JP3597720B2 - Greening structure of building structures - Google Patents

Greening structure of building structures Download PDF

Info

Publication number
JP3597720B2
JP3597720B2 JP3694699A JP3694699A JP3597720B2 JP 3597720 B2 JP3597720 B2 JP 3597720B2 JP 3694699 A JP3694699 A JP 3694699A JP 3694699 A JP3694699 A JP 3694699A JP 3597720 B2 JP3597720 B2 JP 3597720B2
Authority
JP
Japan
Prior art keywords
soil
water
plant
depth
holding frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3694699A
Other languages
Japanese (ja)
Other versions
JP2000232820A (en
Inventor
裕隆 佐藤
英和 小堀
真一 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Forestry Co Ltd
Original Assignee
Sumitomo Forestry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Forestry Co Ltd filed Critical Sumitomo Forestry Co Ltd
Priority to JP3694699A priority Critical patent/JP3597720B2/en
Publication of JP2000232820A publication Critical patent/JP2000232820A/en
Application granted granted Critical
Publication of JP3597720B2 publication Critical patent/JP3597720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、建築構造物の緑化構造に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、市街地においては、鉄筋コンクリート造や鉄骨鉄筋コンクリート造の建築構造物が建ち並び、また、殆どの道路はアスファルト舗装されており、都市部の緑はますます減少している。このため、都市部に生活する人々に潤いや快適さを供与する緑地帯が求められている。
また、建築構造物の屋上や外壁を植物にて覆うことが、建築構造物の冷暖房費の低減や都市型ヒートアイランド現象の緩和などに効果があることが明らかとなり、都市部における建築構造物の緑化の必要性が増大している。
【0003】
また、近年、下水道の普及や道路及び家屋等の施設まわりのコンクリート舗装化等による都市化の進展に伴い、雨水の河川へのピーク到達時間が短縮化され、これにより生じる都市型河川氾濫が社会問題化している。この都市型洪水の防止策の一つとして、建物の屋上を芝生、樹木、草花等で緑化し、建物屋上に配設された土壌に雨水を含浸させることにより雨水の流出を抑制する方法が有効であるとされている。
【0004】
建築構造物の屋上等において、樹木や草花を植えるための植栽を行うための植生基盤構造が種々提案されている。
例えば、建築物の屋上のスラグコンクリート上に、アスファルト製防水層を設け、該防水層上に、コンクリート、敷き砂利等の排水層、客土を順次積層して植生基盤構造を形成し、該客土に樹木や草花が植えて植栽を行うことが提案されている。
しかし、この植生基盤構造においては、現場作業の工程が多く施工期間が長期化すると共に、植生基盤構造が大重量化される等の問題がある。
【0005】
また、建築構造物上の少なくとも一部を覆うように設けられた防水層と、該防水層上を覆うように設けられ、該防水層を保護する保護層と、該保護層を覆うように設けれられ、かつ、上面に多数の凹部が形成されると共に、下面において前記上面の凹部に対応する部分が凸部に形成された導水パネルと、該導水パネル上面の前記凹部に充填された保水材と、該保水材の充填された導水パネルを覆うように設けられた透水膜と、該透水膜上を覆うように設けられた客土とが順次積層されていることを特徴とする建築構造物の緑化用床構造(特開平6−209566号公報)、防水層、耐根シート、平板状の頭部と錐体状の胴体とからなるコマ型形状の植物栽培ブロック、互いに隣接する該植物栽培ブロックの間隙部にある軽量骨材および表層を備えることを特徴とする屋上用植物栽培コンクリート基盤(特開平08−23802号公報)等が提案されている。
しかし、これらの緑化構造は、降雨による過剰な水を速やかに排水するようにしてあるため、都市型洪水の防止効果が比較的小さい。
また、貯水型構造を有する植生基盤が知られているが、植生基盤内に過剰な水が停滞し、その結果、根腐れによって植物の生育が悪くなったり枯死する場合がある。
【0006】
そこで、特開平06−319378号公報、特開平7−115858号公報、特開平08−137964号公報のように植生基盤とは別に貯水槽を設け、過剰な降水を一時的に貯水槽に貯め、乾燥時には貯水槽から植物の生育必要な水分を供給する構造が多く開発されている。
しかし、これらの方法は、貯水槽が満水になったとき大重量化することや、貯水槽を含む植生基盤構造が複雑で、コストがかかるという問題がある。
特に、既設建造物の屋上では、植栽することを想定した設計が行われていないため、一般的に水道等の設備がなく、また、厚い植栽土壌に耐える耐荷重構造がないことから、特に乾燥に強いコケ(特開平07−227142号公報)やSedum属植物(特開平07−207667号公報)等、屋上等の過酷な環境条件下でも生育可能な植物を用いて、簡易的に且つ極めて薄い植生基盤で軽量に緑化する方法が開発されている。しかし、これらの方法においては、都市型洪水の防止に対してはほとんど効果がなく、また、蒸散を抑えて生存に耐える植物の性質から気化熱による建造物の放熱が少なく、冷房費の節減という省エネ効果も期待できない。また、植物の荷重に対する耐性が低いため、乗って利用することができない。
【0007】
本発明は、このような実情に鑑みてなされたものである。
本発明の目的は、メンテナンスの負担が少なく、温熱環境の改善効果及び都市型洪水の防止効果に優れており、建築構造物上に容易に形成することのできる建築構造物の緑化構造を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、建築構造物上に形成した土壌保持枠内に、全有効水分200L/m3 以上且つ難有効水分量100L/m3 以上の土壌を充填してなる植生基盤構造であって、前記土壌保持枠は、深さが浅い部分と該部分より深さが深い部分とを有し、該深さが浅い部分の底面に排水孔を有しており、前記深さが深い部分における前記土壌の深さが15〜30cmであり、前記深さが浅い部分における該土壌の前記排水孔までの深さが5〜10cmであり、前記土壌保持枠内の土壌表面の面積が10〜100m 2 である植生基盤構造に、ゾイシア属の植物を植栽してなることを特徴とする建築構造物の緑化構造を提供することにより、上記の目的を達成したものである。
【0009】
【発明の実施の形態】
以下、本発明の好ましい実施形態について図面を参照しながら説明する。
【0010】
先ず、本発明の一実施形態で用いた植生基盤構造について説明する。
本実施形態の植生基盤構造は、図2に示すように、建築構造物1上に形成した土壌保持枠2内に、全有効水分200L/m以上且つ難有効水分量100L/m以上の土壌を充填してなる植生基盤構造であって、土壌保持枠2は、深さが浅い部分(符号7’で示す部分)と該部分より深さが深い部分とを有しており、前記深さが浅い部分の底面部に排水孔4を有しており、前記深さが深い部分における前記土壌3の深さD1(図参照)は15〜30cmであり、前記深さが浅い部分における該土壌3の前記排水孔4までの深さD2(図参照)が5〜10cmである
【0011】
土壌保持枠2は、建築構造物1上に土壌3を所定の形状として保持するための枠であり、本実施形態においては、図2に示すように、防水性能を有する深さが同一の容器23’を複数連設して形成している。図2に示す植生基盤構造においては、容器23’の各連結部7’に、上下に貫通するように排水孔4を設けてあり、また、土壌保持枠2の外周部に位置する容器23’の側壁部22’の上方に防漏部25を延設し、土壌保持枠2の連結部7’より上部に土壌3を充填し得るように構成してある。尚、図2に示す植生基盤構造における土壌3の深さD1及び排水孔4の深さD2は、図1に示す実施形態におけるのと同様である
尚、図1は他の植生基盤構造を参考に示したものであり、図1に示す植生基盤構造における土壌保持枠2は、建築構造物1上に、底面部21及び側壁部22を有する容器23を設置して形成してある。容器23は、非透水性の形成材料からなり、側壁部22における所定の高さ位置に、所定の間隔で複数の排水孔4を有している。土壌保持枠2における該排水孔4の形成位置よりも下部は、水の貯留部として機能する。即ち、排水孔4の形成位置よりも下部は、非透水性の材質で囲まれており、雨水や供給された水を土壌と混在させた状態としてこの部分に保持する。
【0012】
図1に示す土壌保持枠2は、その内面に防根層24を有しており、植物の根が該土壌保持枠2の底面部21や側壁部22に到達しても該土壌保持枠2が破壊されるようなことがない。防根層24は、ポリエチレンフィルムなど不透水性のフィルム、厚さ5〜10mmの不織布等の透水性を有するシート、化学物質で根の侵入を防止するシートにより形成することができる。
【0013】
尚、本発明における土壌保持枠は、屋上等の建築構造物1上にコンクリート等により土壌保持枠2の側壁部22となる壁体を形成し、建築構造物1上の該壁体に囲まれた部分及び該壁体の内壁面に防水層を設けたものであっても良い。この場合における防水層は、アスファルト及びアスファルトフェルト、アスファルトルーフィング、特殊アスファルトルーフィングなどを重ねて防水層を形成する周知のアスファルト防水もしくは改質アスファルト防水、塩化ビニル系防水、ウレタン+FRP複合塗膜防水などにより形成することができる。また、上記の壁体は、壁面を有する構造物や既設の壁体等を利用しても良い。
【0014】
土壌保持枠2に充填する土壌3は、全有効水分量が200L/m以上且つ難有効水分量100L/mの土壌である。具体的には、肥沃な火山灰土壌である黒土、火山灰土壌の心土である赤土など、壌土あるいは植壌土に分類される土壌、又はこれらを主体とするものを用いるのが好ましい。ここで、全有効水分量とは、土壌標準分析・測定法 博友社 36〜54頁に記載の方法により測定した水分張力(pF)が1.8〜4.2の範囲の水分量をいい、難有効水分量とは、全有効水分量と同じ方法により測定した水分張力(pF)が3.0〜4.2の範囲の水分量をいう。
【0015】
土壌3の全有効水分量200L/m未満であると、特に夏期の乾燥時に水分が不足し易い。また、難有効水分量100L/m未満であると、乾燥時に、急激に永久萎凋点(pF4.2)以下に土壌水分が減少し、植栽した植物が枯死する可能性が高くなる。尚、メンテナンス負担の軽減等の観点から、土壌3の難有効水分量は120L/m以上であることが好ましい。
【0016】
特に、人による歩行が頻繁に行われると予想される場所には、降雨時に土壌が泥状軟化し、歩行による踏圧で不安定となる場合があるので、土壌3には、多孔質火山礫を配合することが好ましい。多孔質火山礫には、通常アズキ大の大きさで黒色または褐色を呈する多孔質スコリアや、マグマが大気中や水中に放出されたとき外圧の急激な低下により内部のガスを放出して多孔質となった岩石片である軽石などが含まれる。これらの多孔質火山礫の内、粒の硬さが指で容易に崩れない程度以上であるものが好ましく、湿潤時の比重が0.8〜1.2であることが好ましい。多孔質火山礫の粒径は5〜30mm、特に10〜20mmの範囲のものが好ましい。多孔質火山礫の配合量は、建築構造物に敷設する土壌(多孔質火山礫を含む土壌全量)中、通常5〜20容量%、好ましくは10〜20容量%である。多孔質火山礫は、土壌に均一に混合しても良いし、赤土等の上に敷き詰めても良い。
【0017】
上記土壌として、火山灰土壌の心土である赤土のように腐植含有量が50g/kg以下である土壌を用いる場合には、堆肥及び浄水ケーキのいずれか一方又は双方を土壌改良資材として添加する。土壌改良資材の添加により、生育過剰とならせることなく植物の生育に必要な微量要素を継続的に供給することができる。
【0018】
上記堆肥としては、通常公知の各種の堆肥を用いることができ、例えばイナワラ、麦稈、バーク、鋸屑、家畜糞尿、都市ゴミコンポスト等の各種材料を自然堆肥しあるいは人為的に機械処理して常法により得られるものを用いることができる。上記浄水ケーキとしては、浄水場の脱水処理過程で発生した無薬注の浄水場発生土を用いることができる。これらの土壌改良資材の添加量は、建築構造物に敷設する土壌(土壌改良資材を含む土壌全量)中、3〜15容量%、特に5〜10容量%が好ましい。
【0019】
土壌保持枠2内の土壌3は、深さ(平均深さ)D1が15〜30cmとなり、該土壌の表面からの深さD2が5〜10cmの位置に排水孔4を有するように、充填する。このような構成とすれば、排水孔4より下部の水の貯留部に、雨水が充分に蓄えられ、土壌の過乾燥が防止される。また、水分の管理が容易となる。また、大雨時や長雨時等における貯留部に蓄えられない過剰量の雨水が、比較的速やかに排水孔4から排出されるため、植栽植物の根腐れによる枯死等を効果的に防止することができる。重量を抑えつつ、水分の貯留と排水とのバランスを図る観点から土壌3の深さD1は15〜25cmが好ましく、特に15〜20cmが好ましい。
【0020】
土壌保持枠2の大きさは、土壌表面の面積が10m〜100mであることが好ましい。土壌保持枠2の大きさが、上記の下限値より小さいと、土壌保持枠2の外周部からの水分の蒸発散により土壌の乾燥が進行し易くなり、植栽植物が枯死する危険性が高くなる。一方、上記の上限値を超えると、土壌保持枠2内における水分の偏りが発生し易くなり、特に降雨が連続したときなどに、水の停滞による根腐れ等の危険性が高くなる。
【0021】
次に、上述した植生基盤構造を用い建築構造物の緑化構造について説明する。
本実施形態においては、建築構造物1上に敷設した土壌3、即ち上記植生基盤構造の土壌3にゾイシア(Zoysia)属植物6を植栽する
ゾイシア(Zoysia)属植物としては、Zoysia japonica(ノシバ)、Zoysia matrella(コウライシバ)、Zoysiatenuifolia(ビロードシバ)等を用いることができる。ゾイシア属植物は、耐乾燥性及び耐冠水性に優れているため、ゾイシア属植物を植栽することによって、給水管理の大幅な軽減、設備の簡易化を図ることができる。尚、植栽方法は、ターフ状に成育させたものを土壌3上に敷き詰める等、従来公知の方法を用い得る。
【0022】
また、ゾイシア属植物を用いることにより、以下の各効果が奏される。即ち、▲1▼ゾイシア属植物は我が国の自然界に現存している種類であるので、わが国の生態系を乱すおそれが少ない。▲2▼ゾイシア属植物はほふく性を有し、植物高が高くならない。また、植栽場所の全面を緑覆することができる。▲3▼過乾あるいは過湿によって植栽地帯の一部が枯死が枯死しても、生存部分からほふく枝が伸長するので、植物の改植することなく、いずれ植栽地帯全体に緑を回復させることができる。▲4▼ゾイシア属植物は、多年生植物であるため、毎年播種する等の管理が不要である。▲5▼栽培方法、流通方法が確立されており、かかる観点からも施工及び管理が容易である。▲6▼荷重に対する耐性を有するため、人が植物上を歩行することも可能である。
【0023】
本発明の建築構造物の緑化構造は、A)夏期の月別平均気温が20℃以上であり、B)10分間に20mm以上の降雨が記録されたことがあるか、1時間に50mm以上の降雨が記録されたことがある地域、又は、将来そのような降雨の可能性がある地域において特に優れた効果を発揮する。このような地域においては、実質的に無灌水でゾイシア属植物を生存させることができ、管理負担を大幅に軽減することができる。
【0024】
図3に好ましい緑化構造を示した。図3には植生基盤構造(図中Sで示す。)を建築構造物の屋上に所定の間隔を開けて複数設けた例を示してある。各植生基盤構造S同士間には、各植生基盤構造Sにおける土壌表面とほぼ等しい高さとなるように歩行路7を形成してある。
【0025】
以上、本発明の建築構造物の緑化構造の一実施形態について説明したが、本発明は、上記実施形態に制限されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
例えば土壌保持枠2は、防水性能を有する深さの異なる容器を、土壌表面の高さが揃うように、複数連設して形成したものであっても良い。
【0026】
また、土壌保持枠2内の平均の土壌厚を15cm〜30cmとし、植栽部分の高さを一定に保ちながら土壌厚の厚薄に変化(差)を設けても良い。例えば、土壌厚が厚い部分の厚みを25cm〜40cmとし、土壌厚が薄い部分の厚みを5cm〜15cmとする。土壌厚の最厚部から最薄部にかけては、直線やS字状に連続的に変化させても良いし、階段状に不連続的に変化しても良い。
近年異常気象現象が多く認められており、過去記録されていなかったほどの日照りや長雨が発生する可能性が否定できない。土壌厚の厚薄に変化を付けることによって、過度の日照りによる過乾に対しては土壌厚の厚い部分、過度の長雨による過湿に対いては土壌厚が薄い部分のゾイシア属植物を生存させることができる。植栽地帯の一部を生存させれば、ゾイシア属植物のほふく性を利用して植栽地帯全体の緑を回復させることができる。この結果、植栽に決定的な影響を与える異常気象後でも植物の改植することなく緑地部分を維持することができる。
また、本発明は、建築物の屋上やバルコニー、ベランダ等の他、ビル間連絡路、歩道橋等にも適用することができる。
【0027】
【実施例】
本発明の有効性を確認するために各種の評価試験を行った。
【0028】
試験1〔耐乾燥性の評価〕
縦45cm、横20cm、高さ20cmのプラスチックケースに赤土(茨城県つくば市産,全有効水分220L/m,難有効水分量120L/m)を深さ20cmとなるように充填し、Zoysia matrella(コウライシバ,商品名“ウィンターフィールド”住友林業緑化株式会社)、Zoysia japonica(ノシバ)、Zoysia tenuifolia(ビロードシバ)、及び対照としてAgrositis palustris(商品名“クリーピングベント”)の合計四種類の植物を、それぞれケース内においてターフ状(マット状)となるまで成育させた。
【0029】
ターフ状態となった各種類の植物体を飽和水分まで灌水した後、2週間灌水をせずに管理し、乾燥処理を行った。尚、乾燥処理は、平成8年8月に行った。そして、乾燥処理後のターフについて、葉の黄変及び葉の縮れの有無を観察し、また、枯死率を求めた。表1に、これらの結果を示した。尚、枯死率は、乾燥処理後のターフの任意の場所から根付きの主茎を20本ずつ採取し、水で湿らせた濾紙を敷いたシャーレ内に並べ、20℃で5日間放置した後の植物体の状況から枯死率(%)を算出した。
【0030】
また、乾燥処理後の上記ターフに十分灌水し、更に適宜十分な灌水を行いながら1週間管理し、1週間経過後の生育状況を目視により評価した。この評価結果を、灌水後の生育として表1に併せて示した。尚、本試験における一連の操作は、ガラス温室内の日光が十分当たる場所にて行った。
【0031】
【表1】

Figure 0003597720
【0032】
表1に示すように、ゾイシア属植物は、2週間無灌水でも生存し、その後の灌水によってターフ全体が十分な生育を保つことができたが、Agrositis属のクリーピングベントは完全に枯死した。
【0033】
試験2〔耐冠水性の評価〕
縦45cm、横30cm、高さ10cmのプラスチックケースに、試験1と同じ赤土を、深さ10cmとなるように充填し、試験1と同じ四種類の上記植物をターフ状態となるまで生育させた。各ケースを、それぞれ縦30cm、横40cmの容器に入れ、該容器内に水を深さ12cmとなるように注入して植物体を冠水させた。そして、1日1回灌水して水深12cmを維持しながら、平成8年7月19日から7月26日までの7日間、冠水処理を行った。水温は20〜25℃であった。7日間の冠水処理後に、水中からケースを取り出し、3日間屋外に放置した後、植物体の葉の黄変の有無を調べ、枯死率を求めた。枯死率は、冠水処理後のターフの任意の場所から根付きの主茎を20本ずつ採取し、水で湿らせた濾紙を敷いたシャーレ内に並べ、20℃で5日間放置した後の植物体の状況から枯死率(%)を算出した。表2に、これらの結果を示した
【0034】
更に7月29日から8月19日までの21日間、上記と同様の方法で冠水処理を行った後、屋外に出した。21日間の冠水処理後の各植物体について、黄変の有無並びに処理後1ヶ月後の枯死率及び緑の回復状況を調べ、その結果を表2に併せて示した。尚、試験は各植物につき3反復行った。即ち、各植物毎にケースを3個を用いて栽培した。
【0035】
【表2】
Figure 0003597720
【0036】
ゾイシア属の植物は、表2に示すように7日間の冠水処理においては殆ど冠水による影響が認められないため、一時的に冠水状態となっても、生理障害は殆ど発生しないといえる。これに対して、agrositis属のクリーピングベントは葉の黄変と一部枯死が認められた。
更に21日間の冠水処理を経た後は、いずれの植物体も黄化し、冠水状態の解除後の生育も悪かった。しかし、処理後は、1月経過後から、これらの植物体の緑色も徐々に回復し、完全に枯死に至ることはなかった。
【0037】
試験1、2の結果から、屋上で降雨がなく強度の乾燥状態に遭遇した場合及び降雨が連続して続き冠水状態に遭遇した場合のいずれも場合においても、ゾイシア属植物は高い耐性を有することが明らかとなった。
【0038】
試験3〔貯水効果の評価〕
試験1と同様の方法で、Zoysia matrella “ウィンターフィールド”(住友林業緑化株式会社)をターフ状態まで生育させた。平成10年8月3日から3日間連続で飽和水分量まで(容器から余剰水があふれるまで)灌水し、貯水量を計測した。その後、1日おきに2回同様な方法で調査を行った。この間調査以外の灌水はまったく行わなかった。試験はガラス温室内で行い、試験期間の天気はおおむね晴天、反復は3回行った。試験結果を表3に示した。
【0039】
【表3】
Figure 0003597720
【0040】
以上の結果から、都市型洪水の主な原因である夏季に発生する夕立ちを想定した場合、1日1回飽和水分量まで降水が連続して発生した場合でも44.4mm、2日に1回程度では55.5mmの降水まで貯水可能であることが明らかとなった。理科年表1997年版記載の降水量の最大記録によると全国の測定地点の平均が、10分間27.2mm(1時間では、82mm)であるので、15分から20分程度の激しい降水は貯水可能となり、都市型洪水の緩和に効果があるといえる。
【0041】
試験4〔温熱環境緩衝効果の評価〕
試験1と同様の方法で、Zoysia matrella “ウィンターフィールド”(住友林業緑化株式会社)をターフ状態まで生育させた。この容器を日を遮らないコンクリートスラブ面に密着させ、容器中心部のスラブ表面の温度を測定した。比較対照として同様の容器を高さ3cmに加工した後、パーライトを充填し、メキシコマンネングサを植栽したマンネングサ区と、なにも設置していない無処理区を設けた。容器の周囲からの熱の影響を少なくするために、四方50cmを厚さ5cmの発泡スチロール板を敷き詰め、白色ビニルフィルムで覆った。試験は1998年8月1日から10日まで行い、その晴天日の平均値を植栽容器直下温度の日変化とした。
【0042】
試験4の結果を図4に示した。図4のグラフに示すように、Zoysia植栽区は日温度較差が2℃以下であったが、マンネングサ植栽では、10℃程度、無処理では25℃以上となり、ゾイシア属植物の植栽が温熱環境の緩衝に効果を有することが分かる。
【0043】
試験5〔多孔質火山礫混合試験〕
降雨時の土壌の泥状軟化に対する多孔質火山礫の効果について、以下のように試験を行った。
火山灰土壌の心土である赤土(茨城県つくば市産)80容量%に対して、バーク堆肥10容量%、浄水ケーキ10容量%を混合し、対照培地とした。この対照培地に対して、表4に示した割合で火山礫の一種である軽石(金沢産、粒径10〜15mm)を混合し、供試培地とした。すべての供試培地について、全有効水分量と難有効水分量を測定した。
【0044】
上記の供試培地を縦45cm、横20cm、高さ20cmのプラスチックケースに充填し、Zoisia matrella(コウライシバ、商品名“ウィンターフィールド”住友林業緑化株式会社)をそれぞれケース内において、ターフ状になるまで、成育させた。
飽和水分量(ケースから余剰水があふれ出るまで)まで灌水し、底面が10×10cmの四角柱の上に30kg(踏圧を想定)の重りを乗せ、ターフ状になった芝の表面が沈み込む長さ(沈降長)を荷重に対する沈降量として測定した。
【0045】
試験の結果を表4に示した。火山礫の混合量が多いほど沈降量が少なくなる傾向が見られたが、20%以上では大きな差は見られなかった。また、火山礫の割合が多いほど、有効水分量が少なくなる傾向が見られた。
以上の結果から、踏圧等に対する土壌の安定化のために火山礫の混合の有効性が示唆された。しかし、有効水分量が少なくなることからその混合(配合)量は、最終的に得られる培地に対して5〜20容量%、特に10〜20容量%が適当と思われる。
【0046】
【表4】
Figure 0003597720
【0047】
【発明の効果】
本発明によれば、メンテナンスの負担が少なく、温熱環境の改善効果及び都市型洪水の防止効果に優れており、建築構造物上に容易に形成することができる建築構造物の緑化構造を提供することができる。
【図面の簡単な説明】
【図1】図1は、本発明の一実施形態で用いた植生基盤構造とは異なる植生基盤構造を参考に示す断面図である。
【図2】図2は、本発明の一実施形態における植生基盤構造及び該植生基盤構造にゾイシア属植物を植栽してなる緑化構造を一部省略して示す断面図である
【図3】図3は、図1の植生基盤構造の複数を建築構造物の屋上に形成した例を示す一部断面斜視図である。
【図4】図4は、温熱環境効果の評価試験の結果を示すグラフである。
【符号の説明】
1 建築構造物
2 土壌保持枠
21 底面部
22 側壁部
23,23’容器
7’ 連結部(深さの浅い部分)
3 土壌
4 排水孔
6 ゾイシア属の植物
7 歩行路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a greening structure of a building structure.
[0002]
Problems to be solved by the prior art and the invention
In recent years, in urban areas, reinforced concrete and steel-framed reinforced concrete building structures are lining up, and most roads are asphalt-paved, and urban greenery is decreasing more and more. Therefore, there is a need for a green zone that provides moisture and comfort to people living in urban areas.
In addition, it became clear that covering the rooftop and outer wall of the building with plants would be effective in reducing the cooling and heating costs of the building and mitigating the urban heat island phenomenon, and greening the building in urban areas. The need for is increasing.
[0003]
In recent years, with the spread of sewerage and the development of urbanization due to concrete paving around facilities such as roads and houses, the time required for rainwater to reach the river has been shortened. It has become a problem. As one of the measures to prevent this urban flood, it is effective to green the roof of the building with lawns, trees, flowers, etc. and impregnate the soil on the roof of the building with rainwater to control the runoff of rainwater It is supposed to be.
[0004]
BACKGROUND ART Various vegetation base structures have been proposed for planting trees and flowers on the roof of a building structure or the like.
For example, a waterproof layer made of asphalt is provided on slag concrete on the roof of a building, and a drainage layer such as concrete, gravel, etc., and soil are sequentially laminated on the waterproof layer to form a vegetation base structure. It has been proposed that trees and flowers be planted on the soil for planting.
However, in this vegetation base structure, there are problems that the number of steps of site work is large, the construction period is lengthened, and the vegetation base structure is heavy.
[0005]
A waterproof layer provided so as to cover at least a part of the building structure; a protective layer provided so as to cover the waterproof layer, protecting the waterproof layer; and a protective layer provided so as to cover the protective layer. A water guide panel in which a number of recesses are formed on the upper surface and a portion corresponding to the recess on the upper surface is formed as a convex portion on the lower surface; and a water retention material filled in the recess on the upper surface of the water guide panel. And a water permeable membrane provided so as to cover the water guide panel filled with the water retention material, and a customer soil provided so as to cover the water permeable membrane. Of a greenery floor structure (JP-A-6-209566), a waterproof layer, a root-resistant sheet, a frame-shaped plant cultivation block comprising a flat head and a cone-shaped body, and the plant cultivation adjacent to each other Light aggregate and surface layer in the gap of the block Rooftop for plant cultivation concrete foundation, characterized in that to obtain (JP-A-08-23802) have been proposed.
However, these greening structures are designed to quickly drain excess water due to rainfall, so that the effect of preventing urban flooding is relatively small.
Also, a vegetation base having a water storage type structure is known. However, excessive water may stagnate in the vegetation base, and as a result, the growth of the plant may become poor or die due to root rot.
[0006]
Therefore, a water tank is provided separately from the vegetation base as in JP-A-06-319378, JP-A-7-115858, and JP-A-08-137964, and excessive precipitation is temporarily stored in the water tank. Many structures have been developed to supply water necessary for plant growth from a water storage tank during drying.
However, these methods have problems that the weight of the water tank becomes large when the water tank becomes full and that the vegetation base structure including the water tank is complicated and costly.
In particular, on the roof of the existing building, there is no design that assumes planting, so there is generally no facility such as water supply, and since there is no load-bearing structure that can withstand thick planting soil, Particularly, by using plants that can grow even under harsh environmental conditions such as rooftops, such as moss resistant to drying (JP-A-07-227142) and Sedum genus plants (JP-A-07-207667), the method is simple and easy. A method of greening lightly with an extremely thin vegetation base has been developed. However, these methods have little effect on the prevention of urban floods, and because of the nature of plants that can withstand transpiration and survive, there is little heat dissipation from buildings due to heat of vaporization, which leads to a reduction in cooling costs. No energy saving effect can be expected. In addition, since the plant has low resistance to load, it cannot be used by riding.
[0007]
The present invention has been made in view of such circumstances.
An object of the present invention is to provide a greening structure of a building structure which can be easily formed on a building structure , which has a small maintenance burden, is excellent in a thermal environment improving effect and an urban flood prevention effect. It is in.
[0008]
[Means for Solving the Problems]
The present invention is a vegetation base structure obtained by filling a soil holding frame formed on a building structure with soil having a total available moisture of 200 L / m 3 or more and a difficult effective moisture amount of 100 L / m 3 or more, The soil holding frame has a shallow portion and a portion deeper than the portion, and has a drain hole on the bottom surface of the shallow portion. the depth of 15 to 30 cm, the said drainage depth 5~10cm der up holes of the soil at a shallow portion depth is, the area of the soil surface in the soil holding frame 10 to 100 m 2 The above object has been attained by providing a greening structure of a building structure characterized by planting a plant of the genus Zoisia on a vegetation base structure.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0010]
First, a vegetation base structure used in one embodiment of the present invention will be described.
As shown in FIG. 2 , the vegetation base structure of the present embodiment has a total effective moisture of 200 L / m 3 or more and a difficult effective moisture amount of 100 L / m 3 or more in a soil holding frame 2 formed on a building structure 1. A vegetation base structure filled with soil 3 , wherein the soil holding frame 2 has a portion having a shallow depth (a portion indicated by reference numeral 7 ') and a portion having a depth deeper than the portion. and depth have a drain hole 4 in the bottom portion of the shallow portion, the front of the deep portion depth Symbol soil 3 depth D1 (see FIG. 2) is 15 to 30 cm, shallow the depth the drainage holes to 4 depth of the soil 3 at the portion D2 (see FIG. 2) is 5 to 10 cm.
[0011]
The soil holding frame 2 is a frame for holding the soil 3 in a predetermined shape on the building structure 1, and in this embodiment, as shown in FIG. 23 'are formed in series. In the vegetation base structure shown in FIG. 2, each connecting portion 7 ′ of the container 23 ′ is provided with a drainage hole 4 penetrating vertically, and the container 23 ′ located on the outer peripheral portion of the soil holding frame 2. A leak-proof part 25 is extended above the side wall part 22 ′ of the soil holding frame 2 so that the soil 3 can be filled above the connecting part 7 ′ of the soil holding frame 2. The depth D1 of the soil 3 and the depth D2 of the drain hole 4 in the vegetation base structure shown in FIG. 2 are the same as those in the embodiment shown in FIG .
FIG. 1 shows another vegetation base structure as a reference. A soil holding frame 2 in the vegetation base structure shown in FIG. 1 is a container having a bottom surface 21 and a side wall 22 on a building structure 1. 23 are formed. The container 23 is made of a water-impermeable material, and has a plurality of drain holes 4 at a predetermined height position on the side wall 22 at predetermined intervals. The lower part of the soil holding frame 2 than the position where the drain hole 4 is formed functions as a water storage part. That is, a portion below the position where the drain hole 4 is formed is surrounded by a non-permeable material, and rainwater or supplied water is mixed with soil and held in this portion.
[0012]
The soil holding frame 2 shown in FIG. 1 has a root protection layer 24 on its inner surface, and even if the plant roots reach the bottom surface 21 or the side wall portion 22 of the soil holding frame 2, the soil holding frame 2 Is not destroyed. The root prevention layer 24 can be formed of a water-impermeable film such as a polyethylene film, a water-permeable sheet such as a nonwoven fabric having a thickness of 5 to 10 mm, or a sheet that prevents the root from entering with a chemical substance.
[0013]
In addition, the soil holding frame in the present invention forms a wall which becomes the side wall 22 of the soil holding frame 2 on the building structure 1 such as a roof by concrete or the like, and is surrounded by the wall on the building structure 1. A waterproof layer may be provided on the bent portion and the inner wall surface of the wall. In this case, the waterproof layer is formed by laminating asphalt and asphalt felt, asphalt roofing, special asphalt roofing, and the like to form a waterproof layer. Known asphalt waterproofing or modified asphalt waterproofing, vinyl chloride waterproofing, urethane + FRP composite coating waterproofing, etc. Can be formed. Further, as the above-mentioned wall, a structure having a wall or an existing wall may be used.
[0014]
The soil 3 to be filled in the soil holding frame 2 is a soil having a total available moisture of 200 L / m 3 or more and a difficult available moisture of 100 L / m 3 . Specifically, it is preferable to use soil classified as loam or planted loam, such as black soil which is a fertile volcanic ash soil, red soil which is the subsoil of the volcanic ash soil, or those mainly composed of these. Here, the total effective water content means a water content in which the water tension (pF) measured by the method described in Soil Standard Analysis and Measurement Method Hirotomo, pages 36 to 54 is in the range of 1.8 to 4.2. The term "effective water content" refers to a water content having a water tension (pF) in the range of 3.0 to 4.2 measured by the same method as the total available water content.
[0015]
If the total available water content of the soil 3 is less than 200 L / m 3, the water content tends to be insufficient particularly during drying in summer. In addition, if the effective moisture content is less than 100 L / m 3 , the soil moisture rapidly decreases to a permanent wilting point (pF4.2) or less during drying, and the planted plant is more likely to die. In addition, it is preferable that the hardly effective water content of the soil 3 is 120 L / m 3 or more from the viewpoint of reducing the maintenance burden.
[0016]
In particular, in places where human walking is expected to be performed frequently, the soil may soften muddy during rainfall and may become unstable due to stepping pressure caused by walking. It is preferable to mix them. Porous lapilli is usually porous scoria, which is usually black or brown in size of adzuki bean, or emits internal gas due to a sudden drop in external pressure when magma is released into the atmosphere or water. Pumice, which is a piece of rock that became a stone, is included. Of these porous volcanic rubbles, it is preferable that the hardness of the granules is not less than a degree that does not easily collapse with a finger, and it is preferable that the specific gravity when wet is 0.8 to 1.2. The particle size of the porous lapilli is preferably in the range of 5 to 30 mm, particularly 10 to 20 mm. The compounding amount of the porous lapilli is usually 5 to 20% by volume, preferably 10 to 20% by volume in the soil laid on the building structure (the total amount of the soil including the porous lapilli). The porous lapilli may be uniformly mixed with the soil, or may be spread over red soil or the like.
[0017]
In the case where a soil having a humus content of 50 g / kg or less is used as the soil, such as red soil which is the subsoil of volcanic ash soil, one or both of a compost and a purified water cake are added as a soil improving material. By adding the soil improvement material, trace elements required for plant growth can be continuously supplied without causing overgrowth.
[0018]
As the above-mentioned compost, various commonly known composts can be used.For example, various materials such as rice straw, wheat stalk, bark, sawdust, livestock manure, municipal garbage compost, etc. are naturally composted or artificially mechanically processed by a conventional method. Can be used. As the water purification cake, non-medicated water purification plant generated soil generated during the dewatering process of the water purification plant can be used. The addition amount of these soil improving materials is preferably 3 to 15% by volume, particularly preferably 5 to 10% by volume in the soil laid on the building structure (the total amount of soil including the soil improving material).
[0019]
Soil 3 in the soil holding frame 2, the depth (average depth) D1 is 15~30cm, and the depth D2 from the surface of the soil so as to have a drain hole 4 in the position of 5 to 10 cm, filled . With such a configuration, rainwater is sufficiently stored in the water storage portion below the drain hole 4, and overdrying of the soil is prevented. In addition, management of moisture becomes easy. In addition, since excessive rainwater that cannot be stored in the storage part during heavy rain or long rain is discharged from the drain hole 4 relatively quickly, it is necessary to effectively prevent death of the planting plant due to root rot. Can be. The depth D1 of the soil 3 is preferably from 15 to 25 cm, and particularly preferably from 15 to 20 cm, from the viewpoint of balancing the storage of water and the drainage while suppressing the weight.
[0020]
The size of the soil holding frame 2 is preferably an area of the soil surface is 10m 2 ~100m 2. When the size of the soil holding frame 2 is smaller than the lower limit described above, the drying of the soil becomes easier due to evaporation of water from the outer peripheral portion of the soil holding frame 2, and there is a high risk that the plant plant will die. Become. On the other hand, when the value exceeds the above upper limit, the bias of water in the soil holding frame 2 is likely to occur, and the danger of root rot due to stagnation of water increases particularly when rainfall continues.
[0021]
Next, a description will be given of the greening structure of building structures using the above-described vegetation infrastructure.
In the present embodiment, the soil 3 laid on the architectural structure 1, that is, the soil 3 of the vegetation base structure, in which the plant 6 of the genus Zoysia is planted, the plant of the genus Zoysia is Zoysia japonica (Noshiba). ), Zoysia matrella (Kourai Shiva), Zoysia tenuifolia (velvet Shiva) and the like can be used. Since the genus Zoissia is excellent in drought resistance and water resistance, planting the genus Zoissia can significantly reduce water supply management and simplify equipment. In addition, as a planting method, a conventionally well-known method such as laying a turf-grown one on the soil 3 can be used.
[0022]
In addition, the following effects can be obtained by using plants of the genus Zoisia. That is, (1) the plant belonging to the genus Zoisia is a species that exists in the natural world of Japan, and thus is less likely to disturb the ecosystem of Japan. {Circle around (2)} The plant of the genus Zoisia has a prominence and does not have a high plant height. In addition, the entire area of the planting area can be covered with green. (3) Even if a part of the planting area dies due to over-drying or over-humidity, the branch grows from the surviving part, so that the whole planting area will eventually recover green without replanting. Can be done. (4) Since the genus Zoisia is a perennial plant, it does not require management such as sowing every year. (5) Cultivation methods and distribution methods have been established, and construction and management are easy from this viewpoint. {Circle around (6)} Since it has resistance to loads, it is possible for a person to walk on a plant.
[0023]
The greening structure of the architectural structure of the present invention includes: A) a monthly average temperature in summer of 20 ° C. or more, and B) a rainfall of 20 mm or more recorded in 10 minutes or a rainfall of 50 mm or more in 1 hour. This is particularly effective in areas where has been recorded or where such rainfall is likely in the future. In such an area, the genus Zoisia can survive substantially without irrigation, and the management burden can be greatly reduced.
[0024]
Figure 3 shows a preferred greening structure. FIG. 3 shows an example in which plurality at predetermined intervals in the roof vegetation infrastructure (in the figure indicated by S.) The building structure. A walking path 7 is formed between the vegetation base structures S so as to have a height substantially equal to the height of the soil surface in each vegetation base structure S.
[0025]
Having described an embodiment of a planting structure of the building structure according to the present invention, the present invention is not limited to the above embodiments, and can be suitably changed without departing from the scope of the present onset bright.
For example , the soil holding frame 2 may be formed by connecting a plurality of containers having different waterproof properties and having different depths so that the height of the soil surface is uniform.
[0026]
Moreover, the average soil thickness in the soil holding frame 2 may be set to 15 cm to 30 cm, and a change (difference) in the thickness of the soil may be provided while keeping the height of the planted portion constant. For example, the thickness of the portion where the soil thickness is thick is 25 cm to 40 cm, and the thickness of the portion where the soil thickness is thin is 5 cm to 15 cm. From the thickest part to the thinnest part of the soil thickness, it may be changed continuously in a straight line or S-shape, or may be changed discontinuously in a step-like manner.
In recent years, many abnormal weather phenomena have been recognized, and there is no denying the possibility of sunshine or long rainfall that has not been recorded in the past. By changing the thickness of the soil, it is possible to survive the genus Zoissia in the thick part of the soil against excessive drying due to excessive sunshine, and in the thin part of the soil against excessive humidity due to excessive rain. Can be. If a part of the planting area survives, the greenness of the entire planting area can be restored by utilizing the prominence of the Zoisia species. As a result, even after abnormal weather that has a decisive effect on planting, the green space can be maintained without replanting the plants.
In addition, the present invention can be applied to a building-to-building walkway, a pedestrian bridge, and the like, in addition to a building roof, a balcony, a veranda, and the like.
[0027]
【Example】
Various evaluation tests were performed to confirm the effectiveness of the present invention.
[0028]
Test 1 [Evaluation of drying resistance]
A plastic case measuring 45 cm in length, 20 cm in width and 20 cm in height is filled with red clay (from Tsukuba, Ibaraki Prefecture, total available water 220 L / m 3 , hardly available water 120 L / m 3 ) to a depth of 20 cm, and Zoysia. matrella (Kouraishiba, trade name “Winterfield” Sumitomo Forestry Greening Co., Ltd.), Zoysia japonica (Noshiba), Zoysia tenuifolia (velvet Shiba), and Agrositis palustris (trade name “Creeping Plant”) as a control. Each was grown in each case until it became turf-like (mat-like).
[0029]
Each type of plant in the turf state was irrigated to saturated water, and then managed without being irrigated for 2 weeks, and dried. The drying treatment was performed in August 1996. Then, for the turf after the drying treatment, the presence or absence of leaf yellowing and leaf shrinkage was observed, and the death rate was determined. Table 1 shows these results. The mortality was determined by collecting 20 stems with roots from arbitrary places of the turf after the drying treatment, arranging them in a petri dish covered with filter paper moistened with water, and leaving them at 20 ° C. for 5 days. The death rate (%) was calculated from the state of the plant.
[0030]
Further, the turf after the drying treatment was sufficiently irrigated, and further controlled for one week while adequately irrigated, and the growth condition after one week was visually evaluated. The results of the evaluation are shown in Table 1 as growth after irrigation. In addition, a series of operations in this test were performed in a place in a glass greenhouse where sunlight was sufficiently applied.
[0031]
[Table 1]
Figure 0003597720
[0032]
As shown in Table 1, the plants of the genus Zoisia survived without watering for 2 weeks, and subsequent irrigation allowed the entire turf to maintain sufficient growth, but the creeping vent of the genus Agrositis died completely.
[0033]
Test 2 [Evaluation of submergence resistance]
The same red clay as in Test 1 was filled in a plastic case having a length of 45 cm, a width of 30 cm and a height of 10 cm so as to have a depth of 10 cm, and the same four kinds of plants as in Test 1 were grown until they became turf. Each case was placed in a container having a length of 30 cm and a width of 40 cm, and water was injected into the container so as to have a depth of 12 cm to inundate the plant. Then, while being irrigated once a day and maintaining a water depth of 12 cm, a flooding treatment was performed for 7 days from July 19, 1996 to July 26, 1996. Water temperature was 20-25 ° C. After the flooding treatment for 7 days, the case was taken out of the water and left outdoors for 3 days, and then the presence or absence of yellowing of the leaves of the plant was examined to determine the mortality. The mortality was determined by collecting 20 stems with roots from arbitrary locations on the turf after flooding, arranging them in a petri dish covered with filter paper moistened with water, and leaving them at 20 ° C for 5 days. The mortality rate (%) was calculated from the situation described above. Table 2 shows these results.
Further, after a flooding treatment was performed in the same manner as described above for 21 days from July 29 to August 19, the animals were taken outdoors. With respect to each of the plants after the 21-day flooding treatment, the presence or absence of yellowing, the mortality and the state of green recovery one month after the treatment were examined. The results are shown in Table 2. The test was repeated three times for each plant. That is, three cases were cultivated for each plant.
[0035]
[Table 2]
Figure 0003597720
[0036]
As shown in Table 2, the plants of the genus Zoisia are hardly affected by the flooding in the flooding treatment for 7 days. Therefore, even if the plants are temporarily flooded, almost no physiological disorders occur. In contrast, the creeping vent of the genus agrositis showed yellowing of the leaves and partial death.
After a further 21-day flooding treatment, all the plants turned yellow, and the growth after the release of the flooding condition was poor. However, after the treatment, the green color of these plants gradually recovered after a lapse of one month, and did not completely die.
[0037]
From the results of Tests 1 and 2, it is clear that the zoisia plant has high tolerance in both the case where the rooftop is exposed to a strong dry condition without rainfall and the case where the rainfall continues and the submergence condition is encountered. Became clear.
[0038]
Test 3 [Evaluation of water storage effect]
In the same manner as in Test 1, Zoysia matrella "Winterfield" (Sumitomo Forestry Greenery Co., Ltd.) was grown to a turf state. Water was irrigated for three consecutive days from August 3, 1998 to the saturated water content (until the container overflowed with excess water), and the amount of water storage was measured. Thereafter, a survey was conducted twice every other day in the same manner. During this period, no irrigation was performed except for the survey. The test was performed in a glass greenhouse, the weather during the test was generally sunny, and the repetition was performed three times. The test results are shown in Table 3.
[0039]
[Table 3]
Figure 0003597720
[0040]
From the above results, when assuming the evening that occurs in summer, which is the main cause of urban floods, once a day, even if precipitation occurs continuously up to the saturated water content, it is 44.4 mm, once every two days It is clear that water can be stored up to 55.5 mm of precipitation. According to the maximum record of precipitation described in the 1997 edition of the science chronology, the average of measurement points nationwide is 27.2 mm for 10 minutes (82 mm for 1 hour), so it is possible to store intense precipitation for about 15 to 20 minutes. It can be said that it is effective in mitigating urban floods.
[0041]
Test 4 [Evaluation of thermal environment buffering effect]
In the same manner as in Test 1, Zoysia matrella "Winterfield" (Sumitomo Forestry Greenery Co., Ltd.) was grown to a turf state. This container was brought into close contact with a concrete slab surface which does not obstruct the sun, and the temperature of the slab surface at the center of the container was measured. As a comparative control, the same container was processed to a height of 3 cm, and then filled with perlite to provide a stonecrop section in which Mexican stonecrop was planted and an untreated section in which nothing was installed. In order to reduce the influence of heat from the periphery of the container, a 50 cm square was covered with a 5 cm thick styrofoam plate and covered with a white vinyl film. The test was performed from August 1 to 10, 1998, and the average value of the sunny day was defined as the daily change in the temperature immediately below the planting container.
[0042]
The results of Test 4 are shown in FIG. As shown in the graph of FIG. 4, the day temperature range was 2 ° C. or less in the Zoysia planting plot, but it became about 10 ° C. in the case of stonecrop planting, and 25 ° C. or more in the case of no treatment. It can be seen that it has an effect on buffering the thermal environment.
[0043]
Test 5 [Porous lapilli mixing test]
The effect of porous lapilli on mud softening of soil during rainfall was tested as follows.
A control medium was prepared by mixing 10% by volume of bark compost and 10% by volume of purified water cake with 80% by volume of red soil (from Tsukuba, Ibaraki Prefecture), which is the subsoil of volcanic ash soil. The control medium was mixed with pumice (a type of volcanic gravels) (produced in Kanazawa, particle size: 10 to 15 mm) at a ratio shown in Table 4 to obtain a test medium. For all the test media, the total available water content and the hardly available water content were measured.
[0044]
The above-mentioned test medium is filled in a plastic case having a length of 45 cm, a width of 20 cm, and a height of 20 cm. And grown.
Irrigation to the saturated water content (until the excess water overflows from the case), put a 30 kg weight (assuming tread pressure) on a square pillar with a bottom of 10 × 10 cm, and the surface of the turf-shaped turf sinks The length (settling length) was measured as the amount of settling with respect to the load.
[0045]
The test results are shown in Table 4. There was a tendency for the sedimentation amount to decrease as the amount of lapilli mixed increased, but no significant difference was observed above 20%. In addition, the effective water content tended to decrease as the proportion of lapilli increased.
From the above results, it was suggested that the mixing of lapilli was effective in stabilizing the soil against treading. However, since the effective water content is reduced, the mixing (blending) amount is considered to be appropriately 5 to 20% by volume, especially 10 to 20% by volume, based on the finally obtained medium.
[0046]
[Table 4]
Figure 0003597720
[0047]
【The invention's effect】
According to the present invention, the maintenance burden is small, is excellent in effect of preventing improvement effect and urban flood thermal environment, provides a greening structure of the building structure can be easily formed on the building structure be able to.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a vegetation base structure different from the vegetation base structure used in one embodiment of the present invention for reference .
FIG. 2 is a cross-sectional view partially showing a vegetation base structure and a greening structure obtained by planting a genus Zoisia on the vegetation base structure according to an embodiment of the present invention .
FIG. 3 is a partial cross-sectional perspective view showing an example in which a plurality of the vegetation base structures of FIG. 1 are formed on the roof of a building structure.
FIG. 4 is a graph showing the results of a thermal environmental effect evaluation test.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Building structure 2 Soil holding frame 21 Bottom part 22 Side wall part 23, 23 'container
7 'connection (shallow depth)
3 soil 4 drainage hole 6 plant of genus Zoisia 7 walking path

Claims (1)

建築構造物上に形成した土壌保持枠内に、全有効水分200L/m3 以上且つ難有効水分量100L/m3 以上の土壌を充填してなる植生基盤構造であって、前記土壌保持枠は、深さが浅い部分と該部分より深さが深い部分とを有し、該深さが浅い部分の底面に排水孔を有しており、前記深さが深い部分における前記土壌の深さが15〜30cmであり、前記深さが浅い部分における該土壌の前記排水孔までの深さが5〜10cmであり、前記土壌保持枠内の土壌表面の面積が10〜100m 2 である植生基盤構造に、ゾイシア属の植物を植栽してなることを特徴とする建築構造物の緑化構造。A vegetation base structure in which a soil having a total effective moisture of 200 L / m 3 or more and a difficult effective moisture amount of 100 L / m 3 or more is filled in a soil holding frame formed on a building structure. A portion having a shallow depth and a portion having a depth greater than the portion, and having a drain hole on a bottom surface of the portion having a shallow depth; a 15 to 30 cm, vegetation base the depth to the drainage hole of the soil in the shallow depth portion Ri 5~10cm der, the area of the soil surface in the soil holding frame is 10 to 100 m 2 A greening structure of an architectural structure characterized by planting a plant of the genus Zoisia in the structure.
JP3694699A 1999-02-16 1999-02-16 Greening structure of building structures Expired - Fee Related JP3597720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3694699A JP3597720B2 (en) 1999-02-16 1999-02-16 Greening structure of building structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3694699A JP3597720B2 (en) 1999-02-16 1999-02-16 Greening structure of building structures

Publications (2)

Publication Number Publication Date
JP2000232820A JP2000232820A (en) 2000-08-29
JP3597720B2 true JP3597720B2 (en) 2004-12-08

Family

ID=12483930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3694699A Expired - Fee Related JP3597720B2 (en) 1999-02-16 1999-02-16 Greening structure of building structures

Country Status (1)

Country Link
JP (1) JP3597720B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047328A (en) * 2001-08-06 2003-02-18 Watanabe Bussan Kk Planting kit comprising natural turf for laying on rooftop or the like, and method for planting the same
JP4786089B2 (en) * 2001-09-21 2011-10-05 住友林業株式会社 Plant cultivation method by hydroponics
JP4909650B2 (en) * 2006-06-12 2012-04-04 田島ルーフィング株式会社 Planting equipment and planting equipment maintenance scaffolding
JP2009142203A (en) * 2007-12-14 2009-07-02 Tajima Roofing Inc Planting apparatus and method for structuring the apparatus
KR101032821B1 (en) 2010-05-19 2011-05-06 배기호 The construction method for root barrier and waterproof

Also Published As

Publication number Publication date
JP2000232820A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
CN208266847U (en) Quickly repair structure in Gullied suitable for Canal in Loess Area
JPS63105616A (en) Soil for vegetation of plant such as turf
CN102296567B (en) Soft isolation zone method for slope protection at bank zone and surface source pollution control
CN108476648A (en) A kind of method and system of rock coast Difficult site revegetation
CN203924510U (en) A kind of roof greening system
CN105804198A (en) Greenbelt structure integrating rainwater storage and utilization
CN100494599C (en) Slope roofing lawn
CN106013624A (en) Technical method of green sponge roof modified on basis of grass planting plate
CN112136408B (en) Greening method suitable for sand abrupt slope in high-altitude area
Pérez et al. Green roofs classifications, plant species, substrates
CN205357219U (en) Take water storage function's ecological turf of non -maintaining building
CN110424494A (en) A kind of sponge Greening Urban Road isolation strip green space system
JP3597720B2 (en) Greening structure of building structures
CN111887067B (en) Method for ecological restoration of artificial vegetation on high and steep rock slope
JP2015001116A (en) Construction method of lawn
CN109618874B (en) Phosphogypsum vegetation and preparation method thereof
CN108331269B (en) Planting type cave dwelling roof structure and construction method
CN110024610A (en) A kind of ternary preserving soil moisture method of Karst Rocky Desertification Region agroforest system
CN210395504U (en) Rainwater collecting and recycling device
CN114651657A (en) Desert ecological restoration system and restoration method thereof
CN210459442U (en) Sponge urban greening road
CN106522478A (en) Roof water-permeable, water-collecting and greening integrated rainwater utilization system and construction method
KR101314887B1 (en) Structure for tree planting of rooftop
CN105917895A (en) Cultivation method of greenhouse ginsengs in cold and cool areas
Morris et al. Plantation water use

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees