JP3583684B2 - 画像欠陥検出装置および画像欠陥検出方法 - Google Patents

画像欠陥検出装置および画像欠陥検出方法 Download PDF

Info

Publication number
JP3583684B2
JP3583684B2 JP2000107015A JP2000107015A JP3583684B2 JP 3583684 B2 JP3583684 B2 JP 3583684B2 JP 2000107015 A JP2000107015 A JP 2000107015A JP 2000107015 A JP2000107015 A JP 2000107015A JP 3583684 B2 JP3583684 B2 JP 3583684B2
Authority
JP
Japan
Prior art keywords
defect
inspection
image
digital data
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000107015A
Other languages
English (en)
Other versions
JP2001264257A (ja
Inventor
俊輔 長澤
宏之 山縣
康徳 出原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000107015A priority Critical patent/JP3583684B2/ja
Priority to US09/712,942 priority patent/US6683974B1/en
Priority to MYPI20005737A priority patent/MY127399A/en
Priority to TW090100042A priority patent/TW516308B/zh
Priority to IDP20010019D priority patent/ID29561A/id
Priority to KR10-2001-0001907A priority patent/KR100396449B1/ko
Publication of JP2001264257A publication Critical patent/JP2001264257A/ja
Application granted granted Critical
Publication of JP3583684B2 publication Critical patent/JP3583684B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶パネル等の表示装置における画像の欠陥を検出する装置および方法に関し、特に、表示装置の画像を撮像等によって取り込んで、取り込まれた画像に基づいて、画像の欠陥を検出する画像欠陥検出装置および画像欠陥検出方法に関する。また、本発明は、このような画像欠陥検出方法の手順を記憶した記憶媒体に関する。
【0002】
【従来の技術】
表示パネル等の表示画面においては、全体にわたって均一な画質が要求されるために、表示パネルを生産する工程においては、表示画面にて表示された画像を、目視検査することによって、表示画面における欠陥の検出が行われている。
【0003】
表示画面における欠陥には多くの種類が存在し、例えば微小な欠陥である点欠陥、適当な領域にわたるシミ欠陥およびムラ欠陥、線状の線欠陥等がある。このような多種多様の欠陥の検出は、通常、検査員による目視検査によって行われている。しかしながら、同一の画像の欠陥検査を行っても、検査員の熟練度や体調などにより、検査結果、すなわち良品/不良品の判定が変わってしまうおそれがあり、毎回の検査結果を、同一の精度によって出すことは容易でないという問題がある。
【0004】
そこで、検査員による目視検査に替わって、個人差のない検査装置による検査が望まれている。しかしながら、前述したように、欠陥には多くの種類が存在するために、各種類の結果を検査するためには、多くの項目をチェックする必要があるという問題がある。
【0005】
特開平9−9303号公報には、表示パネルの画質検査を、表示パネルにて表示された画像を撮像して、撮像した画像のデータを、検査項目に応じて処理することによって実施する構成が開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、このように、1つの画素毎に画像データを検査する構成では、1つの画素の欠陥である微小な点欠陥であって、しかも、その点欠陥が、周囲の画素の欠陥よりも極端に出力が低下した状態になっている場合にしか検出することができないという問題がある。
【0007】
すなわち、1つの画素の欠陥である点欠陥では、画像データをA/D変換するA/D変換器の性能、配線における電圧の降下(配線鈍り)などにより、図15に示すように、欠陥が発生している画素に対して上下左右の周囲の画素についても、若干出力が落ちていることが多く、1画素のみの画像データに基づいて検査した場合には、欠陥を見つけることが容易でないという問題がある。
【0008】
また、ムラ欠陥等は、1画素における出力の低下が小さく、各画素毎における画像データはほとんど変化していない状態になっている。従って、画像データを比較する画素の距離を離したとしても、ムラ欠陥等の欠陥を正確に検出することができないおそれがある。
【0009】
また、各欠陥は、RGBなどの表色系の各成分のうちの1種類または2種類以上が異常となったときに発生するものであり、いずれの色成分が異常になっているかを検出することができないという問題もある。
【0010】
このため、人間による目視検査と同等の検査機能を有し、複数の画素同士の比較を高速で行うことが可能な画像欠陥検出装置が必要とされている。
【0011】
このような問題は、液晶パネル等の表示画面における欠陥を検出する場合のみならず、塗装表面において表面の塗装が均一になっていることを、その表面を撮像して検査する等の場合にも発生する。
【0012】
本発明は、このような問題を解決するものであり、その目的は、検査員の熟練度や体調に関係なく、各種欠陥を、正確に、高速に、しかも、精度よく検出することができる画像欠陥検出装置および画像欠陥検出方法を提供することにある。本発明の他の目的は、その画像欠陥検出方法の手順を記憶した記憶媒体を提供することにある。
【0013】
【課題を解決するための手段】
本発明の画像欠陥検出装置は、画像をアナログデータとして取り出す画像取り出し手段と、この画像取り出し手段によって取り出されたアナログデータの画像をデジタルデータに変換するA/D変換手段と、該画像上にて、それぞれが複数の画素にて構成される検査基準領域および検査対象領域を所定の距離を設けてそれぞれ設定する設定手段と、この設定手段にて設定された検査基準領域内および検査対象領域内におけるそれぞれのデジタルデータの合計値の差分、それぞれの領域におけるデジタルデータの平均値の差分、それぞれの領域におけるデジタルデータの変化率の差分のいずれかを比較値として抽出する比較値抽出手段と、該比較値抽出手段にて抽出された比較値と所定の閾値とに基づいて、欠陥の有無を検出する比較手段とを具備し、前記設定手段は、検出する欠陥の種類に応じて、該検査基準領域および該検査対称領域のそれぞれの位置、それぞれのサイズをそれぞれ異ならせて設定するとともに、該検査基準領域および該検査対象領域の距離をそれぞれ設定することを特徴とする。
前記設定手段は、前記欠陥の種類が、点欠陥、シミ欠陥および線欠陥の場合に、前記検査基準領域および前記検査対象領域との間に第1の距離をそれぞれ設定し、前記欠陥の種類がムラ欠陥の場合に、前記検査基準領域と前記検査対象領域との間に、前記第1の距離よりも長い第2の距離を設定する
前記設定手段は、前記比較手段にて欠陥の検出が終了すると、前記検査基準領域および該検査対称領域を所定方向に所定の距離だけずらせて設定する。
また、本発明の画像欠陥検出方法は、アナログデータの画像を取り出す画像取り出し工程と、取り出されたアナログデータをデジタルデータに変換するAD変換工程と、取り出された画像上に、それぞれが複数の画素にて構成される検査基準領域および検査対象領域を、欠陥の種類に応じて、それぞれの位置、それぞれのサイズ、該検査基準領域および該検査対象領域の距離をそれぞれ異ならせて設定する設定工程と、設定された検査基準領域および検査対象領域におけるそれぞれのデジタルデータの合計値の差分、それぞれの領域におけるデジタルデータの平均値の差分、それぞれの領域におけるデジタルデータの変化率の差分のいずれかを比較値として抽出する比較値抽出工程と、抽出された比較値と所定の閾値とに基づいて、欠陥の有無を検出する比較工程と、を包含することを特徴とする。
【0040】
上記構成により、点欠陥検査、シミ欠陥検査、ムラ欠陥検査、線欠陥検査等、検査員が行う数々のチェック項目と同等の検査機能を実現することが可能となる。また、撮像された画像をRGB等の表色系に分解して、各成分のうちのどの成分が異常となったかを検出可能である。また、各々の欠陥検査に合わせた検査基準領域および検査対象領域の大きさ/形によって画面全体を評価することが可能である。さらに、各色成分で各検査項目を並行して高速に処理することが可能である。従って、検査員の熟練度や体調に関係なく、高速で正確な欠陥検出を行うことが可能となり、表示装置の生産能力の向上および品質の向上に役立つ。
【0041】
【発明の実施の形態】
以下、本実施の形態について、図面に基づいて詳細に説明する。
【0042】
(実施形態1)
図1は、本発明の実施形態1の画像欠陥検出装置を示すブロック図である。この画像欠陥検出装置は、例えば、画像表示装置である液晶パネル1における表示画像の欠陥を検出するために使用され、液晶パネル1をレンズ2を通して撮像するカメラ3を有している。カメラ3にて撮像された画像は、NTSC方式によって出力される。
【0043】
カメラ3の出力は、AD変換器4によってデジタル信号に変換され、メモリ5に格納される。なお、カメラ3の出力をAD変換器4によって出力する構成に替えて、カメラ3内にAD変換器4が内蔵されていても良い。
【0044】
メモリ5に格納された画像のデジタル信号は、CPU6によって制御されるRGB分離部7によって、R(赤色)、G(緑色)B(青色)の色成分毎に分解されて、メモリ8に、R、G、Bの各色成分毎に格納される。RGB分離部7としては、一般的に使用されるコンポジットなどで構成されている。なお、AD変換によって変換されたデジタル信号をR、G、Bの各色成分に分離する構成に替えて、カメラ3から出力されるアナログ信号を、R、G、Bの各色成分毎に分離した後に、AD変換するようにしてもよい。
【0045】
各色成分毎に分離されてメモリ8に格納された色成分は、分離された色成分毎に、CPU6にて制御される各色成分検査部9によって、後述する検査方法にて検査されて、検査結果がメモリ12に格納される。そして、このメモリ12に格納された内容に基づいて、CPU6は、結果出力部13に検査結果を出力する。結果出力部13は、モニタ等の表示装置にて表示する構成、あるいは、ブザー等の警報機等によって警報音を出力する構成、通信手段によって欠陥の有無判定後の処理を行う装置へ通知する構成等とされる。また、検査結果の判定を、検査項目終了毎に行うか、すべての検査項目終了後に検査結果の判定を行うかは、適宜、CPU6にて選択される。
【0046】
図2は、画像欠陥の欠陥の代表的な例を示す模式図である。図2には、点欠陥14、シミ欠陥15、線欠陥16、ムラ欠陥17が示されている。点欠陥14は、液晶パネル1における1つの画素のデジタルデータが、その周囲の画素のデジタルデータに比べて、著しく大きな差(大または小)がある状態である。シミ欠陥15は、適当な領域の複数の画素のデジタルデータそれぞれが、周囲の画素のデジタルデータに対して、点欠陥14における差分よりも小さな差がある状態である。
【0047】
線欠陥16は、シミ欠陥15と同様に、点欠陥14の画素に比べて周りの画素とのデジタルデータ差が小さい複数の画素が、線状に集まったものである。ムラ欠陥17は、シミ欠陥15の画素よりもさらにデジタルデータ差が小さい複数の画素が、シミ欠陥15よりも広い領域に集まったものである。
【0048】
図3は、各色成分検査部9の動作を説明するためのブロック図である。各色成分検査部9は、検査基準領域および検査対象領域の比較対象位置を設定するマトリクス設定手段18を有しており、マトリクス設定手段18は、検査対象領域および検査基準領域のそれぞれのマトリクスの位置、それぞれのマトリクスサイズ、それぞれのマトリクスの両者の距離を設定する。
【0049】
比較値抽出手段19では、マトリクス設定手段18にて設定された検査基準領域のマトリクスサイズ内の画素のデジタルデータと、比較対象とされる検査対象領域のマトリクスサイズ内の画素のデジタルデータ(比較値)とを抽出する。
【0050】
比較値抽出手段19によって抽出された比較値は、比較手段20によって、設定された閾値と比較される。そして、比較手段20にて比較されたデータによって欠陥が検出された場合には、欠陥記憶メモリ21に格納される。
【0051】
さらに、各色成分検査部9には、液晶パネル1における全ての画素の検査が終了したか否かを判断する全画素検査終了判定手段22が設けられている。そして、全画素検査終了判定手段22によって、全画素の検査が終了していないと判定された場合には、次アドレス生成手段23によって、次アドレスの位置を設定し、比較値抽出手段19により検査位置を変えて各検査を行う。
【0052】
全画素検査終了判定手段22によって、全画素検査が終了したことが判定された場合には、図1のメモリ12へ欠陥記憶メモリ21のデータが出力される。そして、CPU6にて設けられたRGB終了確認手段24aにて、R,G,Bすべての色成分の検査が終了していることが確認され、終了していない場合は、比較値抽出手段19によって、検査が終了していない色成分の検査が行われる。
【0053】
すべての色成分の検査が終了している場合は、CPU6に設けられた次検査有無確認手段24bにて次の検査項目の有無を判断する。検査項目としては、図2に示すような、点欠陥14、シミ欠陥15、縦方向および横方向の線欠陥16、ムラ欠陥17の検査等である。実施すべき検査項目がある場合は、再度、マトリクス設定手段18に戻り次の検査項目に関する検査を行う。
【0054】
図4は、本実施形態の画像欠陥検出装置にて実施される欠陥検出方法を説明するためのフローチャートである。まず、カメラ3によって撮像された表示パネル1の画像を、RGB分離部7によって、各画素毎に、R,G,Bの各色成分毎にそれぞれ分解する(図4のステップS1参照、以下同様)。この場合、例えば点欠陥14のような微小な欠陥を検出する場合には、マトリクスサイズ設定手段18によって、図5に示すように、検査基準領域38および検査対象領域39を、それぞれ、例えば3画素×3画素等の比較的小さなマトリクスサイズに設定する(ステップS2)。
【0055】
検査基準領域38および検査対象領域39のマトリクスサイズは、3画素×3画素の矩形形状に限らず、円や楕円でも良い。また、点欠陥14は、通常、1画素の欠陥であるが、図15に示すように、A/D変換での信号の鈍り、配線内を通過する際の信号の鈍り等により、複数の画素に影響する場合がある。従って、点欠陥14を検出するためのマトリクスサイズは、このような信号の鈍りの影響を考慮した大きさにすることが効果的である。
【0056】
次に、例えば、図5に示したように、検査対象領域39を、検査基準領域38のすぐ右横に設定する(ステップS3)。通常、点欠陥14のような欠陥を検出する場合は、画面全体にわたる各画素のデジタルデータの変化による影響を極力排除するために、検査基準領域38および検査対象領域39を、上下左右のいずれかに隣接して設定することが好ましい。ただし、前述したような信号の鈍りの影響を考慮して、検査対象領域39を検査基準領域38から数画素離れて設定して、検査対象領域39の画素のデジタルデータを検査基準領域38の画素のデータと比較するようにしても良い。
【0057】
検査対象領域および検査基準領域の比較対象位置が設定されると、欠陥の有無を判定する閾値を比較手段20に設定する(ステップS4)。閾値は、撮像された液晶パネル1の画面の画像の色成分に応じて、R,G,Bの各色成分毎にそれぞれ設定される。
【0058】
閾値が設定されると、比較値抽出手段20によって比較値が抽出される(ステップS5)。比較値としては、ステップS2およびS3によって設定された検出基準領域38における3画素×3画素のマトリクス内の全ての画素のデジタルデータの合計値と、検出対象領域39における3画素×3画素のマトリクス内の全ての画素のデジタルデータの合計値との差分値が抽出される。
【0059】
このようにして抽出された比較値と、ステップS4にて設定された閾値とが、比較手段20にて比較され(ステップS6)、液晶表示パネル1における画面の欠陥の有無が判断される。通常、微小な点欠陥14の検出には、設定された閾値に対して、比較値が大きい場合に点欠陥14が存在していると判定される。
【0060】
例えば、1画素のデジタルデータとして、0〜255の8ビットの場合に、カメラ3で撮像した画像における理想のデジタルデータを値を128とすると、図5に示すマトリクスサイズの検査基準領域38における全ての画素のデジタルデータの合計値が1100、検査対象領域39における全ての画素のデジタルデータの合計値が1150であれば、ステップS5における比較値抽出によって、1150−1100=50として、比較値50が算出される。そして、ステップS4にて閾値として40が設定されていると、ステップS6における比較値≧閾値の判定で、50(比較値)≧40(閾値)になっているために、この比較対象位置において欠陥が存在すると判断する。この場合、閾値が60に設定されていると、この比較対象位置では、欠陥なしと判断されることになる。
【0061】
なお、デジタルデータの比較は、各検査基準領域38および39における全ての画素のデジタルデータの合計値を比較値として、閾値と比較するようにしているが、各検査基準領域38および39における全ての画素のデジタルデータの平均値、あるいは、変化率を比較値として、閾値と比較するようにしてもよい。
【0062】
また、ここでは検査基準領域および検査対象領域は同一サイズとしているが、平均値などで比較する場合では、異なったサイズでも良い。ただ、点欠陥のような微小な欠陥の原因は1画素分の出力が欠けたものであるが、A/D変換器の性能や配線鈍り等により、図15に示すように鈍った状態となることが多い。従って、1画素毎に比較を行うよりも、複数画素分のデータで比較する方が有効である。
【0063】
また、この例では、X方向の横との比較としているが、Y方向の縦との比較を行うことにより、さらに検出精度を高めることが出来る。
【0064】
このようにして、欠陥の存在が確認されると、欠陥記憶メモリ21に、この欠陥の位置情報等が記憶される(ステップS7)。
【0065】
所定の比較対象位置における検査が終了すると、1行におけるX方向に沿った全ての画素の検査が終了していないことが確認されて(ステップS8)、比較対象位置がX方向に1画素分だけ移動され(ステップS9)、同様の検査が実施される。そして、1行における全ての画素の検査が終了したことが確認されると、Y方向の全ての行の検査が終了していないことが確認されて(ステップS10)、比較対象位置が次の行の先頭に移動され(ステップS11)、同様の検査が実施される。
【0066】
比較対象位置の移動は、比較対象位置の設定において、検査対象領域39が検査基準領域38に対してX方向の右横に指定されているために、X方向の右に1画素分ずつであり、1行分の画素全てに関して検査が終了することによって、その下側(Y方向)の行の先頭から検査を開始するようになっているが、比較対象位置の設定において、検査対象領域39が検査基準領域38に対してX方向の左横に指定されていれば、左に1画素分だけ移動され、また、下側に指定されていれば、下に1画素分だけ移動される。
【0067】
このようにして、R、G、Bの各色成分毎に、全画像にわたる点欠陥14の検査が実施される(ステップS13)。そして、R、G、Bの全ての色成分に関して、全画像にわたる点欠陥14の検査が終了すると、検査が終了していない検査項目の有無が確認される(ステップS14)。そして、例えば、検査項目として、シミ欠陥15の検査があれば、同様にして、シミ欠陥の検査が実施される。通常、前述したように、点欠陥14、シミ欠陥15、縦方向および横方向の線欠陥16、ムラ欠陥17の検査が実施される。そして、全ての検査項目の検査が終了すると、画像欠陥検査が終了する。
【0068】
シミ欠陥15を検出する場合には、検査基準領域38および検査対象領域39のマトリクスサイズを、点欠陥14を検出する場合における検査基準領域および検査対象領域のマトリクスサイズより大きく設定される。また、シミ欠陥15の検出は、比較対象である閾値に対して比較値が大きくなっている場合に、シミ欠陥15が存在するものと判定される。その他は、点欠陥14の検査と同様に実施される。
【0069】
ムラ欠陥17を検出する場合には、図6に示すように、検査基準領域38および検査対象領域39のマトリクスサイズは、点欠陥14を検出する場合における検査基準領域38および検査対象領域39のマトリクスサイズよりも大きく設定され、例えば30画素×30画素のような比較的大きな同一のマトリクスサイズに設定される。また、ムラ欠陥17は、複数の画素にわたって、デジタルデータ値が徐々に変化しているために、図6に示すように、検査基準領域38に対して適当な距離をあけて検査対象領域39を設定することが好ましい。
【0070】
さらに、カメラ3にて撮像される画像は、レンズ2によって中心部分における画素のデジタルデータの出力が大きくなるために、検査基準領域38および検査対象領域39をX方向(横方向)に設定する場合には、画像の横方向の寸法の半分程度だけ離れて設定することが効果的である。そして、検査基準領域38および検査対象領域39における各画素のデジタルデータが比較値とされて、比較値に基づいて、ムラ欠陥17が検出される。ムラ欠陥17が存在すると判断する比較値は、比較的小さな値となる。
【0071】
また、縦方向(Y方向)に沿った線欠陥16を検出する場合には、図7に示すように、検査基準領域38および検査対象領域39のマトリクスサイズを、点欠陥14の検出に際して設定される検査基準領域38および検査対象領域39のマトリクスサイズよりも大きく、しかも、Y方向に沿って長くなるように、例えば2画素(X方向)×50画素(Y方向)と設定される。また、点欠陥14を検出する場合と同様に、画面全体にわたる各画素のデジタルデータの変化による影響を極力排除するため、検査基準領域38および検査対象領域39を隣接して設定することが好ましい。縦方向の線欠陥16を検出する場合は、左右方向に隣接する検査基準領域38および検査対象領域39における各画素のデジタルデータを比較するだけでも十分である。
【0072】
横方向(X方向)に沿った線欠陥16を検出する場合には、検査基準領域38および検査対象領域39のマトリクスサイズは、X方向に沿って長くなるように、例えば50画素(X方向)×2画素(Y方向)と設定される。この場合、検査基準領域38および検査対象領域39を上下方向に隣接して設定して、上下方向に隣接する検査基準領域38および検査対象領域39における各画素のデジタルデータを比較するだけでも十分である。
【0073】
このように、欠陥の種類に対応させて、検査基準領域38および検査対象領域39のマトリクスサイズを変更し、また、両者の位置関係も変更し、さらには、欠陥の有無を判断する閾値の値も変更することにより、多種類の欠陥を、それぞれ確実に検出することができる。従って、検査対象の良品の品位をさらに向上させることも容易である。
【0074】
通常、1画素当たりの閾値(閾値/マトリクス)は、点欠陥14を検出する場合に、最も大きな値に設定され、続いて、シミ欠陥15および線欠陥16を検出する場合に、大きな値に設定され、ムラ欠陥17を検出する場合に最も小さな値に設定される。同様に、検査基準領域38および検査対象領域39のマトリクスサイズは、点欠陥14を検出する場合に、最も小さな面積に設定され、続いて、シミ欠陥15および線欠陥16を検出する場合に、大きな面積に設定され、ムラ欠陥17を検出する場合に最も大きな面積に設定される。
【0075】
閾値は、1つの値を設定する構成に限らず、2つの値を設定して、検査対象物品の品位をランク分けするようにしてもよい。
【0076】
なお、上記実施形態1では、各色成分毎に各欠陥を順次検査したが、以下の実施形態2に示すように、各検査工程を並行して行う(並列処理する)ことも可能である。
【0077】
(実施形態2)
図8は、本発明の実施形態2の画像欠陥検出装置を示すブロック図である。なお、この図では、実施形態1と同様の機能を有する部分に同じ番号を付している。この画像欠陥検出装置は、実施形態1と同様に、例えば、画像表示装置である液晶パネル1における表示画像の欠陥を検出するために使用され、液晶パネル1をレンズ2を通して撮像するカメラ3を有している。カメラ3にて撮像された画像は、NTSC方式によって出力される。
【0078】
カメラ3の出力は、AD変換器4によってデジタル信号に変換され、メモリ5に格納される。なお、本実施形態でも、カメラ3の出力をAD変換器4によって出力する構成に替えて、カメラ3内にAD変換器4が内蔵されていても良い。
【0079】
メモリ5に格納された画像のデジタル信号は、CPU6によって制御されるRGB分離部7によって、R(赤色)、G(緑色)B(青色)の色成分毎に分解される。各成分毎にメモリ8a〜8cが用意され、例えばR成分はメモリ8a、G成分はメモリ8b、B色成はメモリ8cに格納される。RGB分離部7は、実施形態1と同様に、一般的に使用されるコンポジットなどで構成されている。なお、本実施形態でも、AD変換によって変換されたデジタル信号をR、G、Bの各色成分に分離する構成に替えて、カメラ3から出力されるアナログ信号を、R、G、Bの各色成分毎に分離した後に、AD変換するようにしてもよい。
【0080】
各色成分毎に分離されてメモリ8a〜8cに格納された色成分は、分離された色成分毎に、CPU6にて制御される各色成分検査部9によって、後述する検査方法にて検査される。各色成分検査部9は、実施形態1で図2に示したような点欠陥14を検査する点欠陥検出部、シミ欠陥15を検査するシミ欠陥検出部、線欠陥16を検査する線欠陥検出部、ムラ欠陥17を検査するムラ欠陥検査部を有している。そして、検査結果はメモリ12に格納され、このメモリ12に格納された内容に基づいて、CPU6は、結果出力部13に検査結果を出力する。結果出力部13は、実施形態1と同様に、モニタ等の表示装置にて表示する構成、あるいは、ブザー等の警報機等によって警報音を出力する構成、通信手段によって欠陥の有無判定後の処理を行う装置へ通知する構成等とされる。また、検査結果の判定を、検査項目終了毎に行うか、すべての検査項目終了後に検査結果の判定を行うかは、適宜、CPU6にて選択される。
【0081】
図9は、各色成分検査部9の概略構成を説明するためのブロック図である。ここでは、R成分を例として、点欠陥、シミ欠陥、ムラ欠陥および線欠陥の4つの欠陥検出処理を並列処理する場合について説明する。
【0082】
点欠陥検出処理部11aは点欠陥検査を行うプロセッサであり、第1のシミ欠陥検出処理部11bおよび第2のシミ欠陥検出処理部11eはシミ欠陥検査を行うプロセッサであり、第1のムラ欠陥検出処理部11cおよび第2のムラ欠陥検出処理部11fはムラ欠陥検査を行うプロセッサであり、第1の線欠陥検出処理部11dおよび第2の線欠陥検出処理部11gは線欠陥検査を行うプロセッサである。11a〜11dの各欠陥検出処理部は、R成分用メモリ8aから、図8で説明したRGB分離後のR成分のみを抽出したデータを読み出して処理を行う。このように、4つの欠陥検査を並列処理することにより、全ての欠陥検査を高速に行うことができる。また、検査項目をさらに多くして、並列処理を行うことも可能である。さらに、各欠陥の検査をR、G、Bの各色成分毎に並列処理することができるので、さらに高速に処理することができる。
【0083】
また、各欠陥の検査は、後述するように、欠陥の種類に応じて処理されるマトリクスの大きさが変化するため、各欠陥を検査するために必要とされる各プロセッサの処理量も欠陥の種類によって異なる。そこで、処理量が多く、処理時間がかかる検査項目については、その欠陥検出処理を複数のプロセッサに分散して行うことにより、さらに高速処理が可能となる。
【0084】
例えば、後述するムラ欠陥の検査を行う場合、マトリクスの大きさが30×30である場合について考えると、まず、図9に示す第1のムラ欠陥検出処理部11cを用いて横方向1×30の大きさ(検査基準領域と検査対象領域の1行分)の差分値を各々算出し、その算出したデータ値を第2のムラ欠陥検出処理部11fに渡す。そして、第2のムラ欠陥検出検出処理部11fで、データ値を縦30行分合計することにより、30×30のマトリクスの差分値を計算することができる。
【0085】
なお、この図9ではシミ欠陥検査、ムラ欠陥検査および線欠陥検査を2つのプロセッサを用いて行うようにしているが、プロセッサの数はいくつでもよい。但し、各プロセッサに処理させる内容は処理時間や処理内容が同じ程度で平均化されるものが好ましい。さらに、各検査項目毎に処理を分割しているが、特定の欠陥検査の処理に極端に時間がかかるような場合には、検査項目以外で分割してもよく、例えば撮像された画像の上部、中心部、下部等に分割してもよい。
【0086】
なお、上記プロセッサとしてはノイマン型のプロセッサを用いても良く、非ノイマン型のものを用いてもよい。非ノイマン型のプロセッサを用いた場合には、パイプライン処理が可能となるため、さらに高速処理が可能となる。
【0087】
図10は、点欠陥検出部11aの動作を説明するためのブロック図である。この点欠陥検出部11aは、検査基準領域および検査対象領域の比較対象位置を設定するマトリクス設定手段18を有しており、マトリクス設定手段18は、検査対象領域および検査基準領域のそれぞれのマトリクスの位置、それぞれのマトリクスサイズ、それぞれのマトリクスの両者の距離を設定する。
【0088】
比較値抽出手段19では、マトリクス設定手段18にて設定された検査基準領域のマトリクスサイズ内の画素のデータと、比較対象とされる検査対象領域のマトリクスサイズ内の画素のデータ(比較値)とを抽出する。
【0089】
比較値抽出手段19によって抽出された比較値は、比較手段20によって、設定された閾値と比較される。そして、比較手段20にて比較されたデータによって欠陥が検出された場合には、欠陥記憶メモリ21に格納される。
【0090】
さらに、点欠陥検出部11aは、液晶パネル1における全ての画素の検査が終了したか否かを判断する全画素検査終了判定手段22を有している。そして、全画素検査終了判定手段22によって、全画素の検査が終了していないと判定された場合には、次アドレス生成手段23によって、次アドレスの位置を設定し、比較値抽出手段19により検査位置を変えて各検査を行う。
【0091】
全画素検査終了判定手段22によって、全画素検査が終了したことが判定された場合には、図8のメモリ12へ欠陥記憶メモリ21のデータが出力される。そして、CPU6に設けられた全検査終了確認手段24にて、R,G,Bすべての色成分の検査および全ての欠陥項目の検査が終了していることが確認され、検査が終了する。
【0092】
図11は、2つのムラ欠陥検出部11c、11fの動作を説明するためのブロック図である。マトリクス設定手段18a、18bは上記点欠陥検出部11aで説明したマトリクス設定手段18と同様である。
【0093】
1行差分値抽出手段19aでは、マトリクス設定手段18aにて設定された検査基準領域のマトリクスのうちの1行分の画素のデータと、比較対象とされる検査対象領域のマトリクスのうちの1行分の画素のデータ(比較値)との差分値を抽出する。
【0094】
1行差分値抽出手段19aによって抽出された差分は、第2のムラ欠陥検出部11fに渡され、比較値抽出手段19で、マトリクス設定手段18bにて設定されたマトリクスサイズの行数分を加算することにより、比較値を抽出する。
【0095】
比較手段20b、欠陥記憶メモリ21b、全画素検査終了判定手段22a、22b、次アドレス生成手段23a、23bは、上記点欠陥検出部11aで説明した比較手段20、欠陥記憶メモリ21、全画素検査終了判定手段22、次アドレス生成手段23と同様である。
【0096】
なお、ここでは1つ目のプロセッサで1行の差分値を求めて2つ目のプロセッサで縦の行数分の和を求めているが、1つ目のプロセッサで縦の行数分の和を求めて2つ目のプロセッサで1行の差分値を求めてもよく、所定サイズのマトリクスの差分値を求めてもよい。さらに、ここでは2つのプロセッサを用いているが、さらに多くのプロセッサを用いてもよい。シミ欠陥および線欠陥の検査についても、ムラ欠陥の場合と同様に行うことができる。
【0097】
図12は、本実施形態の画像欠陥検出装置にて実施される欠陥検出方法を説明するためのフローチャートである。ここでは、図2に示した点欠陥14のような微小な欠陥を検出する場合について、点欠陥検出処理部11aでの検出処理動作を説明する。
【0098】
まず、カメラ3によって撮像された表示パネル1の画像を、RGB分離部7によって、各画素毎に、R,G,Bの各色成分毎にそれぞれ分解する(図12のステップS1参照、以下同様)。この場合、点欠陥14のような微小な欠陥を検出する場合には、実施形態1において図5に示したように、マトリクスサイズ設定手段18によって、検査基準領域38および検査対象領域39を、それぞれ、例えば3画素×3画素等の比較的小さなマトリクスサイズに設定する(ステップS2)。
【0099】
ここで、検査基準領域38および検査対象領域39のマトリクスサイズは、実施形態1と同様に、3画素×3画素の矩形形状に限らず、円や楕円でも良い。また、点欠陥14は、通常、1画素の欠陥であるが、図15に示すように、A/D変換での信号の鈍り、配線内を通過する際の信号の鈍り等により、複数の画素に影響する場合がある。従って、点欠陥14を検出するためのマトリクスサイズは、このような信号の鈍りの影響を考慮した大きさにすることが効果的である。
【0100】
次に、例えば、実施形態1において図5に示したように、検査対象領域39を、検査基準領域38のすぐ右横に設定する(ステップS3)。通常、点欠陥14のような欠陥を検出する場合は、画面全体にわたる各画素のデジタルデータの変化による影響を極力排除するために、検査基準領域38および検査対象領域39を、上下左右のいずれかに隣接して設定することが好ましい。ただし、前述したような信号の鈍りの影響を考慮して、検査対象領域39を検査基準領域38から数画素離れて設定して、検査対象領域39の画素のデジタルデータを検査基準領域38の画素のデータと比較するようにしても良い。
【0101】
検査対象領域および検査基準領域の比較対象位置が設定されると、欠陥の有無を判定する閾値を比較手段20に設定する(ステップS4)。閾値は、撮像された液晶パネル1の画面の画像の色成分に応じて、R,G,Bの各色成分毎にそれぞれ設定される。
【0102】
閾値が設定されると、比較値抽出手段20によって比較値が抽出される(ステップS5)。比較値としては、ステップS2およびS3によって設定された検出基準領域38における3画素×3画素のマトリクス内の全ての画素のデジタルデータの合計値と、検出対象領域39における3画素×3画素のマトリクス内の全ての画素のデジタルデータの合計値との差分値が抽出される。
【0103】
このようにして抽出された比較値と、ステップS4にて設定された閾値とが、比較手段20にて比較され(ステップS6)、液晶表示パネル1における画面の欠陥の有無が判断される。
【0104】
上記マトリクスサイズおよび欠陥検出判定のためのデータ値は、図10に18〜23で示した各手段に設定されている。例えば、1画素のデジタルデータとして、0〜255の8ビットの場合に、カメラ3で撮像した画像における理想のデジタルデータを値を128とすると、図5に示すマトリクスサイズの検査基準領域38における全ての画素のデジタルデータの合計値が1100であり、検査対象領域39における全ての画素のデジタルデータの合計値が1150であれば、ステップS5における比較値抽出によって、1150−1100=50として、比較値50が算出される。そして、ステップS4にて閾値として40が設定されていると、ステップS6における比較値≧閾値の判定で、50(比較値)≧40(閾値)になっているために、この比較対象位置において欠陥が存在すると判断する。この場合、閾値が60に設定されていると、この比較対象位置では、欠陥なしと判断されることになる。通常、点欠陥14のような微小な欠陥は、比較値が大きい場合に欠陥として判定される。
【0105】
このようにして、欠陥の存在が確認されると、欠陥記憶メモリ21に、この欠陥の位置情報等が記憶される(ステップS7)。
【0106】
所定の比較対象位置における検査が終了すると、1行におけるX方向に沿った全ての画素の検査が終了していない(X方向が最大であれば終了)ことが確認されて(ステップS8)、比較対象位置がX方向に(ここでは右へ)1画素分だけ移動され(ステップS9)、同様の検査が実施される。そして、1行における全ての画素の検査が終了したことが確認されると、Y方向の全ての行の検査が終了していない(Y方向が最大であれば終了)ことが確認されて(ステップS10)、比較対象位置が次の行の先頭に移動され(ステップS11)、同様の検査が繰り返して実施される。
【0107】
なお、デジタルデータの比較は、各検査基準領域38および39における全ての画素のデジタルデータの合計値を比較値として、閾値と比較するようにしているが、各検査基準領域38および39における全ての画素のデジタルデータの平均値、あるいは、変化率を比較値として、閾値と比較するようにしてもよい。
【0108】
また、ここでは検査基準領域および検査対象領域は同一サイズとしているが、平均値などで比較する場合では、異なったサイズでも良い。ただ、点欠陥のような微小な欠陥の原因は1画素分の出力が欠けたものであるが、A/D変換器の性能や配線鈍り等により、図15に示すように鈍った状態となることが多い。従って、1画素ごとに比較を行うよりも、複数画素分のデータで比較する方が有効である。
【0109】
また、この例では、X方向の横との比較としているが、Y方向の縦との比較を行うことにより、さらに検出精度を高めることができる。
【0110】
比較対象位置の移動は、ステップS3の比較対象位置の設定において、検査対象領域39が検査基準領域38に対してX方向の右横に指定されているために、X方向の右に1画素分ずつであり、1行分の画素全てに関して検査が終了することによって、その下側(Y方向)の行の先頭から検査を開始するようになっているが、比較対象位置の設定において、検査対象領域39が検査基準領域38に対してX方向の左横に指定されていれば、左に1画素分だけ移動され、また、下側に指定されていれば、下に1画素分だけ移動される。
【0111】
このようにして、R、G、Bの各色成分毎に、全画像にわたる点欠陥14の検査が並行して実施される。それと共に、シミ欠陥検出処理部11b、11eではシミ欠陥15の検査が、ムラ欠陥検出処理部11c、11fではムラ欠陥17の検査が、線欠陥検出処理部11d、11gでは線欠陥16の検査が並行して実施され、全ての検査項目の検査が終了すると、画像欠陥検査が終了する。
【0112】
シミ欠陥15を検出する場合には、実施形態1と同様に、検査基準領域38および検査対象領域39のマトリクスサイズを、点欠陥14を検出する場合における検査基準領域および検査対象領域のマトリクスサイズより大きく設定する。また、シミ欠陥15の検出は、比較対象である閾値に対して比較値が大きくなっている場合に、シミ欠陥15が存在するものと判定する。ここで、マトリクスの大きさが大きくなって処理に時間がかかる場合には、図9に示したように、複数のプロセッサを使用する。
【0113】
図13および図14は、複数のプロセッサを使用する場合について、欠陥検出処理動作を説明するためのフローチャートである。ここでは、図2に示したシミ欠陥15を検出する場合について、シミ欠陥検出処理部11b、11eでの検出処理動作を説明する。
【0114】
R,G,Bの各色成分毎に分解された画像データを第1のシミ欠陥処理部11bおよび第2のシミ欠陥処理部11eが受け取る(図13および図14の▲1▼)と、まず、第1のシミ欠陥処理部11bでは、マトリクスサイズ設定手段18aによって、マトリクスサイズを例えば6画素×4画素等に設定し(図13のステップS21)、比較対象位置(検査基準領域38および検査対象領域39)を設定する(図13のステップS22)。このとき、第2のシミ欠陥処理部11eでは、マトリクスサイズ設定手段18bによって、マトリクスサイズを例えば6画素×4画素等に設定し(図14のステップS31)、比較対象位置(検査基準領域38および検査対象領域39)を設定する(図14のステップS32)。さらに、第2のシミ欠陥処理部11eでは、欠陥の有無を判定する閾値を比較手段20bに設定する(図14のステップS34)。
【0115】
この後、第1のシミ欠陥処理部11bでは、1行差分値抽出手段19aによって、横1行分の検査基準領域と検査対象領域の差分値の和を抽出する。例えばマトリクスが6画素×4画素の場合には、6画素分の検査基準領域と検査対象領域の差分値の和を抽出する(図13のステップS23)。この差分値データは、第2のシミ欠陥処理部11eに送られる(図13および図14の▲2▼)。
【0116】
所定の比較対象位置における検査が終了すると、1行におけるX方向に沿った全ての画素の検査が終了していない(X方向が最大であれば終了)ことが確認されて(図13のステップS24)、比較対象位置をX方向に(ここでは右へ)1画素分だけ移動して(図13のステップS25)、同様の検査が実施される。そして、1行における全ての画素の検査が終了したことが確認されると、Y方向に全ての行の検査が終了していない(Y方向が最大であれば終了)ことが確認され(図13のステップS26)、比較対象位置を次の行の先頭に移動して(図13のステップS27)、同様の検査が繰り返して実施される。このような1行分の差分値の和の抽出を全画素分について行う。
【0117】
第2のシミ欠陥処理部11eでは、第2のシミ欠陥検出処理部11bから受け取ったデータを基に(図14の▲2▼)、比較値抽出手段20によって、行数分のデータを加算して比較値を抽出する(ステップS34)。例えばマトリクスが6画素×4画素の場合には、4行分のデータを加算して比較値を抽出する。
【0118】
抽出された比較値とステップS33にて設定された閾値とは比較手段20にて比較され(ステップS35)、液晶表示パネル1における画面の欠陥の有無が判断される。この欠陥の位置情報等は、欠陥記憶メモリ21に記憶される(ステップS36)。
【0119】
所定の比較対象位置における検査が終了すると、1行におけるX方向に沿った全ての画素の検査が終了していない(X方向が最大であれば終了)ことが確認され(ステップS37)、比較対象位置がX方向に(ここでは右へ)1画素分だけ移動され(ステップS38)、同様の検査が実施される。そして、1行における全ての画素の検査が終了したことが確認されると、Y方向の全ての行の検査が終了していない(Y方向が最大であれば終了)ことが確認されて(ステップS39)、比較対象位置が次の行の先頭に移動され(ステップS40)、同様の検査が繰り返して実施される。
【0120】
なお、ここでは、第1のシミ欠陥処理部11bで1行分の差分値を求め、第2のシミ欠陥処理部11eで差分値を行数分だけ加算することにより設定されたマトリクス全体の比較値を求めているが、各処理部での処理内容が平均化されている方が効率が良い。さらに、2つの処理部に分けているが、2つ以上の複数に分けてもよい。
【0121】
ムラ欠陥17および線欠陥16の検査についても、上記シミ欠陥の検査と同様にして、複数のプロセッサにより処理を行うことができる。
【0122】
ムラ欠陥17を検出する場合には、図6に示すように、検査基準領域38および検査対象領域39のマトリクスサイズを、点欠陥14を検出する場合における検査基準領域38および検査対象領域39のマトリクスサイズよりも大きく設定し、例えば30画素×30画素のような比較的大きな同一のマトリクスサイズに設定する。また、ムラ欠陥17は、複数の画素にわたってデジタルデータ値が徐々に変化しているために、図6に示すように、検査基準領域38に対して適当な距離をあけて検査対象領域39を設定することが好ましい。
【0123】
さらに、カメラ3にて撮像される画像は、レンズ2によって中心部分における画素のデジタルデータの出力が大きくなるために、検査基準領域38および検査対象領域39をX方向(横方向)に設定する場合には、画像の横方向の寸法の半分程度だけ離れて設定することが効果的である。そして、検査基準領域38および検査対象領域39における各画素のデジタルデータが比較値とされて、比較値に基づいて、ムラ欠陥17が検出される。ムラ欠陥17が存在すると判断する比較値は、比較的小さな値となる。
【0124】
さらに、縦方向(Y方向)に沿った線欠陥16を検出する場合には、図7に示すように、検査基準領域38および検査対象領域39のマトリクスサイズを、点欠陥14の検出に際して設定される検査基準領域38および検査対象領域39のマトリクスサイズよりも大きく、しかも、Y方向に沿って長くなるように、例えば2画素(X方向)×50画素(Y方向)と設定する。また、点欠陥14を検出する場合と同様に、画面全体にわたる各画素のデジタルデータの変化による影響を極力排除するため、検査基準領域38および検査対象領域39を隣接して設定することが好ましい。縦方向の線欠陥16を検出する場合は、左右方向に隣接する検査基準領域38および検査対象領域39における各画素のデジタルデータを比較するだけでも十分である。
【0125】
横方向(X方向)に沿った線欠陥16を検出する場合には、検査基準領域38および検査対象領域39のマトリクスサイズは、X方向に沿って長くなるように、例えば50画素(X方向)×2画素(Y方向)と設定する。この場合、検査基準領域38および検査対象領域39を上下方向に隣接して設定して、上下方向に隣接する検査基準領域38および検査対象領域39における各画素のデジタルデータを比較するだけでも十分である。
【0126】
本実施形態2の場合には、点欠陥、シミ欠陥、ムラ欠陥および線欠陥の検査を、複数のプロセッサで並列処理することにより、実施形態1に比べてより高速に欠陥の有無を検出することができる。また、シミ欠陥、ムラ欠陥および線欠陥の検出処理を、2つ以上のプロセッサを用いて行うことにより、さらに高速に欠陥の有無を検出することができる。
【0127】
このように、欠陥の種類に対応させて、検査基準領域38および検査対象領域39のマトリクスサイズを変更し、また、両者の位置関係も変更し、さらには、欠陥の有無を判断する閾値の値も変更することにより、多種類の欠陥を、それぞれ確実に検出することができる。従って、検査対象の良品の品位をさらに向上させることも容易である。
【0128】
通常、1画素当たりの閾値(閾値/マトリクス)は、点欠陥14を検出する場合に、最も大きな値に設定され、続いて、シミ欠陥15および線欠陥16を検出する場合に、大きな値に設定され、ムラ欠陥17を検出する場合に最も小さな値に設定される。同様に、検査基準領域38および検査対象領域39のマトリクスサイズは、点欠陥14を検出する場合に、最も小さな面積に設定され、続いて、シミ欠陥15および線欠陥16を検出する場合に、大きな面積に設定され、ムラ欠陥17を検出する場合に最も大きな面積に設定される。
【0129】
閾値は、1つの値を設定してその値以上と未満とで区別るす構成に限らず、2つの値を設定して、範囲を区切ることにより、検査対象物品の品位をランク分けするようにしてもよい。
【0130】
本実施形態2では、これらの検査を色成分毎または欠陥検査項目毎に並行して実施することができるので、高速に欠陥検出処理を行うことができる。
【0131】
上述した実施形態1および実施形態2では、表色系の分離を、RGB表色系に分離する構成であったが、他のXYZ表色系やL表色系などの表色系に分離するようにしてもよい。
【0132】
さらに、実施形態1および実施形態2では、液晶パネル1の画像の欠陥検出を行う構成であったが、均一牲が要求されるもの、例えば、塗装の検査、ブラウン管の検査、カメラ部分を撮像素子として用いた場合の撮像素子自体の検査等にも、同様に適用することができる。
【0133】
さらに、前述した欠陥検出方法の手順を、適当な記憶媒体に記憶しておくことにより、有効に利用することができる。
【0134】
【発明の効果】
本発明の請求項1の画像欠陥検出装置、請求項19の画像欠陥検出方法、および請求項27の画像欠陥検出方法の手順を記憶した記憶媒体は、このように、検査員の熟練度や体調に関係なく、点欠陥、シミ欠陥、ムラ欠陥、線欠陥等の各種欠陥を、それぞれ精度よく検出することができる。従って、検査対象物の不良品を精度よく検出することができ、検査対象物の品質を著しく向上させることができる。しかも、A/D変換器を通して画像の欠陥を検出する場合であっても、A/D変換器の性能に合わせて、画像の欠陥を検出できる。
【0135】
請求項2の画像欠陥検出装置および請求項20の画像欠陥検出方法では、各種欠陥検査を並行して実施することができるので、高速に欠陥検出処理を行うことができる。
【0136】
請求項3の画像欠陥検出装置では、欠陥の種類が増えた場合でも処理時間を増やすことなく検査を行うことができる。
【0137】
請求項4の画像欠陥検出装置および請求項21の画像欠陥検出方法では、各欠陥検出部におけるプロセッサの処理を平均化することにより、さらに高速に処理を行うことができる。
【0138】
請求項5の画像欠陥検出装置および請求項22の画像欠陥検出方法では、大局的な画面の変化の影響を最小限にし、点、シミ、線の欠陥を確実に検出することができるとともに、隣接する領域ではほとんど変化が見られないムラような大局的な変化の欠陥を見つけることができ、しかも、A/D変換器などによる鈍りを考慮して欠陥を検出することができる。
【0139】
請求項6の画像欠陥検出装置では、大局的な画面の変化の影響を最小限とすることができ、点、シミ、線の欠陥を確実に検出することができる。
【0140】
請求項7の画像欠陥検出装置では、隣接する領域ではほとんど変化が見られないムラような大局的な変化の欠陥を見つけることができる。また、大局的な変化の欠陥を検出する場合でも、検査基準領域と検査対象領域の距離を離すことにより、それぞれの領域サイズを極端に大きくする必要がなく、また、各領域のサイズに関係する処理時間を増やすことなく欠陥を検出することができるために、欠陥検査を高速化することができる。
【0141】
請求項8の画像欠陥検出装置では、A/D変換器による鈍りを除いた状態としても、1画素毎の比較ではほとんど差が認められないような欠陥であっても、その微妙な差の欠陥を有する画素が集まったような、シミ、ムラ、線の欠陥を、その欠陥の大きさや形に関係なく検出することができる。
【0142】
請求項9および請求項10の画像欠陥検出装置では、A/D変換器などの鈍りを、そのA/D変換器の出力特性に応じて設定することによりA/D変換器の出力特性による影響を極力押さえることができる。
【0143】
請求項11の画像欠陥検出装置では、画像における上下左右へのA/D変換器などによる鈍りを均等に得ることができ、レベル差のやや少ないような点欠陥を検出することができる。
【0144】
請求項12および請求項13の画像欠陥検出装置では、一方向に長いような欠陥を検出することができる。
【0145】
請求項14および請求項15の画像欠陥検出装置、請求項23および請求項24の画像欠陥検出方法では、全色の状態では判別しにくいような、1表示色の欠陥、全色とも同じ様にレベルが変化しているような欠陥等も検出することができる。
【0146】
請求項16の画像欠陥検出装置、請求項25の画像欠陥検出方法では、各表色毎に検査する場合でも、各表色毎の検査を並列処理することにより、高速に欠陥の有無を検出することができる。
【0147】
請求項17の画像欠陥検出装置では、各表示色が人間の目に及ぼす影響を考慮することができ、人間の目で見た印象と一致させることにより、良品/不良品の判断を正常に行うことができる。
【0148】
請求項18の画像欠陥検出装置、請求項26の画像欠陥検出方法では、すべての画面を検査できる。
【図面の簡単な説明】
【図1】実施形態1の画像欠陥検出装置を示すブロック図である。
【図2】本発明の画像欠陥検出装置によって検出される欠陥の代表例を示す模式図である。
【図3】実施形態1の画像欠陥検出装置の要部の構成を示すブロック図である。
【図4】実施形態1の画像欠陥検出装置の動作説明のためのフローチャートである。
【図5】本発明の画像欠陥検出装置によって点欠陥を検出する場合における比較対象位置の設定方法の一例を示す説明図である。
【図6】本発明の画像欠陥検出装置によってムラ欠陥を検出する場合における比較対象位置の設定方法の一例を示す説明図である。
【図7】本発明の画像欠陥検出装置によって縦方向の線欠陥を検出する場合における比較対象位置の設定方法の一例を示す説明図である。
【図8】実施形態2の画像欠陥検出装置を示すブロック図である。
【図9】実施形態2の画像欠陥検出装置の要部の構成を示すブロック図である。
【図10】実施形態2の画像欠陥検出装置における点欠陥検出処理部の構成を示すブロック図である。
【図11】実施形態2の画像欠陥検出装置におけるムラ欠陥検出処理部の構成を示すブロック図である。
【図12】実施形態2の画像欠陥検出装置における点欠陥検出処理部の動作の一例を説明するためのフローチャートである。
【図13】実施形態2の画像欠陥検出装置における第1のシミ欠陥検出処理部の動作の一例を説明するためのフローチャートである。
【図14】実施形態2の画像欠陥検出装置において第2のシミ欠陥検出処理部の動作の一例を説明するためのフローチャートである。
【図15】画素欠陥の症状例を示す模式図である。
【符号の説明】
1 液晶パネル
2 レンズ
3 カメラ
4 AD変換器
5 メモリ
6 CPU
7 RGB分離部
8 メモリ
8a R成分用メモリ
8b G成分用メモリ
8c B成分用メモリ
9 各色成分検査部
11a 点欠陥検査処理部
11b 第1のシミ欠陥検査処理部
11c 第1のムラ欠陥検査処理部
11d 第1の線欠陥検査処理部
11e 第2のシミ欠陥検査処理部
11f 第2のムラ欠陥検査処理部
11g 第2の線欠陥検査処理部
12 メモリ
13 結果出力部
14 点欠陥の例
15 シミ欠陥の例
16 線欠陥の例
17 ムラの例
18、18a、18b マトリクス設定手段
19、19b 比較値抽出手段
19a 1行差分値抽出手段
20、20b 比較手段
21、21b 欠陥記憶メモリ
22、22a、22b 全画素検査終了判定手段
23、23a、23b 次アドレス生成手段
24 全検査終了確認手段
24a RGB検査終了確認手段
24b 次検査有無確認手段
38 検査基準領域
39 検査対象領域

Claims (4)

  1. 画像をアナログデータとして取り出す画像取り出し手段と、
    この画像取り出し手段によって取り出されたアナログデータの画像をデジタルデータに変換するA/D変換手段と、
    該画像上にて、それぞれが複数の画素にて構成される検査基準領域および検査対象領域を所定の距離を設けてそれぞれ設定する設定手段と、
    この設定手段にて設定された検査基準領域内および検査対象領域内におけるそれぞれのデジタルデータの合計値の差分、それぞれの領域におけるデジタルデータの平均値の差分、それぞれの領域におけるデジタルデータの変化率の差分のいずれかを比較値として抽出する比較値抽出手段と、
    該比較値抽出手段にて抽出された比較値と所定の閾値とに基づいて、欠陥の有無を検出する比較手段とを具備し、
    前記設定手段は、検出する欠陥の種類に応じて、該検査基準領域および該検査対称領域のそれぞれの位置、それぞれのサイズをそれぞれ異ならせて設定するとともに、該検査基準領域および該検査対象領域の距離をそれぞれ設定することを特徴とする画像欠陥検出装置。
  2. 前記設定手段は、前記欠陥の種類が、点欠陥、シミ欠陥および線欠陥の場合に、前記検査基準領域および前記検査対象領域との間に第1の距離をそれぞれ設定し、前記欠陥の種類がムラ欠陥の場合に、前記検査基準領域と前記検査対象領域との間に、前記第1の距離よりも長い第2の距離を設定する請求項1に記載の画像欠陥検出装置。
  3. 前記設定手段は、前記比較手段にて欠陥の検出が終了すると、前記検査基準領域および該検査対称領域を所定方向に所定の距離だけずらせて設定する、請求項1に記載の画像欠陥検出装置。
  4. アナログデータの画像を取り出す画像取り出し工程と、
    取り出されたアナログデータをデジタルデータに変換するAD変換工程と、
    取り出された画像上に、それぞれが複数の画素にて構成される検査基準領域および検査対象領域を、欠陥の種類に応じて、それぞれの位置、それぞれのサイズ、該検査基準領域および該検査対象領域の距離をそれぞれ異ならせて設定する設定工程と、
    設定された検査基準領域および検査対象領域におけるそれぞれのデジタルデータの合計値の差分、それぞれの領域におけるデジタルデータの平均値の差分、それぞれの領域におけるデジタルデータの変化率の差分のいずれかを比較値として抽出する比較値抽出工程と、
    抽出された比較値と所定の閾値とに基づいて、欠陥の有無を検出する比較工程と、
    を包含することを特徴とする画像欠陥検出方法。
JP2000107015A 2000-01-12 2000-04-07 画像欠陥検出装置および画像欠陥検出方法 Expired - Fee Related JP3583684B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000107015A JP3583684B2 (ja) 2000-01-12 2000-04-07 画像欠陥検出装置および画像欠陥検出方法
US09/712,942 US6683974B1 (en) 2000-01-12 2000-11-16 Image defect detection apparatus and image defect detection method
MYPI20005737A MY127399A (en) 2000-01-12 2000-12-06 Image defect detection apparatus and image defect detection method
TW090100042A TW516308B (en) 2000-01-12 2001-01-02 Image defect detection apparatus and image defect detection method
IDP20010019D ID29561A (id) 2000-01-12 2001-01-11 Perangkat deteksi cacat gambar dan metode deteksi cacat gambar
KR10-2001-0001907A KR100396449B1 (ko) 2000-01-12 2001-01-12 화상결함 검출장치 및 화상결함 검출방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-4092 2000-01-12
JP2000004092 2000-01-12
JP2000107015A JP3583684B2 (ja) 2000-01-12 2000-04-07 画像欠陥検出装置および画像欠陥検出方法

Publications (2)

Publication Number Publication Date
JP2001264257A JP2001264257A (ja) 2001-09-26
JP3583684B2 true JP3583684B2 (ja) 2004-11-04

Family

ID=26583418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000107015A Expired - Fee Related JP3583684B2 (ja) 2000-01-12 2000-04-07 画像欠陥検出装置および画像欠陥検出方法

Country Status (6)

Country Link
US (1) US6683974B1 (ja)
JP (1) JP3583684B2 (ja)
KR (1) KR100396449B1 (ja)
ID (1) ID29561A (ja)
MY (1) MY127399A (ja)
TW (1) TW516308B (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW509796B (en) * 2001-05-03 2002-11-11 Ind Tech Res Inst Detection method and system for multi-stage display module of LED
KR20030052216A (ko) * 2001-12-20 2003-06-26 (주)한비젼 산업용 머신 비전 시스템을 위한 방사학적, 기하학적 보정및 병렬 처리 구현를 위한 시스템
KR100505365B1 (ko) * 2003-07-03 2005-08-03 주식회사 한택 픽셀보간을 이용한 디스플레이 패널 검사 장치 및 방법
WO2005026919A2 (en) * 2003-09-11 2005-03-24 Bradford Addison Clough Acquisition and analysis of time location-specific image data
ITRM20050381A1 (it) * 2005-07-18 2007-01-19 Consiglio Nazionale Ricerche Metodo e sistema automatico di ispezione visuale di una infrastruttura.
US8606013B2 (en) * 2006-08-31 2013-12-10 Glory Ltd. Paper sheet identification device and paper sheet identification method
US8391585B2 (en) 2006-12-28 2013-03-05 Sharp Kabushiki Kaisha Defect detecting device, defect detecting method, image sensor device, image sensor module, defect detecting program, and computer-readable recording medium
KR101296655B1 (ko) 2007-11-01 2013-08-14 엘지디스플레이 주식회사 영상 표시 장치의 데이터 보상 회로 및 방법
US20090268950A1 (en) * 2008-04-29 2009-10-29 Kuo Shun-Kun Product-Quality Inspection System and Method thereof
JP5799516B2 (ja) * 2011-02-03 2015-10-28 セイコーエプソン株式会社 ロボット装置、検査装置、検査プログラム、および検査方法
KR101292048B1 (ko) * 2011-11-24 2013-08-09 대한민국(국가기록원) 디지털 영상의 스크래치 탐지방법
TWI502549B (zh) * 2012-02-20 2015-10-01 Univ Nat Kaohsiung Applied Sci 元件影像檢測方法及其系統
JP6152034B2 (ja) * 2013-03-22 2017-06-21 株式会社Screenホールディングス ラベリング方法、ラベリング装置および欠陥検査装置
JP6486050B2 (ja) 2014-09-29 2019-03-20 株式会社Screenホールディングス 検査装置および検査方法
KR101659989B1 (ko) 2014-12-10 2016-09-27 부산대학교 산학협력단 다차원 특징을 이용한 이상신호 분석장치 및 방법
JP7185388B2 (ja) * 2016-11-21 2022-12-07 日東電工株式会社 検査装置及び検査方法
US10740901B2 (en) * 2018-12-17 2020-08-11 Nvidia Corporation Encoder regularization of a segmentation model
CN109741324B (zh) * 2019-01-10 2020-12-04 惠科股份有限公司 一种检测方法、检测装置及终端设备
US11200656B2 (en) * 2019-01-11 2021-12-14 Universal City Studios Llc Drop detection systems and methods
CN115082444B (zh) * 2022-07-25 2022-11-11 南通宏大实验仪器有限公司 一种基于图像处理的铜管焊缝缺陷检测方法及系统
WO2024053108A1 (ja) * 2022-09-09 2024-03-14 日本電信電話株式会社 画像処理装置、画像処理方法およびプログラム
CN115290663B (zh) * 2022-09-30 2022-12-30 南通艾美瑞智能制造有限公司 基于光学检测的Mini LED晶圆外观缺陷检测方法
CN115436384A (zh) * 2022-11-07 2022-12-06 国网山东省电力公司荣成市供电公司 一种基于无人机图像的配电箱表面缺陷检测系统及方法
CN117152158B (zh) * 2023-11-01 2024-02-13 海门市缔绣家用纺织品有限公司 基于人工智能的纺织品疵点检测方法及系统
CN118365644B (zh) * 2024-06-19 2024-09-10 西安联瑞科技实业有限责任公司 一种基于图像处理的钢板喷砂不均检测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234191A (ja) * 1989-03-07 1990-09-17 Nec Corp 液晶パネル検査装置
KR100189178B1 (ko) * 1995-05-19 1999-06-01 오우라 히로시 패널 화질 검사 장치 및 화질 보정 방법
JPH099303A (ja) 1995-06-16 1997-01-10 S I I R D Center:Kk 画質検査装置
JPH09329527A (ja) * 1996-04-08 1997-12-22 Advantest Corp 画像処理方法および画像処理装置

Also Published As

Publication number Publication date
KR100396449B1 (ko) 2003-09-03
TW516308B (en) 2003-01-01
US6683974B1 (en) 2004-01-27
JP2001264257A (ja) 2001-09-26
ID29561A (id) 2001-09-06
KR20010070527A (ko) 2001-07-25
MY127399A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP3583684B2 (ja) 画像欠陥検出装置および画像欠陥検出方法
CN100499057C (zh) 晶片检测方法
US5917957A (en) Method of and apparatus for processing an image
JP4143660B2 (ja) 画像解析方法、画像解析装置、検査装置、画像解析プログラムおよびコンピュータ読み取り可能な記録媒体
JP2002022671A (ja) 円筒内壁面検査装置および検査方法
JPH09101236A (ja) 表示欠陥検査装置および表示欠陥検査方法
JP2000171404A (ja) 半導体集積装置のパターン検査装置及びパターン検査方法
CN117169227A (zh) 插头的生产方法、装置、设备及存储介质
JP3673414B2 (ja) 西瓜外観検査装置
JPH08145907A (ja) 欠陥検査装置
JPH11257937A (ja) 欠陥検査方法
JP3127598B2 (ja) 画像中の濃度変動構成画素抽出方法および濃度変動塊判定方法
JP4195980B2 (ja) カラー画像を用いた外観検査方法及び外観検査装置
JP2019120644A (ja) 表面検査装置、及び表面検査方法
JP2007081513A (ja) 固体撮像素子のシミ欠陥検査方法
JP3584507B2 (ja) パタンムラ検査装置
JP2004170109A (ja) 色むら検査装置および検査方法
JPH11175727A (ja) 検査方法および装置
JP5846100B2 (ja) 表示装置の欠陥検査方法
JPH08327497A (ja) カラー液晶表示パネルの検査方法
JPH07162762A (ja) しきい値算出装置
JP2728789B2 (ja) カラー固体撮像素子の検査装置
JP4121628B2 (ja) 画面検査方法及びその装置
CN111538175B (zh) 一种共同缺陷判定方法及判定装置
KR100780224B1 (ko) 이미지 센서의 불량 화소 검출 및 복원방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040729

R150 Certificate of patent or registration of utility model

Ref document number: 3583684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

LAPS Cancellation because of no payment of annual fees