JPH08170123A - Production of cold rolled steel sheet excellent in deep drawability and galvanized steel sheet - Google Patents

Production of cold rolled steel sheet excellent in deep drawability and galvanized steel sheet

Info

Publication number
JPH08170123A
JPH08170123A JP28205394A JP28205394A JPH08170123A JP H08170123 A JPH08170123 A JP H08170123A JP 28205394 A JP28205394 A JP 28205394A JP 28205394 A JP28205394 A JP 28205394A JP H08170123 A JPH08170123 A JP H08170123A
Authority
JP
Japan
Prior art keywords
steel sheet
deep drawability
less
hot
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28205394A
Other languages
Japanese (ja)
Inventor
Kaoru Kawasaki
薫 川崎
Tatsuo Yokoi
龍雄 横井
Masayoshi Suehiro
正芳 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28205394A priority Critical patent/JPH08170123A/en
Publication of JPH08170123A publication Critical patent/JPH08170123A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE: To control recrystallization texture so as to obtain a cold rolled steel sheet excellent in deep drawability by executing specified hot rolling and continuous annealing to the steel of specified composition consisting of C, Si, Mn, P, S, Al, N, and Fe. CONSTITUTION: A steel, which has a composition consisting of, by weight, 0.001-0.01% C, 0.01-1% Si, 0.05-1.5% Mn, <=0.1% P, <=0.015% S, 0.005-0.1% Al, <=0.005% N, as necessary one or more kinds among Ti, Nb, V, further 0.0005-0.005% B and the balance Fe with inevitable impurity elements, is continuously cast to slab. The slab after reheated or right after casting is completed with finish hot rolling at Ar transformation temp. or higher and then is coiled at 600-800 deg.C. The hot rolled sheet is cold rolled as usual after pickling. Subsequently, the cold rolled sheet for continuus annealing is heated from normal temp. to 400-700 deg.C at <=100 deg.C/sec heating rate, and thereafter successively rapidly heated to 750-910 deg.C at 100-3000 deg.C/sec heating rate, the sheet is cooled to room temp. immediately or after prescribed holding time at the heated temp. and then is subjected to temper rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、深絞り性の優れた冷延
鋼板及び溶融亜鉛めっき鋼板の製造方法に関するもので
あり、さらに詳しくは、連続焼鈍または再結晶焼鈍の加
熱途中からの急速かつ短時間の熱処理による、深絞り性
の優れた冷延鋼板及び溶融亜鉛めっき鋼板の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cold-rolled steel sheet and a hot-dip galvanized steel sheet having an excellent deep drawability, and more specifically, to a rapid and rapid heating process during continuous annealing or recrystallization annealing. The present invention relates to a method for producing a cold-rolled steel sheet and a hot-dip galvanized steel sheet having excellent deep drawability by heat treatment for a short time.

【0002】[0002]

【従来の技術】従来の連続焼鈍または再結晶焼鈍におけ
る加熱方式は、ガスバーナーによる直火式の加熱、ある
いはラジアントチューブによる輻射加熱である。そのた
め、均熱帯に入るまで10℃/s程度の一定加熱速度で
加熱される。したがって、加熱中のヒートサイクルによ
って集合組織を制御することは不可能であった。一方、
電気加熱を加熱帯あるいは均熱帯の一部に適用する方法
についてはすでに開示されており、例えば特開平2−1
66234号公報及び特公平5−57333号公報があ
る。前者は加熱帯の高温域を誘導加熱により加熱するも
のであり、後者は均熱部の一部において均熱温度より高
い温度に昇温急熱するものである。特に前者は得られる
鋼板の材質を特徴とするものではなく、本発明が目的と
するところのヒートサイクルによって再結晶集合組織を
積極的に制御するものではない。また、後者については
均熱帯での部分加熱のため、本発明とは目的を異にして
いる。また、いずれも加熱速度については何等規定はな
く、加熱方法及び実施例から推察すると、本発明におい
て規定する加熱速度に比べて低いものと考えられる。さ
らに、いずれも通常の連続焼鈍での適用を考慮したもの
であり、溶融亜鉛めっきラインでの適用を開示したもの
ではない。
2. Description of the Related Art The conventional heating method in continuous annealing or recrystallization annealing is direct heating with a gas burner or radiant heating with a radiant tube. Therefore, it is heated at a constant heating rate of about 10 ° C./s until it enters the soaking zone. Therefore, it was impossible to control the texture by the heat cycle during heating. on the other hand,
A method for applying electric heating to a heating zone or a part of the soaking zone has already been disclosed, for example, Japanese Patent Laid-Open No. 2-1.
There are Japanese Patent No. 66234 and Japanese Patent Publication No. 5-57333. The former is for heating the high temperature region of the heating zone by induction heating, and the latter is for rapidly heating to a temperature higher than the soaking temperature in a part of the soaking section. In particular, the former is not characterized by the material of the obtained steel sheet, and does not actively control the recrystallization texture by the heat cycle which is the object of the present invention. The latter has a different purpose from the present invention because it is partially heated in the soaking zone. In addition, there is no regulation on the heating rate in any of them, and it is considered that the heating rate is lower than the heating rate prescribed in the present invention inferred from the heating method and the examples. Furthermore, all of them are intended for application in normal continuous annealing, and do not disclose application in hot dip galvanizing line.

【0003】[0003]

【発明が解決しようとする課題】従来の連続焼鈍や再結
晶焼鈍の加熱帯では、通板される板は一定の加熱速度で
昇温されるため、この部分で積極的に集合組織を制御す
ることは不可能であった。電気加熱の加熱帯への適用
は、昇温過程での集合組織形成を積極的に制御すること
を可能にするものであり、これまでにそれを工業化した
ものは見あたらない。本発明は、このような電気加熱を
連続焼鈍または再結晶焼鈍の加熱帯の一部に適用するこ
とにより再結晶集合組織を制御し、深絞り性の優れた冷
延鋼板及び溶融亜鉛めっき鋼板の製造方法を提供するこ
とを目的としてなされたものである。
In the conventional heating zone of continuous annealing or recrystallization annealing, the temperature of the plate to be threaded is raised at a constant heating rate, so that the texture is positively controlled in this part. It was impossible. The application of electric heating to the heating zone makes it possible to positively control the texture formation in the temperature rising process, and no commercialized one has been found so far. The present invention controls the recrystallization texture by applying such electric heating to a part of the heating zone of continuous annealing or recrystallization annealing, of the cold-rolled steel sheet and hot dip galvanized steel sheet having excellent deep drawability. The purpose is to provide a manufacturing method.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記実状
に鑑み鋭意検討した結果、冷延ままの鋼帯を巻き戻し
て、連続焼鈍により焼鈍する際に、または、溶融亜鉛め
っきラインでめっきを施す際に、加熱帯での熱履歴を制
御し、加熱途中からの加熱速度を急速化することによ
り、再結晶集合組織の制御が可能であることを見出し
た。その結果、深絞り性に有利な集合組織を形成するこ
とができる加熱帯での熱履歴を発明し、本発明を完成さ
せたもので、その要旨は、 (1) C :0.001〜0.01wt% Si:0.01〜1wt% Mn:0.05〜1.5wt% P :0.1wt%以下 S :0.015wt%以下 Al:0.005〜0.1wt% N :0.005wt%以下 残部Fe及び不可避的不純物元素からなる鋼を連続鋳造
にてスラブとした後再加熱あるいは鋳造後直ちにAr3
変態点以上の温度で仕上熱延を終了して、600〜80
0℃の温度域で巻取り、酸洗後通常の方法で冷間圧延を
施した後、連続焼鈍で常温からT1 :400〜700℃
の温度範囲までは100℃/s以下の加熱速度で加熱
し、続いて100〜3000℃/sの加熱速度でT2
750〜910℃の温度域まで昇温した後、直ちにある
いは所定時間保持後室温まで冷却し、さらに調質圧延を
行うことを特徴とする深絞り性の優れた冷延鋼板の製造
方法。
Means for Solving the Problems As a result of intensive studies in view of the above situation, the present inventors unwinded a cold-rolled steel strip and annealed it by continuous annealing, or in a hot dip galvanizing line. It was found that the recrystallization texture can be controlled by controlling the thermal history in the heating zone during plating and increasing the heating rate during heating. As a result, the present invention has been completed by inventing a heat history in a heating zone capable of forming a texture that is advantageous for deep drawability, and its gist is (1) C: 0.001 to 0 0.01 wt% Si: 0.01 to 1 wt% Mn: 0.05 to 1.5 wt% P: 0.1 wt% or less S: 0.015 wt% or less Al: 0.005 to 0.1 wt% N: 0.005 wt % Or less Steel made of balance Fe and unavoidable impurity elements is continuously cast into a slab and then reheated or immediately after casting, Ar 3
Finish hot rolling at a temperature above the transformation point to 600-80
It is wound in a temperature range of 0 ° C., pickled, cold-rolled by a usual method, and then continuously annealed from room temperature to T 1 : 400 to 700 ° C.
Until the temperature range 100 ° C. / s were heated by the following heating rate, followed by 100 to 3,000 ° C. / s heating rate T 2:
A method for producing a cold-rolled steel sheet having excellent deep drawability, which comprises heating to a temperature range of 750 to 910 ° C, immediately or after holding for a predetermined time, cooling to room temperature, and further temper rolling.

【0005】(2)(1)記載の鋼成分に加えてさら
に、Ti,Nb,Vのうち1種以上を合計で0.005
〜0.1wt%含むことを特徴とする(1)記載の深絞
り性の優れた冷延鋼板の製造方法。 (3)(1)または(2)記載の鋼成分に加えてさら
に、Bを0.0005〜0.005wt%含むことを特
徴とする(1)または(2)記載の深絞り性の優れた冷
延鋼板の製造方法。 (4)T1 温度で30秒以下保持することを特徴とする
(1)〜(3)のいずれか1に記載の深絞り性の優れた
冷延鋼板の製造方法。
(2) In addition to the steel components described in (1), at least one of Ti, Nb, and V is added to 0.005 in total.
0.1 wt% is contained, The manufacturing method of the cold-rolled steel sheet excellent in deep drawability as described in (1). (3) In addition to the steel composition described in (1) or (2), 0.0005 to 0.005 wt% of B is further contained, which is excellent in deep drawability described in (1) or (2). Manufacturing method of cold rolled steel sheet. (4) The method for producing a cold-rolled steel sheet having excellent deep drawability according to any one of (1) to (3), which is characterized by holding at T 1 temperature for 30 seconds or less.

【0006】(5)C :0.001〜0.01wt% Si:0.01〜1wt% Mn:0.05〜1.5wt% P :0.1wt%以下 S :0.015wt%以下 Al:0.005〜0.1wt% N :0.005wt%以下 残部Fe及び不可避的不純物元素からなる鋼を連続鋳造
にてスラブとした後再加熱あるいは鋳造後直ちにAr3
変態点以上の温度で仕上熱延を終了して、600〜80
0℃の温度域で巻取り、酸洗後通常の方法で冷間圧延を
施した後、再結晶焼鈍で常温からT1 :400〜700
℃の温度範囲までは100℃/s以下の加熱速度で加熱
し、続いて100〜3000℃/sの加熱速度でT2
750〜910℃の温度域まで昇温した後、直ちにある
いは所定時間保持後溶融亜鉛めっきを行ってから室温ま
で冷却し、続いて調質圧延を行うことを特徴とする深絞
り性の優れた溶融亜鉛めっき鋼板の製造方法。
(5) C: 0.001 to 0.01 wt% Si: 0.01 to 1 wt% Mn: 0.05 to 1.5 wt% P: 0.1 wt% or less S: 0.015 wt% or less Al: 0.005 to 0.1 wt% N: 0.005 wt% or less Steel made of the balance Fe and unavoidable impurity elements is continuously cast into a slab and then reheated or immediately after casting Ar 3
Finish hot rolling at a temperature above the transformation point to 600-80
After winding in a temperature range of 0 ° C., pickling, cold rolling in a usual method, and then recrystallization annealing from room temperature to T 1 : 400 to 700.
Heating up to a temperature range of 100 ° C. is performed at a heating rate of 100 ° C./s or less, and then T 2 :
Immediately or after holding for a predetermined time, hot-dip galvanizing is performed after cooling to a temperature range of 750 to 910 ° C., cooling is performed to room temperature, and then temper rolling is performed, followed by melting with excellent deep drawability. Manufacturing method of galvanized steel sheet.

【0007】(6)(5)記載の鋼成分に加えてさら
に、Ti,Nb,Vのうち1種以上を合計で0.005
〜0.1wt%含むことを特徴とする(5)記載の深絞
り性の優れた溶融亜鉛めっき鋼板の製造方法。 (7)(5)または(6)記載の鋼成分に加えてさら
に、Bを0.0005〜0.005wt%含むことを特
徴とする(5)または(6)記載の深絞り性の優れた溶
融亜鉛めっき鋼板の製造方法。 (8)T1 温度で30秒以下保持することを特徴とする
(5)〜(7)のいずれか1に記載の深絞り性の優れた
溶融亜鉛めっき鋼板の製造方法。 (9)溶融亜鉛めっき後、さらに合金化処理を行ってか
ら室温まで冷却することを特徴とする(5)〜(8)の
いずれか1に記載の深絞り性の優れた溶融亜鉛めっき鋼
板の製造方法にある。
(6) In addition to the steel components described in (5), at least one of Ti, Nb, and V is added to 0.005 in total.
The method for producing a hot-dip galvanized steel sheet having excellent deep drawability according to (5), characterized in that the content is 0.1 wt% to 0.1 wt%. (7) In addition to the steel components described in (5) or (6), B is further included in an amount of 0.0005 to 0.005 wt%, and the deep drawability described in (5) or (6) is excellent. Manufacturing method of hot-dip galvanized steel sheet. (8) The method for producing a hot-dip galvanized steel sheet having excellent deep drawability according to any one of (5) to (7), which is characterized by holding at T 1 temperature for 30 seconds or less. (9) A hot-dip galvanized steel sheet having excellent deep drawability according to any one of (5) to (8), which is characterized by further performing alloying treatment and then cooling to room temperature after hot-dip galvanizing. There is a manufacturing method.

【0008】[0008]

【作用】以下、図面に基づいて本発明を詳細に説明す
る。図1〜図4に、本発明の確立に至った実験結果を示
す。本実験では、C:0.0017wt%、Si:0.
02wt%、Mn:0.1wt%、P:0.007wt
%、S:0.008wt%、Al:0.035wt%、
N:0.0015wt%、残部Fe及び不可避的不純物
元素からなる鋼を用いた。この鋼を910℃で仕上熱延
を行ない、4mmの熱延板とし、続いて冷却を行なって
700℃で巻取った。さらに酸洗後、80%の冷間圧延
を施した。その後、その半分の冷延材について図1に示
すようなヒートサイクルで連続焼鈍をシュミレートし
た。また、残りの冷延材について図3に示すようなヒー
トサイクルで溶融亜鉛めっきラインにおける熱履歴をシ
ュミレートした。いずれも、焼鈍温度(T2 ) を850
℃としてT1 を300〜800℃の範囲で変化させた。
なお、T1 までは10℃/sで昇温し、T1 〜T2 を3
00℃/sで加熱した。図2、図4にそれぞれの熱処理
後のr値の結果を示す。すなわち、連続焼鈍または再結
晶焼鈍で急速加熱を開始する温度域が700℃を超える
とr値が低下することを見出したのである。これは回復
及び再結晶がある程度進んだ時点で急速加熱を実施して
も、粒成長のための駆動力が小さいため、短時間では粒
成長が進行しなかったことに起因すると推察される。
The present invention will be described in detail below with reference to the drawings. 1 to 4 show experimental results leading to establishment of the present invention. In this experiment, C: 0.0017 wt%, Si: 0.
02 wt%, Mn: 0.1 wt%, P: 0.007 wt
%, S: 0.008 wt%, Al: 0.035 wt%,
N: 0.0015 wt%, the balance Fe and the steel consisting of unavoidable impurity elements were used. This steel was finish hot-rolled at 910 ° C. to obtain a 4 mm hot-rolled sheet, followed by cooling and winding at 700 ° C. After pickling, 80% cold rolling was performed. After that, continuous annealing was simulated on the half of the cold rolled material by a heat cycle as shown in FIG. The thermal history of the remaining cold-rolled material was simulated in the hot dip galvanizing line by a heat cycle as shown in FIG. In both cases, the annealing temperature (T 2 ) was 850
As the temperature, T 1 was changed in the range of 300 to 800 ° C.
Until T 1 is heated at 10 ℃ / s, T 1 ~T 2 3
Heated at 00 ° C / s. 2 and 4 show the r-value results after the respective heat treatments. That is, it was found that the r value decreases when the temperature range in which rapid heating is started in continuous annealing or recrystallization annealing exceeds 700 ° C. It is presumed that this is because the grain growth did not proceed in a short time because the driving force for grain growth was small even if the rapid heating was carried out when the recovery and recrystallization proceeded to some extent.

【0009】まず、本発明における化学成分の限定理由
について述べる。Cは、深絞り性を向上させるためには
0.01wt%以下としなくてはならない。しかし、
0.001wt%未満とすることは、製鋼段階における
コストアップになるためこれを下限とする。Siは、鋼
を高強度化する場合に添加されるが、過度の添加は溶接
性を劣化させるばかりでなく、メッキの密着性も低下さ
せるため、1wt%を上限とした。一方、0.01wt
%未満とするには大幅なコストアップになるため、これ
を下限とする。Mnも鋼を高強度化する場合に有効であ
るが、過剰の添加は鋼の硬質化により延性(El)を低
下させるばかりでなく、深絞り性(r値)の劣化が懸念
されるため、上限を1.5wt%とした。しかし、添加
量が0.05wt%より少なくなると、熱延時にSに起
因した熱間割れが生じるため、これを下限とする。
First, the reasons for limiting the chemical components in the present invention will be described. C must be 0.01 wt% or less in order to improve the deep drawability. But,
If it is less than 0.001 wt%, the cost will increase in the steelmaking stage, so this is the lower limit. Si is added in order to increase the strength of steel, but excessive addition not only deteriorates the weldability but also reduces the adhesion of plating, so the upper limit was 1 wt%. On the other hand, 0.01 wt
If it is less than%, the cost will increase significantly, so this is the lower limit. Mn is also effective in increasing the strength of steel, but excessive addition not only lowers the ductility (El) due to the hardening of the steel, but is also concerned about the deterioration of the deep drawability (r value). The upper limit was set to 1.5 wt%. However, if the addition amount is less than 0.05 wt%, hot cracking due to S occurs during hot rolling, so this is the lower limit.

【0010】Pについては、深絞り性を劣化させること
なく鋼を高強度化する場合に有効な元素である。しか
し、過剰に添加すると二次加工性を劣化させるため、
0.1wt%を上限とする。Sは、過剰に添加されると
熱間割れを招くため0.015wt%以下とする。Al
は、鋼の脱酸のために0.005wt%以上必要である
が、過剰の添加はコストアップになるとともに鋼中に介
在物を残すことになるため、上限を0.1wt%とす
る。Nは、Cと同様、深絞り性を確保するためには0.
005wt%以下とする。
[0010] P is an effective element for increasing the strength of steel without deteriorating the deep drawability. However, if added excessively, it deteriorates the secondary workability,
The upper limit is 0.1 wt%. If S is added in excess, it causes hot cracking, so S is made 0.015 wt% or less. Al
Is required to deoxidize the steel, but 0.005 wt% or more is required. However, excessive addition will increase the cost and leave inclusions in the steel, so the upper limit is made 0.1 wt%. Like C, N is 0.
005 wt% or less.

【0011】Ti、Nb、V及びMoは、必要に応じて
添加するが、特にCあるいはNを固定することを目的に
添加される。その際、合計で添加量が0.005wt%
未満ではその効果が発揮されない。また、0.01wt
%を超えて添加されると炭化物あるいは窒化物が多数形
成され、加工性を劣化させる。Bも必要に応じて添加さ
れるが、その目的はNの固定、あるいは二次加工性の確
保にある。0.0005wt%未満の添加量ではその効
果が得られない。しかし、0.005wt%を超えて添
加されると、鋼を硬質化し、加工性を劣化させるためこ
れを上限とする。なお、本発明では特に規定しないが、
Ca、Zr、Ce等の希土類元素を添加してもかまわな
い。
[0011] Ti, Nb, V and Mo are added as needed, but are added especially for the purpose of fixing C or N. At that time, the total addition amount is 0.005 wt%
If less than, the effect is not exhibited. Also, 0.01 wt
If it is added in excess of%, a large number of carbides or nitrides are formed and the workability is deteriorated. B is also added if necessary, but its purpose is to fix N or to secure the secondary workability. If the added amount is less than 0.0005 wt%, the effect cannot be obtained. However, if over 0.005 wt% is added, the steel is hardened and the workability is deteriorated, so this is made the upper limit. Although not particularly specified in the present invention,
A rare earth element such as Ca, Zr or Ce may be added.

【0012】次に、本発明に従う製造方法について説明
する。上述した化学成分を有する鋼は通常の連続鋳造に
てスラブとして得られるが、薄スラブ連鋳法にて製造さ
れたものでもかまわない。続いて再加熱あるいは再加熱
なしに熱延を行なうが、Ar3 変態点よりも低い温度で
仕上熱延されると熱延板の結晶粒が粗大となるため、熱
延における仕上温度はAr3 変態点以上とする。その後
通常の方法で巻取るが、熱延板段階で固溶Cを炭化物と
して十分析出させる必要があるため650℃以上にする
必要がある。しかし、800℃を超えると酸洗性が悪化
するため、これを上限とする。ここで巻取りに至るまで
の冷却速度は本発明において特に規定されるものではな
く、また、冷間圧延における圧下率についても通常実施
される範囲内とする。
Next, the manufacturing method according to the present invention will be described. The steel having the above-mentioned chemical composition is obtained as a slab by ordinary continuous casting, but it may be produced by a thin slab continuous casting method. Then perform hot rolling without reheating or reheating but, since the Ar 3 when cast heat finishing at a lower temperature than the transformation point of the hot rolled sheet grain coarse, temperature finishing in hot rolling Ar 3 It is above the transformation point. After that, it is wound by an ordinary method, but it is necessary to set the temperature to 650 ° C. or higher because it is necessary to sufficiently precipitate the solid solution C as a carbide in the hot rolling plate stage. However, if the temperature exceeds 800 ° C., the pickling property deteriorates, so this is made the upper limit. Here, the cooling rate up to the winding is not particularly specified in the present invention, and the reduction rate in cold rolling is within the range that is usually carried out.

【0013】次に、本発明において最も重要な因子であ
る連続焼鈍における加熱条件または溶融亜鉛めっきライ
ンでの再結晶焼鈍における加熱条件について説明する。
室温からT1 までの加熱はガスバーナーによる直火式あ
るいはラジアントチューブによる輻射式の加熱とし、あ
る程度再結晶前の回復を進行させるため比較的緩やかに
加熱を実施する。そのため、加熱速度は100℃/s以
下に限定される。なお、下限については特に限定される
ものではないが、5℃/s以上の加熱速度は必然的に得
られる。
Next, heating conditions in continuous annealing or heating conditions in recrystallization annealing in a hot dip galvanizing line, which are the most important factors in the present invention, will be described.
The heating from room temperature to T 1 is performed by direct heating with a gas burner or radiant heating with a radiant tube, and heating is performed comparatively gently to promote recovery before recrystallization to some extent. Therefore, the heating rate is limited to 100 ° C./s or less. The lower limit is not particularly limited, but a heating rate of 5 ° C / s or more is inevitably obtained.

【0014】加熱初期の徐加熱を実施する温度範囲(T
1 )は400℃以上700℃以下とする。400℃未満
では後に続く急速加熱過程での加熱範囲(温度差)が広
くなり、投入エネルギが大きくなり好ましくない。一
方、700℃を超えると前述したように粒成長のための
駆動力が小さくなるため、最終焼鈍温度に達しても再結
晶が完了しない。そのため、これを上限とする。なお、
1 での等温保持は必要に応じて実施するが、その場合
には30秒以下とする。これを超えて保持時間を長くす
るとパス長が増え、設備コストの上昇を招くため好まし
くない。
The temperature range (T
1 ) is 400 ° C. or higher and 700 ° C. or lower. If the temperature is less than 400 ° C., the heating range (temperature difference) in the subsequent rapid heating process becomes wide and the input energy becomes large, which is not preferable. On the other hand, if the temperature exceeds 700 ° C., the driving force for grain growth becomes small as described above, so that recrystallization is not completed even when the final annealing temperature is reached. Therefore, this is the upper limit. In addition,
The isothermal holding at T 1 is carried out if necessary, but in that case, it is 30 seconds or less. If the holding time is made longer than this, the path length increases and the equipment cost rises, which is not preferable.

【0015】T1 以降の加熱は焼鈍後に得られる集合組
織を制御することが目的となる。そのためには、ある程
度回復あるいは再結晶が進んだ段階から最終焼鈍温度へ
の急速加熱が必要となる。集合組織を制御するための加
熱速度としては100℃/s以上が必要である。しか
し、3000℃/sを超えると制御が困難となるばかり
でなく、加熱に要する電力が著しく大きくなること、さ
らには、加熱を実施するパス長も長くなり、設備的に大
幅なコストアップを招くため好ましくない。
The purpose of heating after T 1 is to control the texture obtained after annealing. For that purpose, rapid heating to the final annealing temperature is required from the stage where recovery or recrystallization has progressed to some extent. A heating rate of 100 ° C./s or more is required to control the texture. However, if it exceeds 3000 ° C./s, not only the control becomes difficult, but also the electric power required for heating becomes remarkably large, and further, the path length for carrying out the heating becomes long, resulting in a significant increase in equipment cost. Therefore, it is not preferable.

【0016】最終焼鈍温度(T2 )は、750℃未満で
は粒成長が不十分なため、十分な延性が得られず、加工
性が劣る。一方、910℃を超えるとオーステナイト域
での焼鈍となり、集合組織がランダム化するためr値を
低下させ、深絞り性が悪い。T2 での等温保持条件及び
焼鈍後の冷却については特に規定されるものではなく、
通常の方法でかまわないが、設備をよりコンパクト化す
るためには等温保持を実施しなくてもかまわない。
When the final annealing temperature (T 2 ) is less than 750 ° C., grain growth is insufficient, so that sufficient ductility cannot be obtained and workability is poor. On the other hand, if the temperature exceeds 910 ° C., annealing occurs in the austenite region, and the texture is randomized so that the r value is lowered and the deep drawability is poor. The isothermal holding condition at T 2 and the cooling after annealing are not particularly specified,
An ordinary method may be used, but isothermal holding may not be performed in order to make the equipment more compact.

【0017】ここで加熱及び冷却方法については特に規
定されるものではなく、上記規定上限が満足されるもの
であれば特に限定されない。例えば、加熱方法としては
通電加熱で行うのが有効であり、冷延鋼板の連続焼鈍ラ
インでの冷却方法としては気水冷却で行うのが、また、
溶融亜鉛めっきラインでの冷却方法としてはH2 等のガ
ス冷却あるいはロール冷却等で行うのが有効となる。溶
融亜鉛めっき及びそれに続く合金化処理は通常の方法で
かまわない。なお、溶融亜鉛めっきに続く合金化処理は
必要に応じて行う。
Here, the heating and cooling method is not particularly specified, and is not particularly limited as long as the above specified upper limit is satisfied. For example, as a heating method, it is effective to carry out by electric heating, and as a cooling method in the continuous annealing line of the cold rolled steel sheet, it is carried out by steam cooling,
As a cooling method in the hot dip galvanizing line, cooling with gas such as H 2 or roll cooling is effective. The hot dip galvanizing and the subsequent alloying treatment may be performed in a usual manner. The alloying treatment subsequent to the hot dip galvanizing is performed as necessary.

【0018】[0018]

【実施例】【Example】

実施例1 C:0.0015wt%、Si:0.01wt%、M
n:0.1wt%、P:0.005wt%、S:0.0
05wt%、Al:0.035wt%、Ti:0.03
8wt%、N:0.0015wt%、残部Fe及び不可
避的不純物元素からなる鋼を転炉出鋼し、連続鋳造にて
スラブとした。熱延は1100℃で加熱後、仕上温度を
930℃、板厚:4mmとして熱間圧延を終了し、70
0℃で巻取を実施した。酸洗後、80%の圧下率で0.
8mmとし、連続焼鈍において600℃までは10℃/
sの加熱速度で加熱し、この温度で必要に応じて30秒
以下保持し、続いて通電加熱により表1に示すような種
々の加熱速度及び焼鈍条件で最終焼鈍を実施し、さらに
1%の調質圧延を行なった。その後の材質評価としてJ
IS Z 2201記載の5号試験片に加工し、JIS
Z 2241記載の試験方法に従って引張試験を行な
った。同表に結果をまとめて示す。本発明の範囲に従っ
たNo.1,2,3,4及び5では、従来の連続焼鈍プ
ロセスにおける熱履歴で行なったNo.6に比べて高い
r値を示している。T1 からの加熱速度及び焼鈍温度が
本発明の範囲からはずれたNo.7,8及び9ではやは
りr値は低い。
Example 1 C: 0.0015 wt%, Si: 0.01 wt%, M
n: 0.1 wt%, P: 0.005 wt%, S: 0.0
05 wt%, Al: 0.035 wt%, Ti: 0.03
Steel consisting of 8 wt%, N: 0.0015 wt%, the balance Fe and unavoidable impurity elements was tapped from the converter and continuously cast into a slab. After hot rolling at 1100 ° C., finishing temperature was 930 ° C. and plate thickness was 4 mm, and hot rolling was completed.
Winding was carried out at 0 ° C. After pickling, a reduction rate of 80% resulted in 0.
8mm and 10 ℃ / in continuous annealing up to 600 ℃
heating at a heating rate of s, holding at this temperature for 30 seconds or less as required, and then performing final annealing at various heating rates and annealing conditions as shown in Table 1 by electric heating, and further 1% Temper rolling was performed. Subsequent material evaluation J
Processed into No. 5 test piece described in IS Z 2201, JIS
A tensile test was conducted according to the test method described in Z 2241. The results are summarized in the same table. No. according to the scope of the invention. In Nos. 1, 2, 3, 4 and 5, No. 1 performed by thermal history in the conventional continuous annealing process. The r value is higher than that of No. 6. The heating rate from T 1 and the annealing temperature were outside the range of the present invention. At 7, 8 and 9, the r value is still low.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例2 表2に示す種々の組成の鋼を転炉出鋼し、連続鋳造でス
ラブとした。これらのスラブを1150℃で加熱後、A
3 点{=916−509C(wt%)+27Si(w
t%)−64Mn(wt%)(℃)}以上の温度域で仕
上熱延を終了し、670℃で巻取り、3mmの熱延板と
した。酸洗後、77%の圧下率で0.7mmの冷延板と
し、連続焼鈍において600℃までは10℃/sの加熱
速度で加熱し、続いて通電加熱により100℃/sの加
熱速度で加熱し、850℃で最終焼鈍を実施し、さらに
1%の調質圧延を行なった後、実施例1と同じ方法で材
質を評価した。表3に結果をまとめて示す。本発明の方
法にしたがったA,B,C,D,E,F及びG鋼では高
いr値を示している。しかし、C量が高くはずれたH
鋼、Si量が高くはずれたI鋼及びP量が高くはずれた
J鋼では、r値が本発明で目標とする値には達していな
い。一方、K鋼は、S量が高くはずれたため熱間割れを
起こした。
Example 2 Steels having various compositions shown in Table 2 were taken out from a converter and continuously cast into slabs. After heating these slabs at 1150 ° C,
r 3 points {= 916-509C (wt%) + 27Si (w
t%)-64 Mn (wt%) (° C)} or higher, the finish hot rolling was finished, and the roll was wound at 670 ° C to obtain a 3 mm hot rolled sheet. After pickling, a cold-rolled sheet of 0.7 mm with a reduction rate of 77% was heated at a heating rate of 10 ° C / s up to 600 ° C in continuous annealing, and subsequently heated at a heating rate of 100 ° C / s by electric heating After heating, final annealing was performed at 850 ° C., and temper rolling was further performed at 1%, and then the material was evaluated by the same method as in Example 1. Table 3 summarizes the results. The A, B, C, D, E, F and G steels according to the method of the present invention show high r values. However, the amount of C is high and H is off
In the steel, the I steel with a high Si content and the J content with a high P content, the r value did not reach the target value in the present invention. On the other hand, K steel suffered from hot cracking because the S content was too high.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】実施例3 C:0.0016wt%、Si:0.02wt%、M
n:0.1wt%、P:0.008wt%、S:0.0
05wt%、Al:0.040wt%、Ti:0.04
1wt%、N:0.0015wt%、残部Fe及び不可
避的不純物元素からなる鋼を転炉出鋼し、連続鋳造にて
スラブとした。熱延は1100℃で加熱後、仕上温度を
935℃、板厚:4mmとして熱間圧延を終了し、70
0℃で巻取を実施した。酸洗後、80%の圧下率で0.
8mmとし、溶融亜鉛めっきラインの加熱帯において、
600℃までは10℃/sの加熱速度で加熱し、この温
度で必要に応じて30秒以下保持し、続いて通電加熱に
より表4に示すような種々の加熱速度及び焼鈍条件で最
終焼鈍を実施し、続いて溶融亜鉛めっきを施し、さら
に、No.12,14,16,18では合金化処理を施
し、さらに1%の調質圧延を行なった。その後、実施例
1と同じ方法で材質を評価した。同表に結果をまとめて
示す。本発明の範囲に従ったNo.11,12,13,
14及び15では、従来の連続焼鈍プロセスにおける熱
履歴で行なったNo.16に比べて高いr値を示してい
る。T1 からの加熱速度及び再結晶焼鈍温度が本発明の
範囲からはずれたNo.17,18及び19ではやはり
r値は低い。
Example 3 C: 0.0016 wt%, Si: 0.02 wt%, M
n: 0.1 wt%, P: 0.008 wt%, S: 0.0
05 wt%, Al: 0.040 wt%, Ti: 0.04
Steel consisting of 1 wt%, N: 0.0015 wt%, the balance Fe and unavoidable impurity elements was taken out from the converter and continuously cast into a slab. After hot rolling at 1100 ° C., the finishing temperature was 935 ° C. and the plate thickness was 4 mm, and hot rolling was completed.
Winding was carried out at 0 ° C. After pickling, a reduction rate of 80% resulted in 0.
8 mm, in the heating zone of the hot dip galvanizing line,
Heating up to 600 ° C at a heating rate of 10 ° C / s, holding at this temperature for 30 seconds or less if necessary, and then conducting final heating at various heating rates and annealing conditions as shown in Table 4 by electric heating. Conducted, followed by hot dip galvanizing, and No. In Nos. 12, 14, 16 and 18, alloying treatment was performed and further 1% temper rolling was performed. Then, the material was evaluated in the same manner as in Example 1. The results are summarized in the same table. No. according to the scope of the invention. 11, 12, 13,
In Nos. 14 and 15, No. performed by thermal history in the conventional continuous annealing process. The r value is higher than that of 16. The heating rate from T 1 and the recrystallization annealing temperature were outside the range of the present invention. At 17, 18, and 19, the r value is still low.

【0024】[0024]

【表4】 [Table 4]

【0025】実施例4 表5に示す種々の組成の鋼を転炉出鋼し、連続鋳造でス
ラブとした。これらのスラブを1160℃で加熱後、A
3 点{=916−509C(wt%)+27Si(w
t%)−64Mn(wt%)(℃)}以上の温度域で仕
上熱延を終了し、660℃で巻取り、3mmの熱延板と
した。酸洗後、77%の圧下率で0.7mmの冷延板と
し、溶融亜鉛めっきラインの加熱帯において600℃ま
では10℃/sの加熱速度で加熱し、続いて通電加熱に
より100℃/sの加熱速度で加熱し、850℃で最終
焼鈍を実施し、続いて溶融亜鉛めっきを施し、M鋼を除
き合金化処理を施し、さらに1%の調質圧延を行なった
後、実施例1と同じ方法で材質を評価した。表6に結果
をまとめて示す。本発明の方法にしたがったL,M,
N,O,P,Q及びR鋼では高いr値を示している。し
かし、C量が高くはずれたS鋼、Si量が高くはずれた
T鋼及びP量が高くはずれたU鋼では、r値が本発明で
目標とする値には達していない。一方、V鋼は、S量が
高くはずれたため熱間割れを起こした。
Example 4 Steels having various compositions shown in Table 5 were taken out from a converter and continuously cast into slabs. After heating these slabs at 1160 ° C, A
r 3 points {= 916-509C (wt%) + 27Si (w
t%)-64 Mn (wt%) (° C)} or higher, the finish hot rolling was finished, and the roll was wound at 660 ° C to obtain a 3 mm hot rolled sheet. After pickling, a cold rolled sheet of 0.7 mm with a reduction rate of 77% was heated at a heating rate of 10 ° C./s up to 600 ° C. in a heating zone of a hot dip galvanizing line, and subsequently 100 ° C. / After heating at a heating rate of s, final annealing at 850 ° C., hot dip galvanizing, alloying except M steel, and 1% temper rolling, and then Example 1 The material was evaluated in the same manner as in. The results are summarized in Table 6. L, M, according to the method of the invention
N, O, P, Q and R steels show high r values. However, the r value does not reach the target value in the present invention in the S steel with a high C content, the T steel with a high Si content, and the U steel with a high P content. On the other hand, V steel caused hot cracking because the S content was too high.

【0026】[0026]

【表5】 [Table 5]

【0027】[0027]

【表6】 [Table 6]

【0028】[0028]

【発明の効果】本発明は、冷延鋼板の連続焼鈍における
加熱過程での、または溶融亜鉛めっきラインの再結晶焼
鈍における加熱過程での加熱速度を制御することによ
り、深絞り性の優れた冷延鋼板及び溶融亜鉛めっき鋼板
の製造方法を明らかにしたものである。この発明により
従来の連続焼鈍または溶融亜鉛めっき工程では不可能で
あった、深絞り性に影響を与える集合組織を制御するこ
とが可能となり、深絞り性の優れた冷延鋼板及び溶融亜
鉛めっき鋼板を提供することができる。
INDUSTRIAL APPLICABILITY The present invention controls a heating rate in a heating process in continuous annealing of a cold-rolled steel sheet or in a heating process in recrystallization annealing of a hot-dip galvanizing line to obtain a cold drawn steel having excellent deep drawability. The method for producing a rolled steel sheet and a galvanized steel sheet is clarified. According to the present invention, it is possible to control the texture that affects the deep drawability, which was impossible in the conventional continuous annealing or hot dip galvanizing process, and the cold-rolled steel sheet and hot-dip galvanized steel sheet having excellent deep drawability can be controlled. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に至った連続焼鈍の実験におけるヒート
サイクルを示す図である。
FIG. 1 is a diagram showing a heat cycle in an experiment of continuous annealing that has led to the present invention.

【図2】連続焼鈍での急速加熱を開始する温度域の本発
明における範囲と冷延鋼板のr値を示す図である。
FIG. 2 is a diagram showing a range of a temperature range in the present invention at which rapid heating in continuous annealing is started and an r value of a cold rolled steel sheet.

【図3】本発明に至った溶融亜鉛めっきの実験における
ヒートサイクルを示す図である。
FIG. 3 is a diagram showing a heat cycle in an experiment of hot dip galvanizing according to the present invention.

【図4】再結晶焼鈍での急速加熱を開始する温度域の本
発明における範囲と合金化溶融亜鉛めっき鋼板のr値を
示す図である。
FIG. 4 is a diagram showing a range of a temperature range in the present invention for starting rapid heating in recrystallization annealing and an r value of a galvannealed steel sheet.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】C :0.001〜0.01wt% Si:0.01〜1wt% Mn:0.05〜1.5wt% P :0.1wt%以下 S :0.015wt%以下 Al:0.005〜0.1wt% N :0.005wt%以下 残部Fe及び不可避的不純物元素からなる鋼を連続鋳造
にてスラブとした後再加熱あるいは鋳造後直ちにAr3
変態点以上の温度で仕上熱延を終了して、600〜80
0℃の温度域で巻取り、酸洗後通常の方法で冷間圧延を
施した後、連続焼鈍で常温からT1 :400〜700℃
の温度範囲までは100℃/s以下の加熱速度で加熱
し、続いて100〜3000℃/sの加熱速度でT2
750〜910℃の温度域まで昇温した後、直ちにある
いは所定時間保持後室温まで冷却し、さらに調質圧延を
行うことを特徴とする深絞り性の優れた冷延鋼板の製造
方法。
1. C: 0.001 to 0.01 wt% Si: 0.01 to 1 wt% Mn: 0.05 to 1.5 wt% P: 0.1 wt% or less S: 0.015 wt% or less Al: 0 0.005 to 0.1 wt% N: 0.005 wt% or less Steel made of the balance Fe and unavoidable impurity elements is continuously cast into a slab and then reheated or immediately after casting, Ar 3
Finish hot rolling at a temperature above the transformation point to 600-80
It is wound in a temperature range of 0 ° C., pickled, cold-rolled by a usual method, and then continuously annealed from room temperature to T 1 : 400 to 700 ° C.
Until the temperature range 100 ° C. / s were heated by the following heating rate, followed by 100 to 3,000 ° C. / s heating rate T 2:
A method for producing a cold-rolled steel sheet having excellent deep drawability, which comprises heating to a temperature range of 750 to 910 ° C, immediately or after holding for a predetermined time, cooling to room temperature, and further temper rolling.
【請求項2】 請求項1記載の鋼成分に加えてさらに、
Ti,Nb,Vのうち1種以上を合計で0.005〜
0.1wt%含むことを特徴とする請求項1記載の深絞
り性の優れた冷延鋼板の製造方法。
2. The steel composition according to claim 1, further comprising:
A total of one or more of Ti, Nb, and V is 0.005-
The method for producing a cold-rolled steel sheet having excellent deep drawability according to claim 1, wherein the cold-rolled steel sheet contains 0.1 wt%.
【請求項3】 請求項1または2記載の鋼成分に加えて
さらに、Bを0.0005〜0.005wt%含むこと
を特徴とする請求項1または2記載の深絞り性の優れた
冷延鋼板の製造方法。
3. Cold rolling with excellent deep drawability according to claim 1 or 2, further comprising 0.0005 to 0.005 wt% of B in addition to the steel components described in claim 1 or 2. Steel plate manufacturing method.
【請求項4】 T1 温度で30秒以下保持することを特
徴とする請求項1〜3のいずれか1項に記載の深絞り性
の優れた冷延鋼板の製造方法。
4. The method for producing a cold-rolled steel sheet having excellent deep drawability according to claim 1, wherein the T 1 temperature is maintained for 30 seconds or less.
【請求項5】C :0.001〜0.01wt% Si:0.01〜1wt% Mn:0.05〜1.5wt% P :0.1wt%以下 S :0.015wt%以下 Al:0.005〜0.1wt% N :0.005wt%以下 残部Fe及び不可避的不純物元素からなる鋼を連続鋳造
にてスラブとした後再加熱あるいは鋳造後直ちにAr3
変態点以上の温度で仕上熱延を終了して、600〜80
0℃の温度域で巻取り、酸洗後通常の方法で冷間圧延を
施した後、再結晶焼鈍で常温からT1 :400〜700
℃の温度範囲までは100℃/s以下の加熱速度で加熱
し、続いて100〜3000℃/sの加熱速度でT2
750〜910℃の温度域まで昇温した後、直ちにある
いは所定時間保持後溶融亜鉛めっきを行ってから室温ま
で冷却し、続いて調質圧延を行うことを特徴とする深絞
り性の優れた溶融亜鉛めっき鋼板の製造方法。
5. C: 0.001 to 0.01 wt% Si: 0.01 to 1 wt% Mn: 0.05 to 1.5 wt% P: 0.1 wt% or less S: 0.015 wt% or less Al: 0 0.005 to 0.1 wt% N: 0.005 wt% or less Steel made of the balance Fe and unavoidable impurity elements is continuously cast into a slab and then reheated or immediately after casting, Ar 3
Finish hot rolling at a temperature above the transformation point to 600-80
After winding in a temperature range of 0 ° C., pickling, cold rolling in a usual method, and then recrystallization annealing from room temperature to T 1 : 400 to 700.
Heating up to a temperature range of 100 ° C. is performed at a heating rate of 100 ° C./s or less, and then T 2 :
Immediately or after holding for a predetermined time, hot-dip galvanizing is performed after cooling to a temperature range of 750 to 910 ° C., cooling is performed to room temperature, and then temper rolling is performed, followed by melting with excellent deep drawability. Manufacturing method of galvanized steel sheet.
【請求項6】 請求項5記載の鋼成分に加えてさらに、
Ti,Nb,Vのうち1種以上を合計で0.005〜
0.1wt%含むことを特徴とする請求項5記載の深絞
り性の優れた溶融亜鉛めっき鋼板の製造方法。
6. The steel composition according to claim 5, further comprising:
A total of one or more of Ti, Nb, and V is 0.005-
The method for producing a hot-dip galvanized steel sheet having excellent deep drawability according to claim 5, characterized in that 0.1 wt% is contained.
【請求項7】 請求項5または6記載の鋼成分に加えて
さらに、Bを0.0005〜0.005wt%含むこと
を特徴とする請求項5または6記載の深絞り性の優れた
溶融亜鉛めっき鋼板の製造方法。
7. A molten zinc having excellent deep drawability according to claim 5 or 6, further containing 0.0005 to 0.005 wt% of B in addition to the steel components according to claim 5 or 6. Manufacturing method of plated steel sheet.
【請求項8】 T1 温度で30秒以下保持することを特
徴とする請求項5〜7のいずれか1項に記載の深絞り性
の優れた溶融亜鉛めっき鋼板の製造方法。
8. The method for producing a hot-dip galvanized steel sheet having excellent deep drawability according to claim 5, wherein the T 1 temperature is maintained for 30 seconds or less.
【請求項9】 溶融亜鉛めっき後、さらに合金化処理を
行ってから室温まで冷却することを特徴とする請求項5
〜8のいずれか1項に記載の深絞り性の優れた溶融亜鉛
めっき鋼板の製造方法。
9. The hot-dip galvanized product is further alloyed and then cooled to room temperature.
9. A method for producing a hot-dip galvanized steel sheet having excellent deep drawability according to any one of items 1 to 8.
JP28205394A 1994-10-21 1994-11-16 Production of cold rolled steel sheet excellent in deep drawability and galvanized steel sheet Withdrawn JPH08170123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28205394A JPH08170123A (en) 1994-10-21 1994-11-16 Production of cold rolled steel sheet excellent in deep drawability and galvanized steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-257065 1994-10-21
JP25706594 1994-10-21
JP28205394A JPH08170123A (en) 1994-10-21 1994-11-16 Production of cold rolled steel sheet excellent in deep drawability and galvanized steel sheet

Publications (1)

Publication Number Publication Date
JPH08170123A true JPH08170123A (en) 1996-07-02

Family

ID=26543036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28205394A Withdrawn JPH08170123A (en) 1994-10-21 1994-11-16 Production of cold rolled steel sheet excellent in deep drawability and galvanized steel sheet

Country Status (1)

Country Link
JP (1) JPH08170123A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060591A (en) * 1996-08-12 1998-03-03 Nkk Corp Galvanized steel sheet for working free from buckling wrinkly surface defect and its production
KR100372731B1 (en) * 1998-12-29 2003-04-23 주식회사 포스코 Method of manufacturing grad high strength structual steel sheet by hot direct rolling
CN109097689A (en) * 2018-09-10 2018-12-28 武汉钢铁有限公司 A kind of automobile exterior panel with high-grade surface topography electrogalvanizing spy's ultra-deep punching and its production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060591A (en) * 1996-08-12 1998-03-03 Nkk Corp Galvanized steel sheet for working free from buckling wrinkly surface defect and its production
KR100372731B1 (en) * 1998-12-29 2003-04-23 주식회사 포스코 Method of manufacturing grad high strength structual steel sheet by hot direct rolling
CN109097689A (en) * 2018-09-10 2018-12-28 武汉钢铁有限公司 A kind of automobile exterior panel with high-grade surface topography electrogalvanizing spy's ultra-deep punching and its production method

Similar Documents

Publication Publication Date Title
JP2003221623A (en) Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet
JPH0693340A (en) Method and equipment for manufacturing high strength galvannealed steel sheet having stretch flanging formability
JP7239685B2 (en) Hot-rolled steel sheet with high hole expansion ratio and method for producing the same
JP2003013177A (en) Hot-dip galvanized sheet steel with high ductility superior in press formability and strain aging hardening characteristics, and manufacturing method thereor
JPS5857492B2 (en) Manufacturing method of high-strength cold-rolled steel sheet for automobiles
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JPH0123530B2 (en)
JP2761095B2 (en) Method for producing high strength galvanized steel sheet with excellent bending workability
WO2004061137A1 (en) Alloyed-molten-zinc-plated steel sheet with excellent processability and high strength and process for producing the same
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP2002012920A (en) Method for producing thin steel sheet superior in cold aging resistance, workability, and hardenability by coating/baking
JP3521851B2 (en) Manufacturing method of high tensile high ductility galvanized steel sheet
JPH02194126A (en) Manufacture of steel sheet having baking hardenability
JPH08170123A (en) Production of cold rolled steel sheet excellent in deep drawability and galvanized steel sheet
JPH06192727A (en) Production of aluminum killed cold rolled steel sheet for enameling
JP3911972B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet
JP2003193189A (en) High tensile strength galvanized steel sheet with composite structure having excellent deep drawability and production method therefor
JPH04173946A (en) Manufacture of high-ductility and high strength galvannealed steel sheet
JPH0559970B2 (en)
KR20140066593A (en) Trip steel sheet with excellent galvanizing property and method of manufacturing the steel sheet
JPH0776376B2 (en) Method for manufacturing bake hardenable steel sheet
JP3613139B2 (en) Method for producing hot-dip galvanized steel sheet
JP3376882B2 (en) Manufacturing method of high tensile alloyed hot-dip galvanized steel sheet with excellent bendability
JP3329871B2 (en) High-tensile steel sheet for press working and method for producing the same
JP2003013176A (en) High-ductility cold-rolled steel sheet superior in press formability and strain aging hardening characterisitics, and manufacturing method therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020205