at that time exceeds 140 ° C., the characteristic fluctuation after cold rolling / recrystallization annealing becomes large, so this was made the upper limit. Preferably it is within 60 degreeC, More preferably, it is within 30 degreeC.
[0028]
Hot finish rolling conditions: Hot finish rolling conditions are the most important component of the present invention. When hot rolling is performed in the ferrite region, a rolling texture that causes the formation of a recrystallized texture that deteriorates the deep drawability is generated in the steel sheet surface layer, so the Ar 3 transformation point is set as the lower limit. In order to accelerate the ferrite transformation and impart sufficient strain to exert the effects of the present invention, reduction is performed in the temperature range below Ax (° C.) given by the above formula (1).
When the strain applied by the reduction immediately before the ferrite transformation is increased, the crystal grain size of the hot-rolled steel sheet is reduced, and the deep drawability of the cold-rolled steel sheet as the final product is improved. In addition, when the strain applied by the reduction increases, the time for the steel sheet to remain in the high-temperature ferrite region where Al diffuses quickly is increased, and precipitation of AlN is promoted to improve deep drawability. The reduction ratio necessary for obtaining these effects was 20% or more in terms of the reduction ratio given by the above formula (2) from the examination by the test.
Based on these, in the subsequent stage in the finish rolling process, reduction is performed at a reduction ratio of 20% or more of the final sheet thickness in a temperature range of Ar 3 points or more and Ax (° C.) or less given by Formula (1). I will do it.
Further, in the case of a large reduction, the flatness of the steel sheet may be lowered. Therefore, it is desirable that the reduction ratio given by the equation (2) is within 250%.
[0029]
Hot rolling coiling temperature: When the hot rolling coiling temperature exceeds 650 ° C., the difference in characteristics between the front and rear ends of the steel sheet and the central portion increases. Furthermore, the scale of the hot-rolled sheet becomes thicker, and accordingly, elements such as Si are concentrated at the interface between the steel sheet and the scale and hinder hot dip galvanizing, so this temperature was set as the upper limit. On the other hand, when the coiling temperature is lowered, the cooling mode of the steel sheet with cooling water is changed from cooling by film boiling to cooling by nucleate boiling, and the cooling becomes non-uniform and the flatness of the hot-rolled steel sheet may be lowered. From these, Preferably, it is 450-600 degreeC, More preferably, you may be 500-550 degreeC.
[0030]
Cold rolling reduction ratio: If the reduction ratio is less than 50%, a recrystallized texture preferable for deep drawability is not generated. On the other hand, if it exceeds 85%, another recrystallized texture that inhibits deep drawability is not obtained. In order to produce | generate, it was set as 50 to 85%.
[0031]
The cold-rolled steel sheet is annealed and plated in a normal continuous hot dip galvanizing line, and if necessary, reheated and alloyed, and further subjected to temper rolling as necessary. Shipped.
[0032]
【Example】
Examples of the present invention will be described. In addition, this is an illustration of the Example of this invention, Comprising: This invention is not restrict | limited to this.
[0033]
In a laboratory vacuum melting furnace, steel having the component composition shown in Table 1 was melted.
[0034]
[Table 1]
Figure 0003613139
Here, the Ar 3 transformation point in the same table was determined by the following method using a cylindrical sample having a diameter of 8 mm and a height of 12 mm.
[0035]
The sample steel was heated to 1250 ° C. for 5 minutes, cooled to 900 ° C. at a cooling rate of 10 ° C./s, held at that temperature for 30 seconds, and further reduced at a reduction rate of 30%. Thereafter, the change in the height of the sample was continuously measured in the process of cooling at 10 ° C./s.
[0036]
Further, Ax was calculated by the above formula (1).
[0037]
The target steel was hot forged to obtain a laboratory slab having a width of 100 mm and a thickness of 25 mm.
[0038]
Next, after these slabs were heated in an electric furnace at 1250 ° C. for 1 hour, they were rolled in three passes by an experimental hot rolling mill composed of one stand in a temperature range of 1030 to 800 ° C. A 3 mm hot rolled steel sheet was obtained.
[0039]
As a simulation of winding, the above hot-rolled steel sheet is immediately cooled to a temperature of 700 to 500 ° C. by water spray cooling, then inserted into an electric furnace maintained at the same temperature, and further at that temperature for 1 hour. After being held, the furnace was cooled at a cooling rate of 20 ° C./h.
[0040]
The obtained hot-rolled steel sheet was pickled and cold-rolled to a thickness of 0.8 mm.
[0041]
The cold-rolled steel sheet thus obtained was heated to 820 ° C. at a heating rate of 10 ° C./s in an infrared heating furnace, held at that temperature for 40 seconds, and then cooled at a cooling rate of 10 ° C./s to 450 ° C. The solution was cooled to 50 ° C., held for 30 seconds, reheated to 500 ° C. at a temperature increase rate of 50 ° C./s, held for 30 seconds, and then cooled to room temperature at a cooling rate of 10 ° C./s.
[0042]
These were annealed, subjected to temper rolling with an elongation of 1.2%, and then subjected to a tensile test using a JIS No. 5 tensile test piece.
[0043]
Table 2 shows the measurement results of rolling conditions, winding temperature and mechanical properties for each test. The r value in the table indicates the measured value in the rolling direction.
[0044]
[Table 2]
Figure 0003613139
Table 3 shows the test results when the hot rolling temperature, the rolling reduction, and the coiling temperature are changed. The deviation r value in the table indicates the deviation from the r value of steel A and steel B in Table 2.
[0045]
[Table 3]
Figure 0003613139
FIG. 1 is a graph showing the influence of temperature Ax on elongation at break and r value for test numbers 1 to 5 when the final pass (third pass) of rolling at 870 ° C. is started.
[0046]
In test numbers 1, 2, 3, and 5, since the start temperature of the final pass corresponding to the reduction in the subsequent stage is within the range of Ar 3 points or more and the temperature Ax or less of steels A, B, C, and E, the r value Is higher than 1.4, indicating good deep drawability. On the other hand, in Test No. 4, since the temperature Ax of the steel D is lower than the starting temperature of the final pass, it is clear that the r value is low and good deep drawability cannot be obtained.
[0047]
Test number 6 is a case where steel F having a low S content is used, and test number 7 is a case where steel G containing B in addition to N in a more preferable range is used. In any case, good deep drawability is obtained.
Test No. 11 shows a case where the final pass start temperature is 3 points or less due to a significant decrease in the first pass start temperature. The r value has decreased.
[0048]
Test number 10 is the case where the final pass start temperature was raised to 900 ° C. Since the final pass start temperature exceeds the temperature Ax, the elongation at break is reduced.
[0049]
FIG. 2 is a graph showing the influence of the final pass reduction ratio on the r value and the deviation r value. The results of Test Nos. 1, 8, and 9 are summarized. The deviation r value represents a deviation from test number 1 where the final pass reduction ratio is 50%.
From the results shown in FIG. 6, it is clear that good deep drawability can be obtained when the rolling reduction ratio of the final pass corresponding to the rolling reduction in the latter stage is 20% or more. On the other hand, when the rolling reduction of the final pass is less than 20%, both the deep drawability and the deviation r value are deteriorated.
FIG. 3 is a graph showing the influence of the coiling temperature on the r value and the deviation r value, and the results of test numbers 2, 12, 13, and 14 are arranged. In addition, deviation r value shows the deviation from the test number 2 whose winding temperature is 600 degreeC.
[0050]
When the coiling temperature is 650 ° C. or lower, the absolute value of the r value is not as high as when the coil is wound at 700 ° C., but the fluctuation of the r value due to the coiling temperature is small as shown in the deviation r value. Uniformity of the r value is ensured. On the other hand, when the temperature exceeds 650 ° C., the r value is high, but the winding temperature becomes non-uniform. Become.
[0051]
FIG. 4 is a graph showing the influence of the first pass start temperature on the breaking elongation, r value, and deviation r value. Test numbers 1, 15, 16, 17, and 18 are arranged.
In this test, the first pass start temperature is changed by changing the temperature of the experimental slab, and the effect of temperature non-uniformity in the steel sheet surface in the actual machine is simulated.
For example, when 1030 ° C. is used as the reference temperature for the first pass, the non-uniformity in r value is reduced to within about 0.3 by setting the temperature non-uniformity within 140 ° C. (within ± 70 ° C.). Can do. Furthermore, by setting the temperature non-uniformity to 60 ° C. (within ± 30 ° C.), the r-value non-uniformity can be reduced to approximately within 0.1.
[0052]
【The invention's effect】
As described in detail above, according to the production method of the present invention, a hot dip galvanized steel sheet having good and uniform deep drawability can be produced even at a relatively low coiling temperature. It greatly contributes to reduction and quality improvement.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of temperature Ax on elongation at break and r value when a final pass is started at 870 ° C. FIG.
FIG. 2 is a graph showing the influence of the final pass reduction ratio on the r value and the deviation r value.
FIG. 3 is a graph showing the influence of winding temperature on r value and deviation r value.
FIG. 4 is a graph showing the influence of the first pass start temperature on the breaking elongation, r value, and deviation r value.

Claims (3)

質量%で、C:0.01〜0.2%、Si:0.1%以下、Mn:0.05〜2%、P:0.1%以下、S:0.02%以下、酸可溶Al:0.005〜0.1%、N:0.0005〜0.008%、残部がFeおよび不純物からなる連続鋳造鋳片を熱間圧延する際に、仕上げ圧延出側温度をAr3点以上とし仕上げ圧延工程の下記式(1)で与えられるAx(℃)以下の温度域で、最終板厚の20%以上の圧下率で圧下し、500〜550℃で巻取り、圧下率50〜85%で冷間圧延した後、連続溶融亜鉛めっきラインにて溶融 亜鉛めっきを行うことを特徴とする溶融亜鉛めっき鋼板の製造方法。
Ax(℃)=Ar3+30+103×Al−104×N ・・・・ (1)
ここで、
Al:酸可溶Al含有量(%)
N :N含有量(%)
In mass%, C: 0.01 to 0.2%, Si: 0.1% or less, Mn: 0.05 to 2%, P: 0.1% or less, S: 0.02% or less, acid acceptable Melting Al: 0.005 to 0.1%, N: 0.0005 to 0.008%, and when the continuous cast slab made of Fe and impurities is hot-rolled, the finish rolling exit temperature is set to Ar 3 In the temperature range below Ax (° C) given by the following formula (1) of the finish rolling process , the steel sheet is rolled down at a rolling reduction of 20% or more of the final thickness, wound at 500 to 550 ° C , and the rolling reduction rate A method for producing a hot dip galvanized steel sheet, characterized by performing hot dip galvanization in a continuous hot dip galvanizing line after cold rolling at 50 to 85%.
Ax (° C.) = Ar 3 + 30 + 10 3 × Al−10 4 × N (1)
here,
Al: Acid-soluble Al content (%)
N: N content (%)
質量%で、C:0.01〜0.2%、Si:0.1%以下、Mn:0.05〜2%、P:0.1%以下、S:0.02%以下、酸可溶Al:0.005〜0.1%、N:0.0005〜0.008%、B:0.0002〜0.003%、残部がFeおよび不純物からなる連続鋳造鋳片を熱間圧延する際に、仕上げ圧延出側温度をAr3点以上とし仕上げ圧延工程の下記式(1)で与えられるAx(℃)以下の温度域で、最終板厚の20%以上の圧下率で圧下し、500〜550℃で巻取り、圧下率50〜85%で冷間圧延した後、連続溶融亜鉛めっきラインにて溶融亜鉛めっきを行うことを特徴とする溶融亜鉛めっき鋼板の製造方法。
Ax(℃)=Ar3+30+103×Al−104×N ・・・・ (1)
ここで、
Al:酸可溶Al含有量(%)
N :N含有量(%)
In mass%, C: 0.01 to 0.2%, Si: 0.1% or less, Mn: 0.05 to 2%, P: 0.1% or less, S: 0.02% or less, acid acceptable Melted Al: 0.005-0.1%, N: 0.0005-0.008%, B: 0.0002-0.003%, the continuous cast slab consisting of Fe and impurities in the balance is hot-rolled In this case, the finish rolling delivery temperature is set to Ar 3 or higher, and the steel sheet is reduced at a reduction ratio of 20% or more of the final sheet thickness in a temperature range of Ax (° C.) or less given by the following formula (1) of the finish rolling process. A method for producing a hot dip galvanized steel sheet, comprising: winding at 500 to 550 ° C. , cold rolling at a rolling reduction of 50 to 85%, and performing hot dip galvanization in a continuous hot dip galvanizing line .
Ax (° C.) = Ar 3 + 30 + 10 3 × Al−10 4 × N (1)
here,
Al: Acid-soluble Al content (%)
N: N content (%)
粗圧延の後に、粗圧延材を965℃以上の温度で、粗圧延材内の温度の不均一が140℃以内となるように加熱し、仕上げ圧延することを特徴とする請求項1または請求項2に記載の溶融亜鉛めっき鋼板の製造方法。After rough rolling, the rough rolled material is heated at a temperature of 965 ° C or higher so that the temperature non-uniformity in the rough rolled material is within 140 ° C, and finish-rolled. The manufacturing method of the hot dip galvanized steel plate of 2.
JP2000161312A 2000-05-31 2000-05-31 Method for producing hot-dip galvanized steel sheet Expired - Fee Related JP3613139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000161312A JP3613139B2 (en) 2000-05-31 2000-05-31 Method for producing hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000161312A JP3613139B2 (en) 2000-05-31 2000-05-31 Method for producing hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2001335841A JP2001335841A (en) 2001-12-04
JP3613139B2 true JP3613139B2 (en) 2005-01-26

Family

ID=18665354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000161312A Expired - Fee Related JP3613139B2 (en) 2000-05-31 2000-05-31 Method for producing hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP3613139B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084458A1 (en) * 2011-12-08 2013-06-13 Jfeスチール株式会社 Hot-rolled steel sheet for cold rolling material, and method for producing same
CN115612930B (en) * 2022-10-08 2024-01-19 包头钢铁(集团)有限责任公司 Low-roughness steel for automobile seat slide rail and production method thereof

Also Published As

Publication number Publication date
JP2001335841A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
EP1498506B1 (en) High tensile strength cold-rolled steel sheet having a high r-value, excellent strain age hardenability and natural aging resistance and method of producing the same
US7067023B2 (en) Cold rolled steel sheet and galvanized steel sheet having strain age hardenability and method of producing the same
JPH0123530B2 (en)
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
CN108603265B (en) High-strength steel sheet for warm working and method for producing same
JP4300793B2 (en) Manufacturing method of hot-rolled steel sheet and hot-dip steel sheet with excellent material uniformity
WO2020136990A1 (en) High-strength hot-dip zinc-coated steel sheet and method for manufacturing same
JP3613139B2 (en) Method for producing hot-dip galvanized steel sheet
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP4333356B2 (en) Cold rolled steel sheet manufacturing method
JPH09279302A (en) Steel sheet excellent in bulge formability and its production
RU2379361C1 (en) Method of cold-rolled sheet products manufacturing for enameling
JPH0559970B2 (en)
JP3446001B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability
JP7188659B1 (en) Steel plate, member and manufacturing method thereof
JP3544441B2 (en) High-strength hot-rolled steel sheet and plated steel sheet with excellent deep drawability and method for producing the same
JP3544440B2 (en) Hot rolled steel sheet and plated steel sheet excellent in deep drawability and ductility, and method for producing the same
JP3443220B2 (en) Hot rolled steel sheet excellent in deep drawability and method for producing the same
JP6515292B2 (en) Method of manufacturing high strength steel plate
JPH09125151A (en) Production of hot rolled steel plate, excellent in workability and secondary working resistance, and hot dip galvanized steel sheet
JP3300639B2 (en) Cold rolled steel sheet excellent in workability and method for producing the same
JP2000199031A (en) Cold rolled steel sheet excellent in workability and its production
JPH0699759B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JPH07242949A (en) Production of cold rolled steel sheet for deep drawing excellent in baking hardenability
JPH0776410B2 (en) High-strength cold-rolled steel sheet for non-aging deep drawing excellent in bake hardenability and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3613139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees