JP3579388B2 - Leaning type retaining wall structure, inverted trapezoid indeterminate leaning type leaning wall structure, and multi-stage leaning type retaining wall - Google Patents

Leaning type retaining wall structure, inverted trapezoid indeterminate leaning type leaning wall structure, and multi-stage leaning type retaining wall Download PDF

Info

Publication number
JP3579388B2
JP3579388B2 JP2001365350A JP2001365350A JP3579388B2 JP 3579388 B2 JP3579388 B2 JP 3579388B2 JP 2001365350 A JP2001365350 A JP 2001365350A JP 2001365350 A JP2001365350 A JP 2001365350A JP 3579388 B2 JP3579388 B2 JP 3579388B2
Authority
JP
Japan
Prior art keywords
retaining wall
leaning
wall structure
top end
leaning type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001365350A
Other languages
Japanese (ja)
Other versions
JP2003129445A (en
Inventor
俊夫 中村
Original Assignee
俊夫 中村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 俊夫 中村 filed Critical 俊夫 中村
Priority to JP2001365350A priority Critical patent/JP3579388B2/en
Publication of JP2003129445A publication Critical patent/JP2003129445A/en
Application granted granted Critical
Publication of JP3579388B2 publication Critical patent/JP3579388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Retaining Walls (AREA)
  • Revetment (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は河川の流れから河岸を保護する河川護岸工、造成地、道路等の法面保護し、有効な土地利用のための擁壁工など土木構造物に関する。
【0002】
【従来の技術】
河川護岸工、擁壁工など、国土保全のための土木構造物はコンクリート躯体が多用されており、平成11年3月版の道路土工擁壁工指針では、もたれ式擁壁がコンクリート躯体で、重力式擁壁の一部として分類される。また、コンクリート躯体もたれ式擁壁は型枠工が必要であり、コンクリート躯体本体が自立するために静定構造を要する。しかし、背面に傾けすぎる断面のもたれ式擁壁は自立できない不静定構造となる。
【0003】
自然石を前面勾配で積み上げて、正面から見れば自然石群が重なり合うので間隙が生じるため胴込め材最大粒径がこの隙間から抜け出さない粒径が必要となることで大きい粒径の胴込め材が使用される。
【0004】
多段積もたれ式擁壁で、下段もたれ式擁壁天端に推奨寸法2m以上の小段があると、一般的に、上段擁壁がある断面では上下擁壁躯体どうしの連結一体化が確保されないために、下段もたれ式擁壁の安定検討は上段擁壁自重を載荷重に置き換えて安定検討される。
【0005】
【発明が解決しようとする課題】
自然石の景観表現には石の顔となる、「つら」と石奥ゆきを表す「とも」に区分され、現場状況でつらの現場選定がバランスの取れた野面石積を創出するが、二次製品を搬入して積み上げ施工することで、つら選択に制限が生じて不自然な野面石積を創出する。また、河川護岸工の施工時期は流量減少する冬期施工が多いため、温度管理が必要な接着剤等は特殊な施工管理能力を要する施工法である等の課題がある。
【0006】
逆台形内の胴込め材は背面地山面からの流出水を阻害しない透水係数があるレキ材粒径で粒度分布調製ができ産業廃棄物のコンクリートガラの再利用などの環境に影響しない材料を利用することで粒径が小さくなることで自然石がかみ合う間隙からの胴込め材流失を防ぐため、これらの胴込め材を囲いこむ構造等が課題である。
【0007】さらに、河川護岸工で空積み擁壁を適用するときは水衝部に配置計画することが考えられるが、このとき高速流が自然石と胴込め材まで流入する構造は揚力算定が複雑であり、自然石のみに高速流が作用する構造にして設定条件を単純化すること等が課題である。
【0008】
請求項3の構造は逆台形断面が変形しないように水平垂直方向の変位拘束する構造であり、水平方向は連結部材で拘束しているが、垂直方向は胴込め材の自重で拘束していることにより、逆台形下部部分ほど積み上げ自重が大きく拘束力が強いが、上部部分ほど積み上げ自重が小さく拘束力が弱くなることにより天端部の変位拘束を確保する課題がある。
【0009】
また、逆台形不静定もたれ式擁壁断面で力の釣合い条件を満たす外力としての受働土圧で静定構造にする構造と、天端部胴込め材の拘束状態からの剛性が小さいこと、胴込め材の変位によるダイレタンシーを抑えること、および、河川複断面の河川護岸小段部の流水による必要護岸重量を満たす構造等が課題である。
【0010】
小段を持つ多段積もたれ式擁壁で、二段もたれ式擁壁を考えるとき、いままでは上下段もたれ式擁壁が別々に独立しているため、擁壁安定検討が行われるときに上段下段もたれ式擁壁を個々の擁壁と捉えざるを得なかつた、しかし、上下段もたれ式擁壁断面が一体化した構造であれば単体の擁壁として安定検討ができることになり、一体化構造のもたれ式擁壁断面形状の課題がある。
【0011】
また、上段もたれ式擁壁が安定を崩す原因として、通常の被災事例から基礎地盤前面で起こる前面隆起が考えられるが、小段部分の変位拘束構造および胴込め材集合体としての剛性を高めることにより、さらに、斜面安定検討の底部破壊を起こす円弧すべり限界円が下段もたれ式擁壁天端部を通るときの堅固な地盤としての天端部剛性確保の課題がある。
【0012】
【課題を解決するための手段】
以上の課題を解決するための手段として、請求項3の構造体を基礎部から自然石を積み上げながら胴込め材配置背面に透水性を確保した反力板で、自然石と反力板の背面に吸出し防止材を敷設し埋戻し材を転圧する。また、自然石と透水性を確保した反力板を連結部材で連結し胴込め材を充填する。さらに、自然石を積み上げて施工を繰り返した後に、天端部施工時に、天端部吸出し防止材の敷設および天端部分変位拘束のために斜め下方向に連結部材を連結するとで、逆台形もたれ式擁壁を一体化構造に形成することができる。さらに、請求項4の構造体の多段積もたれ式擁壁では下段の逆台形もたれ式擁壁の天端部胴込め材は小段部分での前面隆起、円弧すべり限界円の安定検討から剛性確保するために、上下段擁壁一体化確保のために斜下方向の連結部材を追加敷設する。これにより、ダイレタンシーを生じさせないで、必要護岸重量確保して、胴込め材の粒度調整またはモルタル安定処理後に充填することで、剛性、上下擁壁一体化を確保する。
【0013】
【発明の実施の形態】
図1から図4は逆台形もたれ式擁壁断面図および部材構成図を示し、施工順序は斜面の切土成形、所定の位置に基礎コンクリートを施工後、自然石1を数段積み上げて定着孔13穿孔を行い、拡張メタルアンカー14を打撃設置し、次に自然石1と透水性を確保した反力板5を敷設し、両者の背面に吸出し防止材3を敷設した後、連結部材2、連結金具7および連結寸法調整部材6で所定寸法に連結する。さらに、胴込め材4および埋戻し材10を充填転圧する。また、自然石1を数段積み上げて反復施工することで断面が逆台形のもたれ式擁壁が形成され、天端部で天端部分連結部材8と天端部吸出し防止材12が追加施工される。さらに、多段積もたれ式擁壁のときは天端部分に逆台形のもたれ式擁壁が追加され、上下段一体化連結部材15を敷設して、さらに、円弧すべり安定検討結果からモルタル安定処理胴込め材16を充填することがある。
【0014】このように、敷設する自然石1は玉石、割石、凝石で「つら」の直径約30cm程度で重量40kg前後の自然石1は最後に多少の移動を要するときに人力と簡易な道具で移動できる重量でなければならない。これは積上げ施工時に微調整移動を要するためである。
【0015】
透水性を確保した反力板5は背面地山からの流出水を阻害しない平面形状で連続配置し、全体を繋いで一枚の反力板を構成する。また、反力板の材質は鉄、ステンレス、合金、および、コンクリート造で構成する。さらに、錆発生において悪条件環境のとき鉄鋼材は合金メッキ、樹脂材で被覆される。
【0016】
さらに、透水性を確保した反力板5、自然石1背面に設置される拡張メタルアンカー14、連結寸法調整部材6、連結部材2および連結金具7は塗装被覆やメッキ処理がされても胴込め材を充填するために砕石等で表面かキズ付けられるので、構造物の耐用年数、重要度から材料性質上の錆発生における防錆法、また、異種金属に起こる電流による電食に配慮して構成部材材質を選定する必要がある。
【0017】
各部材間の結合は許容応力度の信頼性が高いネヂ結合で一体化するが、例えば構成部材の詳細を示すと、連結部材2はステンレス丸鋼で片側にオスねじで、もう一方に多数ボルト穴のある平板がすみ肉溶接され、多数ボルト穴の組合せとおすネヂ部分で寸法調整する。さらに、連結金具7は連結部材2おすネヂ部分がステンレスの透水性を確保した反力板5のエキスパンドメタルを通って連結金具7としての座金とダブルナツトで結合される。また、自然石1背面に設置する拡張メタルアンカー14と連結部材2のおすネヂ部分および連結金具7のダブルナツトの部分と連結部材2のおすネヂ部分は水平にネヂ接合するのが理想的であるが、現場施工では角度がついた接合とならざるを得ないが、鉄、ステンレス丸鋼10mmまでは斜め引張角度45度までは顕著な強度低下はないので、使用するステンレス丸鋼等は接合角度での強度低下を配慮しなくてよい。
【0018】
天端部に配置される自然石の変位拘束のために、斜め下方向に天端部連結部材8の配置、透水性を確保した反力板5と連結部材2の存在で三角形断面に各辺に引張材を配置することとなり、必要護岸重量のために自然石の大きさの選択、および圧縮材としての胴込め材4の安定処理16で断面変位拘束される。したがつて、天端部剛性確保し、ダイレタンシーを抑え、および必要護岸重量を確保できる構造となる。
【0019】
逆台形もたれ式擁壁断面で基礎面部分を除いて他の部分に吸出し防止材を敷設することで、胴込め材4を囲いこむ構造となり、胴込め材の流失防止と揚力算定の単純化ができる。
【0020】
多段積もたれ式擁壁のときに、堅固な地盤としての下段擁壁天端部分は剛性確保と円弧すべりの抵抗力が必要であり、斜め下方向に連結部材の敷設、透水性を確保した反力板5のセン断抵抗力、および、モルタル安定処理胴込め材16で円弧すべり面抵抗力を確保する。また、前述部分の配慮で前面隆起を起こさない構造となる。さらに、多段積上段擁壁基礎部は上段擁壁構造体内での最も大きい内部応力部分が形成されて、内部応力分散のために上下段一体化連結部材15の配置と透水性を確保した反力板5、および、連結部材2の存在により、三角形断面に三辺の引張材と内部に圧縮材で変位拘束断面が複合構成される。したがつて、一体化した上下段もたれ式擁壁は単体のもたれ式擁壁として安定検討ができる。
【0021】
【発明の効果】
前述したこの発明により、自然石を自由自在に積み上げることでバランスの取れた野面石積を創出でき、逆台形不静定もたれ式擁壁は基礎部ら積み上げられるので、施工中から、逆台形柔構造体が常に背面にもたれ掛かり受働土圧で安定を保ち静定構造体となり、侵食防止機能と自然環境の生態系保全と美しい景観創出に配慮した護岸工および擁壁工が実施できる。
【0022】
逆台形断面のもたれ式擁壁を背面合わせで積み重ねて、多段積もたれ式擁壁構造となり、上段擁壁自重を下段もたれ式擁壁天端部に直接載荷され、この構造は多段積もたれ式擁壁全体を擁壁自重として捉えることができ、単体のもたれ式擁壁として安定検討ができる。また、地山の安定勾配切土線に沿った逆台形断面は掘削土砂量を抑えることができる。
【0023】
既存河川は河川用地幅で有効土地利用のため、河積は計画流量と平均流速の関係から定められ、このために勾配のきついコンクリート製河川護岸が施工されたが、この護岸を多自然型護岸に改修するときに河積を確保するには多段積擁壁構造にせざるを得ない事情があり、一体化された擁壁構造体でないと安定検討を満たさない場合が多く、河川改修護岸の河積減少を抑えることができる多段積逆台形もたれ式擁壁の採用で実施できる。また、長大な法面は谷を埋め立てた造成地などで見られるが、通常、埋め立て土砂の安定勾配で段切と植生し実施されるが、多段積逆台形もたれ式擁壁で土地の有効利用、表面流水による土砂流失を防ぎ、さらに表面客土で自然環境の保全ができる。
【0024】
さらに、構造体の大部分の体積を占める胴込め材は現場発生砂利、コンクリートガラの再利用が出来るので、安価で自然環境にやさしい施工ができる。
【0025】
【図面の簡単な説明】
【図1】逆台形もたれ式擁壁の構成を示す断面図である。
【図2】自然石の構成を示す断面図である。
【図3】多段積逆台形もたれ式擁壁の構成を示す断面図である。
【図4】多段積逆台形もたれ式擁壁のモルタル安定処理胴込め材の配置図である。
【符号の説明】
1 自然石
2 連結部材
3 吸出し防止材
4 胴込め材
5 透水性を確保した反力板
6 連結寸法調整部材
7 連結金具
8 天端部連結部材
9 掘削線
10 埋戻し材
11 地山
12 天端部吸出し防止材
13 定着孔
14 拡張メタルアンカー
15 上下段一体化連結部材
16 モルタル安定処理胴込め材
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a civil engineering structure such as a river revetment for protecting a river bank from a flow of a river, and a slope for a newly constructed land or a road, and a retaining wall for effective land use.
[0002]
[Prior art]
For civil engineering structures for national land conservation, such as river revetment works and retaining wall works, concrete bodies are frequently used. According to the March 1999 version of the road earthwork retaining wall construction guidelines, leaning retaining walls are concrete bodies. Classified as part of a gravity retaining wall. In addition, the concrete body leaning type retaining wall requires formwork, and a statically fixed structure is required for the concrete body itself to be self-supporting. However, a leaning retaining wall with a cross section that is too inclined to the back has an indefinite structure that cannot stand alone.
[0003]
Natural stones are piled up on the front slope, and when viewed from the front, natural stones overlap, creating a gap, so the packing material has a maximum particle size that requires a particle size that does not escape from this gap. Is used.
[0004]
In the case of a multi-tiered retaining wall, if there is a small step with a recommended dimension of 2 m or more at the top of the lower retaining wall, the connection between the upper and lower retaining walls is not generally secured in the section with the upper retaining wall. In addition, the stability of the lower leaning retaining wall is studied by replacing the weight of the upper retaining wall with the load.
[0005]
[Problems to be solved by the invention]
The natural stone landscape expression is divided into "Icicle", which is the face of the stone, and "Tomo", which represents Yuki Ishioku. By loading and stacking products, the selection of icicles is restricted, creating an unnatural field stone masonry. In addition, the river revetment works are often carried out in winter, when the flow rate decreases. Therefore, there is a problem that adhesives that require temperature control are construction methods that require special construction management capabilities.
[0006]
The packing material inside the inverted trapezoid is made of a material that does not affect the environment, such as reusing concrete waste from industrial waste, because it can control the particle size distribution with a reticulated particle size that has a permeability coefficient that does not hinder runoff from the back ground surface. In order to prevent the stuffing material from flowing out from the gap where the natural stones are engaged by reducing the particle size by using the material, a structure surrounding these stuffing materials is an issue.
[0007] Furthermore, when an empty loading retaining wall is applied in a river revetment, it is conceivable to plan the arrangement at a water contact part. At this time, the lift calculation is required for a structure in which a high-speed flow flows into a natural stone and a packing material. The challenge is to simplify the setting conditions by using a structure in which the high-speed flow acts only on natural stones.
[0008]
The structure according to claim 3 is a structure in which the inverted trapezoidal cross section is restrained from being deformed in the horizontal and vertical directions so that the cross section is not deformed. The horizontal direction is restrained by the connecting member, but the vertical direction is restrained by the weight of the packing material in the vertical direction. As a result, the lower portion of the inverted trapezoid has a larger stacking weight and a stronger binding force, but the upper portion has a smaller stacking weight and a weaker binding force.
[0009]
In addition, the inverted trapezoidal indeterminate leaning retaining wall section has a statically fixed structure with passive earth pressure as an external force that satisfies the force balancing conditions, and the rigidity of the top end body packing material from the restrained state is small, The challenge is to reduce the dilatancy due to the displacement of the stuffing material, and to satisfy the required seawall weight due to the flowing water at the small steps of the river seawall with multiple cross sections of the river.
[0010]
When considering a two-stage leaning retaining wall with a multi-tiered leaning retaining wall with small steps, the upper and lower leaning retaining walls have been independent so far, so the upper and lower stages will be used when the stability of the retaining wall is examined The leaning-type retaining wall had to be regarded as an individual retaining wall.However, if the cross-section of the upper and lower leaning-type retaining walls was integrated, stable examination as a single retaining wall would be possible. There is a problem with the leaning retaining wall cross section.
[0011]
In addition, as a cause of the stability of the upper leaning type retaining wall, the frontal uplift that occurs at the front of the foundation ground can be considered from normal damage cases, but by increasing the rigidity of the displacement restraint structure of the small step portion and the stiffening material assembly In addition, there is a problem in securing the rigidity of the top end as a solid ground when the arc slip limit circle causing the bottom failure in the slope stability examination passes through the top end of the lower leaning type retaining wall.
[0012]
[Means for Solving the Problems]
As a means for solving the above problems, a natural force and a back surface of the natural stone and the reaction force plate are provided on the back surface of the natural stone and the reaction force plate, in which the structure of claim 3 is stacked with natural stones from the foundation to secure water permeability on the back of the stuffing material arrangement. A suction prevention material is laid and the backfill material is compacted. In addition, the natural stone and the reaction plate ensuring the water permeability are connected by a connecting member, and the packing material is filled. Furthermore, after the natural stones are piled up and the construction is repeated, at the time of the construction of the top end, the connecting members are connected diagonally downward to lay the top end suction prevention material and restrict the displacement of the top end, so that the inverted trapezoidal shape is obtained. The expression retaining wall can be formed in an integrated structure. Further, in the multi-stage leaning retaining wall of the structure according to the fourth aspect, the top end of the inverted trapezoidal leaning retaining wall at the lower stage secures rigidity from the front elevation at the small step portion and the stability examination of the circular slip limit circle. In order to secure the integration of the upper and lower retaining walls, additional connecting members in the oblique direction are additionally laid. Thus, the required revetment weight is secured without causing dilatancy, and the rigidity and the integration of the upper and lower retaining walls are ensured by filling after adjusting the particle size of the packing material or mortar stabilizing treatment.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 4 show a sectional view of a trapezoidal leaning type retaining wall and a member configuration diagram. The working order is cut molding of a slope, foundation concrete is placed at a predetermined position, and natural stones 1 are piled up several steps to fix holes. After drilling 13 and hitting and installing an expanded metal anchor 14, then laying a natural stone 1 and a reaction plate 5 that ensures water permeability, laying a suction-preventing material 3 on the back of both, and then connecting It is connected to a predetermined size by the connection fitting 7 and the connection size adjusting member 6. Further, the filling material 4 and the backfill material 10 are filled and rolled. In addition, by stacking natural stones 1 several times and repeating the construction, a leaning retaining wall having an inverted trapezoidal cross section is formed, and the top end partial connecting member 8 and the top end suction prevention material 12 are additionally constructed at the top end. You. Furthermore, in the case of a multi-stage leaning retaining wall, an inverted trapezoidal leaning retaining wall is added to the top end portion, an upper and lower integrated connecting member 15 is laid, and furthermore, a mortar stabilization processing cylinder is obtained from the results of the arc sliding stability examination. The filling material 16 may be filled.
As described above, the natural stone 1 to be laid is a cobble stone, a split stone, or a cobble stone. It must be heavy enough to move with tools. This is because fine adjustment movement is required at the time of stacking construction.
[0015]
The reaction plates 5 that ensure water permeability are continuously arranged in a plane shape that does not hinder the water flowing out from the back ground, and are connected together to form one reaction plate. The reaction plate is made of iron, stainless steel, alloy, or concrete. Further, in a bad condition environment in which rust is generated, the steel material is coated with an alloy plating and a resin material.
[0016]
Further, the reaction plate 5 ensuring the water permeability, the expanded metal anchor 14 installed on the back of the natural stone 1, the connecting dimension adjusting member 6, the connecting member 2 and the connecting metal 7 can be packed even if they are coated or plated. Since the surface is scratched with crushed stones etc. to fill the material, consideration should be given to the rust prevention method for rust generation due to the material properties from the service life of the structure and the importance, and also to the electrolytic corrosion due to the electric current generated by different metals. It is necessary to select the material of the constituent members.
[0017]
The connection between each member is integrated by screw connection with high reliability of allowable stress. For example, when the details of the constituent members are shown, the connecting member 2 is a stainless steel round steel with a male screw on one side and a large number of bolts on the other side. A flat plate with holes is fillet welded, and the dimensions are adjusted with the combination of multiple bolt holes and the male thread. Further, the connection metal 7 is connected to the washer as the connection metal 7 by a double nut through the expanded metal of the reaction force plate 5 in which the male portion of the connection member 2 has stainless steel water permeability. Ideally, the expanded metal anchor 14 installed on the back of the natural stone 1 and the male part of the connecting member 2 and the double-nut part of the connecting metal fitting 7 and the male part of the connecting member 2 should be screwed horizontally. In the field construction, it is inevitable to make an angled joint. However, there is no remarkable decrease in strength up to an oblique tensile angle of 45 degrees up to 10 mm for iron and stainless steel round steel. It is not necessary to consider the decrease in strength of the steel.
[0018]
In order to restrain the displacement of the natural stone placed at the top end, the top end connection member 8 is disposed obliquely downward, and the reaction force plate 5 and the connection member 2 that ensure water permeability and the presence of the connection member 2 make each side a triangular section. The natural material is selected for the required revetment weight, and the cross-sectional displacement is restrained by the stabilization processing 16 of the packing material 4 as a compression material. Therefore, the rigidity of the top end is ensured, the dilatancy is suppressed, and the required seawall weight is secured.
[0019]
The trapezoidal leaning retaining wall cross-section has a structure that encloses the stuffing material 4 by laying a suction-preventing material on the other part except for the base surface, thereby preventing the stuffing material from flowing out and simplifying the calculation of lift. it can.
[0020]
In the case of a multi-tiered retaining wall, the top of the lower retaining wall, which is a solid ground, must have sufficient rigidity and resistance to arc sliding, and the connecting members must be laid diagonally downward and water permeability must be secured. The shear resistance of the force plate 5 and the arc-slip surface resistance are secured by the mortar stabilization processing packing material 16. In addition, a structure in which the front surface is not raised due to consideration of the above-described portion is obtained. Furthermore, in the multi-stage stacked upper retaining wall base portion, the largest internal stress portion in the upper retaining wall structure is formed, and the reaction force which secures the arrangement of the upper and lower integrated connecting members 15 and water permeability for internal stress distribution. Due to the presence of the plate 5 and the connecting member 2, a displacement-constrained cross section is formed by a three-sided tensile member and a compressive member inside the triangular cross section. Therefore, the integrated upper and lower leaning type retaining wall can be stably examined as a single leaning type retaining wall.
[0021]
【The invention's effect】
According to the invention described above, natural stone can be freely piled up to create a well-balanced field masonry, and the inverted trapezoidal indeterminate leaning retaining wall can be piled up from the foundation. The structure always leans against the back and becomes stable with passive earth pressure, and it becomes a static structure, and shore protection works and retaining wall works can be implemented with consideration of erosion prevention function, preservation of natural environment ecosystem and creation of beautiful landscape.
[0022]
Stacked leaning retaining walls of inverted trapezoidal cross section are stacked back-to-back to form a multi-tiered retaining wall structure.The upper retaining wall's own weight is directly loaded on the top end of the lower retaining wall, and this structure is a multi-tiered retaining wall. The entire wall can be regarded as the own weight of the retaining wall, and stable examination can be performed as a single leaning retaining wall. In addition, the inverted trapezoidal section along the stable slope cut line of the ground can reduce the amount of excavated sediment.
[0023]
Since the existing river has the width of the river land and the effective land use, the river volume is determined from the relationship between the planned discharge and the average flow velocity. For this purpose, a concrete revetment with a steep slope was constructed. When rehabilitating the river, it is necessary to use a multi-tiered retaining wall structure in order to secure the riverbed.In many cases, the stability examination cannot be satisfied unless the retaining wall structure is integrated. It can be implemented by adopting a multi-stage inverted trapezoidal leaning retaining wall that can suppress the decrease in product. Long slopes can be seen in lands such as landfilled valleys, but they are usually vegetated and vegetated at a stable slope of landfill soil, but multi-tiered inverted trapezoidal leaning retaining walls make effective use of land. In addition, sediment runoff due to surface running water can be prevented, and natural environment can be preserved using surface soil.
[0024]
Furthermore, since the filling material occupying most of the volume of the structure can reuse the gravel and concrete waste generated at the site, the construction can be performed at a low cost and friendly to the natural environment.
[0025]
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the configuration of an inverted trapezoidal leaning retaining wall.
FIG. 2 is a cross-sectional view illustrating a configuration of a natural stone.
FIG. 3 is a cross-sectional view showing a configuration of a multi-stack inverted trapezoidal leaning retaining wall.
FIG. 4 is a layout view of a mortar stabilizing packing material for a multi-stack inverted trapezoidal leaning retaining wall.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 natural stone 2 connecting member 3 suction prevention material 4 body filling material 5 reaction force plate 6 ensuring water permeability 6 connecting dimension adjusting member 7 connecting metal fitting 8 top end connecting member 9 excavation line 10 backfilling material 11 ground mountain 12 top end Suction prevention material 13 Fixing hole 14 Expanded metal anchor 15 Upper and lower integrated connecting member 16 Mortar stabilization processing packing material

Claims (4)

法面に対し透水性を確保した反力板を当て、断面が逆台形をなす躯体の前面勾配線に沿い自然石を積重ね、前記自然石それぞれを前記反力板と水平方向の連結部材で連結し、胴込め材を充填し、天端部に天端用吸出し防止材を敷設し、前記天端用吸出し防止材の上に天端用自然石を配置し、前記天端用自然石を前記反力板と斜め下方向の連結部材で連結していることを、特徴とするもたれ式擁壁構造体。Apply a reaction plate that ensures water permeability to the slope, stack natural stones along the front slope line of the frame whose cross section is an inverted trapezoid, and connect each natural stone to the reaction plate with a horizontal connecting member Then, filling the packing material, laying a top end suction prevention material at the top end, placing a top end natural stone on the top end suction prevention material, the top end natural stone A leaning retaining wall structure, wherein the leaning type retaining wall structure is connected to the reaction force plate with a connecting member in an obliquely downward direction. 前記自然石どうしの隙間から前記胴込め材が抜け出さないために、前記自然石背面および前記反力板背面に吸出し防止材を敷設し、前記天端用吸出し防止部材とともに三面方向で前記胴込め材を囲い込むことを、特徴とする請求項1記載のもたれ式擁壁構造体。In order to prevent the packing material from coming out from the gap between the natural stones, a suction prevention material is laid on the back of the natural stone and the back surface of the reaction force plate, and the packing material in three directions along with the top end suction prevention member. The leaning retaining wall structure according to claim 1, wherein the leaning type retaining wall structure is enclosed. 請求項1または請求項2記載のもたれ式擁壁構造体の断面を、逆台形の空積み構造にして一体化断面とすることにより形成されることを、特徴とする逆台形不静定もたれ式擁壁構造物。An inverted trapezoidal statically indeterminate leaning type, wherein the leaning type retaining wall structure according to claim 1 or 2 is formed by forming an inverted trapezoidal empty stack structure into an integrated section. Retaining wall structure. 請求項3記載の逆台形不静定もたれ式擁壁構造物の天端部に新たに上段の逆台形不静定もたれ式擁壁を積重ねて上下の多段積擁壁を連結一体化したことを、特徴とする多段積もたれ式擁壁。An upper inverted trapezoidal indeterminate leaning type retaining wall is newly stacked on the top end of the inverted trapezoidal statically indeterminate leaning retaining wall structure according to claim 3, and the upper and lower multi-level stacked retaining walls are connected and integrated. The feature is a multi-stage leaning retaining wall.
JP2001365350A 2001-10-25 2001-10-25 Leaning type retaining wall structure, inverted trapezoid indeterminate leaning type leaning wall structure, and multi-stage leaning type retaining wall Expired - Fee Related JP3579388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001365350A JP3579388B2 (en) 2001-10-25 2001-10-25 Leaning type retaining wall structure, inverted trapezoid indeterminate leaning type leaning wall structure, and multi-stage leaning type retaining wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001365350A JP3579388B2 (en) 2001-10-25 2001-10-25 Leaning type retaining wall structure, inverted trapezoid indeterminate leaning type leaning wall structure, and multi-stage leaning type retaining wall

Publications (2)

Publication Number Publication Date
JP2003129445A JP2003129445A (en) 2003-05-08
JP3579388B2 true JP3579388B2 (en) 2004-10-20

Family

ID=19175384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001365350A Expired - Fee Related JP3579388B2 (en) 2001-10-25 2001-10-25 Leaning type retaining wall structure, inverted trapezoid indeterminate leaning type leaning wall structure, and multi-stage leaning type retaining wall

Country Status (1)

Country Link
JP (1) JP3579388B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243719A (en) * 2013-05-22 2013-08-14 黄河勘测规划设计有限公司 Rock-filled concrete slope structure using masonry stone template

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580690B2 (en) * 2003-10-28 2010-11-17 譲二 山下 Retaining wall construction material
JP4339210B2 (en) * 2004-08-31 2009-10-07 環境工学株式会社 Assembling method of unit for wave-dissipating structure
CN111424718B (en) * 2020-03-31 2021-11-02 中交第三航务工程局有限公司 Artificial island structure for relay extension of suspended tunnel
CN111424717B (en) * 2020-03-31 2021-06-01 中交第三航务工程局有限公司 Artificial island pipe joint self-supply system for relay extension of suspended tunnel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243719A (en) * 2013-05-22 2013-08-14 黄河勘测规划设计有限公司 Rock-filled concrete slope structure using masonry stone template

Also Published As

Publication number Publication date
JP2003129445A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
CN100564700C (en) The job practices of lattice type steel column tower crane pedestal
CN203256729U (en) Larson steel sheet pile containment device for open caisson construction
KR20180019322A (en) Integral bridge structure and construction method thereof
JP2011236657A (en) Earthquake proof reinforced structure for revetment structure and existing revetment structure
JP3579388B2 (en) Leaning type retaining wall structure, inverted trapezoid indeterminate leaning type leaning wall structure, and multi-stage leaning type retaining wall
CN108999142A (en) The construction method of dome rectangular light-duty caisson and pile foundation combined type deep water breakwater
Eskandari et al. Basic Types of Sheet Pile Walls and Their Application in the Construction Industry--a Review
JP2021063404A (en) Improvement structure and improvement method of existing quay wall
JP5777435B2 (en) Reinforcement method for foundations for small buildings
KR101253410B1 (en) Connecting structure of steel pipe sheet pile
WO2024045245A1 (en) Method for designing clay core wall dam with flow regulation in case of overtopping failure, and clay core wall dam
CN206376274U (en) A kind of single-pile elevated bearing-platform and anchor cable tower-crane foundation structure
JP6341834B2 (en) Caisson type hybrid bank structure
JP2006161402A (en) Construction method for improving water breaking structure
CN209989781U (en) Novel structure of silty-fine sand stratum flood control dam
KR20210087009A (en) An Open Cell Caison Comprising Friction Enhanced Inner Wall of the Open Cell
JP2006083697A (en) Reinforced earth structure and wall surface block
JP7309147B2 (en) Caisson, pneumatic caisson construction method and structure
CN208965494U (en) The rectangular light-duty caisson of dome and pile foundation combined type breakwater
JP5983436B2 (en) Gravity breakwater
JP2006312877A (en) Construction method for preventing leakage of water/drain for construction work of bank
JP2012202042A (en) Combination steel sheet pile having drainage function and wall body structure using the steel sheet pile
CN106013238B (en) A kind of big earthing open trench tunnel subsidence control method of soft stratum
CN109024470A (en) The rectangular light-duty caisson of dome and pile foundation combined type breakwater
CN207277276U (en) A kind of armored concrete terrace with edge and earth-retaining stone erosion control combining structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees