JPH1161273A - Manufacture of cold-rolled steel sheet small in in-plane anisotropy and excellent in secondary working brittleness resistance - Google Patents

Manufacture of cold-rolled steel sheet small in in-plane anisotropy and excellent in secondary working brittleness resistance

Info

Publication number
JPH1161273A
JPH1161273A JP22925997A JP22925997A JPH1161273A JP H1161273 A JPH1161273 A JP H1161273A JP 22925997 A JP22925997 A JP 22925997A JP 22925997 A JP22925997 A JP 22925997A JP H1161273 A JPH1161273 A JP H1161273A
Authority
JP
Japan
Prior art keywords
cold
steel sheet
steel
plane anisotropy
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22925997A
Other languages
Japanese (ja)
Other versions
JP3572883B2 (en
Inventor
Jun Haga
純 芳賀
Tokiaki Nagamichi
常昭 長道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22925997A priority Critical patent/JP3572883B2/en
Publication of JPH1161273A publication Critical patent/JPH1161273A/en
Application granted granted Critical
Publication of JP3572883B2 publication Critical patent/JP3572883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably provide the steel sheet which is small in in-plane anisotropy and excellent in secondary working brittleness resistance by hot rolling and coiling the Ti-added ultra low carbon steel, cold-rolled under the specified condition, and achieving the recrystallization annealing. SOLUTION: The steel has the composition consisting of, by weight, 0.0005-0.005% C, <=0.3% Si, 0.01-0.4% Mn, 0.01-0.05% sol Al, 0.01-0.10% Ti so as to satisfy the inequality of Ti> (48/12)C+(48/14)N+(48/32)S}, 0.0003-0.003% B, and the balance Fe with inevitable impurities. The steel is hot rolled, and coiled at <=560 deg.C. Then, the cold rolling is achieved at the draft in the range to satisfy the condition indicated by the formula at >=40 deg.C. Then, recrystallization annealing is achieved in the temperature range of >=650 deg.C to < the Ac3 transformation point. Excellent characteristics can be obtained without adding Nb or Al by optimizing the B content, the coiling temperature and the cold rolling draft.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、面内異方性が小さ
く耐二次加工脆性に優れた冷延鋼板の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cold-rolled steel sheet having a small in-plane anisotropy and excellent secondary work brittleness resistance.

【0002】[0002]

【従来の技術】自動車や家電製品に使用される冷延鋼板
には優れたプレス成形性が要求されるので、高いランク
フォード値(r値)と延性を備えることが望まれてい
る。
2. Description of the Related Art Since excellent press formability is required for cold-rolled steel sheets used for automobiles and home electric appliances, it is desired to have a high Rankford value (r value) and ductility.

【0003】特公昭44−18066号公報には、Ti
添加深絞り用冷延鋼板の製造法が開示されている。これ
は、Cを0.001〜0.020重量%、Tiを0.2
〜0.5重量%、かつ、4×C(重量%)以上含有さ
せ、鋼中の炭素と窒素を全て炭窒化物として固定した、
いわゆるIF鋼に関するものである。IF鋼には、深絞
り用冷延鋼板が安定して製造できる、常温歪み時効が生
じない、等の特徴がある。しかし、その反面、固溶炭素
が無いために結晶粒界の強度が低下して二次加工脆性が
生じたり、r値の面内異方性が大きいために絞り成形時
に、割れ、しわ、耳などの不良が発生しやすい、などの
問題がある。r値の面内異方性(△r)は、引張方向に
よるr値の不均一性を示す指標であり、Δr=(r0
90−2×r45)/2で定義される。ここで、r0 は圧
延方向、r45は圧延方向に対して45度の方向、r90
幅方向に引張試験して測定したr値を意味する。△rの
絶対値(以下、|△r|と記す)が0に近いほど面内異
方性が小さく、好ましいとされている。
[0003] JP-B-44-18066 discloses Ti
A method for producing a cold-rolled steel sheet for added deep drawing is disclosed. This means that C is 0.001 to 0.020% by weight, Ti is 0.2
0.5% by weight, and 4 × C (% by weight) or more, and carbon and nitrogen in the steel were all fixed as carbonitrides.
It relates to so-called IF steel. IF steel has such features that a cold-rolled steel sheet for deep drawing can be manufactured stably and that normal-temperature strain aging does not occur. However, on the other hand, the strength of crystal grain boundaries is reduced due to the absence of solute carbon, and secondary working embrittlement occurs. There is a problem that defects such as are likely to occur. The in-plane anisotropy of the r value (△ r) is an index indicating the non-uniformity of the r value depending on the tensile direction, and Δr = (r 0 +
r 90 −2 × r 45 ) / 2. Here, r 0 denotes a rolling direction, r 45 denotes a direction at 45 degrees to the rolling direction, and r 90 denotes an r value measured by a tensile test in the width direction. It is considered that the closer the absolute value of Δr (hereinafter referred to as | Δr |) to 0, the smaller the in-plane anisotropy and the more preferable.

【0004】特開平2−77558号公報には、面内異
方性が小さく耐2次加工脆性に優れた冷延鋼板およびそ
の製造方法が開示されている。しかしここでは面内異方
性を大きくしないためにB含有量を低く制限しており、
二次加工脆性と面内異方性の改善効果は十分ではない。
特開平5−195079号公報には、深絞り性と耐二次
加工脆性に優れた冷延鋼板の製造方法が開示されてい
る。しかしここに開示されている方法では、本発明者ら
の検討によれば、熱延後の巻取温度が高いことおよび、
冷間圧延率の制御に配慮がなされていないことにより、
面内異方性の改善効果は十分ではない。
Japanese Patent Application Laid-Open No. 2-77558 discloses a cold-rolled steel sheet having a small in-plane anisotropy and an excellent secondary work brittleness resistance, and a method for producing the same. However, here, the B content is limited to a low value in order not to increase the in-plane anisotropy.
The effects of improving the secondary working brittleness and the in-plane anisotropy are not sufficient.
Japanese Patent Application Laid-Open No. H5-195079 discloses a method for producing a cold-rolled steel sheet having excellent deep drawability and secondary work brittleness resistance. However, in the method disclosed herein, according to the study of the present inventors, the winding temperature after hot rolling is high, and
Because care has not been taken to control the cold rolling rate,
The effect of improving in-plane anisotropy is not sufficient.

【0005】特開昭63−310924号公報には、T
i−Nb−Bを複合添加した極低炭素鋼を用いる面内異
方性の小さい極薄鋼板の製造方法が、特開平5−117
758号公報には、Ti−Nb−B−Alを複合添加し
た極低炭素鋼を用いた耐二次加工脆性に優れ面内異方性
の少ない冷延薄鋼板の製造方法が開示されている。いず
れの方法も、Nb、Al等を添加することにより熱延板
を細粒にし、面内異方性を低減するものである。しか
し、NbやAlを添加することにより材料コストが高く
なるうえ、Nbを含有させると再結晶温度が上昇するた
め、良好な成形性を得るためには焼鈍温度を高くした
り、焼鈍時間を長くしたりする必要があり、熱エネルギ
ーコストや生産性を損なう。
[0005] JP-A-63-310924 discloses that T
Japanese Patent Laid-Open No. 5-117 discloses a method for producing an ultra-thin steel sheet having a small in-plane anisotropy using an ultra-low carbon steel to which i-Nb-B is added in combination.
No. 758 discloses a method for producing a cold-rolled thin steel sheet having excellent secondary work embrittlement resistance and low in-plane anisotropy using an ultra-low carbon steel to which Ti-Nb-B-Al is added in a complex manner. . In either method, the hot-rolled sheet is made into fine grains by adding Nb, Al, or the like, and the in-plane anisotropy is reduced. However, the addition of Nb or Al increases the material cost, and the addition of Nb raises the recrystallization temperature. Therefore, in order to obtain good formability, the annealing temperature must be increased or the annealing time must be increased. Or detract from thermal energy costs and productivity.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、深絞り成形性を向上させるのに有利なTi
添加極低炭素鋼を用いた、面内異方性が小さく、耐二次
加工脆性に優れた冷延鋼板、さらに詳しくは、平均r値
が1.5以上、|△r|が0.25以下、絞り成形後の
脆性遷移温度が−90℃以下である冷延鋼板を安価に安
定して製造する方法を提供することにある。
The problem to be solved by the present invention is that Ti which is advantageous for improving the deep drawing formability.
Cold rolled steel sheet using an added ultra-low carbon steel and having low in-plane anisotropy and excellent secondary work brittleness resistance. More specifically, the average r value is 1.5 or more, and | △ r | is 0.25. Hereinafter, it is an object of the present invention to provide a method for stably manufacturing a cold-rolled steel sheet having a brittle transition temperature of −90 ° C. or less after drawing.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、下記
の、面内異方性が小さく耐二次加工脆性に優れた冷延鋼
板の製造方法にある。
The gist of the present invention resides in the following method for producing a cold-rolled steel sheet having small in-plane anisotropy and excellent secondary work brittleness resistance.

【0008】重量%でC:0.0005〜0.005
%、Si:0.3%以下、Mn:0.01〜0.4%、
sol.Al:0.01〜0.05%、Ti:0.01
〜0.10%でかつ、Ti>{(48/12)C+(4
8/14)N+(48/32)S}、B:0.0003
〜0.003%を含み、残部がFeおよび不可避的不純
物よりなる鋼を熱間圧延し、560℃以下でコイルに巻
取り、40%以上で下記の式を満たす範囲の圧延率で
冷間圧延し、650℃以上Ac3変態点未満の温度範囲で
再結晶焼鈍することを特徴とする面内異方が小さく耐二
次加工脆性に優れた冷延鋼板の製造方法。
C in weight%: 0.0005 to 0.005
%, Si: 0.3% or less, Mn: 0.01 to 0.4%,
sol. Al: 0.01 to 0.05%, Ti: 0.01
~ 0.10% and Ti> {(48/12) C + (4
8/14) N + (48/32) S}, B: 0.0003
Hot rolled steel containing up to 0.003%, the balance consisting of Fe and unavoidable impurities, wound around a coil at 560 ° C or less, and cold rolled at a rolling rate of 40% or more and satisfying the following formula And a method for producing a cold-rolled steel sheet having small in-plane anisotropy and excellent secondary work brittleness resistance, wherein recrystallization annealing is performed in a temperature range of 650 ° C. or more and less than the A c3 transformation point.

【0009】[0009]

【数1】 (Equation 1)

【0010】ただし、CTは巻取温度(℃)、CRは冷
間圧延率(%)、Bは鋼中のB含有量(重量%)を表
す。
[0010] Here, CT represents the winding temperature (° C), CR represents the cold rolling reduction (%), and B represents the B content (% by weight) in the steel.

【0011】本発明者らは、Ti添加極低炭素鋼板の面
内異方性を改善するために、鋼中のB含有量および製造
条件の影響を調査した。用いた鋼は、重量%で、C:
0.0025%、Si:0.01%、Mn:0.15
%、P:0.01%、S:0.0050%、sol.A
l:0.04%、N:0.002%、Ti:0.05
%、B:0.0005〜0.0030%を含有するもの
である。この化学組成の鋼片を、900℃以上で熱間圧
延し、650℃以下の種々の温度で巻取り、得られた熱
延板を酸洗し、60〜95%の圧延率で冷間圧延し、連
続焼鈍し、引張試験してr値を測定した。
The present inventors investigated the effects of the B content in steel and the manufacturing conditions in order to improve the in-plane anisotropy of the Ti-added ultra-low carbon steel sheet. The steel used was in weight%, C:
0.0025%, Si: 0.01%, Mn: 0.15
%, P: 0.01%, S: 0.0050%, sol. A
l: 0.04%, N: 0.002%, Ti: 0.05
%, B: 0.0005 to 0.0030%. A steel slab of this chemical composition is hot-rolled at 900 ° C. or more, wound at various temperatures of 650 ° C. or less, the obtained hot-rolled sheet is pickled, and cold-rolled at a rolling rate of 60 to 95%. Then, the sample was annealed continuously, and the r value was measured by a tensile test.

【0012】図1および図2は上記の調査結果の一部を
示すもので、Bを0.0005重量%または0.003
0重量%含有する鋼板の、Δrに対する巻取温度と冷間
圧延率の関係を示す。図中の△印はΔrが0.25を超
えるもの、◇印は−0.25未満のも、○印は|△r|
が0.25以下のものを意味する。|Δr|が0.25
以下であれば、面内異方性は良好と判断される。図1に
示されているように、Δrと熱間圧延時の巻取温度と冷
間圧延率との間には相関関係があり、|△r|を小さく
するには、例えば、熱間圧延時の巻取温度が高い場合に
は冷間圧延率を高めるのがよいことがわかる。また、B
含有量が増すと冷間圧延率を低めるのがよいことがわか
る。図3および図4は、△rに対する巻取温度と冷間圧
延率の関係を示すものである。|Δr|を小さくするに
は、B含有量が増すにつれて、冷間圧延率を低めるのが
よいことがわかる。
FIG. 1 and FIG. 2 show a part of the results of the above investigation, in which B is 0.0005% by weight or 0.003% by weight.
The relationship between the winding temperature and the cold rolling reduction with respect to Δr of a steel sheet containing 0% by weight is shown. In the figure, Δ indicates that Δr exceeds 0.25, Δ indicates less than -0.25, and ○ indicates | △ r |
Means 0.25 or less. | Δr | is 0.25
If it is below, it is judged that the in-plane anisotropy is good. As shown in FIG. 1, there is a correlation between Δr, the winding temperature during hot rolling, and the cold rolling reduction. To reduce | △ r | It can be seen that when the winding temperature at the time is high, it is better to increase the cold rolling reduction. Also, B
It can be seen that it is better to lower the cold rolling reduction as the content increases. 3 and 4 show the relationship between the winding temperature and the cold rolling reduction with respect to Δr. It can be seen that to reduce | Δr |, it is better to lower the cold rolling reduction as the B content increases.

【0013】これらの現象は、製造要因の変動に応じ
て、板面内のr値が以下の様に変化していることによっ
て生じている。
[0013] These phenomena are caused by the fact that the r value in the plate surface changes as follows in accordance with the fluctuation of the manufacturing factor.

【0014】a B含有量が増すにつれてr0とr90
低下するが、r45はあまり変化しない。このため、B含
有量が増すにつれてΔrが小さくなる。これは、Bが焼
鈍中の再結晶核生成および核成長の方位選択性に影響す
るため、と推定される。
As the B content increases, r 0 and r 90 decrease but r 45 does not change much. Therefore, Δr decreases as the B content increases. This is presumably because B affects the orientation selectivity of recrystallization nucleation and nucleation during annealing.

【0015】b 巻取温度が高くなるとr45が小さくな
るためにΔrが大きくなる。これは、巻取温度が高くな
るにつれて熱延鋼板の結晶粒が粗大になるため、と推定
される。
B When the winding temperature increases, Δr increases because r 45 decreases. This is presumably because the crystal grains of the hot-rolled steel sheet become coarser as the winding temperature increases.

【0016】c 冷間圧延率を増すと、r45が大きくな
るがr0、r90はあまり変化しないので、Δrが小さく
なる。
C When the cold rolling reduction is increased, r 45 increases but r 0 and r 90 do not change much, so that Δr decreases.

【0017】B含有量、巻取温度および冷間圧延率を最
適化することにより、Nb、Al等の元素を添加しなく
ても面内異方性の小さな冷延鋼板が製造できる。また、
この冷延鋼板は、必要な量のBを含有させられるので耐
二次加工脆性対策もできる。
By optimizing the B content, the winding temperature and the cold rolling reduction, a cold-rolled steel sheet having a small in-plane anisotropy can be produced without adding elements such as Nb and Al. Also,
Since this cold-rolled steel sheet can contain a necessary amount of B, it can also take measures against secondary working brittleness.

【0018】本発明は、上記の知見等をもとにして完成
されたものである。
The present invention has been completed based on the above findings and the like.

【0019】[0019]

【発明の実施の形態】以下に、本発明の実施の形態を詳
細に述べる。なお、以下に述べる化学組成の%表示は重
量%を意味する。
Embodiments of the present invention will be described below in detail. The percentages of the chemical compositions described below mean% by weight.

【0020】鋼の化学組成 C:C含有量が0.005%を超えると、TiCが多く
なり、鋼板の深絞り性が損なわれるうえ、再結晶温度が
過度に高くなり製造時の困難さが増す。一方、0.00
05%に満たない場合には、TiC の析出が不十分とな
り固溶Cが残存してしまう。このため、C含有量の範囲
は0.0005〜0.005%とする。望ましくは0.
0015〜0.004%である。
Chemical composition of steel C: If the C content exceeds 0.005%, TiC increases, the deep drawability of the steel sheet is impaired, and the recrystallization temperature becomes excessively high, so that the difficulty in production is reduced. Increase. On the other hand, 0.00
If the content is less than 0.05%, the precipitation of TiC becomes insufficient and solid solution C remains. For this reason, the range of the C content is set to 0.0005 to 0.005%. Preferably, 0.
0015 to 0.004%.

【0021】Si:Si は、鋼板を強化する作用を有す
るので、鋼を強化する目的で含有させることができる。
鋼の強度が必要でない場合にはSiは含有させる必要が
ない。Si含有量が0.3%を超えるとスケール性の表
面欠陥が発生するおそれが増すので、含有量の上限は
0.3%とする。
Since Si: Si has an effect of strengthening a steel sheet, it can be contained for the purpose of strengthening steel.
When steel strength is not required, Si need not be contained. If the Si content exceeds 0.3%, the possibility of occurrence of scale-like surface defects increases, so the upper limit of the content is 0.3%.

【0022】Mn:不可避的不純物として含有されるS
による熱間脆性を防止する作用があるので、0.01%
以上含有させる。0.4%を超えると、鋼が硬質化して
延性が劣化し、深絞り性も損なわれる。このため、Mn
の含有量は0.01〜0.4%とする。
Mn: S contained as an unavoidable impurity
0.01%
It is contained above. If it exceeds 0.4%, the steel is hardened, the ductility is deteriorated, and the deep drawability is impaired. For this reason, Mn
Is 0.01 to 0.4%.

【0023】sol.Al:溶鋼を脱酸するために用い
られる。sol.Alの含有量が0.01%未満の場合
には脱酸効果が十分に得られず、0.05%をこえて含
有させても、その効果が飽和して不経済である。このた
め、sol.Alの含有量は0.01〜0.05%とす
る。
Sol. Al: Used for deoxidizing molten steel. sol. If the Al content is less than 0.01%, a sufficient deoxidizing effect cannot be obtained, and even if the Al content exceeds 0.05%, the effect is saturated and uneconomical. Therefore, sol. The content of Al is set to 0.01 to 0.05%.

【0024】Ti:鋼中のC、N、Sを析出固定させ、
優れた深絞り性、延性および非時効性を得るために添加
される。また、Nを析出固定することにより、添加した
Bを固溶させた状態で存在させ、Bの耐二次加工脆性改
善効果を発揮させることができる。これらの効果を得る
ために、0.01%以上で、かつ、(48/12)C%
+(48/14)N%+(48/32)S%を超える量
を含有させる。一方、0.1%を超えるとTiを含有量
させる効果が飽和するうえ、経済性を損なうので、Ti
含有量の上限は0.1%とする。
Ti: C, N, S in steel are precipitated and fixed,
It is added to obtain excellent deep drawability, ductility and non-aging property. Further, by precipitating and fixing N, the added B can be present in a solid solution state, and the effect of improving the secondary working brittleness of B can be exhibited. In order to obtain these effects, 0.01% or more and (48/12) C%
Contains more than + (48/14) N% + (48/32) S%. On the other hand, if it exceeds 0.1%, the effect of containing Ti is saturated, and the economy is impaired.
The upper limit of the content is 0.1%.

【0025】B:Bは、鋼板のr45には影響しないがで
0 とr90を低下させる作用があり、適量を含有させる
と鋼板の面内異方性を改善することができる。また、B
は、結晶粒界を強化して耐二次加工脆性を向上させる作
用もある。耐二次加工脆性を向上させるために、Bを
0.0003%以上含有させる。他方、B含有量が0.
0030%を超えると鋼板の深絞り性が著しく損なわれ
る。このため、B含有量の範囲は、0.0003〜0.
0030%とする。望ましくは0.0006〜0.00
25%である。
B: B does not affect r 45 of the steel sheet but has the effect of lowering r 0 and r 90 , and when contained in an appropriate amount, can improve the in-plane anisotropy of the steel sheet. Also, B
Has the effect of strengthening the crystal grain boundaries and improving the resistance to secondary working brittleness. B is contained in an amount of 0.0003% or more to improve the resistance to secondary working brittleness. On the other hand, when the B content is 0.
If it exceeds 0030%, the deep drawability of the steel sheet is significantly impaired. For this reason, the range of the B content is from 0.0003 to 0.1.
0030%. Desirably 0.0006 to 0.00
25%.

【0026】上記以外はFe及び不可避的不純物であ
る。不可避的不純物の内、Pは、結晶粒界に偏析して粒
界を脆くし、鋼板の耐二次加工脆性を著しく損なう。こ
のためP含有量は0.03%以下とするのがのぞまし
い。Sは、成形性を損なうので、少ないほど好ましく、
含有量が多くなると、無害化するために必要なMnおよ
びTi量が増し、コストがかさむため、0.02%以下
とするのがよい。N含有量が増すと、Nを固定するのに
必要なTiの含有量が多くなり経済性を損ない、TiN
析出物が増して延性を損なう。このため、N含有量は
0.01%以下にするのが好ましい。
Other than the above are Fe and inevitable impurities. Among the unavoidable impurities, P segregates at the crystal grain boundaries to make the grain boundaries brittle, and significantly impairs the secondary work embrittlement resistance of the steel sheet. Therefore, the P content is desirably 0.03% or less. Since S impairs the moldability, it is preferable that S is small.
When the content increases, the amount of Mn and Ti required for detoxification increases, and the cost increases. Therefore, the content is preferably set to 0.02% or less. When the N content increases, the Ti content required for fixing N increases, and the economic efficiency is impaired.
Precipitates increase and impair ductility. Therefore, the N content is preferably set to 0.01% or less.

【0027】処理条件 熱間圧延:上記範囲の化学組成の鋼片は、溶鋼を連続鋳
造法、または、鋼塊にした後分塊圧延する方法などで製
造される。鋼片は再加熱するか、連続鋳造または分塊圧
延後の高温の鋼片をそのまま、または補助加熱を施して
熱間圧延される。熱間圧延後は鋼板を巻取温度まで冷却
し、コイル状に巻取られる。
Processing conditions Hot rolling: A slab having a chemical composition within the above range is produced by continuous casting of molten steel, or a method of forming a steel ingot followed by slab rolling. The slab is re-heated, hot-rolled as it is after continuous casting or slab rolling, or hot-rolled with auxiliary heating. After hot rolling, the steel sheet is cooled to a winding temperature and wound into a coil.

【0028】冷間圧延し焼鈍した後の鋼板の|△r|を
小さくするためには、図1、2に示されているように、
熱間圧延後の巻取温度が高くなるにつれて冷間圧延率を
高くする必要がある。しかし、巻取温度が560℃を超
えると、B含有量が0.0030重量%である鋼におい
ても95%以上の冷間圧延率が必要となり、通常の圧延
では冷間圧延が困難となる。従って、巻取温度は560
℃以下にするのがよい。好ましくは500℃以下とする
のがよい。下限は特には規定しないが、巻取温度が低す
ぎると析出物が微細化して延性が損なわれるので、38
0℃以上とするのが好ましい。
In order to reduce | △ r | of the steel sheet after cold rolling and annealing, as shown in FIGS.
As the winding temperature after hot rolling increases, it is necessary to increase the cold rolling reduction. However, if the winding temperature exceeds 560 ° C., even in steel having a B content of 0.0030% by weight, a cold rolling reduction of 95% or more is required, and cold rolling becomes difficult in ordinary rolling. Therefore, the winding temperature is 560
It is good to be below ° C. Preferably, the temperature is 500 ° C. or lower. The lower limit is not particularly defined, but if the winding temperature is too low, the precipitates become finer and the ductility is impaired.
The temperature is preferably set to 0 ° C. or higher.

【0029】巻取温度以外の熱延条件は特に限定しない
が、熱延板の結晶粒を微細化し、深絞り性を向上させる
ために、仕上げ温度を(Ar3変態点+30℃)以下と
し、圧延後、γ/α変態完了温度までの冷却速度を10
℃/s以上とすることが望ましい。
The hot rolling conditions other than the winding temperature are not particularly limited. However, in order to refine the crystal grains of the hot rolled sheet and improve the deep drawability, the finishing temperature is set to (Ar3 transformation point + 30 ° C.) or lower, and the rolling is performed. Then, the cooling rate to the γ / α transformation completion temperature is increased by 10
C./s or more is desirable.

【0030】冷間圧延:面内異方性を小さくするため
に、鋼のB含有量と巻取温度に応じて適当な圧延率で冷
間圧延をおこなう必要がある。この適正な冷間圧延率の
範囲は、成形性を確保するのに必要な再結晶集合組織を
得るために40%以上必要である。さらに、|△r|を
0.25以下にするために、図1〜4より実験的に求め
られる下記式で規定される範囲内とする。
Cold rolling: In order to reduce in-plane anisotropy, it is necessary to perform cold rolling at an appropriate rolling reduction according to the B content of steel and the winding temperature. The appropriate range of the cold rolling reduction is required to be 40% or more in order to obtain a recrystallized texture necessary for securing formability. Further, in order to make | △ r | 0.25 or less, it is made to fall within the range defined by the following formula, which is experimentally obtained from FIGS.

【0031】[0031]

【数1】 (Equation 1)

【0032】ただし、CTは巻取温度(℃)、CRは冷
間圧延率(%)を表す。
Here, CT represents the winding temperature (° C.), and CR represents the cold rolling reduction (%).

【0033】焼鈍:冷間圧延された鋼板は、必要に応じ
て公知の方法に従って脱脂などの処理を施され、再結晶
焼鈍される。この際の焼鈍温度は、650℃以上Ac3
態点未満の温度範囲とする。焼鈍温度が650℃に満た
ない場合には、再結晶が完了するのに時間がかかりすぎ
る。焼鈍温度がAc3以上になると、深絞り性に好ましい
再結晶集合組織が変態により減少するので好ましくな
い。
Annealing: The cold-rolled steel sheet is subjected to a treatment such as degreasing according to a known method, if necessary, and then annealed for recrystallization. The annealing temperature at this time is in a temperature range from 650 ° C. to less than the A c3 transformation point. If the annealing temperature is lower than 650 ° C., it takes too much time to complete the recrystallization. If the annealing temperature is equal to or higher than A c3, the recrystallization texture preferable for deep drawability is undesirably reduced by transformation.

【0034】鋼板の成形性を良好に保つには、(r0°
+2r45°+r90°)/4で定義される平均r値を高く
することも必要である。鋼中のBには再結晶時の{11
1}集合組織の発達を抑制する作用がある。このため、
通常は、B含有量が高い鋼の平均r値は低くなる。ま
た、冷間圧延率が低下すると圧延集合組織の形成が弱く
なるので焼鈍後の集合組織の発達が不十分となり、鋼板
の平均r値が向上しない。しかし、冷間圧延後の焼鈍
を、{8×B(重量%)×104 +1550−10×冷
間圧延率(%)}℃を超える温度範囲で施すことによ
り、Bや冷間圧延率の影響による平均r値の低下を抑制
できる。このため、平均r値を高める場合には、焼鈍温
度を上記式で求められる温度を超える範囲とするのがよ
い。
In order to maintain good formability of the steel sheet, (r 0 °
It is also necessary to increase the average r value defined by (+ 2r 45 ° + r 90 °) / 4. B in steel has a value of
1) Has the effect of suppressing the development of texture. For this reason,
Usually, the average r-value of steels with a high B content will be low. Further, when the cold rolling reduction is reduced, the formation of the rolling texture becomes weak, so that the development of the texture after annealing becomes insufficient, and the average r value of the steel sheet does not improve. However, by performing annealing after cold rolling in a temperature range exceeding {8 × B (% by weight) × 10 4 + 1550-10 × cold rolling rate (%)} ° C., the B and the cold rolling rate can be reduced. A decrease in the average r value due to the influence can be suppressed. Therefore, when increasing the average r value, it is preferable that the annealing temperature be in a range exceeding the temperature determined by the above equation.

【0035】焼鈍手段については任意であり、連続焼鈍
法や箱焼鈍法等いずれの方法でも構わない。ただし、生
産性が高いので連続焼鈍法で行うのが望ましい。
The annealing means is optional, and any method such as a continuous annealing method or a box annealing method may be used. However, since the productivity is high, it is desirable to carry out by the continuous annealing method.

【0036】焼鈍後は、常法に従って、調質圧延を施す
のが望ましいが、調質圧延を省略しても構わない。本発
明の製造方法に従って製造される冷延鋼板は、これを母
材として電気めっきしたり、塗装鋼板にして用いること
もできる。冷延圧延後の鋼板を、公知の溶融めっき装置
に装備されている加熱炉で焼鈍して、溶融めっきして、
めっき鋼板にしても構わない。無論、連続焼鈍炉で焼鈍
を施した後、溶融めっきしてめっき鋼板にしてもよい。
After annealing, it is desirable to perform temper rolling according to a conventional method, but temper rolling may be omitted. The cold-rolled steel sheet manufactured according to the manufacturing method of the present invention can be used as a base material for electroplating or as a coated steel sheet. The steel sheet after cold rolling is annealed in a heating furnace equipped with a known hot-dip coating apparatus, and hot-dip,
It may be a plated steel sheet. Needless to say, after annealing in a continuous annealing furnace, hot-dip plating may be performed to form a plated steel sheet.

【0037】[0037]

【実施例】実験用真空溶解炉を用いて、表1に示す化学
組成の鋼を溶解し、鋳造した。
EXAMPLE A steel having the chemical composition shown in Table 1 was melted and cast in a vacuum melting furnace for experiments.

【0038】[0038]

【表1】 [Table 1]

【0039】これらの鋳塊を熱間鍛造して25mm厚の
鋼片とし、電気加熱炉を用いて1250℃に加熱して1
時間保持し、実験用熱間圧延機を用いて、1150℃か
ら930℃の温度範囲で、3パスで厚さ5mmの熱延板
に圧延した。熱延後直ちに強制空冷あるいは水スプレー
冷却により450〜600℃の温度範囲内の種々の温度
まで冷却してこれを巻取温度とし、その温度に保持され
た電気加熱炉中に装入して1時間保持した後、20℃/
時の冷却速度で炉冷して巻取後の徐冷処理とした。得ら
れた鋼板の両表面を研削して厚さ4mmの冷延母材と
し、圧延率70〜90%で冷間圧延し、850℃で40
秒間保持する連続焼鈍相当の再結晶焼鈍または、750
℃で5時間保持する箱焼鈍相当の再結晶焼鈍を施した。
その後、これらの焼鈍板に、伸び率0.8%の調質圧延
を施し、その性能を評価した。
These ingots were hot forged into steel slabs having a thickness of 25 mm, and heated to 1250 ° C. using an electric heating furnace.
The sample was held for a time, and was rolled into a hot-rolled sheet having a thickness of 5 mm in three passes in a temperature range of 1150 ° C. to 930 ° C. using an experimental hot rolling mill. Immediately after hot rolling, it is cooled to various temperatures within a temperature range of 450 to 600 ° C. by forced air cooling or water spray cooling, set to a winding temperature, and charged into an electric heating furnace maintained at that temperature to obtain 1. After holding for 20 hours,
The furnace was cooled at the cooling rate at the time to perform a slow cooling process after winding. Both surfaces of the obtained steel sheet were ground to form a cold-rolled base material having a thickness of 4 mm, and were cold-rolled at a reduction ratio of 70 to 90%.
Recrystallization annealing equivalent to continuous annealing held for 2 seconds or 750
Recrystallization annealing equivalent to box annealing maintained at 5 ° C. for 5 hours was performed.
Thereafter, these annealed sheets were subjected to temper rolling at an elongation of 0.8% to evaluate the performance.

【0040】r値は、圧延方向、45度方向および幅方
向から採取したJIS5号引張試験片を引張試験して測
定した。
The r value was measured by performing a tensile test on a JIS No. 5 tensile test piece taken from the rolling direction, the 45 ° direction, and the width direction.

【0041】二次加工脆性は、以下の方法で評価した。
それぞれの冷延鋼板から直径59.4mmの円形素板を
採取し、円筒深絞り試験機を用いて、絞り比1.8の深
絞り成形を施して直径33mmの円筒状のカップを成形
した。これらの円筒状カップの耳部を切削除去して、深
さ17mmの円筒状のカップとし、鋼板の二次加工脆性
を測定する試料とした。先端角度60度の円錐台状の金
型に、種々の温度に冷却した上記の円筒状カップを底面
を上にしてかぶせ、その上方80cmの高さから質量5
kgの重錘を円筒状カップの底面に落下させ、円筒状カ
ップの側壁部分に脆性割れが発生する臨界温度を求め、
これを、耐二次加工脆性の指標とした。
The secondary work brittleness was evaluated by the following method.
A circular base plate having a diameter of 59.4 mm was sampled from each cold-rolled steel plate, and subjected to deep drawing at a drawing ratio of 1.8 using a cylindrical deep drawing tester to form a cylindrical cup having a diameter of 33 mm. The ears of these cylindrical cups were cut and removed to form cylindrical cups having a depth of 17 mm, which were used as samples for measuring the secondary working brittleness of steel plates. The above cylindrical cup cooled to various temperatures is covered with a bottom face up on a truncated cone-shaped mold having a tip angle of 60 degrees, and a mass of 5 cm from a height of 80 cm above the cup.
kg of weight is dropped on the bottom of the cylindrical cup, and the critical temperature at which brittle cracking occurs on the side wall of the cylindrical cup is determined.
This was used as an index of secondary work brittleness resistance.

【0042】試作した冷延鋼板の圧延条件と性能評価結
果を表2に示す。
Table 2 shows the rolling conditions and performance evaluation results of the prototype cold rolled steel sheet.

【0043】[0043]

【表2】 [Table 2]

【0044】表2に示されているように、本発明で規定
する範囲内の条件で製造された冷延鋼板は、いずれも、
|△r|が0.25以下であり、面内異方性が小さく良
好であった。深絞り成形時の円筒状カップの耳はほとん
ど発生しなかった。また、これらの冷延鋼板の脆性遷移
温度は−90℃以下であり、良好な耐二次加工脆性を示
していた。これに対し、鋼Dは、B含有量が少なすぎる
ために、脆性遷移温度が−50℃と高く、耐二次加工脆
性が好ましくない。鋼Eは、B含有量が過剰であり、平
均r値が1.5に満たず深絞り性が好ましくなかった。
化学組成が本発明の規定する範囲内である鋼A、B、C
であっても、処理条件が本発明が規定する範囲をはずれ
る場合には、|Δr|が0.25を超えており、面内異
方性が良くなかった。
As shown in Table 2, the cold rolled steel sheets manufactured under the conditions specified in the present invention were all:
| △ r | was 0.25 or less, and the in-plane anisotropy was small and good. Ears of the cylindrical cup hardly occurred during deep drawing. Further, the brittle transition temperature of these cold-rolled steel sheets was −90 ° C. or lower, indicating good secondary work brittleness resistance. On the other hand, steel D has an excessively low B content, so that the brittle transition temperature is as high as −50 ° C., and the secondary working embrittlement resistance is not preferable. Steel E had an excessive B content, an average r value of less than 1.5, and poor deep drawability.
Steels A, B and C whose chemical compositions are within the range specified by the present invention
However, when the processing conditions were out of the range defined by the present invention, | Δr | exceeded 0.25, and the in-plane anisotropy was not good.

【0045】[0045]

【発明の効果】本発明が規定する方法に従って製造され
た冷延鋼板は、面内異方性が小さく、深絞り成形時の成
形不良が少なく、さらに耐二次加工脆性にも優れる。本
発明の製造方法は、高価な合金元素を用いず、製造条件
を特定することで優れた性質が得られるので、経済性に
優れた製造方法である。
The cold-rolled steel sheet manufactured according to the method specified by the present invention has a small in-plane anisotropy, has few forming defects during deep drawing, and has excellent secondary work brittleness resistance. The production method of the present invention is an economical production method because excellent properties can be obtained by specifying production conditions without using expensive alloy elements.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Bを0.0005%含有する鋼の△rと巻取温
度と冷間圧延率の関係を示す図である。
FIG. 1 is a graph showing the relationship between Δr of steel containing 0.0005% of B, winding temperature, and cold rolling reduction.

【図2】Bを0.0030%含有する鋼の△rと巻取温
度と冷間圧延率の関係を示す図である。
FIG. 2 is a diagram showing the relationship between Δr, winding temperature and cold rolling reduction of steel containing 0.0030% of B.

【図3】巻取温度が450℃の場合の△rとB含有量と
冷間圧延率の関係を示す図である。
FIG. 3 is a diagram showing the relationship between Δr, B content and cold rolling reduction when the winding temperature is 450 ° C.

【図4】巻取温度が500℃の場合の△rとB含有量と
冷間圧延率の関係を示す図である。
FIG. 4 is a diagram showing the relationship between Δr, B content and cold rolling reduction when the winding temperature is 500 ° C.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%でC:0.0005〜0.005
%、Si:0.3%以下、Mn:0.01〜0.4%、
sol.Al:0.01〜0.05%、Ti:0.01
〜0.1%でかつ、Ti%>{(48/12)C%+
(48/14)N%+(48/32)S%}、B:0.
0003〜0.003%を含み、残部がFeおよび不可
避的不純物よりなる鋼を熱間圧延し、560℃以下でコ
イルに巻取り、40%以上で、かつ、下記の式を満た
す範囲の圧延率で冷間圧延し、650℃以上Ac3変態点
未満の温度で再結晶焼鈍することを特徴とする面内異方
が小さく耐二次加工脆性に優れた冷延鋼板の製造方法。 【数1】 ただし、CTは巻取温度(℃)、CRは冷間圧延率
(%)、Bは鋼中のB含有量(重量%)を表す。
(1) C: 0.0005 to 0.005 by weight%
%, Si: 0.3% or less, Mn: 0.01 to 0.4%,
sol. Al: 0.01 to 0.05%, Ti: 0.01
0.1% and Ti%> {(48/12) C% +
(48/14) N% + (48/32) S%}, B: 0.
A steel containing 0003 to 0.003%, the balance consisting of Fe and unavoidable impurities is hot-rolled and wound into a coil at 560 ° C or less, and a rolling rate of 40% or more and in a range satisfying the following formula: A cold-rolled steel sheet having low in-plane anisotropy and excellent secondary work brittleness resistance, characterized by cold rolling at 650 ° C. or higher and lower than the A c3 transformation point. (Equation 1) Here, CT represents the winding temperature (° C.), CR represents the cold rolling reduction (%), and B represents the B content (% by weight) in the steel.
JP22925997A 1997-08-26 1997-08-26 Manufacturing method of cold rolled steel sheet with small in-plane anisotropy and excellent secondary work brittleness resistance Expired - Fee Related JP3572883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22925997A JP3572883B2 (en) 1997-08-26 1997-08-26 Manufacturing method of cold rolled steel sheet with small in-plane anisotropy and excellent secondary work brittleness resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22925997A JP3572883B2 (en) 1997-08-26 1997-08-26 Manufacturing method of cold rolled steel sheet with small in-plane anisotropy and excellent secondary work brittleness resistance

Publications (2)

Publication Number Publication Date
JPH1161273A true JPH1161273A (en) 1999-03-05
JP3572883B2 JP3572883B2 (en) 2004-10-06

Family

ID=16889319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22925997A Expired - Fee Related JP3572883B2 (en) 1997-08-26 1997-08-26 Manufacturing method of cold rolled steel sheet with small in-plane anisotropy and excellent secondary work brittleness resistance

Country Status (1)

Country Link
JP (1) JP3572883B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938077A (en) * 2013-11-12 2014-07-23 首钢总公司 Cold-rolled steel plate for double-layer coiling welded pipe and production method thereof
CN104233062A (en) * 2013-06-06 2014-12-24 上海梅山钢铁股份有限公司 Extra-deep drawing hot-galvanized steel plate produced by annealing in short time and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104233062A (en) * 2013-06-06 2014-12-24 上海梅山钢铁股份有限公司 Extra-deep drawing hot-galvanized steel plate produced by annealing in short time and production method thereof
CN103938077A (en) * 2013-11-12 2014-07-23 首钢总公司 Cold-rolled steel plate for double-layer coiling welded pipe and production method thereof

Also Published As

Publication number Publication date
JP3572883B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
WO2010011790A2 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
JP4177478B2 (en) Cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in formability, panel shape, and dent resistance, and methods for producing them
JP3829621B2 (en) High-tensile cold-rolled steel sheet and its manufacturing method
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
JP3572883B2 (en) Manufacturing method of cold rolled steel sheet with small in-plane anisotropy and excellent secondary work brittleness resistance
JP3516747B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing at room temperature with excellent material uniformity and surface quality in the coil longitudinal direction
JPH0570836A (en) Manufacture of high strength cold rolled steel sheet for deep drawing
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JP2002249849A (en) High tensile strength cold rolled steel sheet and production method therefor
JP3773604B2 (en) High-strength cold-rolled steel sheet or hot-dip galvanized steel slab excellent in deep drawability and method for producing the same
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JPS6230259B2 (en)
JP3968891B2 (en) High-strength cold-rolled steel sheet with small in-plane anisotropy and excellent secondary work brittleness resistance and method for producing the same
JP3596045B2 (en) Manufacturing method of bake hardening type cold rolled steel sheet with excellent formability
JP3292033B2 (en) Manufacturing method of steel sheet for battery outer cylinder with excellent material uniformity and corrosion resistance
JPH06322441A (en) Production of high strength steel plate having baking hardenability
JP3273383B2 (en) Cold rolled steel sheet excellent in deep drawability and method for producing the same
JPH01191748A (en) Manufacture of cold rolled steel sheet for press forming excellent in material homogeneity in coil
JP3814865B2 (en) Manufacturing method of steel plate for battery outer cylinder with excellent material uniformity and corrosion resistance
JP6515292B2 (en) Method of manufacturing high strength steel plate
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JP3292034B2 (en) Manufacturing method of steel sheet for battery outer cylinder with excellent material uniformity and corrosion resistance
JP5239331B2 (en) Cold-rolled steel sheet with small in-plane anisotropy and excellent strain aging characteristics and method for producing the same
JP3300639B2 (en) Cold rolled steel sheet excellent in workability and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees