JPH0699759B2 - Manufacturing method of cold-rolled steel sheet for deep drawing - Google Patents

Manufacturing method of cold-rolled steel sheet for deep drawing

Info

Publication number
JPH0699759B2
JPH0699759B2 JP14611287A JP14611287A JPH0699759B2 JP H0699759 B2 JPH0699759 B2 JP H0699759B2 JP 14611287 A JP14611287 A JP 14611287A JP 14611287 A JP14611287 A JP 14611287A JP H0699759 B2 JPH0699759 B2 JP H0699759B2
Authority
JP
Japan
Prior art keywords
steel
temperature
less
cold
deep drawing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14611287A
Other languages
Japanese (ja)
Other versions
JPS63310923A (en
Inventor
直光 水井
篤樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14611287A priority Critical patent/JPH0699759B2/en
Publication of JPS63310923A publication Critical patent/JPS63310923A/en
Publication of JPH0699759B2 publication Critical patent/JPH0699759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐2次加工脆性に優れた深絞り用冷延鋼板の
製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a cold-rolled steel sheet for deep drawing which is excellent in secondary work embrittlement resistance.

(従来の技術) 従来、深絞り用冷延鋼板は、熱延工程において低温巻取
りされた低炭素Alキルド鋼を箱焼鈍して製造されてい
た。ところが近年、深絞り用冷延鋼板の製造にも生産性
向上のために、連続焼鈍が広く用いられるようになり、
それに伴って、従来材の低炭素Alキルド鋼では、必要な
材料特性が容易には得られないという問題が生じてき
た。このような問題に対処すべく、これまでにも、極低
炭素鋼にTiやNbのような炭窒化物形成元素を添加した材
料がいくつか提案されている。
(Prior Art) Conventionally, a cold-rolled steel sheet for deep drawing has been manufactured by box-annealing a low-carbon Al-killed steel coiled at a low temperature in a hot rolling step. However, in recent years, continuous annealing has become widely used for the production of cold-rolled steel sheets for deep drawing in order to improve productivity,
Along with that, the conventional low-carbon Al-killed steel has a problem that required material properties cannot be easily obtained. In order to deal with such a problem, some materials in which carbonitride forming elements such as Ti and Nb are added to ultra-low carbon steel have been proposed so far.

例えば、特公昭44−18066号公報にはTi添加深絞り用冷
延鋼板の製造法が開示されている。これは、C:0.001〜
0.020%としたうえでTi:0.2〜0.5%、且つTi≧4×Cの
量のTiを添加することにより鋼中の炭素及び窒素を全て
炭窒化物として固定した、いわゆるインタースティシャ
ル・フリー(Interstitial-free)鋼に関するもので、
常温での歪非時効性の深絞り用冷延鋼板が安定して製造
できる。その反面、炭素及び窒素を全て炭窒化物として
固定してしまうため固溶炭素による結晶粒界の強化効果
がなく、2次加工脆性を生じ易くなるという難点があ
る。
For example, Japanese Patent Publication No. 44-18066 discloses a method for manufacturing a cold-rolled steel sheet for Ti-added deep drawing. This is C: 0.001 ~
In addition to 0.020%, Ti: 0.2-0.5% and Ti ≥ 4 x C was added to Ti to fix all carbon and nitrogen in the steel as carbonitride, a so-called interstitial free ( Interstitial-free) about steel,
Strain-free cold rolled steel sheet for deep drawing that can be stably manufactured at room temperature. On the other hand, since all carbon and nitrogen are fixed as carbonitrides, there is no effect of strengthening the crystal grain boundaries by the solute carbon, and secondary working brittleness is likely to occur.

尚、2次加工脆性とは、プレス加工後、再び塑性加工を
加えた際に材料が結晶粒界で脆性破壊する現象をいう。
The secondary working brittleness refers to a phenomenon in which the material undergoes brittle fracture at the grain boundaries when the plastic working is applied again after the press working.

このような2次加工脆性を改善するものとして、特開昭
61−246344号公報では、鋼中のSを0.003重量%以下と
することによりインタースティシャル・フリー系のTi添
加鋼においも、固溶炭素を残存させることができ、耐2
次加工脆性に優れた深絞り用冷延鋼板を製造できること
が開示されている。しかし、上記のような低S鋼を製造
するには、製鋼工程で強力な脱硫処理を行う必要があ
り、製造コストの上昇を招く。
As a method for improving such secondary working brittleness, Japanese Patent Laid-Open No.
In Japanese Patent Laid-Open No. 61-246344, by setting S in the steel to 0.003% by weight or less, it is possible to leave the solute carbon in the interstitial-free Ti-added steel and to improve the resistance to 2%.
It is disclosed that a cold-rolled steel sheet for deep drawing which is excellent in subsequent work brittleness can be manufactured. However, in order to manufacture the above-described low S steel, it is necessary to perform a strong desulfurization treatment in the steel manufacturing process, which causes an increase in manufacturing cost.

(発明が解決しようとする問題点) 従って、本発明の目的とするところは、極低炭素のイン
タースティシャル・フリー鋼を用いて、耐2次加工脆性
に優れた深絞り用冷延鋼板を安価に製造する方法を提供
することにある。
(Problems to be Solved by the Invention) Therefore, an object of the present invention is to provide a cold-rolled steel sheet for deep drawing which is excellent in secondary work embrittlement resistance by using ultra low carbon interstitial free steel. It is to provide a method of manufacturing at low cost.

(問題点を解決するための手段) 発明者らは、極低炭素鋼の連続焼鈍後の機械的性質に及
ぼす鋼の組成および製造条件について詳細に調査を行っ
た結果、以下の知見を得た。
(Means for Solving Problems) As a result of detailed investigations on the composition of the steel and the manufacturing conditions that affect the mechanical properties of the ultra-low carbon steel after continuous annealing, the inventors obtained the following findings. .

極低炭素鋼にTiとZrを複合添加すると、Zrの方がN、
S、Cとの結合力が強いため、まずZrの窒化物、硫化
物、炭化物の順で析出する。Zrが全て析出物として固定
された後、Tiの窒化物、硫化物、炭化物の順で析出す
る。
When Ti and Zr are added to ultra low carbon steel, Zr is more N and
Since the bonding strength with S and C is strong, first, Zr nitride, sulfide, and carbide are deposited in this order. After all Zr is fixed as a precipitate, Ti nitride, sulfide, and carbide are deposited in this order.

ZrCはZrSを、またTiCはTiSを核として析出し易く、硫
化物が多くなるとZrCおよびTiCの見かけの溶解度積は小
さくなる。
ZrC easily precipitates with ZrS and TiC with TiS as nuclei, and the apparent solubility product of ZrC and TiC becomes smaller as the amount of sulfide increases.

しかしTiCがTiS以外の硫化物を核に析出することは少
ない。
However, TiC rarely deposits sulfides other than TiS in the nucleus.

本発明者らは、このような知見をもとに種々検討を続け
たところ、極低炭素鋼に窒化物および硫化物を形成する
に必要なだけの微量のZrを添加してSを固定し、更にC
を炭化物として固定するに十分なTiを添加すると、TiC
の見かけの溶解度積はZrを添加しない場合に比較して大
きく、そのため、このようにZrとTiの添加量を調整した
鋼を素材とすると、鋼板中に固溶Cが残存する深絞り用
Ti添加冷延鋼板を連続焼鈍法によってでも製造できるこ
とを見出し、本発明を完成した。
The inventors of the present invention continued various studies based on such findings, and as a result, a very small amount of Zr necessary for forming nitrides and sulfides was added to ultra-low carbon steel to fix S. , Further C
When Ti is added enough to fix
The apparent solubility product of is larger than that when Zr is not added. Therefore, when a steel with the added amounts of Zr and Ti adjusted in this way is used as the material, for deep drawing where solid solution C remains in the steel sheet.
The present invention has been completed by finding that a Ti-added cold-rolled steel sheet can also be manufactured by a continuous annealing method.

よってここに、本発明は、鋼中にN、Sを窒化物および
硫化物として固定するのに必要なだけの微量なZrと、C
を炭化物として固定するに十分なTiを添加した極低炭素
鋼を鋳片となした後、熱間圧延・冷間圧延・連続焼鈍を
行うことにより、耐2次加工脆性に優れた深絞り用冷延
鋼板を製造する方法を提供するものである。
Therefore, in the present invention, the trace amount of Zr and C necessary for fixing N and S in the steel as nitrides and sulfides, and C
For deep drawing with excellent secondary work embrittlement resistance by forming hot-rolled, cold-rolled, and continuous-annealed steel after forming ultra-low carbon steel with Ti added enough to fix as a carbide A method for manufacturing a cold rolled steel sheet is provided.

具体的には、本発明の要旨は下記の深絞り用冷延鋼板の
製造方法にある。
Specifically, the gist of the present invention resides in the following method for manufacturing a cold-rolled steel sheet for deep drawing.

重量%で、 C:0.0050%以下、Mn:0.001〜0.5%、 S:0.02%以下、N:0.0070%以下、 酸可溶Al:0.1%以下、 および酸化物として含まれるものを除いて、Zr:0.005〜
0.07%、Ti:0.002〜0.1%を含有し、 残部Feおよび不可避的不純物 から成り、且つ、 91×(N/14+S/32)−0.01≦Zr≦91 ×(N/14+S/32)+0.01、 4×C−0.005≦Ti≦4×C+0.08 の両式を満足する鋼を、1000℃以上の温度で均熱して、
仕上温度Ar3変態点以上で熱間圧延を行い、次いで720℃
以下の温度で巻取り、その後圧下率60〜95%で冷間圧延
し、さらに再結晶温度以上Ac3変態点以下の温度域に加
熱して連続焼鈍することを特徴とする深絞り用冷延鋼板
の製造方法。
% By weight, C: 0.0050% or less, Mn: 0.001 to 0.5%, S: 0.02% or less, N: 0.0070% or less, acid-soluble Al: 0.1% or less, and Zr except those contained as oxides. : 0.005 ~
0.07%, Ti: 0.002 to 0.1%, balance Fe and unavoidable impurities, 91 × (N / 14 + S / 32) −0.01 ≦ Zr ≦ 91 × (N / 14 + S / 32) +0.01 , 4 × C−0.005 ≦ Ti ≦ 4 × C + 0.08 Steel satisfying both formulas is soaked at a temperature of 1000 ° C. or higher,
Finishing temperature Hot rolling is performed at Ar 3 transformation point or higher, then 720 ℃
Cold rolling for deep drawing characterized by winding at the following temperature, then cold rolling at a rolling reduction of 60 to 95%, further heating in a temperature range not lower than the recrystallization temperature and not higher than the Ac 3 transformation point and continuously annealed. Steel plate manufacturing method.

尚、上記式中の元素記号はその元素の含有量(重量%)
を示す。
The element symbol in the above formula is the content (% by weight) of that element.
Indicates.

本発明の対象鋼としては、上記成分の外に更に0.02%を
超え0.20%までのPを含むものもある。Pを含む鋼を対
象とすれば、耐2次加工性に優れ、かつ高強度の深絞り
用冷延鋼板が得られる。
Some of the steels of the present invention include P in an amount of more than 0.02% and up to 0.20% in addition to the above components. When the steel containing P is targeted, a cold-rolled steel sheet for deep drawing having excellent secondary workability and high strength can be obtained.

熱間圧延に供する鋼は、一般的には連続鋳造により製造
されたスラブであるが、造塊法により製造されたインゴ
ットを分塊圧延した鋼片でも良く、特に制限はない。
The steel to be subjected to hot rolling is generally a slab produced by continuous casting, but may be a slab obtained by slab-rolling an ingot produced by the ingot-making method, and there is no particular limitation.

熱間圧延後の巻取から冷間圧延工程の間には、酸洗など
の脱スケールの如き通常の付加的工程が当然含まれる。
Naturally, additional steps such as descaling such as pickling are naturally included between the winding after the hot rolling and the cold rolling step.

連続焼鈍は、専用の連続焼鈍設備によるものだけではな
く、連続溶融Znめっき等の焼鈍ラインも使用できる。
The continuous annealing is not limited to the one using a dedicated continuous annealing facility, and an annealing line such as continuous hot dip Zn plating can also be used.

(作用) 次に本発明における鋼板の成分を前記のように限定する
理由を説明する。なお、本明細書において「%」は特に
断りがない限り、「重量%」である。
(Operation) Next, the reason for limiting the components of the steel sheet in the present invention as described above will be described. In the present specification, “%” is “% by weight” unless otherwise specified.

C:C含有量を適正範囲に抑えることは極めて重要であ
る。その含有量が0.0050%を超えると、Tiの添加量を多
くしなければならず、製造コストの上昇を招くだけでな
く、再結晶温度を著しく高める。又このような鋼を低温
で焼鈍すると、深絞り性に好ましい再結晶集合組織が発
達しない。好ましくは、0.0020%以下である。
C: It is extremely important to keep the C content within an appropriate range. If its content exceeds 0.0050%, the addition amount of Ti must be increased, which not only causes an increase in manufacturing cost but also remarkably raises the recrystallization temperature. Further, when such a steel is annealed at a low temperature, a recrystallization texture suitable for deep drawability does not develop. It is preferably 0.0020% or less.

Mn:MnはSと結合してMnSを形成し、Ti又はZrにより固定
できなかったSを、MnSとして固定するために添加する
もので、ZrやTi添加量が少ない場合に有効に作用し、鋼
の熱間脆性を防止するに有効な元素であり、0.001%以
上含有させるのが好ましい。しかし、0.5%を超えて含
有すると、固溶Mnによる強化が生じ鋼が硬質化する。
Mn: Mn is combined with S to form MnS, and S that could not be fixed by Ti or Zr is added to fix as MnS. It works effectively when the added amount of Zr or Ti is small, It is an element effective in preventing hot brittleness of steel, and it is preferable to contain 0.001% or more. However, if the content exceeds 0.5%, strengthening by solid solution Mn occurs and the steel becomes hard.

P:Pは鋼中に不可避不純物として含まれる場合と、強化
元素として積極的に添加される場合がある。その含有量
は所望の鋼板の強度に応じて適正範囲に調整する。不可
避不純物としてのPは、通常の冷延鋼板と同レベルの0.
020%以下である。強化元素として積極的に添加する場
合は、その含有量は0.02%を超え0.20%以下とする。0.
02%以下では強度向上効果は小さく、0.20%を超えて含
有すると鋼が脆くなる。
P: P may be contained in steel as an unavoidable impurity, or may be positively added as a strengthening element. The content is adjusted within an appropriate range according to the desired strength of the steel sheet. P as an unavoidable impurity is 0, which is the same level as ordinary cold-rolled steel sheets.
It is 020% or less. When it is positively added as a strengthening element, its content is more than 0.02% and 0.20% or less. 0.
If it is less than 02%, the effect of improving the strength is small, and if it exceeds 0.20%, the steel becomes brittle.

第1図は、P含有量と引張強度及び脆性遷移温度との関
係を示したものである。図中の符号は、後述する実施例
1で得られた鋼板の鋼種No.である。同図に明らかなよ
うにPを0.02%を超えて含有させても、遷移温度をさほ
ど上げることなく30Kgf/mm2以上の高強度とすることが
できる。
FIG. 1 shows the relationship between the P content and the tensile strength and brittle transition temperature. Reference numerals in the figure are steel type Nos. Of steel sheets obtained in Example 1 described later. As is clear from the figure, even if P is contained in excess of 0.02%, it is possible to obtain a high strength of 30 Kgf / mm 2 or more without raising the transition temperature so much.

S:少なければ少ないほど好ましい。S含有量の増加はZr
の添加量の増大を招くので、0.02%以下とする。好まし
くは0.005%以下である。
S: The smaller, the better. Increase of S content is Zr
0.02% or less because it causes an increase in the addition amount of. It is preferably 0.005% or less.

N:Sと同じく少ないほど好ましい。N含有量の増加はZr
の添加量の増大を招くので、0.0070%以下とする。好ま
しくは0.0020%以下である。
Like N: S, the smaller the better. Increase of N content is Zr
However, the amount added is 0.0070% or less. It is preferably 0.0020% or less.

酸可溶Al:溶鋼にZrおよびTiを添加するのに先だって、
脱酸調整のために鋼に添加されるものである。よって、
少しでも鋼中に含まれていれば、脱酸が十分に行われた
ことを示している。しかし、0.1%を超えて含有される
と鋼が硬質化し、延性が劣化する。
Acid Soluble Al: Prior to adding Zr and Ti to molten steel,
It is added to steel for adjusting deoxidation. Therefore,
If it is contained in the steel even a little, it indicates that the deoxidation was sufficiently performed. However, if the content exceeds 0.1%, the steel becomes hard and the ductility deteriorates.

Zr:Zrは後述するTiとともに適正範囲で複合添加する必
要がある。Zrは酸化物として鋼中に含まれるものを除い
て、0.005〜0.07%で且つ91×(N/14+S/32)−0.01≦Z
r≦91×(N/14+S/32)+0.01の範囲で添加させなけれ
ばならない。なぜならば、0.005%未満又は91×(N/14
+S/32)−0.01%未満ではSがZrSとして十分固定され
ない。一方、0.07%を超えるか又は91×(N/14+S/32)
+0.01超えではZrCが形成され、これがTiCの析出核とな
るため、TiCの析出が容易になり、冷延鋼板中に固溶炭
素が残らなくなり、耐2次加工脆性が確保できない。
Zr: Zr must be added together with Ti described below in an appropriate range. Zr is 0.005 to 0.07% and 91 × (N / 14 + S / 32) −0.01 ≦ Z, excluding those contained in steel as oxides.
It must be added within the range of r ≦ 91 × (N / 14 + S / 32) +0.01. Because less than 0.005% or 91 x (N / 14
If less than + S / 32) -0.01%, S is not sufficiently fixed as ZrS. On the other hand, it exceeds 0.07% or 91 x (N / 14 + S / 32)
If it exceeds +0.01, ZrC is formed, and this becomes a precipitation nucleus of TiC, so that precipitation of TiC is facilitated, solid solution carbon does not remain in the cold rolled steel sheet, and secondary work embrittlement resistance cannot be secured.

Ti:Zrと同様酸化物として鋼中に含まれるものを除い
て、0.002〜0.1%で且つ4×C−0.005≦Ti≦4×C+
0.08の範囲で添加させなければならない。なぜならば、
0.002%未満又は4×C−0.005未満では、鋼中に固溶炭
素が多く残りすぎ、常温歪時効を生じ易くする。一方、
0.1%を超えるか又は4×C+0.08%超えでは、TiCの析
出が促進され、冷延鋼板中に固溶炭素が残らなくなり、
耐2次加工脆性が確保できなくなる。
Similar to Ti: Zr, 0.002 to 0.1% and 4 × C−0.005 ≦ Ti ≦ 4 × C +, except for oxides contained in steel.
It must be added in the range of 0.08. because,
If it is less than 0.002% or less than 4 × C-0.005, a large amount of solute carbon remains in the steel, which tends to cause room temperature strain aging. on the other hand,
If it exceeds 0.1% or exceeds 4 × C + 0.08%, precipitation of TiC is promoted, and solid solution carbon does not remain in the cold rolled steel sheet,
Secondary processing brittleness resistance cannot be secured.

第2図は前記Zr含有量とその関係式におけるN含有量及
びS含有量から決まるZr含有量の領域をグラフで示すも
のである。図中破線はS:0.004%の場合、実線はS:0.008
%の場合を示している。第3図は前記Ti含有量とその関
係式におけるC含有量から決まるTi含有量の領域をグラ
フで示すものである。第4図はC:0.0025%、N:0.0020
%、S:0.0040%のときに前記関係式で決まるZr及びTi含
有量の領域をグラフで示すものである。
FIG. 2 is a graph showing the Zr content and the Zr content region determined by the N content and the S content in the relational expression. In the figure, the broken line is S: 0.004%, the solid line is S: 0.008%.
% Is shown. FIG. 3 is a graph showing the region of Ti content determined from the Ti content and the C content in the relational expression. Fig. 4 shows C: 0.0025%, N: 0.0020
% Is a graph showing the regions of Zr and Ti contents determined by the above relational expression when S: 0.0040%.

尚、第2図〜第4図において斜線領域が本発明に係る組
成領域である。
The hatched area in FIGS. 2 to 4 is the composition area according to the present invention.

本発明は、前述の通り深絞り用冷延鋼板を製造するのに
あたり、前記組成の鋼の例えば連続鋳造スラブを、1000
℃以上の温度で均熱して、仕上温度Ar3変態点以上で熱
間圧延を行い、次いで、720℃以下の温度で巻取り、そ
の後圧下率60〜95%で冷間圧延し、さらに再結晶温度以
上Ac3変態点の温度域に加熱して連続焼鈍することを特
徴としている。
The present invention, as described above, in producing a cold-rolled steel sheet for deep drawing, for example, a continuous casting slab of steel of the composition, 1000
Soaking at a temperature of ℃ or more, hot rolling at a finishing temperature of Ar 3 transformation point or more, then winding at a temperature of 720 ° C or less, then cold rolling at a reduction rate of 60 to 95%, and further recrystallization It is characterized in that it is heated to a temperature range above the Ac 3 transformation point and continuously annealed.

これらの製造条件範囲は、以下の理由により限定される
ものである。
The range of these manufacturing conditions is limited for the following reasons.

スラブの加熱温度: 1000℃未満ではスラブに温度むらが生じやすくなり、か
つAr3変態点以上で熱間圧延を完了することが困難とな
る。好ましいスラブ加熱温度は、1050〜1150℃である。
Slab heating temperature: If it is less than 1000 ° C, temperature unevenness is likely to occur in the slab, and it becomes difficult to complete hot rolling at the Ar 3 transformation point or higher. The preferred slab heating temperature is 1050-1150 ° C.

熱間圧延の仕上げ温度: Ar3変態点未満では、鋼はα+γ域あるいはα域で熱間
圧延されることになり、通常はγ→α変態に伴って消失
していた熱間圧延集合組織が熱延板中に残存することに
なり、絞り性に好ましい再結晶集合組織の発達を妨げ
る。
Finishing temperature of hot rolling: Below the Ar 3 transformation point, steel is hot-rolled in the α + γ region or α region, and the hot rolling texture that normally disappears with the γ → α transformation is It will remain in the hot-rolled sheet, hindering the development of a recrystallized texture that is favorable for drawability.

巻取り温度: 720℃より高温では、巻取り時にスケールが厚くなり脱
スケール性が悪くなるとともに、異常粒成長が生じ粗大
粒が発生する。好ましくは500〜600℃である。
Winding temperature: If the temperature is higher than 720 ° C, the scale becomes thick during winding, the descaling property deteriorates, and abnormal grain growth occurs and coarse grains are generated. It is preferably 500 to 600 ° C.

冷間圧延の圧下率: 60%未満では、深絞り性に好ましい再結晶集合組織が発
達しない。圧下率は高い方が好ましい。しかし、95%超
えでは逆に深絞り性が劣化する。
Cold rolling reduction: If it is less than 60%, a recrystallization texture suitable for deep drawability does not develop. It is preferable that the rolling reduction is high. However, if it exceeds 95%, the deep drawability deteriorates.

焼鈍温度: 再結晶焼鈍であるから再結晶温度以上に加熱する必要が
あることは言うまでもないが、Ac3変態点を超えて加熱
すると、α→γ→αと変態することにより、再結晶過程
で形成させた深絞り性に好ましい再結晶集合組織を消し
てしまうことになるので、Ac3変態点以下に抑える必要
がある。
Annealing temperature: Needless to say, it is necessary to heat above the recrystallization temperature because it is a recrystallization annealing, but if it is heated above the Ac 3 transformation point, it transforms in the order of α → γ → α. Since the recrystallized texture that is favorable for the deep drawability that has been formed will be erased, it is necessary to keep it below the Ac 3 transformation point.

焼鈍後の鋼板は、調質圧延その他必要な工程を経て最終
製品となる。
The annealed steel sheet becomes a final product after temper rolling and other necessary steps.

次に、本発明の実施例を示すが、これは単に本発明の例
示であって、これにより本発明が制限されるものではな
い。
Next, examples of the present invention will be shown, which are merely examples of the present invention, and do not limit the present invention.

(実施例1) 実験用真空溶解炉を用いて、第1表に示す組成を有する
鋼を溶解した。これらを、熱間鍛造により25mm厚の実験
用スラブとした。次に電気炉で1200℃に1時間加熱した
後、1150℃から930℃の温度範囲で、実験用熱間圧延機
により3パス圧延し、4.0mm厚の熱延板を得た。巻取り
のシュミレーションとして、熱間圧延後直ちに強制空冷
あるいは水スプレー冷却により、700〜500℃の温度まで
冷却し、次にその温度に保持した電気炉の中に装入して
1時間保持した後に20℃/Hrで炉冷した。次に酸洗後、
冷間圧延して0.8mm厚の冷延鋼板とした。次いで、赤外
線加熱炉にて、10℃/秒で850℃まで加熱し、その温度
で40秒保持したのち750℃まで3℃/秒で徐冷し、10℃
/秒で室温まで冷却する連続焼鈍を施し、連続焼鈍後、
伸び率1.2%で調質圧延を行った。かかる供試材からJIS
5号試験片を作り引張試験および延性−脆性遷移温度の
測定を行った。遷移温度の測定は、60mmφに打抜いた試
料を30mmφの円筒に絞り、これを開三角60゜の円錐コー
ンの上に伏せ28kgの錘を高さ2Mから落し、円筒の側壁に
入った亀裂の破面を観察し決定した。これら試験結果を
第2表に示す。
(Example 1) A steel having a composition shown in Table 1 was melted using an experimental vacuum melting furnace. These were hot-forged into experimental slabs with a thickness of 25 mm. Next, after heating at 1200 ° C. for 1 hour in an electric furnace, it was rolled in a temperature range of 1150 ° C. to 930 ° C. for 3 passes by an experimental hot rolling mill to obtain a hot rolled sheet having a thickness of 4.0 mm. As a wind-up simulation, immediately after hot rolling, forced air cooling or water spray cooling is performed to cool to a temperature of 700 to 500 ° C., and then it is placed in an electric furnace kept at that temperature and held for 1 hour. The furnace was cooled at 20 ° C / Hr. Next, after pickling,
It was cold rolled into a 0.8 mm thick cold rolled steel sheet. Next, in an infrared heating furnace, it was heated to 850 ° C at 10 ° C / sec, kept at that temperature for 40 seconds, then gradually cooled to 750 ° C at 3 ° C / sec, and then cooled to 10 ° C.
After continuous annealing, cooling to room temperature at
Temper rolling was performed at an elongation rate of 1.2%. From such test materials to JIS
A No. 5 test piece was prepared and a tensile test and a ductile-brittle transition temperature were measured. To measure the transition temperature, squeeze a sample punched to 60 mmφ into a 30 mmφ cylinder, lay it on a cone cone with an open triangle of 60 °, drop a 28 kg weight from a height of 2 M, and remove the cracks on the side wall of the cylinder. The fracture surface was observed and determined. The results of these tests are shown in Table 2.

第2表によれば、ZnおよびTiの含有量が本発明の範囲よ
り多い比較例である鋼種No.A6、A10、A11及びA12は、延
性−脆性遷移温度が−20℃以上になり、耐2次加工脆性
に劣る。また、Zr含有量或いはTi含有量が本発明の範囲
より少ない比較例である鋼種No.A1、A2、A3及びA7は
値が2以下で、且つΔr値も1以上と面内異方性が大き
く、深絞り性に劣る。又、鋼中のC含有量が本発明で定
める範囲を超えて多い比較例である鋼種No.A15は値が
低く深絞り性は悪い。
According to Table 2, the steel types No. A6, A10, A11 and A12, which are comparative examples in which the contents of Zn and Ti are more than the range of the present invention, have a ductility-brittleness transition temperature of -20 ° C or higher and Inferior in secondary processing brittleness. Further, the steel types No. A1, A2, A3 and A7, which are comparative examples in which the Zr content or the Ti content is less than the range of the present invention, have a value of 2 or less, and a Δr value of 1 or more, the in-plane anisotropy is Large and inferior in deep drawability. Further, steel type No. A15, which is a comparative example in which the C content in steel exceeds the range specified by the present invention, has a low value and poor deep drawability.

これに対して本発明の実施例に相当するものは、いずれ
の特性においても優れるものである。特に鋼種No.A16〜
A18は強化元素のPを多量に含有しているにもかかわら
ず延性−脆性遷移温度は十分に低い。
On the other hand, those corresponding to the examples of the present invention are excellent in any characteristics. Steel type No.A16-
A18 has a sufficiently low ductile-brittle transition temperature even though it contains a large amount of P, which is a strengthening element.

(実施例2) 第3表に示す組成を有する鋼を転炉において溶製し、一
部に真空脱ガス処理を施し、連続鋳造によりスラブを製
造した。これらを1200℃の温度に加熱して熱間圧延し65
0℃で巻取った後、酸洗して圧下率75%で冷間圧延し、
板厚0.8mmの冷延鋼板とした。その後760℃の温度で40秒
の保持と400℃の温度で3.5分過時効処理する連続焼鈍を
行った後、伸び率1.0%の調質圧延を施した。かかる供
試材から試験片を採取し、実施例1と同様の試験を行っ
た。これらの結果を第4表に示す。
(Example 2) Steel having a composition shown in Table 3 was melted in a converter, a part of which was subjected to vacuum degassing treatment, and a slab was manufactured by continuous casting. These are heated to a temperature of 1200 ° C and hot-rolled to 65
After winding at 0 ° C, pickling, cold rolling with a reduction rate of 75%,
A cold-rolled steel sheet with a thickness of 0.8 mm was used. After that, continuous annealing was performed at a temperature of 760 ° C. for 40 seconds and overaging at a temperature of 400 ° C. for 3.5 minutes, followed by temper rolling with an elongation of 1.0%. A test piece was sampled from the test material and the same test as in Example 1 was performed. The results are shown in Table 4.

本発明の実施例に相当する鋼種No.B1及びB2は、値は
高く且つ延性−脆性遷移温度も低い。これに対してTi無
添加の比較例である鋼種No.B3は、延性−脆性遷移温度
が−10℃と高く、本発明の目的を達成していない。
Steel types No. B1 and B2 corresponding to the examples of the present invention have a high value and a low ductile-brittle transition temperature. On the other hand, the steel type No. B3, which is a comparative example containing no Ti, has a high ductility-brittleness transition temperature of -10 ° C and does not achieve the object of the present invention.

【図面の簡単な説明】[Brief description of drawings]

第1図は、P含有量と引張強度及び遷移温度との関係を
示すグラフ、 第2図は、鋼中のN及びS含有量から決まるZr含有量の
適正範囲の例を示すグラフ、 第3図は、鋼中のC含有量から決まるTi含有量の適正範
囲を示すグラフ、および、 第4図は、鋼中のC含有量が0.0025%、N含有量が0.00
20%、S含有量が0.0040%のときのZr含有量とTi含有量
の適正範囲を示すグラフである。
FIG. 1 is a graph showing the relationship between P content and tensile strength and transition temperature. FIG. 2 is a graph showing an example of an appropriate range of Zr content determined from N and S contents in steel. The figure is a graph showing an appropriate range of Ti content determined by the C content in steel, and Fig. 4 shows that the C content in steel is 0.0025% and the N content is 0.00.
It is a graph which shows the appropriate range of Zr content and Ti content when 20% and S content are 0.0040%.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、 C:0.0050%以下、Mn:0.001〜0.5%、 S:0.02%以下、N:0.0070%以下、 酸可溶Al:0.1%以下、 および酸化物として含まれるものを除いて、Zr:0.005〜
0.07%、Ti:0.002〜0.1%を含有し、 残部Feおよび不可避的不純物 から成り、且つ、 91×(N/14+S/32)−0.01≦Zr≦91 ×(N/14+S/32)+0.01、 4×C−0.005≦Ti≦4×C+0.08 の両式を満足する鋼を、1000℃以上の温度で均熱して、
仕上温度Ar3変態点以上で熱間圧延を行い、次いで720℃
以下の温度で巻取り、その後圧下率60〜95%で冷間圧延
し、さらに再結晶温度以上Ac3変態点以下の温度域に加
熱して連続焼鈍することを特徴とする深絞り用冷延鋼板
の製造方法。
[Claim 1] C: 0.0050% or less, Mn: 0.001 to 0.5%, S: 0.02% or less, N: 0.0070% or less, acid-soluble Al: 0.1% or less, and oxides included Except Zr: 0.005 ~
0.07%, Ti: 0.002-0.1%, balance Fe and unavoidable impurities, and 91 × (N / 14 + S / 32) −0.01 ≦ Zr ≦ 91 × (N / 14 + S / 32) +0.01 , 4 × C−0.005 ≦ Ti ≦ 4 × C + 0.08 Steel satisfying both formulas is soaked at a temperature of 1000 ° C. or higher,
Finishing temperature Hot rolling is performed at Ar 3 transformation point or higher, then 720 ℃
Cold rolling for deep drawing characterized by winding at the following temperature, then cold rolling at a rolling reduction of 60 to 95%, further heating in a temperature range not lower than the recrystallization temperature and not higher than the Ac 3 transformation point and continuously annealed. Steel plate manufacturing method.
【請求項2】重量%で、 C:0.0050%以下、Mn:0.001〜0.5%、 P:0.02%越え0.20%以下、 S:0.02%以下、N:0.0070%以下、 酸可溶Al:0.1%以下、 および酸化物として含まれるものを除いて、Zr:0.005〜
0.07%、Ti:0.002〜0.1%を含有し、 残部Feおよび不可避的不純物 から成り、且つ、 91×(N/14+S/32)−0.01≦Zr≦91 ×(N/14+S/32)+0.01、 4×C−0.005≦Ti≦4×C+0.08 の両式を満足する鋼を、1000℃以上の温度で均熱して、
仕上温度Ar3変態点以上で熱間圧延を行い、次いで720℃
以下の温度で巻取り、その後圧下率60〜95%で冷間圧延
し、さらに再結晶温度以上Ac3変態点以下の温度域に加
熱して連続焼鈍することを特徴とする深絞り用冷延鋼板
の製造方法。
2. By weight%, C: 0.0050% or less, Mn: 0.001 to 0.5%, P: 0.02% or more and 0.20% or less, S: 0.02% or less, N: 0.0070% or less, acid-soluble Al: 0.1% Below, and except those included as oxides, Zr: 0.005 ~
0.07%, Ti: 0.002 to 0.1%, balance Fe and unavoidable impurities, 91 × (N / 14 + S / 32) −0.01 ≦ Zr ≦ 91 × (N / 14 + S / 32) +0.01 , 4 × C−0.005 ≦ Ti ≦ 4 × C + 0.08 Steel satisfying both formulas is soaked at a temperature of 1000 ° C. or higher,
Finishing temperature Hot rolling is performed at Ar 3 transformation point or higher, then 720 ℃
Cold rolling for deep drawing characterized by winding at the following temperature, then cold rolling at a rolling reduction of 60 to 95%, further heating in a temperature range not lower than the recrystallization temperature and not higher than the Ac 3 transformation point and continuously annealed. Steel plate manufacturing method.
JP14611287A 1987-06-11 1987-06-11 Manufacturing method of cold-rolled steel sheet for deep drawing Expired - Lifetime JPH0699759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14611287A JPH0699759B2 (en) 1987-06-11 1987-06-11 Manufacturing method of cold-rolled steel sheet for deep drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14611287A JPH0699759B2 (en) 1987-06-11 1987-06-11 Manufacturing method of cold-rolled steel sheet for deep drawing

Publications (2)

Publication Number Publication Date
JPS63310923A JPS63310923A (en) 1988-12-19
JPH0699759B2 true JPH0699759B2 (en) 1994-12-07

Family

ID=15400424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14611287A Expired - Lifetime JPH0699759B2 (en) 1987-06-11 1987-06-11 Manufacturing method of cold-rolled steel sheet for deep drawing

Country Status (1)

Country Link
JP (1) JPH0699759B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628714C1 (en) * 1996-07-08 1997-12-04 Mannesmann Ag Process for the production of precision steel tubes
CN110218946B (en) * 2019-07-17 2021-10-01 新余钢铁股份有限公司 Ultra-low carbon steel coiled plate for ultra-thin shell of oil filter and manufacturing method thereof

Also Published As

Publication number Publication date
JPS63310923A (en) 1988-12-19

Similar Documents

Publication Publication Date Title
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
JP3292671B2 (en) Hot-rolled steel strip for cold-rolled steel sheet with good deep drawability and aging resistance
US20230227930A1 (en) Ultrahigh-strength dual-phase steel and manufacturing method therefor
JPH05306430A (en) Steel sheet for galvanizing and its production
JP5145315B2 (en) Aging-resistant cold-rolled steel sheet with excellent workability and method for producing the same
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
JPH0699759B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JPH0657337A (en) Production of high strength galvannealed steel sheet excellent in formability
US11965224B2 (en) Steel sheet for can and manufacturing method thereof
JP3613139B2 (en) Method for producing hot-dip galvanized steel sheet
JP2504219B2 (en) Method for manufacturing alloyed galvanized steel sheet for drawing
JPH07103423B2 (en) Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability
JPH05171351A (en) Cold rolled steel sheet for deep drawing having non-aging characteristic and excellent in baking hardenability and its production
JPS5852430A (en) Production of zinc plated steel plate for drawing
JPH01191748A (en) Manufacture of cold rolled steel sheet for press forming excellent in material homogeneity in coil
JP3300639B2 (en) Cold rolled steel sheet excellent in workability and method for producing the same
JPH06256901A (en) High tensile strength cold rolled steel sheet for deep drawing and its production
JPH0559490A (en) High tensile strength thin steel sheet for press working and its manufacture
JP6515292B2 (en) Method of manufacturing high strength steel plate
JP2000199031A (en) Cold rolled steel sheet excellent in workability and its production
JP3261037B2 (en) Manufacturing method of cold rolled steel sheet with good aging resistance
JPH1161273A (en) Manufacture of cold-rolled steel sheet small in in-plane anisotropy and excellent in secondary working brittleness resistance
JPS63235434A (en) Manufacture of cold-rolled steel sheet for working