JP3583699B2 - センサ装置 - Google Patents
センサ装置 Download PDFInfo
- Publication number
- JP3583699B2 JP3583699B2 JP2000267664A JP2000267664A JP3583699B2 JP 3583699 B2 JP3583699 B2 JP 3583699B2 JP 2000267664 A JP2000267664 A JP 2000267664A JP 2000267664 A JP2000267664 A JP 2000267664A JP 3583699 B2 JP3583699 B2 JP 3583699B2
- Authority
- JP
- Japan
- Prior art keywords
- potential
- sensor device
- reference potential
- magnetic field
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Magnetic Variables (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、単極性の電源で動作し、単極性の測定信号を出力するセンサ装置に関する。
【0002】
【従来の技術】
近年、環境問題や資源エネルギー問題に関する社会的要請から、電気ハイブリッド自動車、燃料電池、太陽光発電等が実用化されてきている。これらの技術は、直流大電流を取り扱うため、直流大電流を測定するための電流センサ装置を必要とする点で共通している。そのため、安価で信頼性の高い直流大電流センサ装置の開発は社会的要請となっている。
【0003】
一般に、直流大電流を非接触で測定する方法としては、電流が作る磁界を磁気センサ素子で検出する方法が採られる。従来、このための磁気センサ素子としてはホール素子が多く用いられていた。
【0004】
また、本発明者等によって、安定性に優れるインダクタンス変化型の磁気センサ素子、すなわちフラックスゲート素子を用いた磁気センサ装置や電流センサ装置も提案されている。ここで、フラックスゲート素子を用いた磁界の検出の原理について簡単に説明する。フラックスゲート素子は、磁芯入りコイルを有している。磁芯入りコイルは、コイル電流がある値より大きくなると磁芯が飽和するので、そのインダクタンスが減少する。ここで、インダクタンスが例えば半減するようなバイアス電流をコイルに流しておき、磁芯に外部から磁界を与えると、与えた磁界の方向および大きさに応じたインダクタンス変化が生じる。そのため、このインダクタンス変化から与えられた磁界を検出することができる。磁芯には、棒状磁芯またはドラム型磁芯が用いられている。
【0005】
ところが、上記の磁芯入りコイルのインダクタンス変化は、外部磁界に対し直線性が悪い上に、かなり急峻である。このことは、磁気センサ装置や電流センサ装置のリニアリティを悪くすると共に、測定範囲を狭める。
【0006】
この欠点を避けるための技術としては負帰還法がある。負帰還法は、被測定磁界と絶対値が等しく、被測定磁界に対して逆極性となる帰還磁界を磁気センサ素子に加え、磁気センサ素子が常にゼロに近い磁界の中で動作するようにしたものである。帰還磁界は、磁界センサ素子の出力を電流に変換し、この電流を帰還磁界発生コイルに帰還電流として印加することで簡単に得ることができる。
【0007】
上記の帰還電流の経路中に挿入した抵抗の両端間の電位差は帰還電流に比例している。帰還電流は被測定磁界と絶対値が等しい磁界を発生するので、前記電位差は被測定磁界に完全に比例している。従って、この電位差を検出することによって、被測定磁界を検出することができる。このようにしてリニアリティがよく、ゲイン変動のない磁気センサ装置または電流センサ装置を実現することができる。
【0008】
【発明が解決しようとする課題】
ところで、上述の負帰還法を採用した磁気センサ装置または電流センサ装置において、帰還電流の経路中に挿入した抵抗の両端間の電位差は、被測定磁界の向きの正逆に応じて極性が反転する。一般に、両極性信号を処理するには両極性電源を必要とする。しかし、両極性電源は、単極性電源に比べて高価である。そこで、装置の価格を下げるため、電源を単極性化することが多い。そのためには、帰還電流経路を一定の基準電位に保持し、被測定磁界に応じた検出信号が基準電位を基準として変化するようにして、検出信号を単極性化する方策が採られる。
【0009】
ここで、図4を参照して、上述のように電源を単極性化した磁気センサ装置の構成の一例について説明する。この磁気センサ装置は、電源入力端101と、一端が電源入力端101に接続された抵抗102と、カソードが抵抗102の他端に接続され、アノードが接地されたツェナーダイオード103と、非反転入力端が抵抗102とツェナーダイオード103との接続点に接続されたオペアンプ104とを備えている。オペアンプ104の反転入力端は出力端に接続されている。電源入力端101には、電源電圧Vdが印加されるようになっている。
【0010】
磁気センサ装置は、更に、基準電圧入力端がオペアンプ104の出力端に接続された磁気センサ部105と、一端がオペアンプ104の出力端に接続された帰還コイル106と、非反転入力端が磁気センサ部105の出力端に接続されたオペアンプよりなる帰還増幅器107と、一端がオペアンプ104の出力端に接続され、他端が帰還増幅器107の非反転入力端に接続された抵抗108と、一端がオペアンプ104の出力端に接続され、他端が帰還増幅器107の反転入力端に接続された抵抗109と、一端が帰還増幅器107の反転入力端に接続され、他端が帰還増幅器107の出力端に接続された抵抗110と、一端が帰還増幅器107の出力端に接続され、他端が帰還コイル106の他端に接続された電流検出抵抗111とを備えている。なお、磁気センサ部105は、磁気センサ素子と、この磁気センサ素子を駆動する回路とを含んでいる。
【0011】
磁気センサ装置は、更に、一端が抵抗111の一端に接続された抵抗112と、一端が抵抗111の他端に接続された抵抗113と、反転入力端が抵抗112の他端に接続され、非反転入力端が抵抗113の他端に接続されたオペアンプよりなる差動増幅器114と、一端が差動増幅器114の反転入力端に接続され、他端が差動増幅器114の出力端に接続された抵抗115と、差動増幅器114の出力端に接続された測定信号出力端116とを備えている。
【0012】
磁気センサ装置は、更に、参照電圧入力端117と、非反転入力端が参照電圧入力端117に接続され、反転入力端が出力端に接続されたオペアンプ118と、一端がオペアンプ118の出力端に接続され、他端が差動増幅器114の非反転入力端に接続された抵抗119とを備えている。
【0013】
オペアンプ104、帰還増幅器107、差動増幅器114およびオペアンプ118の各電源入力端は電源入力端101に接続され、各接地端は接地されている。
【0014】
次に、図4に示した磁気センサ装置の作用について説明する。この磁気センサ装置では、電源入力端101に電源電圧Vdが印加され、この電源電圧Vdによって各回路部分が動作している。すなわち、各回路部分は単極性電源によって駆動されている。
【0015】
抵抗102とツェナーダイオード103は、電源電圧Vdを用いて、両者の接続点において基準電圧Vpを発生させる。オペアンプ104はボルテージフォロワを構成しており、オペアンプ104の出力端の電位は基準電圧Vpと等しい。基準電圧Vpは、磁気センサ部105の基準電圧入力端と、帰還コイル106、抵抗108,109の各一端に印加される。
【0016】
また、参照電圧入力端117には参照電圧Vrefが印加される。オペアンプ118はボルテージフォロワを構成しており、オペアンプ118の出力端の電位は参照電圧Vrefと等しい。参照電圧Vrefは、抵抗119を介して差動増幅器114の非反転入力端に印加される。
【0017】
磁気センサ部105は、その出力端より、被測定磁界に応じた信号を、帰還増幅器107の非反転入力端に対して出力する。帰還増幅器107は、基準電圧Vpを基準として被測定磁界に応じて変化する出力電圧を生成する。被測定磁界がゼロのときには帰還増幅器107の出力電圧は基準電圧Vpと等しい。
【0018】
帰還増幅器107から抵抗111を経て帰還コイル106に至るまで帰還電流経路が形成されている。この帰還電流経路では、帰還増幅器107の出力電圧と基準電圧Vpとの差に応じて帰還電流が発生し、この帰還電流が帰還コイル106に供給される。この帰還電流は、帰還増幅器107の出力電圧が基準電圧Vpより大きいか小さいかに応じて正逆両方向に流れる。帰還電流経路に挿入された抵抗111の両端間に発生した電圧(電位差)は、コモンモード電圧としての基準電圧Vpに重畳されて、差動増幅器114に入力される。差動増幅器114は、被測定磁界に対応すると共に、コモンモード電圧Vpが除去された信号を出力する。差動増幅器114の非反転入力端には、抵抗119を介して参照電圧Vrefが印加されている。従って、差動増幅器114の出力信号、すなわち測定信号出力端116より出力される測定信号は、参照電圧Vrefを基準として被測定磁界に応じて変化する単極性の信号となる。
【0019】
ここで、抵抗112,113,115,119の抵抗値を、それぞれRi1,Ri2,Rf1,Rf2とする。差動増幅器114のコモンモード抑圧比は、Ri1=Ri2且つRf1=Rf2のとき最大になり、このバランスが崩れると大幅に悪化する。しかし、一般に抵抗器の抵抗値の精度は±1%程度である。従って、差動増幅器114において、コモンモード電圧Vpを完全に抑圧することは困難である。
【0020】
そこで、従来は、基準電圧Vpを一定値に固定した上で、抵抗値Ri1,Ri2,Rf1,Rf2のうちの一つを調整したり、参照電圧Vrefを調整したりして、差動増幅器114の出力を規定値になるようにしていた。しかしながら、この方法では、電源電圧Vdの変動に伴って基準電圧Vpが変動した場合には、それに伴う差動増幅器114の出力信号の変動分を除去することができない。この問題を避ける方法としては、例えば、基準電圧Vpを定電圧回路等によって固定する方法が考えられる。しかしながら、この方法では、定電圧回路分だけ装置の価格の上昇をもたらすばかりではなく、温度変化等の他の要因による定電圧回路の出力変動等、新たな基準電圧の変動要因を取り込むことになる。
【0021】
本発明はかかる問題点に鑑みてなされたもので、その目的は、単極性の電源で動作して単極性の測定信号を出力すると共に、簡単な構成で電源電圧の変動に伴う測定信号の変動を抑制できるようにしたセンサ装置を提供することにある。
【0022】
【課題を解決するための手段】
本発明のセンサ装置は、
被測定対象の値に応じて変化する信号を出力するセンサ部と、
所定の基準電位を基準としてセンサ部の出力信号に応じて変化する単極性の検出電位を発生する検出電位発生手段と、
検出電位発生手段によって発生される検出電位と基準電位との差に応じた電流が流れる電流経路と、
電流経路に挿入された抵抗素子と、
外部より与えられる参照電位を基準として抵抗素子の両端間の電位差に応じて変化する単極性の測定信号を出力する測定信号出力手段と、
参照電位に基づいて基準電位を生成する基準電位生成手段と
を備えたものである。
【0023】
本発明のセンサ装置では、センサ部より、被測定対象の値に応じて変化する信号が出力され、検出電位発生手段によって、所定の基準電位を基準としてセンサ部の出力信号に応じて変化する単極性の検出電位が発生され、この検出電位と基準電位との差に応じた電流が、電流経路に挿入された抵抗素子に流れる。そして、測定信号出力手段によって、外部より与えられる参照電位を基準として抵抗素子の両端間の電位差に応じて変化する単極性の測定信号が出力される。基準電位は、基準電位生成手段によって、参照電位に基づいて生成される。
【0024】
本発明のセンサ装置において、基準電位生成手段は、参照電位と基準電位との比を1以外の一定値にしてもよい。
【0025】
また、本発明のセンサ装置において、基準電位生成手段は、基準電位を参照電位と等しくしてもよい。
【0026】
また、本発明のセンサ装置において、参照電位は、測定信号出力手段より出力される測定信号をアナログ−デジタル変換するアナログ−デジタル変換器において使用される基準電圧源より与えられるものでもよい。
【0027】
また、本発明のセンサ装置において、センサ部は、被測定対象としての被測定磁界の値に応じて変化する信号を出力する磁気センサ素子を含んでいてもよい。この場合、磁気センサ素子は、フラックスゲート素子であってもよい。また、センサ装置は、更に、被測定磁界と絶対値が等しく、被測定磁界に対して逆極性となる帰還磁界を発生させる帰還コイルを備え、電流経路は、検出電位発生手段によって発生される検出電位と基準電位との差に応じた電流を帰還コイルに供給するものであってもよい。
【0028】
また、本発明のセンサ装置において、センサ部は、被測定対象としての被測定電流によって発生する被測定磁界の値に応じて変化する信号を出力する磁気センサ素子を含んでいてもよい。この場合、磁気センサ素子は、フラックスゲート素子であってもよい。また、センサ装置は、更に、被測定磁界と絶対値が等しく、被測定磁界に対して逆極性となる帰還磁界を発生させる帰還コイルを備え、電流経路は、検出電位発生手段によって発生される検出電位と基準電位との差に応じた電流を帰還コイルに供給するものであってもよい。
【0029】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係るセンサ装置としての磁気センサ装置の構成を示す回路図である。この磁気センサ装置1は、電源入力端2と、参照電圧入力端17と、非反転入力端が参照電圧入力端17に接続され、反転入力端が出力端に接続されたオペアンプ18とを備えている。電源入力端2には、電源電圧Vdが印加されるようになっている。参照電圧入力端17には、外部より参照電圧が与えられるようになっている。
【0030】
磁気センサ装置1は、更に、非反転入力端がオペアンプ18の出力端に接続されたオペアンプ21と、一端がオペアンプ21の反転入力端に接続され、他端が出力端に接続された抵抗22と、一端がオペアンプ21の反転入力端に接続され、他端が接地された抵抗23とを備えている。オペアンプ21は、基準電圧Vpを生成するようになっている。
【0031】
磁気センサ装置1は、更に、基準電圧入力端がオペアンプ21の出力端に接続された磁気センサ部5と、この磁気センサ部5の近傍に配置されると共に、一端がオペアンプ21の出力端に接続された帰還コイル6と、非反転入力端が磁気センサ部5の出力端に接続されたオペアンプよりなる帰還増幅器7と、一端がオペアンプ21の出力端に接続され、他端が帰還増幅器7の非反転入力端に接続された抵抗8と、一端がオペアンプ21の出力端に接続され、他端が帰還増幅器7の反転入力端に接続された抵抗9と、一端が帰還増幅器7の反転入力端に接続され、他端が帰還増幅器7の出力端に接続された抵抗10と、一端が帰還増幅器7の出力端に接続され、他端が帰還コイル6の他端に接続された電流検出抵抗11とを備えている。
【0032】
磁気センサ装置1は、更に、一端が抵抗11の一端に接続された抵抗12と、一端が抵抗11の他端に接続された抵抗13と、反転入力端が抵抗12の他端に接続され、非反転入力端が抵抗13の他端に接続されたオペアンプよりなる差動増幅器14と、一端が差動増幅器14の反転入力端に接続され、他端が差動増幅器14の出力端に接続された抵抗15と、一端がオペアンプ18の出力端に接続され、他端が差動増幅器14の非反転入力端に接続された抵抗19と、差動増幅器14の出力端に接続された測定信号出力端16とを備えている。
【0033】
オペアンプ21、帰還増幅器7、差動増幅器14およびオペアンプ18の各電源入力端は電源入力端2に接続され、各接地端は接地されている。
【0034】
磁気センサ装置1の測定信号出力端16より出力される測定信号は、この測定信号をアナログ−デジタル変換(以下、A/D変換と言う。)するA/D変換器31に入力されるようになっている。このA/D変換器31より出力されるデジタルの測定信号は、例えば、このデジタルの測定信号を処理するCPU(中央処理装置)33に入力されるようになっている。A/D変換器31には、基準電圧源32より、精度と安定度の高い基準電圧が供給されるようになっている。なお、基準電圧源32は、A/D変換器31に内蔵されていてもよいし、A/D変換器31の外部に設けられていてもよい。基準電圧源32としては、例えばバンドギャップ型基準電圧発生回路が用いられる。
【0035】
磁気センサ装置1の参照電圧入力端17には、参照電圧Vrefとして、基準電圧源32より発生されるA/D変換器31用の基準電圧が印加されるようになっている。
【0036】
本実施の形態において、磁気センサ部5は、本発明におけるセンサ部に対応し、被測定対象としての被測定磁界の値に応じて変化する信号を出力する。また、帰還増幅器7は本発明における検出電位発生手段に対応し、抵抗11は本発明における抵抗素子に対応し、差動増幅器14は本発明における測定信号出力手段に対応し、オペアンプ21は本発明における基準電位生成手段に対応する。
【0037】
図2は、図1における磁気センサ部5の構成の一例を示す回路図である。この例における磁気センサ部5は、磁気センサ素子として、インダクタンス変化型の磁気センサ素子、すなわちフラックスゲート素子を有している。このフラックスゲート素子は、磁芯51と、この磁芯51に巻回されたセンサコイル52とを含んでいる。磁気センサ部5は、更に、一端がセンサコイル52の一端に接続されたコンデンサ53と、コンデンサ53の他端に接続された励振回路54と、一端がセンサコイル52の他端に接続され、他端が磁気センサ部5の基準電圧入力端に接続されたインダクタンス素子55とを有している。インダクタンス素子55は、センサコイル52のインダクタンス値の変化を検出するためのものであり、例えばコイルよりなる。なお、図2では、励振回路54の電源および接地端子は図示していない。
【0038】
磁気センサ部5は、更に、一端がセンサコイル52とインダクタンス素子55との接続点に接続されたコンデンサ56と、一端がコンデンサ56の他端に接続され、他端が磁気センサ部5の基準電圧入力端に接続された抵抗57とを有している。コンデンサ56と抵抗57は、インダクタンス素子55の両端に発生する電圧を微分する微分回路を構成している。
【0039】
磁気センサ部5は、更に、入力端がコンデンサ56と抵抗57との接続点に接続された正ピークホールド回路58と、入力端がコンデンサ56と抵抗57との接続点に接続された負ピークホールド回路59と、各入力端がそれぞれ正ピークホールド回路58の出力端と負ピークホールド回路59の出力端に接続された加算回路60とを有している。正ピークホールド回路58は、微分回路の出力信号の正のピーク値をホールドし、負ピークホールド回路59は、微分回路の出力信号の負のピーク値をホールドする。加算回路60は、正ピークホールド回路58の出力信号と負ピークホールド回路59の出力信号とを加算して、磁気センサ部5の出力端より出力する。
【0040】
図2に示した磁気センサ部5では、励振回路54によって、磁気センサ部5に印加される電源電圧Vdに基づいて励振電流が生成される。この励振電流は、センサコイル52およびインダクタンス素子55を流れる。励振電流は、ピーク時には磁芯51が飽和領域に入るような交流電流とする。なお、本出願において、磁芯の飽和領域とは、磁界の絶対値が、磁芯の透磁率が最大透磁率となるときの磁界の絶対値より大きい領域をいう。励振電流のピーク値付近で磁芯51が飽和領域に達すると、センサコイル52のインダクタンス値が急減するため、励振電流は急増する。励振電流の波形を2回微分すれば、急増した部分の電流波形に相似な逆位相の出力を検出することができる。
【0041】
励振電流はインダクタンス素子55および微分回路で2回微分され、微分回路より、励振電流の正負の各ピーク値を表す、互いに逆極性のスパイク状電圧信号が出力される。この正負のスパイク状電圧信号の各ピーク値は、正ピークホールド回路58および負ピークホールド回路59によってホールドされ、加算回路60によって加算されて、被測定磁界に対応した出力信号として磁気センサ部5の出力端より出力される。
【0042】
次に、本実施の形態に係る磁気センサ装置1の作用について説明する。この磁気センサ装置では、電源入力端2に電源電圧Vdが印加され、この電源電圧Vdによって各回路部分が動作している。すなわち、各回路部分は単極性電源によって駆動されている。
【0043】
また、参照電圧入力端17には、参照電圧Vrefとして、基準電圧源32より発生されるA/D変換器31用の基準電圧が印加される。オペアンプ18はボルテージフォロワを構成しており、オペアンプ18の出力端の電位は参照電圧Vrefと等しい。オペアンプ18の出力端より出力される参照電圧Vrefは、抵抗19を介して差動増幅器14の非反転入力端に印加されると共に、オペアンプ21の非反転入力端に印加される。参照電圧Vrefは、本発明における参照電位に対応する。
【0044】
オペアンプ21は、参照電圧Vrefを所定の増幅度Gで増幅して基準電圧Vpを生成する。抵抗22の抵抗値をR1とし、抵抗23の抵抗値をR2とすると、オペアンプ21の増幅度Gは、1+R1/R2となる。オペアンプ21の出力端より出力される基準電圧Vpは、磁気センサ部5の基準電圧入力端と、帰還コイル6、抵抗8,9の各一端に印加される。基準電圧Vpは、本発明における基準電位に対応する。
【0045】
磁気センサ部5は、その出力端より、被測定磁界に応じた信号を、帰還増幅器7の非反転入力端に対して出力する。帰還増幅器7は、基準電圧Vpを基準として被測定磁界に応じて変化する出力電圧を生成する。被測定磁界がゼロのときには帰還増幅器7の出力電圧は基準電圧Vpと等しい。帰還増幅器7の出力電圧は、本発明における検出電位に対応する。
【0046】
帰還増幅器7から抵抗11を経て帰還コイル6に至るまで帰還電流経路が形成されている。この帰還電流経路では、帰還増幅器7の出力電圧と基準電圧Vpとの差に応じて帰還電流が発生し、この帰還電流が帰還コイル6に供給される。この帰還電流は、帰還増幅器7の出力電圧が基準電圧Vpより大きいか小さいかに応じて正逆両方向に流れる。帰還コイル6は、帰還電流に応じて、被測定磁界と絶対値が等しく、被測定磁界に対して逆極性となる帰還磁界を発生する。
【0047】
帰還電流経路に挿入された抵抗11の両端間に発生した電圧(電位差)は、コモンモード電圧としての基準電圧Vpに重畳されて、差動増幅器14に入力される。差動増幅器14は、被測定磁界に対応すると共に、コモンモード電圧Vpが除去された信号を出力する。差動増幅器14の非反転入力端には、抵抗19を介して参照電圧Vrefが印加されている。従って、差動増幅器14の出力信号、すなわち信号出力端16より出力される測定信号は、参照電圧Vrefを基準として被測定磁界に応じて変化する単極性の信号となる。
【0048】
本実施の形態では、オペアンプ21によって、電源電圧Vdに依らずに、外部より与えられる参照電圧Vrefに基づいて基準電圧Vpを生成している。参照電圧Vrefには、基準電圧源32より発生されるA/D変換器31用の基準電圧が用いられている。一般に、A/D変換器で用いられる基準電圧の精度と安定度は非常に高い。従って、本実施の形態における参照電圧Vrefは、磁気センサ装置1に供給される電源電圧Vdとは独立した、精度と安定度の高い電圧であり、電源電圧Vdの変動の影響を全く受けない。その結果、参照電圧Vrefに基づいて生成される基準電圧Vpも、電源電圧Vdの変動の影響を受けない、精度と安定度の高い電圧となる。従って、本実施の形態では、差動増幅器14のコモンモード抑圧比を決定する抵抗12,13,15,19の抵抗値のバランスが完全でなくとも、差動増幅器14より出力される測定信号が、電源電圧Vdの変動に伴って変動することはない。
【0049】
ところで、本実施の形態において、オペアンプ21は、参照電圧Vrefと基準電圧Vpとの比を1以外の一定値にしてもよいし、基準電圧Vpを参照電圧Vrefと等しくしてもよい。
【0050】
なお、基準電圧Vpは帰還増幅器7の動作のゼロ点を決定する。一般に、参照電圧Vrefは2.5Vのことが多く、電源電圧Vdの最小値は8V程度のことが多い。そのため、参照電圧Vrefを2.5V、電源電圧Vdを8Vとした場合には、基準電圧Vpを参照電圧Vrefと等しくすると、帰還増幅器7の動作のゼロ点が2.5Vとなり、帰還増幅器7の低圧側の動作範囲が減少する。従って、基準電圧Vpは、電源電圧Vdの1/2程度、すなわち4V程度にしたほうがよい。本実施の形態では、一例として、オペアンプ21によって、2.5Vの参照電圧Vrefを1.6倍に増幅して、4Vの基準電圧Vpを生成する。この場合、図4に示した磁気センサ装置に比べて、新たに増えるのは抵抗22,23だけであり、磁気センサ装置1の価格の上昇はほとんどない。
【0051】
基準電圧Vpを参照電圧Vrefと等しくする場合には、R1=0、R2=∞とすればよいので、抵抗22,23も不要となり、図4に示した磁気センサ装置に比べて、磁気センサ装置1の価格の上昇は全くなくなる。なお、この場合には、オペアンプ21はボルテージフォロワを構成する。
【0052】
以上説明したように、本実施の形態に係る磁気センサ装置1によれば、単極性の電源で動作して単極性の測定信号を出力できると共に、簡単な構成で電源電圧の変動に伴う測定信号の変動を抑制することができる。
【0053】
また、本実施の形態において、参照電圧Vrefと基準電圧Vpとの比を1以外の一定値にする場合には、帰還増幅器7の動作のゼロ点を適当な電位に設定することが可能になる。
【0054】
また、本実施の形態において、基準電圧Vpを参照電圧Vrefと等しくする場合には、磁気センサ装置1の構成をより簡単にすることが可能になる。
【0055】
[第2の実施の形態]
図3は、本発明の第2の実施の形態に係るセンサ装置としての電流センサ装置の構成を示す回路図である。本実施の形態に係る電流センサ装置は、第1の実施の形態に係る磁気センサ装置を用いて構成されている。
【0056】
本実施の形態に係る電流センサ装置41は、被測定対象としての被測定電流が通過する導電部42を囲うように設けられ、一部にギャップを有する磁気ヨーク43を備えている。そして、磁気ヨーク43のギャップ内に、第1の実施の形態に係る磁気センサ装置における磁気センサ部5が配置されている。
【0057】
本実施の形態の電流センサ装置では、導電部42を図3における紙面に垂直な方向に流れる被測定電流によって発生する磁束が、磁気ヨーク43によって収束され、磁気ヨーク43を通過する。その結果、磁気ヨーク43のギャップ内に、被測定磁界が発生する。磁気ヨーク43のギャップ内に配置された磁気センサ部5は、被測定電流によって発生する被測定磁界の値に応じて変化する信号を出力する。これにより、被測定電流が非接触で測定される。
【0058】
本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。
【0059】
なお、本発明は、上記各実施の形態に限定されず、種々の変更が可能である。例えば、磁気センサ部は、フラックスゲート素子を含むものに限らず、ホール素子等の他の磁気センサ素子を含むものであってもよい。また、本発明は、磁気センサ装置および電流センサ装置に限らず、他のセンサ装置にも適用することができる。
【0060】
【発明の効果】
以上説明したように、請求項1ないし10のいずれかに記載のセンサ装置によれば、電源電圧によらずに、外部より与えられる参照電位に基づいて基準電位を生成するようにしたので、単極性の電源で動作して単極性の測定信号を出力することができると共に、簡単な構成で電源電圧の変動に伴う測定信号の変動を抑制することができるという効果を奏する。
【0061】
また、請求項2記載のセンサ装置によれば、基準電位生成手段が参照電位と基準電位との比を1以外の一定値にするようにしたので、検出電位発生手段の動作のゼロ点を適当な電位に設定することが可能になるという効果を奏する。
【0062】
また、請求項3記載のセンサ装置によれば、基準電位生成手段が基準電位を参照電位と等しくするようにしたので、センサ装置の構成をより簡単にすることが可能になるという効果を奏する。
【0063】
また、請求項4記載のセンサ装置によれば、参照電位が、測定信号出力手段より出力される測定信号をアナログ−デジタル変換するアナログ−デジタル変換器において使用される基準電圧源より与えられるようにしたので、基準電位の精度と安定度を特に高めることが可能になるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るセンサ装置としての磁気センサ装置の構成を示す回路図である。
【図2】図1における磁気センサ部の構成の一例を示す回路図である。
【図3】本発明の第2の実施の形態に係るセンサ装置としての電流センサ装置の構成を示す回路図である。
【図4】電源を単極性化した磁気センサ装置の構成の一例を示す回路図である。
【符号の説明】
1…磁気センサ装置、2…電源入力端、5…磁気センサ部、6…帰還コイル、7…帰還増幅器、11…電流検出抵抗、14…差動増幅器、16…測定信号出力端、17…参照電圧入力端、18…オペアンプ、21…オペアンプ、31…A/D変換器、32…基準電圧源。
【発明の属する技術分野】
本発明は、単極性の電源で動作し、単極性の測定信号を出力するセンサ装置に関する。
【0002】
【従来の技術】
近年、環境問題や資源エネルギー問題に関する社会的要請から、電気ハイブリッド自動車、燃料電池、太陽光発電等が実用化されてきている。これらの技術は、直流大電流を取り扱うため、直流大電流を測定するための電流センサ装置を必要とする点で共通している。そのため、安価で信頼性の高い直流大電流センサ装置の開発は社会的要請となっている。
【0003】
一般に、直流大電流を非接触で測定する方法としては、電流が作る磁界を磁気センサ素子で検出する方法が採られる。従来、このための磁気センサ素子としてはホール素子が多く用いられていた。
【0004】
また、本発明者等によって、安定性に優れるインダクタンス変化型の磁気センサ素子、すなわちフラックスゲート素子を用いた磁気センサ装置や電流センサ装置も提案されている。ここで、フラックスゲート素子を用いた磁界の検出の原理について簡単に説明する。フラックスゲート素子は、磁芯入りコイルを有している。磁芯入りコイルは、コイル電流がある値より大きくなると磁芯が飽和するので、そのインダクタンスが減少する。ここで、インダクタンスが例えば半減するようなバイアス電流をコイルに流しておき、磁芯に外部から磁界を与えると、与えた磁界の方向および大きさに応じたインダクタンス変化が生じる。そのため、このインダクタンス変化から与えられた磁界を検出することができる。磁芯には、棒状磁芯またはドラム型磁芯が用いられている。
【0005】
ところが、上記の磁芯入りコイルのインダクタンス変化は、外部磁界に対し直線性が悪い上に、かなり急峻である。このことは、磁気センサ装置や電流センサ装置のリニアリティを悪くすると共に、測定範囲を狭める。
【0006】
この欠点を避けるための技術としては負帰還法がある。負帰還法は、被測定磁界と絶対値が等しく、被測定磁界に対して逆極性となる帰還磁界を磁気センサ素子に加え、磁気センサ素子が常にゼロに近い磁界の中で動作するようにしたものである。帰還磁界は、磁界センサ素子の出力を電流に変換し、この電流を帰還磁界発生コイルに帰還電流として印加することで簡単に得ることができる。
【0007】
上記の帰還電流の経路中に挿入した抵抗の両端間の電位差は帰還電流に比例している。帰還電流は被測定磁界と絶対値が等しい磁界を発生するので、前記電位差は被測定磁界に完全に比例している。従って、この電位差を検出することによって、被測定磁界を検出することができる。このようにしてリニアリティがよく、ゲイン変動のない磁気センサ装置または電流センサ装置を実現することができる。
【0008】
【発明が解決しようとする課題】
ところで、上述の負帰還法を採用した磁気センサ装置または電流センサ装置において、帰還電流の経路中に挿入した抵抗の両端間の電位差は、被測定磁界の向きの正逆に応じて極性が反転する。一般に、両極性信号を処理するには両極性電源を必要とする。しかし、両極性電源は、単極性電源に比べて高価である。そこで、装置の価格を下げるため、電源を単極性化することが多い。そのためには、帰還電流経路を一定の基準電位に保持し、被測定磁界に応じた検出信号が基準電位を基準として変化するようにして、検出信号を単極性化する方策が採られる。
【0009】
ここで、図4を参照して、上述のように電源を単極性化した磁気センサ装置の構成の一例について説明する。この磁気センサ装置は、電源入力端101と、一端が電源入力端101に接続された抵抗102と、カソードが抵抗102の他端に接続され、アノードが接地されたツェナーダイオード103と、非反転入力端が抵抗102とツェナーダイオード103との接続点に接続されたオペアンプ104とを備えている。オペアンプ104の反転入力端は出力端に接続されている。電源入力端101には、電源電圧Vdが印加されるようになっている。
【0010】
磁気センサ装置は、更に、基準電圧入力端がオペアンプ104の出力端に接続された磁気センサ部105と、一端がオペアンプ104の出力端に接続された帰還コイル106と、非反転入力端が磁気センサ部105の出力端に接続されたオペアンプよりなる帰還増幅器107と、一端がオペアンプ104の出力端に接続され、他端が帰還増幅器107の非反転入力端に接続された抵抗108と、一端がオペアンプ104の出力端に接続され、他端が帰還増幅器107の反転入力端に接続された抵抗109と、一端が帰還増幅器107の反転入力端に接続され、他端が帰還増幅器107の出力端に接続された抵抗110と、一端が帰還増幅器107の出力端に接続され、他端が帰還コイル106の他端に接続された電流検出抵抗111とを備えている。なお、磁気センサ部105は、磁気センサ素子と、この磁気センサ素子を駆動する回路とを含んでいる。
【0011】
磁気センサ装置は、更に、一端が抵抗111の一端に接続された抵抗112と、一端が抵抗111の他端に接続された抵抗113と、反転入力端が抵抗112の他端に接続され、非反転入力端が抵抗113の他端に接続されたオペアンプよりなる差動増幅器114と、一端が差動増幅器114の反転入力端に接続され、他端が差動増幅器114の出力端に接続された抵抗115と、差動増幅器114の出力端に接続された測定信号出力端116とを備えている。
【0012】
磁気センサ装置は、更に、参照電圧入力端117と、非反転入力端が参照電圧入力端117に接続され、反転入力端が出力端に接続されたオペアンプ118と、一端がオペアンプ118の出力端に接続され、他端が差動増幅器114の非反転入力端に接続された抵抗119とを備えている。
【0013】
オペアンプ104、帰還増幅器107、差動増幅器114およびオペアンプ118の各電源入力端は電源入力端101に接続され、各接地端は接地されている。
【0014】
次に、図4に示した磁気センサ装置の作用について説明する。この磁気センサ装置では、電源入力端101に電源電圧Vdが印加され、この電源電圧Vdによって各回路部分が動作している。すなわち、各回路部分は単極性電源によって駆動されている。
【0015】
抵抗102とツェナーダイオード103は、電源電圧Vdを用いて、両者の接続点において基準電圧Vpを発生させる。オペアンプ104はボルテージフォロワを構成しており、オペアンプ104の出力端の電位は基準電圧Vpと等しい。基準電圧Vpは、磁気センサ部105の基準電圧入力端と、帰還コイル106、抵抗108,109の各一端に印加される。
【0016】
また、参照電圧入力端117には参照電圧Vrefが印加される。オペアンプ118はボルテージフォロワを構成しており、オペアンプ118の出力端の電位は参照電圧Vrefと等しい。参照電圧Vrefは、抵抗119を介して差動増幅器114の非反転入力端に印加される。
【0017】
磁気センサ部105は、その出力端より、被測定磁界に応じた信号を、帰還増幅器107の非反転入力端に対して出力する。帰還増幅器107は、基準電圧Vpを基準として被測定磁界に応じて変化する出力電圧を生成する。被測定磁界がゼロのときには帰還増幅器107の出力電圧は基準電圧Vpと等しい。
【0018】
帰還増幅器107から抵抗111を経て帰還コイル106に至るまで帰還電流経路が形成されている。この帰還電流経路では、帰還増幅器107の出力電圧と基準電圧Vpとの差に応じて帰還電流が発生し、この帰還電流が帰還コイル106に供給される。この帰還電流は、帰還増幅器107の出力電圧が基準電圧Vpより大きいか小さいかに応じて正逆両方向に流れる。帰還電流経路に挿入された抵抗111の両端間に発生した電圧(電位差)は、コモンモード電圧としての基準電圧Vpに重畳されて、差動増幅器114に入力される。差動増幅器114は、被測定磁界に対応すると共に、コモンモード電圧Vpが除去された信号を出力する。差動増幅器114の非反転入力端には、抵抗119を介して参照電圧Vrefが印加されている。従って、差動増幅器114の出力信号、すなわち測定信号出力端116より出力される測定信号は、参照電圧Vrefを基準として被測定磁界に応じて変化する単極性の信号となる。
【0019】
ここで、抵抗112,113,115,119の抵抗値を、それぞれRi1,Ri2,Rf1,Rf2とする。差動増幅器114のコモンモード抑圧比は、Ri1=Ri2且つRf1=Rf2のとき最大になり、このバランスが崩れると大幅に悪化する。しかし、一般に抵抗器の抵抗値の精度は±1%程度である。従って、差動増幅器114において、コモンモード電圧Vpを完全に抑圧することは困難である。
【0020】
そこで、従来は、基準電圧Vpを一定値に固定した上で、抵抗値Ri1,Ri2,Rf1,Rf2のうちの一つを調整したり、参照電圧Vrefを調整したりして、差動増幅器114の出力を規定値になるようにしていた。しかしながら、この方法では、電源電圧Vdの変動に伴って基準電圧Vpが変動した場合には、それに伴う差動増幅器114の出力信号の変動分を除去することができない。この問題を避ける方法としては、例えば、基準電圧Vpを定電圧回路等によって固定する方法が考えられる。しかしながら、この方法では、定電圧回路分だけ装置の価格の上昇をもたらすばかりではなく、温度変化等の他の要因による定電圧回路の出力変動等、新たな基準電圧の変動要因を取り込むことになる。
【0021】
本発明はかかる問題点に鑑みてなされたもので、その目的は、単極性の電源で動作して単極性の測定信号を出力すると共に、簡単な構成で電源電圧の変動に伴う測定信号の変動を抑制できるようにしたセンサ装置を提供することにある。
【0022】
【課題を解決するための手段】
本発明のセンサ装置は、
被測定対象の値に応じて変化する信号を出力するセンサ部と、
所定の基準電位を基準としてセンサ部の出力信号に応じて変化する単極性の検出電位を発生する検出電位発生手段と、
検出電位発生手段によって発生される検出電位と基準電位との差に応じた電流が流れる電流経路と、
電流経路に挿入された抵抗素子と、
外部より与えられる参照電位を基準として抵抗素子の両端間の電位差に応じて変化する単極性の測定信号を出力する測定信号出力手段と、
参照電位に基づいて基準電位を生成する基準電位生成手段と
を備えたものである。
【0023】
本発明のセンサ装置では、センサ部より、被測定対象の値に応じて変化する信号が出力され、検出電位発生手段によって、所定の基準電位を基準としてセンサ部の出力信号に応じて変化する単極性の検出電位が発生され、この検出電位と基準電位との差に応じた電流が、電流経路に挿入された抵抗素子に流れる。そして、測定信号出力手段によって、外部より与えられる参照電位を基準として抵抗素子の両端間の電位差に応じて変化する単極性の測定信号が出力される。基準電位は、基準電位生成手段によって、参照電位に基づいて生成される。
【0024】
本発明のセンサ装置において、基準電位生成手段は、参照電位と基準電位との比を1以外の一定値にしてもよい。
【0025】
また、本発明のセンサ装置において、基準電位生成手段は、基準電位を参照電位と等しくしてもよい。
【0026】
また、本発明のセンサ装置において、参照電位は、測定信号出力手段より出力される測定信号をアナログ−デジタル変換するアナログ−デジタル変換器において使用される基準電圧源より与えられるものでもよい。
【0027】
また、本発明のセンサ装置において、センサ部は、被測定対象としての被測定磁界の値に応じて変化する信号を出力する磁気センサ素子を含んでいてもよい。この場合、磁気センサ素子は、フラックスゲート素子であってもよい。また、センサ装置は、更に、被測定磁界と絶対値が等しく、被測定磁界に対して逆極性となる帰還磁界を発生させる帰還コイルを備え、電流経路は、検出電位発生手段によって発生される検出電位と基準電位との差に応じた電流を帰還コイルに供給するものであってもよい。
【0028】
また、本発明のセンサ装置において、センサ部は、被測定対象としての被測定電流によって発生する被測定磁界の値に応じて変化する信号を出力する磁気センサ素子を含んでいてもよい。この場合、磁気センサ素子は、フラックスゲート素子であってもよい。また、センサ装置は、更に、被測定磁界と絶対値が等しく、被測定磁界に対して逆極性となる帰還磁界を発生させる帰還コイルを備え、電流経路は、検出電位発生手段によって発生される検出電位と基準電位との差に応じた電流を帰還コイルに供給するものであってもよい。
【0029】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係るセンサ装置としての磁気センサ装置の構成を示す回路図である。この磁気センサ装置1は、電源入力端2と、参照電圧入力端17と、非反転入力端が参照電圧入力端17に接続され、反転入力端が出力端に接続されたオペアンプ18とを備えている。電源入力端2には、電源電圧Vdが印加されるようになっている。参照電圧入力端17には、外部より参照電圧が与えられるようになっている。
【0030】
磁気センサ装置1は、更に、非反転入力端がオペアンプ18の出力端に接続されたオペアンプ21と、一端がオペアンプ21の反転入力端に接続され、他端が出力端に接続された抵抗22と、一端がオペアンプ21の反転入力端に接続され、他端が接地された抵抗23とを備えている。オペアンプ21は、基準電圧Vpを生成するようになっている。
【0031】
磁気センサ装置1は、更に、基準電圧入力端がオペアンプ21の出力端に接続された磁気センサ部5と、この磁気センサ部5の近傍に配置されると共に、一端がオペアンプ21の出力端に接続された帰還コイル6と、非反転入力端が磁気センサ部5の出力端に接続されたオペアンプよりなる帰還増幅器7と、一端がオペアンプ21の出力端に接続され、他端が帰還増幅器7の非反転入力端に接続された抵抗8と、一端がオペアンプ21の出力端に接続され、他端が帰還増幅器7の反転入力端に接続された抵抗9と、一端が帰還増幅器7の反転入力端に接続され、他端が帰還増幅器7の出力端に接続された抵抗10と、一端が帰還増幅器7の出力端に接続され、他端が帰還コイル6の他端に接続された電流検出抵抗11とを備えている。
【0032】
磁気センサ装置1は、更に、一端が抵抗11の一端に接続された抵抗12と、一端が抵抗11の他端に接続された抵抗13と、反転入力端が抵抗12の他端に接続され、非反転入力端が抵抗13の他端に接続されたオペアンプよりなる差動増幅器14と、一端が差動増幅器14の反転入力端に接続され、他端が差動増幅器14の出力端に接続された抵抗15と、一端がオペアンプ18の出力端に接続され、他端が差動増幅器14の非反転入力端に接続された抵抗19と、差動増幅器14の出力端に接続された測定信号出力端16とを備えている。
【0033】
オペアンプ21、帰還増幅器7、差動増幅器14およびオペアンプ18の各電源入力端は電源入力端2に接続され、各接地端は接地されている。
【0034】
磁気センサ装置1の測定信号出力端16より出力される測定信号は、この測定信号をアナログ−デジタル変換(以下、A/D変換と言う。)するA/D変換器31に入力されるようになっている。このA/D変換器31より出力されるデジタルの測定信号は、例えば、このデジタルの測定信号を処理するCPU(中央処理装置)33に入力されるようになっている。A/D変換器31には、基準電圧源32より、精度と安定度の高い基準電圧が供給されるようになっている。なお、基準電圧源32は、A/D変換器31に内蔵されていてもよいし、A/D変換器31の外部に設けられていてもよい。基準電圧源32としては、例えばバンドギャップ型基準電圧発生回路が用いられる。
【0035】
磁気センサ装置1の参照電圧入力端17には、参照電圧Vrefとして、基準電圧源32より発生されるA/D変換器31用の基準電圧が印加されるようになっている。
【0036】
本実施の形態において、磁気センサ部5は、本発明におけるセンサ部に対応し、被測定対象としての被測定磁界の値に応じて変化する信号を出力する。また、帰還増幅器7は本発明における検出電位発生手段に対応し、抵抗11は本発明における抵抗素子に対応し、差動増幅器14は本発明における測定信号出力手段に対応し、オペアンプ21は本発明における基準電位生成手段に対応する。
【0037】
図2は、図1における磁気センサ部5の構成の一例を示す回路図である。この例における磁気センサ部5は、磁気センサ素子として、インダクタンス変化型の磁気センサ素子、すなわちフラックスゲート素子を有している。このフラックスゲート素子は、磁芯51と、この磁芯51に巻回されたセンサコイル52とを含んでいる。磁気センサ部5は、更に、一端がセンサコイル52の一端に接続されたコンデンサ53と、コンデンサ53の他端に接続された励振回路54と、一端がセンサコイル52の他端に接続され、他端が磁気センサ部5の基準電圧入力端に接続されたインダクタンス素子55とを有している。インダクタンス素子55は、センサコイル52のインダクタンス値の変化を検出するためのものであり、例えばコイルよりなる。なお、図2では、励振回路54の電源および接地端子は図示していない。
【0038】
磁気センサ部5は、更に、一端がセンサコイル52とインダクタンス素子55との接続点に接続されたコンデンサ56と、一端がコンデンサ56の他端に接続され、他端が磁気センサ部5の基準電圧入力端に接続された抵抗57とを有している。コンデンサ56と抵抗57は、インダクタンス素子55の両端に発生する電圧を微分する微分回路を構成している。
【0039】
磁気センサ部5は、更に、入力端がコンデンサ56と抵抗57との接続点に接続された正ピークホールド回路58と、入力端がコンデンサ56と抵抗57との接続点に接続された負ピークホールド回路59と、各入力端がそれぞれ正ピークホールド回路58の出力端と負ピークホールド回路59の出力端に接続された加算回路60とを有している。正ピークホールド回路58は、微分回路の出力信号の正のピーク値をホールドし、負ピークホールド回路59は、微分回路の出力信号の負のピーク値をホールドする。加算回路60は、正ピークホールド回路58の出力信号と負ピークホールド回路59の出力信号とを加算して、磁気センサ部5の出力端より出力する。
【0040】
図2に示した磁気センサ部5では、励振回路54によって、磁気センサ部5に印加される電源電圧Vdに基づいて励振電流が生成される。この励振電流は、センサコイル52およびインダクタンス素子55を流れる。励振電流は、ピーク時には磁芯51が飽和領域に入るような交流電流とする。なお、本出願において、磁芯の飽和領域とは、磁界の絶対値が、磁芯の透磁率が最大透磁率となるときの磁界の絶対値より大きい領域をいう。励振電流のピーク値付近で磁芯51が飽和領域に達すると、センサコイル52のインダクタンス値が急減するため、励振電流は急増する。励振電流の波形を2回微分すれば、急増した部分の電流波形に相似な逆位相の出力を検出することができる。
【0041】
励振電流はインダクタンス素子55および微分回路で2回微分され、微分回路より、励振電流の正負の各ピーク値を表す、互いに逆極性のスパイク状電圧信号が出力される。この正負のスパイク状電圧信号の各ピーク値は、正ピークホールド回路58および負ピークホールド回路59によってホールドされ、加算回路60によって加算されて、被測定磁界に対応した出力信号として磁気センサ部5の出力端より出力される。
【0042】
次に、本実施の形態に係る磁気センサ装置1の作用について説明する。この磁気センサ装置では、電源入力端2に電源電圧Vdが印加され、この電源電圧Vdによって各回路部分が動作している。すなわち、各回路部分は単極性電源によって駆動されている。
【0043】
また、参照電圧入力端17には、参照電圧Vrefとして、基準電圧源32より発生されるA/D変換器31用の基準電圧が印加される。オペアンプ18はボルテージフォロワを構成しており、オペアンプ18の出力端の電位は参照電圧Vrefと等しい。オペアンプ18の出力端より出力される参照電圧Vrefは、抵抗19を介して差動増幅器14の非反転入力端に印加されると共に、オペアンプ21の非反転入力端に印加される。参照電圧Vrefは、本発明における参照電位に対応する。
【0044】
オペアンプ21は、参照電圧Vrefを所定の増幅度Gで増幅して基準電圧Vpを生成する。抵抗22の抵抗値をR1とし、抵抗23の抵抗値をR2とすると、オペアンプ21の増幅度Gは、1+R1/R2となる。オペアンプ21の出力端より出力される基準電圧Vpは、磁気センサ部5の基準電圧入力端と、帰還コイル6、抵抗8,9の各一端に印加される。基準電圧Vpは、本発明における基準電位に対応する。
【0045】
磁気センサ部5は、その出力端より、被測定磁界に応じた信号を、帰還増幅器7の非反転入力端に対して出力する。帰還増幅器7は、基準電圧Vpを基準として被測定磁界に応じて変化する出力電圧を生成する。被測定磁界がゼロのときには帰還増幅器7の出力電圧は基準電圧Vpと等しい。帰還増幅器7の出力電圧は、本発明における検出電位に対応する。
【0046】
帰還増幅器7から抵抗11を経て帰還コイル6に至るまで帰還電流経路が形成されている。この帰還電流経路では、帰還増幅器7の出力電圧と基準電圧Vpとの差に応じて帰還電流が発生し、この帰還電流が帰還コイル6に供給される。この帰還電流は、帰還増幅器7の出力電圧が基準電圧Vpより大きいか小さいかに応じて正逆両方向に流れる。帰還コイル6は、帰還電流に応じて、被測定磁界と絶対値が等しく、被測定磁界に対して逆極性となる帰還磁界を発生する。
【0047】
帰還電流経路に挿入された抵抗11の両端間に発生した電圧(電位差)は、コモンモード電圧としての基準電圧Vpに重畳されて、差動増幅器14に入力される。差動増幅器14は、被測定磁界に対応すると共に、コモンモード電圧Vpが除去された信号を出力する。差動増幅器14の非反転入力端には、抵抗19を介して参照電圧Vrefが印加されている。従って、差動増幅器14の出力信号、すなわち信号出力端16より出力される測定信号は、参照電圧Vrefを基準として被測定磁界に応じて変化する単極性の信号となる。
【0048】
本実施の形態では、オペアンプ21によって、電源電圧Vdに依らずに、外部より与えられる参照電圧Vrefに基づいて基準電圧Vpを生成している。参照電圧Vrefには、基準電圧源32より発生されるA/D変換器31用の基準電圧が用いられている。一般に、A/D変換器で用いられる基準電圧の精度と安定度は非常に高い。従って、本実施の形態における参照電圧Vrefは、磁気センサ装置1に供給される電源電圧Vdとは独立した、精度と安定度の高い電圧であり、電源電圧Vdの変動の影響を全く受けない。その結果、参照電圧Vrefに基づいて生成される基準電圧Vpも、電源電圧Vdの変動の影響を受けない、精度と安定度の高い電圧となる。従って、本実施の形態では、差動増幅器14のコモンモード抑圧比を決定する抵抗12,13,15,19の抵抗値のバランスが完全でなくとも、差動増幅器14より出力される測定信号が、電源電圧Vdの変動に伴って変動することはない。
【0049】
ところで、本実施の形態において、オペアンプ21は、参照電圧Vrefと基準電圧Vpとの比を1以外の一定値にしてもよいし、基準電圧Vpを参照電圧Vrefと等しくしてもよい。
【0050】
なお、基準電圧Vpは帰還増幅器7の動作のゼロ点を決定する。一般に、参照電圧Vrefは2.5Vのことが多く、電源電圧Vdの最小値は8V程度のことが多い。そのため、参照電圧Vrefを2.5V、電源電圧Vdを8Vとした場合には、基準電圧Vpを参照電圧Vrefと等しくすると、帰還増幅器7の動作のゼロ点が2.5Vとなり、帰還増幅器7の低圧側の動作範囲が減少する。従って、基準電圧Vpは、電源電圧Vdの1/2程度、すなわち4V程度にしたほうがよい。本実施の形態では、一例として、オペアンプ21によって、2.5Vの参照電圧Vrefを1.6倍に増幅して、4Vの基準電圧Vpを生成する。この場合、図4に示した磁気センサ装置に比べて、新たに増えるのは抵抗22,23だけであり、磁気センサ装置1の価格の上昇はほとんどない。
【0051】
基準電圧Vpを参照電圧Vrefと等しくする場合には、R1=0、R2=∞とすればよいので、抵抗22,23も不要となり、図4に示した磁気センサ装置に比べて、磁気センサ装置1の価格の上昇は全くなくなる。なお、この場合には、オペアンプ21はボルテージフォロワを構成する。
【0052】
以上説明したように、本実施の形態に係る磁気センサ装置1によれば、単極性の電源で動作して単極性の測定信号を出力できると共に、簡単な構成で電源電圧の変動に伴う測定信号の変動を抑制することができる。
【0053】
また、本実施の形態において、参照電圧Vrefと基準電圧Vpとの比を1以外の一定値にする場合には、帰還増幅器7の動作のゼロ点を適当な電位に設定することが可能になる。
【0054】
また、本実施の形態において、基準電圧Vpを参照電圧Vrefと等しくする場合には、磁気センサ装置1の構成をより簡単にすることが可能になる。
【0055】
[第2の実施の形態]
図3は、本発明の第2の実施の形態に係るセンサ装置としての電流センサ装置の構成を示す回路図である。本実施の形態に係る電流センサ装置は、第1の実施の形態に係る磁気センサ装置を用いて構成されている。
【0056】
本実施の形態に係る電流センサ装置41は、被測定対象としての被測定電流が通過する導電部42を囲うように設けられ、一部にギャップを有する磁気ヨーク43を備えている。そして、磁気ヨーク43のギャップ内に、第1の実施の形態に係る磁気センサ装置における磁気センサ部5が配置されている。
【0057】
本実施の形態の電流センサ装置では、導電部42を図3における紙面に垂直な方向に流れる被測定電流によって発生する磁束が、磁気ヨーク43によって収束され、磁気ヨーク43を通過する。その結果、磁気ヨーク43のギャップ内に、被測定磁界が発生する。磁気ヨーク43のギャップ内に配置された磁気センサ部5は、被測定電流によって発生する被測定磁界の値に応じて変化する信号を出力する。これにより、被測定電流が非接触で測定される。
【0058】
本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。
【0059】
なお、本発明は、上記各実施の形態に限定されず、種々の変更が可能である。例えば、磁気センサ部は、フラックスゲート素子を含むものに限らず、ホール素子等の他の磁気センサ素子を含むものであってもよい。また、本発明は、磁気センサ装置および電流センサ装置に限らず、他のセンサ装置にも適用することができる。
【0060】
【発明の効果】
以上説明したように、請求項1ないし10のいずれかに記載のセンサ装置によれば、電源電圧によらずに、外部より与えられる参照電位に基づいて基準電位を生成するようにしたので、単極性の電源で動作して単極性の測定信号を出力することができると共に、簡単な構成で電源電圧の変動に伴う測定信号の変動を抑制することができるという効果を奏する。
【0061】
また、請求項2記載のセンサ装置によれば、基準電位生成手段が参照電位と基準電位との比を1以外の一定値にするようにしたので、検出電位発生手段の動作のゼロ点を適当な電位に設定することが可能になるという効果を奏する。
【0062】
また、請求項3記載のセンサ装置によれば、基準電位生成手段が基準電位を参照電位と等しくするようにしたので、センサ装置の構成をより簡単にすることが可能になるという効果を奏する。
【0063】
また、請求項4記載のセンサ装置によれば、参照電位が、測定信号出力手段より出力される測定信号をアナログ−デジタル変換するアナログ−デジタル変換器において使用される基準電圧源より与えられるようにしたので、基準電位の精度と安定度を特に高めることが可能になるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るセンサ装置としての磁気センサ装置の構成を示す回路図である。
【図2】図1における磁気センサ部の構成の一例を示す回路図である。
【図3】本発明の第2の実施の形態に係るセンサ装置としての電流センサ装置の構成を示す回路図である。
【図4】電源を単極性化した磁気センサ装置の構成の一例を示す回路図である。
【符号の説明】
1…磁気センサ装置、2…電源入力端、5…磁気センサ部、6…帰還コイル、7…帰還増幅器、11…電流検出抵抗、14…差動増幅器、16…測定信号出力端、17…参照電圧入力端、18…オペアンプ、21…オペアンプ、31…A/D変換器、32…基準電圧源。
Claims (10)
- 被測定対象の値に応じて変化する信号を出力するセンサ部と、
所定の基準電位を基準として前記センサ部の出力信号に応じて変化する単極性の検出電位を発生する検出電位発生手段と、
前記検出電位発生手段によって発生される検出電位と前記基準電位との差に応じた電流が流れる電流経路と、
前記電流経路に挿入された抵抗素子と、
外部より与えられる参照電位を基準として前記抵抗素子の両端間の電位差に応じて変化する単極性の測定信号を出力する測定信号出力手段と、
前記参照電位に基づいて前記基準電位を生成する基準電位生成手段と
を備えたことを特徴とするセンサ装置。 - 前記基準電位生成手段は、参照電位と基準電位との比を1以外の一定値にすることを特徴とする請求項1記載のセンサ装置。
- 前記基準電位生成手段は、基準電位を参照電位と等しくすることを特徴とする請求項1記載のセンサ装置。
- 前記参照電位は、前記測定信号出力手段より出力される測定信号をアナログ−デジタル変換するアナログ−デジタル変換器において使用される基準電圧源より与えられることを特徴とする請求項1ないし3のいずれかに記載のセンサ装置。
- 前記センサ部は、被測定対象としての被測定磁界の値に応じて変化する信号を出力する磁気センサ素子を含むことを特徴とする請求項1ないし4のいずれかに記載のセンサ装置。
- 前記磁気センサ素子は、フラックスゲート素子であることを特徴とする請求項5記載のセンサ装置。
- 更に、被測定磁界と絶対値が等しく、被測定磁界に対して逆極性となる帰還磁界を発生させる帰還コイルを備え、前記電流経路は、前記検出電位発生手段によって発生される検出電位と前記基準電位との差に応じた電流を前記帰還コイルに供給することを特徴とする請求項5または6記載のセンサ装置。
- 前記センサ部は、被測定対象としての被測定電流によって発生する被測定磁界の値に応じて変化する信号を出力する磁気センサ素子を含むことを特徴とする請求項1ないし4のいずれかに記載のセンサ装置。
- 前記磁気センサ素子は、フラックスゲート素子であることを特徴とする請求項8記載のセンサ装置。
- 更に、被測定磁界と絶対値が等しく、被測定磁界に対して逆極性となる帰還磁界を発生させる帰還コイルを備え、前記電流経路は、前記検出電位発生手段によって発生される検出電位と前記基準電位との差に応じた電流を前記帰還コイルに供給することを特徴とする請求項8または9記載のセンサ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000267664A JP3583699B2 (ja) | 2000-09-04 | 2000-09-04 | センサ装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000267664A JP3583699B2 (ja) | 2000-09-04 | 2000-09-04 | センサ装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002071772A JP2002071772A (ja) | 2002-03-12 |
JP3583699B2 true JP3583699B2 (ja) | 2004-11-04 |
Family
ID=18754551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000267664A Expired - Fee Related JP3583699B2 (ja) | 2000-09-04 | 2000-09-04 | センサ装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3583699B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4623289B2 (ja) * | 2004-06-21 | 2011-02-02 | Tdk株式会社 | 電流センサ |
CN109406863B (zh) * | 2018-12-29 | 2020-09-01 | 常熟开关制造有限公司(原常熟开关厂) | 一种低成本高精度的交流电参量检测方法及装置 |
CN109932558A (zh) * | 2019-04-15 | 2019-06-25 | 苏州未来电器股份有限公司 | 基于单正电源供电的磁调制交直流剩余电流检测系统 |
CN112379323B (zh) * | 2020-11-05 | 2022-10-21 | 山东山大电力技术股份有限公司 | 一种基于罗氏线圈特性的等效模拟发生器及电子设备 |
-
2000
- 2000-09-04 JP JP2000267664A patent/JP3583699B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002071772A (ja) | 2002-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3212985B2 (ja) | 磁気センサ装置および電流センサ装置 | |
EP3121609B1 (en) | Direct-current residual-current detecting device | |
KR101329240B1 (ko) | 플럭스 게이트 방식의 비접촉 전류 계측기 | |
JP2923307B2 (ja) | 電流センサ | |
JP3691551B2 (ja) | 補償原理に基づく電流センサ | |
JPS60104263A (ja) | パラメ−タを測定する検出装置 | |
JPH03205566A (ja) | 電流強さ変成器 | |
JP2001033494A (ja) | 交流電流検出装置 | |
JP4007464B2 (ja) | 磁気探知装置 | |
JP2008164449A (ja) | 電流センサ | |
JP2006038834A (ja) | 電流センサ | |
JP6106909B2 (ja) | 電流センサ | |
JP3583699B2 (ja) | センサ装置 | |
JP2001511892A (ja) | 補償原理による電流センサ | |
JP3516644B2 (ja) | 磁気センサ装置および電流センサ装置 | |
JP2016050921A (ja) | 電流検知装置 | |
JP2008107119A (ja) | 電流センサ | |
KR100451480B1 (ko) | 직류 및 교류의 측정이 가능한 클램프형 전류측정기 | |
JP4731633B1 (ja) | 磁気センサ | |
JP2004020455A (ja) | 電流検出装置 | |
JP2000162294A (ja) | 磁界センサ | |
CN116794560B (zh) | 一种宽频剩余电流传感器 | |
RU2234706C1 (ru) | Измерительный преобразователь постоянного тока | |
JP4520706B2 (ja) | 電磁流量計の励磁回路 | |
KR102055566B1 (ko) | 비접촉 직류 전류 측정 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040727 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040729 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |