JP3598263B2 - How to grow crops - Google Patents

How to grow crops Download PDF

Info

Publication number
JP3598263B2
JP3598263B2 JP2000252021A JP2000252021A JP3598263B2 JP 3598263 B2 JP3598263 B2 JP 3598263B2 JP 2000252021 A JP2000252021 A JP 2000252021A JP 2000252021 A JP2000252021 A JP 2000252021A JP 3598263 B2 JP3598263 B2 JP 3598263B2
Authority
JP
Japan
Prior art keywords
cultivation
container
crop
medium
cultivated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000252021A
Other languages
Japanese (ja)
Other versions
JP2002101758A (en
Inventor
照喜治 永田
あきら 永田
Original Assignee
有限会社緑健研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社緑健研究所 filed Critical 有限会社緑健研究所
Priority to JP2000252021A priority Critical patent/JP3598263B2/en
Publication of JP2002101758A publication Critical patent/JP2002101758A/en
Application granted granted Critical
Publication of JP3598263B2 publication Critical patent/JP3598263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は植物、特に農作物の栽培方法と栽培容器に関するものである。
【0002】
【従来の技術】
本発明者は先に特公平3−4170号に記載されているように、地力の無い培地に作物を発芽又は定植させた後、水と窒素肥料を断ち、作物が萎れ始めたら慣行(清耕法)の約1/10〜1/100の小量の水と窒素肥料を与え、水と窒素肥料の断絶と施与を繰り返して地表面付近に吸水力と吸肥力の強い断食根を生成させて糖度の高い作物を栽培する方法を発明した(図7参照)。同方法に依れば糖度が高い作物を収穫できる。然し、培地として大地を用いる為大地の成分の影響を受けるので、個々の作物の成長の度合いが相違してムラがあり、コンピューターによる灌水と施肥の計画的な制御が難しく、作業効率が低下し、品質が不安定でムラがあった。施与した水と肥料が作物に完全には吸収されないで地下や外部に流出するので、環境汚染の惧れもあった。培地が大地であって取り換えできない為、連作障害が生ずる危険もあった。作物は上部の葉の部分で光合成を行うが、内部の葉の部分では殆んど光合成を行わないので、栽培空間に無駄な空間が生じ、栽培空間中に占める無効容積の割合が大きくなり、日照と通気が不充分であり、密植による増収は図れず、品質が不安定でムラがあった。
【0003】
【発明が解決しようとする課題】
本発明は前述の特公平3─4170号の栽培方法の欠点を改善して、さらに優れた栽培方法を提供することを目的とする。
また本発明は、糖度が高い作物を、作業効率良く、ムラ無く安定して収量良く低廉な栽培費用で提供することを目的とする。
また本発明は、コンピューターにより水と肥料を制御して施与するにあたり、水と肥料をさらに無駄なく有効に利用することを目的とする。
また本発明は、作物を矮性化し、日照と通風を良好とし、生殖成長させ、省力化し、無効容積を無くし、栽培空間を有効に利用することを目的とする。
また本発明は、環境に及ぼす悪影響の少ない栽培方法と栽培容器を提供することを目的とする。
また本発明は、連作障害の無い栽培方法と栽培容器を提供することを目的とする。
また本発明は、作業効率が良く簡便で費用が低廉な栽培容器を提供することを目的とする。
これ等の目的は、本発明により達成される。
【0004】
【課題を解決する手段】
本発明の作物の栽培方法は、(1)地力の無い培地を雨水及び大地から遮断し、(2)作物を発芽又は定植させ、(3)発芽又は定植後に水と窒素肥料を断ち、(4)作物が萎れ始めたら慣行(清耕法)の1/10〜1/100の小量の水及び肥料を与え、(5)(3)と(4)の作業を繰り返して地表面付近に吸水力と吸肥力の強い断食根を生成させて糖度の高い作物を収穫する作物の栽培方法において、培地として土の礫、火山礫及び人工の礫から成る群から選択した粒度2〜5mmの礫を用い、地力の無い培地を作物の根圏の深さを10cm以内に制限する栽培容器に収容して作物を栽培することを特徴とする作物の栽培方法である。
本発明で「地力の無い」とは特公平4−4170号に記したと同様に、EC(土壌塩類濃度の指標となる電気伝導度(単位ムオー=1/Ω、現在の単位はジーメンス=S/cmで示す)で表される土壌塩類濃度が600mS/cmより小、通常10〜500mS/cmであることを意味する。
本発明はまた、地力の無い培地を収容する為の非通根性、非通気性及び非透水性の高さ約10cm以下の袋状であり、上表面の定植孔と、側面上部の通気孔と、側面下端部の排水孔とを有することを特徴とする作物の栽培容器である。
袋の「高さ」とは培地収容時の袋の高さを指す。袋は柔軟で可撓性の物質から製されていて、通常は折り畳めるので、貯蔵時の高さは僅小である。
【0005】
作物の根圏を深さ約10cm以内に制限することは、栽培容器に収容する培地の深さを約10cm以内に制限することにより、容易に達成される。一方、根圏が浅すぎると培地が少なくなるので栽培が難しく、この面から深さは制限される。作物によっても異なるが、培地は表面から底部迄の深さが少なくとも約4cm、通常、約5cm以上である。
本発明では、作物の直根を生成させないで、作物の根圏を深さ10cm以内に制限して、断食根群を集中して層状に分布させる。
栽培容器は播種容器又は育苗容器として使用しても良いが、別個に播種した容器又は育苗した容器を栽培容器の定植孔の内部の培地中に設置するか、定植孔の上に載置すると好都合である(図5参照)。このようにすると、播種及び育苗を別個に効率的に行ない、確実に発芽し略々均一に成長した良好な苗のみが対照となるので、コンピューターによる計画的な灌水と施肥の管理が可能になり、作業効率と収量が良くなり、安定してムラが無い品質の作物を低廉に提供できる。
【0006】
栽培容器の定植孔の部分は栽培時には切り取って使用する。
栽培容器は鉢、ポット、トレイ、プランター、ベッド又は袋等で良いが、作物の栽培にあたって約10cm以内の培地の深さを確保できるものを用いる。
栽培容器を雨水及び大地から遮断すると、大地の地下水の影響を遮断し、大地から放出されるエチレンガス及び一酸化炭素等の植物の生育に有害なガスを遮断し、灌水と施肥を容易に且つ正確に制御できるので好都合である。大地は場所に依っては水質が不適当なことがあるが、このような大地の影響を受けない。
【0007】
培地は土の礫、火山礫及び人工の礫から成る群から選択した礫を用いると好適である。礫はφ約2〜5mmの粒度の礫が好適である。これはこの粒度の礫が、通気性と透水性が最適で、毛細管現象により培地の下部から表面近辺まで水を吸い上げるのに最適な為である。
土の礫又は人工の礫は容易に分解して作物に好まれる微量要素を放出し、作物に吸収させるので、作物の味が良くなり、好ましい。礫は殺菌して用いることができる。土の礫は通常の土の礫、例えば山土、畑土、田土等の礫である。人工の礫は焼き土と焼結土をも包含する。これ等の礫は選別、殺菌及び微量要素の混入が容易である。赤土の焼成礫は好ましい礫の例である。約700〜1000℃で焼いた赤土は分解し易く、好ましい。約1000℃以上で焼くと、分解し難く、好ましくない。クロボク又はロームの焼成礫も使用できる。火山礫は生成後日時が経過して分解し易くなっているものであれば使用できる。その他、ボラ、コラ、ボタ、ズリ等を礫として使用できる。
火山灰は微量要素を吸収し難い直根が出易く、Nを多く吸収して味が不味くなるので、土の礫と人工の礫ほどは好ましくない。
砂や岩の礫は分解し難いので、微量要素の供給が少なく、作物の味が劣り、作物の味を良くする為には多量の高価な微量要素を必要とする。
礫は火力で焼いたり、大量の水で洗ったり、ハウス内で乾燥させることにより、容易に地力の無いものとすることができる。
培地は使用後、洗浄、篩別、加熱殺菌した後、再利用することができるので、環境に及ぼす悪影響が少ない。
培地は腐葉土及び/又はミネラルを有することができる。腐葉土は窒素成分を殆んど有せず、容易にボロボロに崩れて粒径約2〜5mmの粉末となる。ミネラルはいおう、カルシウム、マグネシウム、鉄等の公知のものである。カルシウムは例えば石灰石、牡蠣殻、甲殻類の殻等の粒子を使用できる。粒径は例えば約2〜5mmとすることができる。
再利用にあたって、栽培により培地が若干減少していることがあるので、必要ならば新規な培地を補充する。補充は約3〜7%、通常約5%程度である。
【0008】
作物は栄養成長するときと生殖成長するときがある。栄養成長のときは作物の味が悪く、生殖成長のときは味が良い。柚子は50年以上栽培すると生殖成長が中心となって最高の味となり、オリーブは100年以上栽培すると生殖成長が中心となって最高の味となる。肥料だけでは栄養成長になり、生殖成長し難い。トマト、胡瓜、茄子、ピーマン等の果菜は栄養成長と生殖成長を同時にする。Nは主として栄養成長を行ない、PとKは生殖成長を行なう。光を当てると生殖成長が主となり、光が少ないと栄養成長が主となる。水が多いと栄養成長が主となり、乾燥すると生殖成長が長くなる。味が美味しい為には生殖成長が好ましく、微量要素の吸収が好ましい。作物は微量要素を選択吸収する。
作物は表層の葉の部分で光合成を行ない、内部の葉の部分では殆んど光合成を行なわないので、上部の葉の部分を増やせば、光合成が効率的に行なわれるが、本発明は全ての葉が光合成を行なうように働くので、栽培空間に無駄が無くなり、栽培空間中に占める無効容積の割合が小さくなり、光合成が効率的に行なわれる。
通常、野菜は1月も鉢植え栽培すると根巻きを生ずるが、本発明は根圏を制限するので、1年以上の長期間栽培しても根巻きを生じない。
本発明では栽培容器の上部を定植孔部分以外は、フィルムで被覆(マルチ)することができる。
肥料は液肥を使用し、大型の置き肥も施用できる。必要ならば、ペーストタイプの肥料も施用できる。堆厩肥は用いない。
本発明に適する作物は、根圏の範囲を制限する必要上から、果菜が好適であり、特に茄子、胡瓜、トマト、ピーマンが好適である。
【0009】
栽培容器は栽培作物に応じた最低限の栽培容積を有する。果菜の場合、最低限の栽培容積は約2lであり、上限は取り換え、持ち運び等の見地から約12lである。通常、栽培容積は約2〜8lである。
栽培容器は集水路又は集水管を具える不透水性のシート、樋形のベッド、コンクリート床等の上に載置して使用すると、灌水と施肥の再利用が容易となるので、栽培費用が低廉となり好都合である。
栽培容器とパイプ等の輸送装置から流出する作物に利用されなかった灌水と液肥は、濾過と加熱殺菌を行なった後、養液組成に変動を与えない比率で再利用して、栽培費用を低廉とすることができる。
【0010】
栽培容器が袋であると、大地の影響を排除して、灌水と施肥を容易に且つ正確に制御できる上、取扱、運搬、培地の取換、殺菌及び補充が容易となるので、作業効率が向上し、栽培費用が低廉となるので好都合である。
袋としては種々の形式の袋を用いることが可能であり、例えば、ガセットタイプ等の枕型、ウインナソーセージ型を用いることができる。
袋は白色でスリップ防止剤、紫外線防止剤及び/又は帯電防止剤を有することが好ましい。白色であると太陽光を反射して培地が過度に温度上昇せず、実際に26℃以上にはならない。スリップ防止剤、紫外線防止剤及び帯電防止剤は、各々別個の成分であっても良いが、同一の成分であっても良い。スリップ防止剤を有すると、培地を収容する栽培容器をパレットの上に数段積み重ねて輸送するときに、栽培容器同士が荷崩れしない。紫外線防止剤を有すると、栽培容器が1年以上太陽光に曝されても、紫外線による劣化を防止できる。帯電防止剤を有すると、栽培容器製造中のプラスチックフィルム同士の付着を防止でき、栽培中のゴミの付着を防止でき、栽培容器の端部開けが容易であるので培地を自動充填できる。また、充填後の栽培容器を数段積み重ねて輸送するときに、栽培容器同士の付着を防止できる。
袋には作物の播種、育苗及び成育用の定植孔を設ける。定植孔は作物の根圏の深さを制御し、これに伴って作物の成長範囲を制限するので、定植孔も小さく径約9cm以下に制限し、通常径約5〜7cmとする。
袋の定植孔に相当する部分は、白色である必要はなく、作物の播種、育苗及び生育にあたって切り取るので、色抜きとし、スリップ防止剤、紫外線防止剤及び帯電防止剤を省略できる。
【0011】
培地を収容時の栽培容器の寸法は、例えば次の通りである。
幅:10〜30cm
長さ:10〜120cm
高さ:40〜10cm
通気・排水孔(小孔):径約2mm
各組の間隔は定植孔の間隔に合わせる。
定植孔の大きさ:φ50〜90mm、通常70mm
充填時容量:2〜12l、通常2〜8l
定植孔の間隔:慣行の作物の1/2にできる。
中心から中心迄 10〜25cm
通常 20〜21cm
【0012】
【作用】
本発明に依れば、栽培容器を浅く薄いものとして断食栽培を繰り返すので、断食根が容易に迅速に成長する。直根を生長させないので、直根が栽培容器を突き破らない。
大地と栽培容器を隔離することにより、大地からの土壌深部生息性病原菌の培地への侵入と、作物への感染が防止される。また、大地の地下水の影響を受けない。さらに、培地の温度制御を容易にし、寒冷期においても根の成長と活動を停止させない。
確実に発芽し略々均一に成長した良好な苗のみを対象に栽培できるので、コンピューターによる計画的な灌水と施肥の管理が可能になり、作業効率と収量が良くなり、栽培費用が低廉になり、品質が良くなり、安定してムラが無くなる。
作物の根圏を深さ10cm以内に制限すると、培地上の作物の高さも根圏に応じて小さく制限されるので、作物が占める空間も小さく、作物の矮性化が実現する。例えば、慣行では作物の根圏を20cm、高さを20cmとして栽培していたものを、根圏を10cm、高さを10cmとして栽培すれば、8000cm3 の栽培空間を1000cm3 と1/8に小さくし、作物の節間長さを1/2とし、栄養成長を少なくし、無効容積に対する有効容積の割合を大きくし、日照、通気を良好とし、ムラが無く安定して高い糖度の作物を作業効率良く収穫できる。作物は密植できて、理論上は最大約6倍もの多収穫になる。
植物の光合成に対する有効容積と無効容積との関係を図8に例示する。植物Bの大きさは植物Aの大きさの1/2(容積では1/8)であるが、Aと略々同じ有効容積を有する。斜線部分のみの比較ではAの有効容積が大きく表わされているが、日照の当たらない日陰部分が大きくなるから、隣接する植物の日射側にも影を作るので、無効容積ができる。Bは高さもAの1/2で、間隔を狭くして密植しても無効容積が生じない。
同じ面積に従来の植え方Aでは9本植えられるのに対し、本発明の植え方Bでは4倍の36本植えられる(図8参照)。また、有効容積が大きい植え方Bの1本から従来の植え方Aの約1.5倍の収量が得られるから、最大約6倍の収穫ができる。
Bの1本の樹冠の直径がAの1本の樹冠の直径の50%であり、Bの1本の樹冠部分の占める培地上の面積=Aの1本の樹冠部分の占める培地上の面積×25%である(図9参照)。
植え方Aより植え方Bの植物の頭上空間が広いので、採光が良い他に風の通りが良く、温度と湿度が調節し易い(図10参照)。隣接する植物によって生ずる日陰(無効容積)を最小にする為には、Bの株間距離bはAの株間距離aの1/2で良い。従って、培地面積は1/4で済む。
農業では実際の栽培が理論通りに行かず、理論と実際が逆になり、品質が低下又は収穫が減少することが屡々あるが、本発明は実地に栽培したところ、予想以上に高い糖度の作物を多量に収穫でき、品質にムラが無く安定している。
パイプの節間が短くなるのでパイプの長さが短くなり、パイプのロスが少ない(図11参照)。
高品質多収穫を達成しながら、日照、通気が良好となり、作業効率が高まり、作業が省力化し、栽培費用が低廉になる。
肥料として粉末肥料や堆厩肥を用いないで液肥を使用するので、必要な肥料成分を確実に迅速に施与でき、施与の自動制御化が実現する。
栽培容器は上部に定植孔を有し、側面上部に通気孔、側面下端部に排水孔を有するほか、培地も粗目の土の礫又は人工の礫又は火山礫を使用するので、通気性と透水性が良い。
栽培容器と培地の保管、移動が簡単なので、入れ替え作業と植え換え作業を短時間に簡便に効率良く低廉に行なえる。
栽培容器の培地が浅いので、培地の下部に落ちた水と肥料も毛細管現象で培地の表面付近に上昇するので、単なる断食栽培よりも一段と有効に水と肥料を利用できる。
糖度が高い作物を高い収量で収穫しながら、灌水量と施肥量を最小量とするので、栽培費用が低廉となる。
作物の根圏を制限するので、灌水と肥料の制御を迅速に簡便に行なえるようになり、作業効率を高め、作業を省力化できる。
コンピューターによる点滴式灌水システムを導入できることにより、灌水量と施肥量を常時適量均一に保つことが容易になる。
断食根が栽培容器に充満しても、根巻きを起こさない。慣行栽培の野菜は成長が早いので、通常約1ケ月もすると、根巻きを起こす。
根群が大量で一定だから、大規模栽培でも栽培とコンピューター処理が制御し易く、高糖度の作物を生産し易い。
栽培容器はプラスチックスの薄いフィルムを使用できるので、安価であり、加工、縫製、接着が容易になので、工業的に安価に大量生産できる。
育苗容器として通気性、透水性及び通根性が有る容器を用いると、栽培容器の定植孔上に直接載置したり、埋め込むことができるので、大規模栽培での定植作業の労力を節減できる。
ハウスよりも小型で効率の高い育苗容器で、又はハウス内の限定された小さな苗畑で、効率的に栽培して育苗期間を縮減できるので、ハウスを有効に利用することができる。
定植孔に育苗鉢から土ごと抜いた苗を定植するか、定植孔の上に苗を育苗鉢ごと載置するか、又は栽培しながら育苗することにより、定植孔に順次に作物を定植できるので、同一又は別種の作物を引き続いて栽培(時間差栽培)できる。
栽培容器がマルチの働きをして、外部の光、温度等の影響を受けることが少なく、栽培容器内の水分の蒸発によりハウス内の温度を高めることが少ない。
根張りの範囲が栽培容器によって制限されるので、栽培容器の寸法を変えるだけで根域と栽培の変更と制御が容易となる。
栽培容器の容積と培地の量を必要最小限に制限するので、灌水量と施肥量が最小になる。
栽培容器を1〜2年で容易に交換できるから、連作障害がない。
栽培容器の下部に水が溜まらず、根腐れが無いので、過湿、過乾燥の状態が無くなる。
【0013】
【実施例】
以下、本発明を実施例についてさらに詳細に説明する。
【0014】
【実施例1】
本発明の栽培方法をトマトについて、次のようにして実施した。
幅14cm、充填時高さ10cm、長さ60cm、定植孔直径70mmで、側面上部に通気孔(φ2mm)6ケと、側面下端部の排水孔(φ2mm)6ケとを有するナイロンとポリビニールをラミネートした袋に、赤土を焼成した粒度2〜5mmの礫約8lを充填した栽培容器に、育苗ポットで育成したマルトマト苗を定植した。栽培容器は上表面端部にも通気孔(φ2mm)6ケを有し、底面端部にも排水孔(φ2mm)6ケを有した(図6参照)。定植した苗は長さ50m、幅20mのハウス内で育成栽培した。栽培区Bは栽培面積10a、栽培株数2400本(16列2条植×75本)、畝間距離0.6m、畝幅0.6m、株間距離0.3mであった(図11の栽培区B参照)。栽培は冬作一作とし、期間は平成10年10月15日〜11年6月末で、場所は浜松市都田町であった。
対照例として、特公平3─4170号の方法により粘土質土壌の地力をハウストンネル栽培によりEC値で10mS/cmとした培地で、トマトを栽培した。苗は栽培区Bと同じ発育状態のマルトマト苗を用い、長さ50m、幅20mのハウス内で育成栽培した。栽培区Aは栽培面積10a、栽培株数1440本(15列2条植×48本)、畝間距離0.6m、畝幅0.7m、株間距離0.5mであった(図11の対照区A参照)。栽培期間と場所は栽培区Bと同じであった。
実施例1において定植できる株数を、本発明区と対照区とを比較して例示した平面図が図12であり、無効容積と有効容積との関係を例示する線図的説明図が図13であり、節間距離、樹冠の大きさ、樹高及び無効容積を対照区と比較して例示する線図的説明図が図14である。図12〜14において、株間距離a=0.5mであり、株間距離b=0.3mである。
図14において、節間距離(トマトの場合、果房と次の果房との距離)が短くなったので、茎の高さが低くなり、日照を受け易く、頭上が広いので風の通りも良くなり、樹冠も小さくなった。従って、同じ空間容積(面積×高さ)の温室内では、株数を多く定植できるから増収につながった。同一面積に植えられる株数が1.6倍強になった。一株当りの収量は対照区と同等であるが、高糖度の収量の割合が増え、対照区と比較して約3倍であった。単位面積当りの収量は約1.7倍強であった。

Figure 0003598263
栽培株数は本発明区Bが2,400本、対照区Aが1,440本なので、一株当りの施肥量は本発明区Bが対照区Aの60%である。
Figure 0003598263
前述のデータから明らかなように、本発明は一株当りの灌水量と施肥量を略々60%の小量としながら、収穫量が遙かに多く、糖度別収量も格段に優れていた。
【0015】
【実施例2】
実施例1と同様にして、宮崎県でファーストトマト(年1作)を、図6に記したと同じ構造の育苗ポットで育成した苗を栽培容器に定植して栽培した。
対照区では現在最も普及している栽培法であるロックウール法によりトマトを栽培した。本発明と対照試験では、定植時に同じ発育状態のトマトを用いた。作付け面積は各10アール、培地には粒度2〜5mmの火山礫を使用した。
播種は平成10年8月7日、鉢上げは同年8月20日、栽培容器に定植は同年9月4日、収穫開始は同年12月10日、収穫終了は平成11年6月末であった。
なお、一般の露地栽培及び雨除けハウス栽培では通年の比較試験ができないので、栽培はプラスチックハウス内で行なった。
Figure 0003598263
収穫量は本発明が10トン、対照区が糖度が規格外のものを含めても7トンであった。
Figure 0003598263
前述のデータから明らかなように、本発明は灌水量と施肥量を略々1/10の少量としながら、収穫量が遙かに多く、糖度別収量も格段に優れていた。
【0016】
【実施例3】
実施例1と同様にして、千歳市でマルトトマト(年3作)を栽培した。
図4に記したと同じ構造の育苗ポットで育成した苗を栽培容器に定植して栽培した。対照区のものはロックウール法により栽培した。本発明と対照区では、定植時には同じ発育状態のトマトを用いた。作付け面積は各10アール、培地には粒度2〜5mmの火山礫を使用した。
なお、一般の露地栽培及び雨除けハウス栽培では通年の比較栽培試験ができないので、ガラスハウス内で比較栽培試験を行なった。
Figure 0003598263
収穫量は本発明が21トン、対照区が糖度5度以下の規格外のものを含めても14トンであった。
Figure 0003598263
前述のデータから明らかなように、本発明は灌水量と施肥量を略々1/10の小量としながら、収穫量が遙かに多く、糖度別収量も格段に優れていた。
【0017】
【実施例4】
実施例1と同様にして、千歳市でミディトマト(年1作)を、図6に記したと同じ構造の育苗ポットで育成した苗を栽培容器に定植して栽培した。対照試験のものは現在最も普及しているトマトの栽培法であるロックウール法により栽培した。本発明と対照区では、定植時には同じ発育状態のトマトを用いた。作付け面積は各10アール、培地には粒度2〜5mmの火山礫を使用した。
なお、一般の露地栽培及び雨除けハウス栽培では通年の比較試験ができないので、ガラスハウス内で栽培した。
播種は平成10年8月7日、鉢上げは同年8月20日、栽培容器への定植は同年9月4日、収穫開始は同年12月10日、収穫終了は平成11年6月末であった。
Figure 0003598263
収穫量は本発明が23トン、対照区が23トンであったが、対照区は糖度が規格外のものが多量に含まれていた。
Figure 0003598263
前述のデータから明らかなように、本発明は灌水量と施肥量を略々1/10の少量としながら、収穫量が多く、糖度別収量も格段に優れていた。
【0018】
【実施例5】
山土25重量部と田土25重量部をヘドロ状に混合し、日干煉瓦状に形成し乾燥後粉砕したゴロ土を粒径2〜5mmに篩別したもの50重量部と、粒径2〜5mmのボラ20重量部と、腐葉土(窒素成分は殆んど無く、混合時に容易にボロボロに崩れて粒径約2〜5mmの粉末となる)30重量部と、ミネラルとして粒径2〜5mmの牡蠣殻粉末2重量部とを混合して培地とした。
実施例1と同様な材質で光劣化防止剤を含有する長さ65cm、幅25cm、高さ4〜7cmの容量約10〜12lの袋に、前述の培地8〜10kgを装入し封止して、培地を有する栽培容器とした。
【0019】
【発明の効果】
かくて本発明に依れば、灌水量と施肥量が適宜且つ最小となるので、糖度が6〜18と著しく高い作物をムラ無く安定して多量に収穫でき、栽培費用を低減できる。
断食根が容易に迅速に成長するので、作物の成長が早い。
大地と栽培容器を隔離するので、地下水の影響を受ず、大地からの土壌深部生息性病原菌の培地への侵入と、作物への感染を防止することができる。また、培地の温度制御を容易にし、寒冷期においても根の成長と活動を停止させない。
確実に発芽し略々均一に成長した良好な苗のみを対照に栽培できるので、コンピューターによる計画的な灌水と施肥の管理が可能になり、作業効率と収量が良くなり、作物が低廉になり、品質が良くなり、安定してムラが無くなる。
作物の根圏の深さを10cm以内に制限するので、栄養成長が少なくなり、生殖成長が多くなり、培地上の作物の高さも根圏に応じて小さく制限されるので、作物を矮性化し、栽培空間中に占める無効容積の割合を小さくし、栽培空間を小さくし、日照、通気を良好とし、高い糖度の作物を効率良く、ムラ無く安定して多量に収穫し、同時に省力化できる。
作物は密植できて、栽培間隔を1/2とすれば、理論上は最大約6倍の多収穫が可能になる。
パイプの長さを短縮し、パイプのロスを減少できる。
高品質多収穫を達成しながら、日照、通気が良好となり、作業効率が高まり、作業が省力化し、栽培費用が低廉になる。
肥料として液肥を使用するので、必要な肥料成分を確実に迅速に施与でき、施与を自動制御化することができる。
栽培容器は上部に定植孔を有し、側面上部に通気孔、側面下部に排水孔を有するほか、培地も最適な粒度の礫を使用するので、通気性と透水性が良い。
栽培容器と培地の保管、移動が簡単なので、入れ替え作業と植え換え作業を短時間に効率良く簡便に低廉に行なえる。
糖度が高い作物を高い収量で収穫しながら、灌水量と施肥量を最小量とするので、栽培費用が低廉となる。
栽培容器の培地が浅いので、培地の下部に落ちた灌水と肥料も毛細管現象で培地の表面付近に上昇するので、単なる断食栽培よりも一段と有効に水と肥料を利用できる。
作物の根圏を制限するので、灌水と施肥の制御を計画的に迅速に簡便に行なえるようになり、作業効率を高め、作業を省力化できる。
コンピューターによる点滴式灌水システムを導入することにより、灌水量を容易に適量且つ均一に保つことができる。
断食根が栽培容器に充満しても、根巻きを起こさない。
根群が大量で一定なので、大規模栽培でも栽培し易く、コンピューター処理が容易であり、高糖度の作物を効率良くムラ無く安定して大量生産できる。
栽培容器が安価であり、加工、縫製、接着が容易に可能なので、工業的に低廉に大量生産できる。
通気性、透水性及び通根性が有る育苗容器を用いると、大規模栽培での定植作業の労力と時間を節減でき、効率的に栽培でき、栽培費用を低減できる。
ハウスよりも小型で効率の高い育苗容器で栽培して育苗期間を縮減できるので、又はハウス内の一部の狭い育苗畑で効率的に育苗できるので、ハウスを有効に利用することができる。
同一又は別種の作物を引き続いて時間差栽培できる。
栽培容器がマルチの働きをするので、外部の光、温度等の影響を受けることが少なく、栽培容器内の水分の蒸発が少なくなり、水分の蒸発によるハウス内の温度の上昇が少なくなる。
根張りの範囲が栽培容器によって制限されるので、栽培容器の寸法を変えるだけで根圏と栽培の変更と制御を容易に実施できる。
栽培容器の容積と培地の量を必要最小限に制限できるので、灌水量と施肥量を最小にすることができる。
栽培容器を1〜2年で容易に交換できるから、連作障害がない。
栽培容器の下部に水が溜まらず、根腐れが無いので、過湿、過乾燥の状態が無くなる。
【0020】
以上本発明を特定の例及び数値につき説明したが、本発明はこれ等の例及び数値にのみ限定されるものではなく、本発明の広範な精神と視野を逸脱することなく種々の変更と修整を為し得ること勿論である。
【図面の簡単な説明】
【図1】本発明に係る栽培容器の一例を示す平面図
【図2】図1のA−A線上の横断面図
【図3】図1のB−B線上の横断面図
【図4】定植孔の直径と育苗鉢との関係の一例を示す上面図
【図5】栽培容器の定植孔と育苗鉢との関係の一例を示す斜視図
【図6】本発明に用いる育苗容器の一例を示す二重容器の横断面図
【図7】植物の有効容積と無効容積を従来の植え方と比較して説明する図
【図8】本発明による作物の密植状態を示す説明図
【図9】樹冠部分の占める培地上の面積が従来のものよりも遙かに小さいことを示す説明図
【図10】本発明による植物の頭上空間が広く、採光と風の通りが良く、温度と湿度が調節し易いことを示す図
【図11】本発明による栽培パターンの一例を示す模式的平面図
【図12】定植できる株数を本発明と対照区とを比較して例示する平面図
【図13】無効容積と有効容積との関係を例示する線図的説明図
【図14】本発明の栽培法による節間距離、樹冠の大きさ、樹高及び無効容積を対照区と比較して例示する線図的説明図である。
【符号の説明】
1:栽培容器 7:植物苗
2:定植孔 8:断食根
3:育苗鉢 9:培地
4:通気孔 10:直根
5:排水孔 11:外部容器
12:空気層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cultivation method and a cultivation container for plants, particularly agricultural crops.
[0002]
[Prior art]
As described in Japanese Patent Publication No. 3-4170, the inventor of the present invention germinated or planted the crop in a medium having no fertility, cut off water and nitrogen fertilizer, and when the crop began to wither, practices (cultivation) Law) about 1/10 to 1/100 A small amount of water and nitrogen fertilizer Giving Invented a method for cultivating crops with high sugar content by repeatedly cutting and applying water and nitrogen fertilizer to generate fasting roots having strong water absorption and fertilization near the ground surface (see FIG. 7). According to this method, crops with high sugar content can be harvested. However, since the earth is used as a medium, it is affected by the components of the earth, and the degree of growth of individual crops is different and uneven, and it is difficult to control irrigation and fertilization with a computer systematically, resulting in reduced work efficiency. The quality was unstable and uneven. The applied water and fertilizer would not be completely absorbed by the crops, but would flow underground or to the outside, causing concerns about environmental pollution. Since the medium was ground and could not be replaced, there was also a risk that continuous cropping failure would occur. The crop performs photosynthesis in the upper leaf portion, but hardly performs photosynthesis in the inner leaf portion, so a useless space occurs in the cultivation space, and the ratio of the ineffective volume in the cultivation space increases, The sunshine and ventilation were insufficient, the increase in yield due to dense planting could not be achieved, and the quality was unstable and uneven.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to improve the above-mentioned disadvantages of the cultivation method of Japanese Patent Publication No. 3-4170 and provide a more excellent cultivation method.
Another object of the present invention is to provide a crop having a high sugar content with good work efficiency, without unevenness, with good yield and with low cultivation cost.
Another object of the present invention is to effectively use water and fertilizer without waste when controlling water and fertilizer by a computer.
Another object of the present invention is to dwarf crops, improve sunshine and ventilation, reproductively grow, save labor, eliminate ineffective volumes, and effectively utilize cultivation space.
Another object of the present invention is to provide a cultivation method and a cultivation container with less adverse effects on the environment.
Another object of the present invention is to provide a cultivation method and a cultivation container free from continuous cropping failure.
Another object of the present invention is to provide a simple and inexpensive cultivation container with good work efficiency.
These objects are achieved by the present invention.
[0004]
[Means to solve the problem]
The cultivation method of the crop of the present invention comprises: (1) cutting off a medium without soil strength from rainwater and the earth; (2) germinating or planting the crop; (3) cutting off water and nitrogen fertilizer after germination or planting; ) When the crop begins to wither, give a small amount of water and fertilizer 1/10 to 1/100 of the conventional (plowing method), and repeat steps (5), (3) and (4) to absorb water near the ground surface. In a cultivation method for crops that produce fasting roots with strong power and fertilizing power to harvest crops with high sugar content, as a medium, gravel having a particle size of 2 to 5 mm selected from the group consisting of soil gravel, volcanic gravel and artificial gravel is used. A method for cultivating a crop, wherein the crop is cultivated by containing a medium having no soil strength in a cultivation container that restricts the depth of a rhizosphere of the crop to 10 cm or less.
In the present invention, "without geological strength" means, as described in Japanese Patent Publication No. 4-4170, EC (electrical conductivity (unit: muoh = 1 / Ω, current unit: Siemens = S) / Cm) is less than 600 mS / cm, usually 10-500 mS / cm.
The present invention is also a non-rooted, non-permeable and non-permeable bag-like shape having a height of about 10 cm or less for accommodating a medium having no soil strength, a fixed planting hole on the upper surface, and a ventilation hole on the upper side. And a drainage hole at the lower end of the side surface.
The “height” of the bag refers to the height of the bag when the medium is stored. The bag is made of a soft and flexible material and is usually foldable, so that the storage height is minimal.
[0005]
Limiting the crop rhizosphere to a depth of about 10 cm or less is easily achieved by limiting the depth of the medium contained in the cultivation vessel to about 10 cm. On the other hand, if the rhizosphere is too shallow, cultivation is difficult because the medium is small, and the depth is limited from this aspect. Depending on the crop, the medium has a depth from the surface to the bottom of at least about 4 cm, usually about 5 cm or more.
In the present invention, the root zone of the crop is limited to a depth of 10 cm or less, and the group of fasting roots is concentrated and distributed in a layered manner without generating a direct root of the crop.
The cultivation container may be used as a sowing container or a seedling raising container, but it is convenient to place a separately sown container or a seedling raising container in the culture medium inside the planting hole of the cultivation container, or to place it on the planting hole. (See FIG. 5). In this way, sowing and raising seedlings are performed separately and efficiently, and only good seedlings that have germinated and grown almost uniformly as a control can be used as a control, so that computerized management of irrigation and fertilization becomes possible. In addition, the working efficiency and the yield are improved, and the crops can be provided at a low cost with stable and uniform quality.
[0006]
The planting hole of the cultivation container is cut off during cultivation and used.
The cultivation container may be a pot, a pot, a tray, a planter, a bed, a bag, or the like, and a cultivation container that can secure a depth of a culture medium of about 10 cm or less in cultivating a crop is used.
When the cultivation container is shut off from rainwater and the earth, the influence of groundwater on the earth is shut off, and the gases harmful to the growth of plants such as ethylene gas and carbon monoxide released from the earth are shut off. This is convenient because it can be controlled accurately. The ground may not have adequate water quality depending on the location, but it is not affected by such grounds.
[0007]
It is preferable to use a gravel selected from the group consisting of soil gravel, volcanic gravel and artificial gravel. The gravel is preferably a gravel having a particle size of about 2 to 5 mm. This is because the gravels of this particle size have the best air permeability and water permeability, and are most suitable for sucking water from the lower part of the medium to near the surface by capillary action.
Soil gravel or artificial gravel is easily decomposed and releases trace elements that are preferred by the crop and is absorbed by the crop, thereby improving the taste of the crop and thus being preferred. Gravel can be used after sterilization. The soil pebbles are ordinary soil pebbles, for example, mountain soil, field soil, and rice field soil. Artificial gravel also includes burnt and sintered soil. These gravel are easy to sort, sterilize and mix with trace elements. Red clay fired gravels are a preferred example of gravels. Red clay baked at about 700-1000C is easy to decompose and is preferred. Baking at about 1000 ° C. or more is not preferable because it is difficult to decompose. Kuroboku or loam baked gravel can also be used. Volcanic rubble can be used as long as it is easily decomposed after the date and time since its formation. In addition, mullet, kora, bota, grit, etc. can be used as gravel.
Volcanic ash tends to produce direct roots that are difficult to absorb trace elements, and absorbs a large amount of N to make the taste unpleasant.
Since sand and rock gravels are hard to decompose, the supply of trace elements is small, the taste of the crop is inferior, and a large amount of expensive trace elements are required to improve the taste of the crop.
Gravel can easily be made non-ground by burning with heat, washing with a large amount of water, or drying in a house.
After use, the culture medium can be reused after washing, sieving, and heat sterilization, so that the adverse effect on the environment is small.
The medium can have mulch and / or minerals. The humus has almost no nitrogen component and easily breaks down to a powder having a particle size of about 2 to 5 mm. Minerals are known ones such as sulfur, calcium, magnesium and iron. As the calcium, for example, particles such as limestone, oyster shell, and shellfish shell can be used. The particle size can be, for example, about 2-5 mm.
When recycling, the culture medium may be slightly reduced due to cultivation, and if necessary, a new medium is supplemented. Replenishment is about 3-7%, usually about 5%.
[0008]
Crops can grow vegetatively or reproductively. The taste of the crop is poor during vegetative growth and good during reproductive growth. Yuzu has the best taste mainly for reproductive growth when cultivated for more than 50 years, and olives has the best taste mainly for reproductive growth when cultivated for more than 100 years. Fertilizer alone results in vegetative growth and is difficult to reproduce. Fruits such as tomatoes, cucumbers, eggplants and peppers grow vegetatively and grow at the same time. N mainly performs vegetative growth, and P and K perform reproductive growth. When exposed to light, reproductive growth is dominant; when light is low, vegetative growth is dominant. Vegetable growth is dominant when water is high, and reproductive growth is prolonged when dry. For good taste, reproductive growth is preferred and absorption of trace elements is preferred. Crops selectively absorb trace elements.
The crop performs photosynthesis in the surface leaves and hardly performs photosynthesis in the inner leaves.Thus, increasing the number of the upper leaves enables efficient photosynthesis. Since the leaves act to perform photosynthesis, the cultivation space is not wasted, the ratio of the ineffective volume occupying in the cultivation space is reduced, and photosynthesis is performed efficiently.
Usually, vegetables are rooted when potted and cultivated for one month. However, since the present invention limits the rhizosphere, rooting does not occur even when cultivated for a long period of one year or more.
In the present invention, the upper part of the cultivation container can be covered (multi-coated) with a film except for the fixed planting hole portion.
Liquid fertilizer is used as the fertilizer, and large fertilizer can be applied. If necessary, paste-type fertilizers can also be applied. No manure is used.
As the crops suitable for the present invention, fruits and vegetables are preferable because of the need to restrict the range of the rhizosphere, and eggplants, cucumbers, tomatoes and peppers are particularly preferable.
[0009]
The cultivation container has a minimum cultivation volume according to the cultivation crop. In the case of fruits and vegetables, the minimum cultivation volume is about 2 liters, and the upper limit is about 12 liters from the viewpoint of replacement and carrying. Usually, the cultivation volume is about 2 to 8 l.
If the cultivation container is used by placing it on an impermeable sheet having a water collecting channel or a collecting pipe, a gutter-shaped bed, a concrete floor, etc., irrigation and fertilization can be reused easily, so cultivation costs are reduced. It is inexpensive and convenient.
Irrigation and liquid fertilizer not used for crops flowing out of transport equipment such as cultivation containers and pipes are filtered and heat-sterilized, and then reused at a ratio that does not change the nutrient solution, thereby reducing cultivation costs. It can be.
[0010]
If the cultivation container is a bag, the effects of the ground can be eliminated, and irrigation and fertilization can be controlled easily and accurately, and handling, transport, replacement of the culture medium, sterilization and replenishment become easy, so that work efficiency is improved. This is convenient because it improves the cultivation cost.
Various types of bags can be used as the bag, and for example, a pillow type such as a gusset type or a Wiener sausage type can be used.
Preferably, the bag is white and has an anti-slip agent, a UV inhibitor and / or an antistatic agent. When it is white, the medium reflects the sunlight and the temperature of the medium does not rise excessively, and does not actually reach 26 ° C. or more. The anti-slip agent, the anti-UV agent and the anti-static agent may be separate components, or may be the same component. When the anti-slip agent is provided, the cultivation containers do not collapse when the cultivation containers accommodating the culture medium are stacked in several stages on the pallet and transported. When the cultivation container is exposed to sunlight for one year or more, it can be prevented from being deteriorated by ultraviolet rays when the cultivation container is provided with the ultraviolet light inhibitor. When an antistatic agent is provided, adhesion of plastic films during production of the cultivation container can be prevented, adhesion of dust during cultivation can be prevented, and the medium can be automatically filled because the end of the cultivation container is easily opened. In addition, when the filled cultivation containers are stacked and transported in several stages, adhesion between the cultivation containers can be prevented.
The bags shall be provided with fixed planting holes for sowing, raising seedlings and growing. Since the planting hole controls the depth of the rhizosphere of the crop and thereby limits the growing range of the crop, the planting hole is also limited to a small diameter of about 9 cm or less, usually about 5 to 7 cm in diameter.
The portion corresponding to the fixed planting hole of the bag does not need to be white, but is cut off at the time of sowing, raising seedlings and growing the crop, so that the color can be removed and the anti-slip agent, the anti-UV agent and the anti-static agent can be omitted.
[0011]
The dimensions of the cultivation container when containing the culture medium are, for example, as follows.
Width: 10-30cm
Length: 10-120cm
Height: 40-10cm
Ventilation and drainage holes (small holes): about 2 mm in diameter
The interval of each set is adjusted to the interval of the planting hole.
The size of the planting hole: φ50-90mm, usually 70mm
Filling capacity: 2 to 12 l, usually 2 to 8 l
Planting interval: 1/2 of conventional crops.
10 to 25 cm from center to center
Normal 20 ~ 21cm
[0012]
[Action]
According to the present invention, fast cultivation is repeated quickly and cultivation containers are grown quickly and easily because the cultivation container is shallow and thin. Because the roots do not grow, they do not break through the cultivation container.
By isolating the ground from the cultivation container, it is possible to prevent the invasion of the soil deep-dwelling pathogens from the ground into the culture medium and the infection of the crop. It is not affected by groundwater. Furthermore, it facilitates temperature control of the culture medium and does not stop root growth and activity even in the cold season.
Since only good seedlings that have germinated and grown almost uniformly can be cultivated, computerized systematic irrigation and fertilization management can be performed, work efficiency and yield can be improved, and cultivation costs can be reduced. , The quality is improved, and the unevenness is stably eliminated.
When the rhizosphere of the crop is limited to a depth of 10 cm or less, the height of the crop on the culture medium is also limited to a small value according to the rhizosphere, so that the space occupied by the crop is small and the crop is dwarfed. For example, if the crop was cultivated with a rhizosphere of 20 cm and a height of 20 cm in the practice, if the cultivation was performed with a rhizosphere of 10 cm and a height of 10 cm, the cultivation space of 8000 cm3 would be reduced to 1/8 of 1000 cm3. , Reduce the internode length of the crop to 1/2, reduce vegetative growth, increase the ratio of the effective volume to the ineffective volume, improve the sunshine and ventilation, and achieve a stable and high sugar content without unevenness. You can harvest well. Crops can be densely planted, yielding up to about six times the theoretical yield.
FIG. 8 illustrates the relationship between the effective volume and the ineffective volume for photosynthesis in plants. The size of plant B is 1 / (1 / in volume) of the size of plant A, but has almost the same effective volume as A. In the comparison of only the shaded portion, the effective volume of A is large, but the shaded portion that is not exposed to the sun is large, so that a shadow is also created on the insolation side of an adjacent plant, so that an invalid volume is created. B also has half the height of A, so that even if the interval is narrowed and densely planted, no ineffective volume occurs.
Nine plants are planted in the same area in the conventional planting method A, whereas 36 plants are planted four times in the planting method B of the present invention (see FIG. 8). In addition, since one planting method B having a large effective volume can yield about 1.5 times the yield of the conventional planting method A, the maximum harvesting can be about 6 times.
The diameter of one crown of B is 50% of the diameter of one crown of A, and the area on the medium occupied by one crown of B = the area on the medium occupied by one crown of A × 25% (see FIG. 9).
Since the head space of the plant B in the planting method B is wider than that in the planting method A, the lighting is good and the wind is good, and the temperature and humidity are easily adjusted (see FIG. 10). In order to minimize the shade (ineffective volume) caused by adjacent plants, the inter-strain distance b of B may be 1 / of the inter-strain distance a of A. Therefore, the area of the culture medium is only 1/4.
In agriculture, the actual cultivation does not go according to the theory, the theory and the practice are often reversed, and the quality is often reduced or the yield is reduced. Can be harvested in large quantities, and the quality is stable without unevenness.
Since the interval between the pipes is shortened, the length of the pipe is shortened, and the loss of the pipe is small (see FIG. 11).
While achieving high quality and high yield, the sunshine and ventilation are improved, the work efficiency is increased, the labor is saved, and the cultivation cost is reduced.
Since liquid fertilizer is used as a fertilizer without using powder fertilizer or manure, necessary fertilizer components can be reliably and quickly applied, and automatic control of application is realized.
The cultivation container has a fixed planting hole at the top, a vent at the top of the side, a drain at the bottom of the side, and the medium uses coarse soil pebbles or artificial pebbles or volcanic pebbles, so air permeability and water permeability Good nature.
Since the storage and movement of the cultivation container and the culture medium are easy, the replacement work and the replanting work can be performed easily, efficiently and inexpensively in a short time.
Since the culture medium in the cultivation container is shallow, the water and fertilizer that has fallen at the lower part of the culture medium also rises near the surface of the culture medium by capillary action, so that water and fertilizer can be used more effectively than simple fast cultivation.
Crop cultivation costs are reduced because the amount of irrigation and fertilization is minimized while harvesting crops with high sugar content with high yield.
Since the rhizosphere of the crop is restricted, the control of irrigation and fertilizer can be performed quickly and easily, so that work efficiency can be improved and labor can be saved.
The introduction of a drip-type irrigation system using a computer makes it easy to maintain an appropriate amount of irrigation and fertilization at all times.
Filling the cultivation container with fasting roots does not cause root wrapping. Conventional cultivated vegetables grow quickly, and usually take about a month to produce a root roll.
Because the root group is large and constant, cultivation and computer processing are easy to control even in large-scale cultivation, and it is easy to produce high sugar content crops.
Since the cultivation container can use a thin film of plastics, the cultivation container is inexpensive, and can be easily processed, sewn and adhered.
When a container having air permeability, water permeability, and root permeability is used as the seedling raising container, the container can be directly placed on or embedded in the planting hole of the cultivation container, so that the labor for the planting operation in large-scale cultivation can be reduced.
Since the seedling raising period can be reduced by efficiently cultivating the seedlings in a nursery container smaller and more efficient than the house or in a small nursery limited in the house, the house can be used effectively.
By planting seedlings with soil removed from the seedling pots in the seedling pots, placing the seedlings on the seedling pots with the seedling pots, or growing the seedlings while cultivating, the crops can be planted in the seeding pots sequentially. The same or different crops can be cultivated successively (time lag cultivation).
The cultivation container acts as a mulch and is less affected by external light, temperature, and the like, and the temperature in the house is less likely to increase due to evaporation of water in the cultivation container.
Since the range of the rooting is limited by the cultivation container, it is easy to change and control the root area and the cultivation only by changing the size of the cultivation container.
Since the volume of the cultivation vessel and the amount of medium are limited to the minimum necessary, the amount of irrigation and fertilization is minimized.
Since the cultivation containers can be easily replaced in one to two years, there is no obstacle to continuous cropping.
Water does not accumulate in the lower part of the cultivation container, and there is no root rot.
[0013]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
[0014]
Embodiment 1
The cultivation method of the present invention was carried out on tomato as follows.
Nylon and polyvinyl, 14cm wide, 10cm high when filled, 60cm long, 70mm in diameter, and have 6 vents (φ2mm) at the top of the side and 6 drains (φ2mm) at the bottom of the side A tomato seedling grown in a seedling pot was planted in a cultivation container filled with about 8 liters of gravel having a particle size of 2 to 5 mm obtained by firing red clay in a laminated bag. The cultivation container also had six vent holes (φ2 mm) at the upper surface end and six drain holes (φ2 mm) at the bottom end (see FIG. 6). The planted seedlings were grown and cultivated in a house having a length of 50 m and a width of 20 m. Cultivation area B had a cultivation area of 10a, the number of cultivated strains was 2400 (16 rows, 2 rows x 75), the ridge distance was 0.6 m, the ridge width was 0.6 m, and the inter-plant distance was 0.3 m (cultivation area B in FIG. 11). reference). The cultivation was a winter crop and the period was from October 15, 1998 to the end of June 2011, and the place was in Tsudacho, Hamamatsu City.
As a control example, tomatoes were cultivated in a medium in which the soil strength of clayey soil was 10 mS / cm in EC value by house tunnel cultivation according to the method of Japanese Patent Publication No. 3-4170. The seedlings were grown and cultivated in a house having a length of 50 m and a width of 20 m using maltomato seedlings in the same growth state as the cultivation area B. Cultivation area A had a cultivation area of 10a, the number of cultivated strains was 1440 (15 rows, 2 rows of plants x 48), the ridge distance was 0.6 m, the ridge width was 0.7 m, and the interline distance was 0.5 m (control section A in FIG. 11). reference). The cultivation period and place were the same as in cultivation zone B.
FIG. 12 is a plan view illustrating the number of strains that can be planted in Example 1 by comparing the present invention section with the control section, and FIG. 13 is a diagrammatic explanatory view illustrating the relationship between the ineffective volume and the effective volume. FIG. 14 is a diagram illustrating the internode distance, the crown size, the tree height, and the ineffective volume in comparison with the control group. 12 to 14, the inter-stock distance a = 0.5 m and the inter-stock distance b = 0.3 m.
In FIG. 14, since the internode distance (in the case of a tomato, the distance between the fruit cluster and the next fruit cluster) is shortened, the height of the stem is reduced, the sun is easily exposed, and the overhead is wide, so that the wind direction is also large. It got better and the canopy was smaller. Accordingly, in a greenhouse having the same space volume (area × height), a large number of plants can be planted, which has led to an increase in sales. The number of plants planted in the same area has increased by a little over 1.6 times. The yield per strain was equivalent to that of the control group, but the percentage of the high sugar content increased, and was about three times that of the control group. The yield per unit area was about 1.7 times.
Figure 0003598263
Since the number of cultivated strains is 2,400 in the plot B of the present invention and 1,440 in the plot A, the fertilization amount per strain is 60% of the plot of the present invention B compared to that of the control plot A.
Figure 0003598263
As is evident from the above data, the present invention showed that the amount of irrigation and the amount of fertilization per plant were reduced to approximately 60%, the yield was much higher, and the yield by sugar content was extremely excellent.
[0015]
Embodiment 2
In the same manner as in Example 1, first tomatoes (one crop per year) were cultivated in Miyazaki Prefecture by planting seedlings grown in seedling pots having the same structure as shown in FIG. 6 in cultivation containers.
In the control plot, tomato was cultivated by the rock wool method, which is currently the most popular cultivation method. In the present invention and the control test, tomatoes having the same growth state at the time of planting were used. The cropping area was 10 are each, and the media used was lapilli with a particle size of 2 to 5 mm.
Seeding was on August 7, 1998, potting was on August 20, 1998, planting in a cultivation container was on September 4, the same year, harvesting started on December 10, the same year, and harvest was finished at the end of June 1999. .
In addition, the cultivation was performed in a plastic house, because a comparison test of the whole year was not possible in general open-field cultivation and rain-covered house cultivation.
Figure 0003598263
The yield was 10 tons in the present invention, and 7 tons even in the control group including those having a sugar content outside the standard.
Figure 0003598263
As is clear from the above-mentioned data, the present invention showed that the amount of harvest was much higher and the yield by sugar content was extremely excellent while the amount of irrigation and the amount of fertilization were small, approximately 1/10.
[0016]
Embodiment 3
In the same manner as in Example 1, malt tomatoes (three crops per year) were grown in Chitose City.
Seedlings grown in seedling pots having the same structure as shown in FIG. 4 were planted in cultivation containers and cultivated. The control group was cultivated by the rock wool method. In the present invention and the control group, tomato plants having the same growth state were used at the time of planting. The cropping area was 10 are each, and the media used was lapilli with a particle size of 2 to 5 mm.
In addition, the comparative cultivation test was performed in a glass house because the whole year comparative cultivation test was not possible in general open-field cultivation and rain-protection house cultivation.
Figure 0003598263
The yield was 21 tons in the present invention, and 14 tons even if the control group contained non-standard sugars having a sugar content of 5 degrees or less.
Figure 0003598263
As is clear from the above-mentioned data, the present invention showed that the amount of irrigation and the amount of fertilization were reduced to approximately 1/10, the yield was much higher, and the yield by sugar content was extremely excellent.
[0017]
Embodiment 4
In the same manner as in Example 1, midi tomatoes (one crop per year) were grown in Chitose City in seedling pots having the same structure as shown in FIG. The control test was cultivated by the rock wool method, which is the most popular tomato cultivation method at present. In the present invention and the control group, tomato plants having the same growth state were used at the time of planting. The cropping area was 10 are each, and the media used was lapilli with a particle size of 2 to 5 mm.
In addition, in the general open-field cultivation and the cultivation in a rain-shielded house, a comparative test could not be performed all year, so the cultivation was performed in a glass house.
Sowing was August 7, 1998, potting was August 20, 1998, planting in a cultivation container was September 4, 2001, harvesting began December 10, 1998, and harvest was completed at the end of June 1999. Was.
Figure 0003598263
The yield was 23 tons in the present invention and 23 tons in the control plot, but the control plot contained a large amount of sugar content outside the standard.
Figure 0003598263
As is clear from the above-mentioned data, the present invention has a large yield and a remarkably excellent yield by sugar content, while reducing the amount of irrigation and the amount of fertilization to approximately 1/10.
[0018]
Embodiment 5
25 parts by weight of mountain soil and 25 parts by weight of rice paddy are mixed in a sludge shape, formed into a mud-brick, dried and ground, and ground and crushed to obtain a particle size of 2 to 5 mm. 20 parts by weight of a 5 mm mullet, 30 parts by weight of humus (which has almost no nitrogen component and easily breaks down during mixing to become a powder having a particle size of about 2 to 5 mm), and a mineral having a particle size of 2 to 5 mm Oyster shell powder and 2 parts by weight were mixed to prepare a medium.
8-10 kg of the above-mentioned culture medium was charged into a bag having a capacity of about 10 to 12 liters having a length of 65 cm, a width of 25 cm, and a height of 4 to 7 cm containing the same material as in Example 1 and containing a light deterioration inhibitor, and sealing. Thus, a cultivation container having a culture medium was obtained.
[0019]
【The invention's effect】
Thus, according to the present invention, since the amount of irrigation and the amount of fertilization are appropriately and minimized, crops having an extremely high sugar content of 6 to 18 can be stably harvested in large quantities without unevenness, and cultivation costs can be reduced.
The fast-growing roots grow easily and quickly, so the crop grows fast.
Since the ground and the cultivation container are isolated, it is possible to prevent the invasion of the soil deep-dwelling pathogenic bacteria from the ground into the culture medium and the infection to the crops without being affected by the groundwater. It also facilitates temperature control of the medium and does not stop root growth and activity even in the cold season.
Only good seedlings that have germinated and grown almost uniformly can be cultivated as a control, so that computerized management of irrigation and fertilization is possible, work efficiency and yield are improved, crops are cheaper, The quality is improved and the unevenness is stably eliminated.
Since the depth of the rhizosphere of the crop is limited to 10 cm or less, vegetative growth is reduced, reproductive growth is increased, and the height of the crop on the medium is also limited to a small amount depending on the rhizosphere, so that the crop is dwarfed, The ratio of the ineffective volume in the cultivation space is reduced, the cultivation space is reduced, the sunshine and ventilation are improved, and crops with a high sugar content can be efficiently, uniformly and stably harvested in large quantities, and at the same time, labor can be saved.
If the crops can be densely planted and the cultivation interval is halved, theoretically a maximum of about six times as many harvests can be achieved.
The length of the pipe can be shortened, and the loss of the pipe can be reduced.
While achieving high quality and high yield, the sunshine and ventilation are improved, the work efficiency is increased, the labor is saved, and the cultivation cost is reduced.
Since liquid fertilizer is used as a fertilizer, necessary fertilizer components can be reliably and quickly applied, and the application can be automatically controlled.
The cultivation container has a fixed planting hole in the upper part, a vent hole in the upper part of the side, a drainage hole in the lower part of the side, and the culture medium uses the pebble of the optimal particle size, so that the air permeability and the water permeability are good.
Since the storage and movement of the cultivation container and the culture medium are easy, the replacement work and the replanting work can be performed efficiently, simply, and inexpensively in a short time.
Crop cultivation costs are reduced because the amount of irrigation and fertilization is minimized while harvesting crops with high sugar content with high yield.
Since the culture medium in the cultivation container is shallow, irrigation and fertilizer that have fallen below the culture medium also rise near the surface of the culture medium by capillary action, so that water and fertilizer can be used more effectively than simple fast cultivation.
Since the rhizosphere of the crop is restricted, the control of irrigation and fertilization can be planned quickly and easily, and the work efficiency can be increased and the labor can be saved.
By introducing a drip-type irrigation system using a computer, the amount of irrigation can be easily and appropriately maintained.
Filling the cultivation container with fasting roots does not cause root wrapping.
Since the root group is large and constant, it can be easily cultivated even in large-scale cultivation, is easy to perform computer processing, and can efficiently and stably mass-produce high sugar content crops.
Since the cultivation container is inexpensive and can be easily processed, sewn and bonded, it can be mass-produced industrially at low cost.
When a nursery container having air permeability, water permeability and root permeability is used, the labor and time required for planting in large-scale cultivation can be reduced, cultivation can be performed efficiently, and cultivation costs can be reduced.
The greenhouse can be effectively used because it can be cultivated in a nursery container that is smaller and more efficient than the house to reduce the nursery period, or because it can be efficiently grown in a part of the greenhouse in a small nursery.
The same or different crops can subsequently be staggered.
Since the cultivation container functions as a mulch, the cultivation container is less affected by external light, temperature, and the like, the evaporation of water in the cultivation container is reduced, and the rise in temperature in the house due to the evaporation of water is reduced.
Since the range of the rooting is limited by the cultivation container, the change and control of the rhizosphere and cultivation can be easily performed only by changing the dimensions of the cultivation container.
Since the volume of the cultivation container and the amount of the culture medium can be limited to the minimum necessary, the amount of irrigation and the amount of fertilization can be minimized.
Since the cultivation containers can be easily replaced in one to two years, there is no obstacle to continuous cropping.
Water does not accumulate in the lower part of the cultivation container, and there is no root rot.
[0020]
Although the present invention has been described with reference to specific examples and numerical values, the present invention is not limited to these examples and numerical values, and various changes and modifications may be made without departing from the broad spirit and scope of the present invention. Of course.
[Brief description of the drawings]
FIG. 1 is a plan view showing an example of a cultivation container according to the present invention.
FIG. 2 is a cross-sectional view taken along line AA of FIG.
FIG. 3 is a transverse sectional view taken along line BB of FIG. 1;
FIG. 4 is a top view showing an example of the relationship between the diameter of a planting hole and a nursery pot.
FIG. 5 is a perspective view showing an example of a relationship between a fixed planting hole of a cultivation container and a nursery pot.
FIG. 6 is a cross-sectional view of a double container showing an example of a seedling raising container used in the present invention.
FIG. 7 is a diagram for explaining effective and ineffective volumes of a plant in comparison with a conventional planting method.
FIG. 8 is an explanatory view showing a densely planted state of a crop according to the present invention.
FIG. 9 is an explanatory diagram showing that the area of a medium occupied by a crown portion is much smaller than that of a conventional one.
FIG. 10 is a diagram showing that the space above the plant according to the present invention is large, the lighting and the wind are good, and the temperature and humidity are easily adjusted.
FIG. 11 is a schematic plan view showing an example of a cultivation pattern according to the present invention.
FIG. 12 is a plan view illustrating the number of plants that can be planted by comparing the present invention with a control plot.
FIG. 13 is a schematic explanatory view illustrating the relationship between an invalid volume and an effective volume.
FIG. 14 is a diagram illustrating the internode distance, the crown size, the tree height, and the dead volume according to the cultivation method of the present invention in comparison with a control plot.
[Explanation of symbols]
1: Cultivation container 7: Plant seedling
2: fixed planting hole 8: fasting root
3: nursery pot 9: medium
4: Vent 10: Direct root
5: Drainage hole 11: External container
12: Air layer

Claims (6)

(1)地力の無い培地を雨水及び大地から遮断し、(2)作物を発芽又は定植させ、(3)発芽又は定植後に水と窒素肥料を断ち、(4)作物が萎れ始めたら慣行(晴耕法)の1/10〜1/100の少量の水及び肥料を与え、(5)(3)と(4)の作業を繰り返して地表面付近に吸水力と吸肥力の強い断食根を生成させて糖度の高い作物を収穫する作物の栽培方法において、培地として土の礫、火山礫及び人工の礫から成る群から選択した粒度2〜5mmの礫を用い、地力の無い培地を作物の根圏の深さを10cm以内に制限する栽培容器に収容して作物を栽培することを特徴とする作物の栽培方法。(1) Cut off the fertile medium from rainwater and the earth, (2) germinate or plant the crop, (3) cut off water and nitrogen fertilizer after germination or planting, (4) If the crop begins to wither, practice A small amount of water and fertilizer of 1/10 to 1/100 of the (cultivation method) are given, and the work of (5), (3) and (4) is repeated to generate a fasting root with strong water absorption and fertilization near the ground surface. In a method of cultivating a crop in which a crop having a high sugar content is harvested, a pebble having a particle size of 2 to 5 mm selected from the group consisting of soil gravel, volcanic pebble and artificial pebble is used as a medium, and a medium without soil strength is used as a root of the crop. A crop cultivation method, wherein the crop is cultivated in a cultivation container in which the depth of the sphere is limited to 10 cm or less. 培地が腐葉土及び/又はミネラルを有する請求項1の栽培方法。The cultivation method according to claim 1, wherein the medium has humus and / or minerals. 人工の礫がクロボク、ローム又は赤土の焼成礫、ボタ及びズリから成る群から選択したものである請求項1又は2の栽培方法。The cultivation method according to claim 1 or 2, wherein the artificial gravel is selected from the group consisting of baked gravel of black and white, loam or red clay, scum and pickpocket. 栽培容器とは別個に播種した容器又は育苗した容器を栽培容器の定植孔の内部の培地中に設置し、又は定植孔の上に載置して栽培する請求項1、2又は3の栽培方法。The cultivation method according to claim 1, wherein a container sown or a seedling that is sown separately from the cultivation container is placed in the culture medium inside the set planting hole of the cultivation container, or is placed on the set planting hole and cultivated. . 栽培容器とは別個に育苗した容器を栽培容器の定植孔の内部の培地中に設置し、又は定植孔の上に載置して栽培する請求項4の栽培方法。The cultivation method according to claim 4, wherein the container cultivated separately from the cultivation container is cultivated by placing the container in the culture medium inside the planting hole of the cultivation container or placing the container on the planting hole. 栽培容器として、非通根性、非通気性及び非透水性で柔軟な可撓性の物質から製されていて通常は折り畳めるので貯蔵時の高さが僅少な袋であり、上表面の定植孔と、側面上部の通気孔と、側面下端部の排水孔とを有する栽培容器を用いる請求項1、2、3、4又は5の栽培方法。As a cultivation container, it is made of a non-rooted, non-breathable, non-permeable and flexible material and is usually foldable. The cultivation method according to claim 1, 2, 3, 4, or 5, wherein a cultivation container having a vent at the upper side and a drainage hole at the lower end of the side is used.
JP2000252021A 2000-07-28 2000-08-23 How to grow crops Expired - Lifetime JP3598263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000252021A JP3598263B2 (en) 2000-07-28 2000-08-23 How to grow crops

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000228361 2000-07-28
JP2000-228361 2000-07-28
JP2000252021A JP3598263B2 (en) 2000-07-28 2000-08-23 How to grow crops

Publications (2)

Publication Number Publication Date
JP2002101758A JP2002101758A (en) 2002-04-09
JP3598263B2 true JP3598263B2 (en) 2004-12-08

Family

ID=26596885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000252021A Expired - Lifetime JP3598263B2 (en) 2000-07-28 2000-08-23 How to grow crops

Country Status (1)

Country Link
JP (1) JP3598263B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5487508B2 (en) * 2010-09-17 2014-05-07 株式会社日本総合研究所 Liquid fertilizer for improving sugar content of tomato, method for producing the same and method for using the same
CN108156922B (en) * 2018-01-12 2023-07-18 中国农业科学院农田灌溉研究所 Identification method and identification system for suitability of crop aerated irrigation
CN113079858B (en) * 2021-03-29 2023-11-21 锡林郭勒盟乌拉盖河矿业有限公司 Greening planting equipment for ecological restoration of mine slope

Also Published As

Publication number Publication date
JP2002101758A (en) 2002-04-09

Similar Documents

Publication Publication Date Title
CN101960981B (en) Method for cultivating cherries and tomatoes
CN103190292B (en) Forest cultivation method of morchella crassipes
CN103988750B (en) The method of Dual Mushroom mushroom is interplanted in a kind of vineyard
JP2008011752A5 (en)
JP2008011752A (en) Hydroponic device and hydroponic method of root crop
CN104782463A (en) Eco-organic type soilless culture technology
CN103621386A (en) Vegetable soilless culture matrix and application of vegetable soilless culture matrix
CN103004568A (en) Soilless culture substrate formula for strawberries
CN105325158B (en) A kind of hotbed chives implantation methods and its special astigmatism cooling heat radiation regulation and control film
CN105210673A (en) The method of northeast woods shadow milpa Stropharia rugoso-annulata
CN105165405A (en) Northeast forest land stropharia rugoso-annulata cultivation method
CN107082697B (en) Matrix for vegetable seedling culture and vegetable seedling culture method using matrix
CN107278705A (en) Ecological vegetable factory
CN108184590B (en) Method for preserving ginseng germplasm resources and breeding seed seedlings
CN105432317B (en) A kind of dense planting high-yield planting method of white asparagus
JP3598263B2 (en) How to grow crops
CA2923364A1 (en) Method for cultivating rape seedlings
CN105474981B (en) A kind of method using shed plantation white asparagus
CN107347559A (en) A kind of No. I small root segment of Anhui Chinese scholartree is from root method for culturing seedlings
CN110771446B (en) Anti-season vegetable planting method based on agricultural greenhouse
CN206993869U (en) Ecological vegetable factory
CN105359820B (en) A kind of white asparagus implantation methods for being easy to harvesting
MX2013008823A (en) Protected soil-plant agriculture production system and method for low-height crops.
KR101759179B1 (en) Removable growth bed system for cultivating ginseng
CN108812113A (en) Method of the oyster mushroom bacteria residue for potting media and the application in vegetable growing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8