JP2006161402A - Construction method for improving water breaking structure - Google Patents

Construction method for improving water breaking structure Download PDF

Info

Publication number
JP2006161402A
JP2006161402A JP2004354251A JP2004354251A JP2006161402A JP 2006161402 A JP2006161402 A JP 2006161402A JP 2004354251 A JP2004354251 A JP 2004354251A JP 2004354251 A JP2004354251 A JP 2004354251A JP 2006161402 A JP2006161402 A JP 2006161402A
Authority
JP
Japan
Prior art keywords
wave
revetment
breaking
construction method
existing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004354251A
Other languages
Japanese (ja)
Inventor
Yasuto Kataoka
保人 片岡
Masayoshi Okumura
昌好 奥村
Yoshihiro Hamazaki
義弘 浜崎
Naoto Takehana
直人 竹鼻
Yoji Hanawa
洋二 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004354251A priority Critical patent/JP2006161402A/en
Publication of JP2006161402A publication Critical patent/JP2006161402A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction method for improving a water breaking structure requiring less construction period, eliminating environmental problems, and having excellent overflow wave stopping performance. <P>SOLUTION: This construction method comprises a cutting step for cutting off the upper side portion 32 of an existing bulkhead 3 constructed along a shore, a manufacturing step for manufacturing, in a plant, the blocks 40, 40, ... of a newly constructed bulkhead 4 formed such that their extended amounts to an offshore side are larger than the extended amount of the cut upper side portion 32, and a joining step for placing the manufactured blocks 40, 40, ... of the newly constructed bulkhead 4 on the lower side portion 31 of the existing bulkhead 3 in place of the upper side portion 32 cut off in the cutting step and joining to its lower side portion 31 with reinforcements 6 for anchoring. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、港湾、海岸沿岸域において、波浪越波、波力から船舶や陸上の人命、建築物等を防護する防波堤や岸壁等護岸用の防波構造物の改良施工方法に関するものである。   The present invention relates to an improved construction method of a breakwater structure for a seawall such as a breakwater or a quay wall that protects a ship, land life, buildings and the like from wave overtopping waves and wave power in a harbor and a coastal coastal area.

既設の護岸において、海底地盤や港湾内構造物の変化等で波高が高くなり、越波流量が増加した場合、設計潮位や波浪条件(設計波高等)自身が変化して越波流量が増加した場合、或いは、護岸背後地の利用状況が変化して越波流量を低減する必要が生じた場合等には、越波流量を低減させてその越波阻止性能を向上させる必要がある。従来、越波阻止性能を向上させる方法として、以下のものが知られている。   In the existing revetment, when the wave height increases due to changes in the seabed ground and harbor structures, the overtopping flow increases, the design tide level and wave conditions (design wave height, etc.) themselves change, and the overtopping flow increases. Or when the utilization situation of a bank revetment changes and it becomes necessary to reduce the overtopping flow rate, it is necessary to reduce the overtopping flow rate and improve the overtopping prevention performance. Conventionally, the following methods are known as methods for improving the overtopping prevention performance.

すなわち、図4に示すように、基礎地盤1上に設置された既設護岸51の海2側に新設護岸52を腹付けして護岸天端高を高くすることにより越波流量を低減する方法である。   That is, as shown in FIG. 4, the overtopping flow rate is reduced by increasing the height of the revetment top by attaching a new revetment 52 to the sea 2 side of the existing revetment 51 installed on the foundation ground 1. .

また、図5に示すように、基礎地盤1上に設置された既設護岸51の海2側にテトラポッド(商品名)等の消波工53を積層することにより波のエネルギを消散させ、その結果越波流量を低減する方法である。例えば特許文献1では、消波ブロックを、基礎地盤1上から後退パラペットを有するケーソン上部にかけて積層している。
特開2000−204528号公報
Further, as shown in FIG. 5, wave energy is dissipated by laminating a wave-dissipating work 53 such as a tetrapod (product name) on the sea 2 side of the existing revetment 51 installed on the foundation ground 1. The result is a method of reducing overtopping flow. For example, in patent document 1, the wave-dissipating block is laminated | stacked from the base ground 1 to the caisson upper part which has a retreating parapet.
JP 2000-204528 A

図4に示した方法では、新設護岸52は、通常既設護岸51と同様のRC(鉄筋コンクリート)構造でつくられ、現地で製作される。すなわち、既設護岸51の海2側に型枠を設置し、その型枠内に鉄筋を敷設した上でコンクリートを流し込んで固める。このため製作期間が長くかかり、現地工事のため工事が天候に左右されるという問題があった。したがって、製作期間がさらに長くなるような、複雑な形状の新設護岸52への対応は難しい。   In the method shown in FIG. 4, the new revetment 52 is usually made of the same RC (steel reinforced concrete) structure as the existing revetment 51 and is manufactured locally. That is, a formwork is installed on the sea 2 side of the existing revetment 51, and a reinforcing bar is laid in the formwork, and then concrete is poured and hardened. For this reason, there was a problem that the production period was long and the construction was affected by the weather due to the local construction. Therefore, it is difficult to cope with the newly constructed revetment 52 having a complicated shape that further increases the production period.

また、海上でコンクリート打設工事をするため、コンクリート成分が海に流れ出す虞があり、環境面でも問題があった。さらに、護岸天端高さ(静水面からの護岸高さ)を高くすることにより、陸側からの景観を損なうこともあった。   In addition, since concrete construction work is carried out at sea, there is a risk that concrete components may flow out into the sea, which is also an environmental problem. In addition, by increasing the height of the revetment top (the height of the revetment from the still water surface), the landscape from the land side could be damaged.

図5に示した方法では、消波工53を海2側に積層するため、海岸線を潰し環境面で問題があった。すなわち、上記特許文献1では、消波ブロックで海岸線を潰してしまう虞があった。   In the method shown in FIG. 5, since the wave-dissipating work 53 is laminated on the sea 2 side, the coastline is crushed and there is a problem in terms of the environment. In other words, in Patent Document 1, the coastline may be crushed by the wave-dissipating block.

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、工期が短くて済み、環境面の問題がなく、かつ越波阻止性能に優れる防波構造物の改良施工方法を提供することである。   The present invention has been made in view of the above circumstances, and its object is to provide an improved construction method for a wave-breaking structure that requires a short construction period, has no environmental problems, and has excellent overtopping prevention performance. It is to be.

本発明は、岸沿いに設置された既設の防波構造物を改良施工するための方法であって、前記防波構造物の上側部分を切除する切除工程と、その切除された上側部分よりも沖側への迫り出し量が大きい形状をもつ防波体を工場で製造する防波体製造工程と、その製造した防波体を、前記切除工程で切除された上側部分に代えて前記防波構造物の上に設置し、当該防波構造物に接合する防波体接合工程とを含むことを特徴とするものである。   The present invention is a method for improving an existing wave-breaking structure installed along a shore, a cutting step for cutting an upper portion of the wave-breaking structure, and an upper portion of the cut-off upper portion. A wavebreaker manufacturing process for manufacturing a wavebreaker having a shape with a large projecting amount to the offshore side, and the wavebreaker manufactured in place of the wavebreaker in place of the upper part cut out in the cutting process. A wave-protecting body joining step of installing on a structure and joining the wave-proof structure.

ここで、前記防波体の迫り出し部分の具体的な形状は問わないが、この部分が単純に水平方向に直線的に突出するものでは、波があったときにその突出部分に大きな鉛直波力が作用し易い。これに対して、請求項2記載の発明のように、請求項1記載の防波構造物の改良施工方法において、前記防波体製造工程では、沖側に向かって滑らかな曲面状に迫り出す防波面を持つ防波体を製造することが好ましい。   Here, the specific shape of the protruding portion of the wave preventing body is not limited, but if this portion simply protrudes linearly in the horizontal direction, a large vertical wave is generated in the protruding portion when there is a wave. Force is easy to act. On the other hand, as in the invention according to claim 2, in the improved construction method of the wave preventing structure according to claim 1, in the wave preventing body manufacturing process, a smooth curved surface is pushed toward the offshore side. It is preferable to manufacture a wave-proof body having a wave-proof surface.

また、請求項3記載の発明のように、請求項2記載の防波構造物の改良施工方法において、前記防波体製造工程では、前記防波面の下端での接線方向が前記切除工程で上側部分が切除された防波構造物の防波面の上端での接線方向とほぼ合致する形状の防波体を製造することが好ましい。   Further, as in the invention according to claim 3, in the improved construction method of the wave preventing structure according to claim 2, in the wave preventing body manufacturing step, the tangential direction at the lower end of the wave preventing surface is the upper side in the cutting step. It is preferable to manufacture a wave-blocking body having a shape that substantially matches the tangential direction at the upper end of the wave-blocking surface of the wave-breaking structure from which a portion has been cut.

本発明によれば、岸沿いに設置された既設の防波構造物の上側部分が切除される。その切除された上側部分よりも沖側への迫り出し量が大きい形状をもつ防波体が工場で製造される。その製造された防波体が、前記切除された上側部分に代えて前記防波構造物の上に設置され、当該防波構造物に接合される。かかる改良施工を行った後の防波構造物に波がかかったときには、海側に大きく迫り出した防波体により、その波を沖側に返すことができる。したがって、護岸天端高を高くすることなく、越波流量を低減させて、その越波阻止性能を向上させることができる。   According to this invention, the upper part of the existing wave-breaking structure installed along the shore is excised. A wave breaker having a shape that protrudes more offshore than the excised upper portion is manufactured at the factory. The manufactured wave-proof body is installed on the wave-proof structure instead of the cut upper portion, and is joined to the wave-proof structure. When a wave is applied to the wave-breaking structure after the improvement work is performed, the wave can be returned to the offshore side by the wave-blocking body that has largely pushed toward the sea. Accordingly, the overtopping flow rate can be reduced and the overtopping prevention performance can be improved without increasing the revetment top height.

また、予め工場で製造された上部工(防波体)を現地で設置するだけなので、たとえ防波体が海側に大きく迫り出した、比較的複雑な形状のものであっても、工事期間、コストを抑えることができる。なお、鋼/コンクリート合成構造とした場合には、防波体を垂直波力に対抗できる範囲で軽量化することができ、工事期間、コストをRC構造やコンクリート構造に比較して大幅に低減させることができる。   In addition, since the superstructure (wavebreaker) manufactured in advance at the factory is only installed locally, even if the wavebreaker has a relatively complex shape that has largely protruded to the sea, the construction period , Can reduce costs. In addition, in the case of a steel / concrete composite structure, the wave breaker can be reduced in weight to the extent that it can resist vertical wave force, and the construction period and cost are greatly reduced compared to the RC structure and concrete structure. be able to.

また、海上でのコンクリート打設工事がなくなるため、コンクリート成分が海に流れ出す虞がなくなり、環境面での問題がなくなる。さらに、護岸天端高さが高くならないので、陸側からの景観を損なうことがない。しかも、従来例のように消波工を海側に積層することもないため、海岸線を潰すことがなくなり、環境面での問題がなくなる。   In addition, since there is no concrete placement work at sea, there is no risk of the concrete components flowing out into the sea, and there are no environmental problems. In addition, since the height of the revetment top does not increase, the landscape from the land side is not impaired. Moreover, since the wave-dissipating work is not laminated on the sea side as in the conventional example, the coastline is not crushed, and there is no environmental problem.

請求項2記載の発明によれば、防波構造物に接合された防波体に波があたったとしても、その滑らかな曲面状に迫り出す防波面にそって波が円滑に案内されて沖側に戻されるので、防波体には大きな鉛直波力が作用しにくくなり、強度的に有利となる。   According to invention of Claim 2, even if a wave hits the wave-proof body joined to the wave-proof structure, the wave is smoothly guided along the wave-proof surface that approaches the smooth curved surface. Since it is returned to the side, a large vertical wave force is unlikely to act on the wave breaker, which is advantageous in terms of strength.

請求項3記載の発明によれば、上側部分が切除された防波構造物の防波面と、防波体の防波面との間で、滑らかに連続した防波面が得られ、波があたったときに、その滑らかに連続した防波面にそって波がより円滑に案内されて沖側に戻される。   According to the invention described in claim 3, a smooth and continuous wave-breaking surface is obtained between the wave-breaking surface of the wave-breaking structure whose upper portion is cut off and the wave-breaking surface of the wave-breaking body, and the wave hits. Sometimes the waves are guided more smoothly along the smooth continuous wavefront and returned to the offshore side.

図1は本発明の一実施形態にかかる改良施工後の護岸の全体構造を示す斜視図である。図1に示すように、この改良施工後の護岸(防波構造物)では、基礎地盤1上に設置された既設護岸3の上側部分32(後述する図2(a)参照。)が、防波体としての新設護岸4の各ブロック40,40,・・・に置き換わっている。5は裏込石又は土砂(裏込石等)である。   FIG. 1 is a perspective view showing the overall structure of a revetment after improvement work according to an embodiment of the present invention. As shown in FIG. 1, in this revetment (wave-breaking structure) after the improvement work, the upper portion 32 (see FIG. 2A described later) of the existing revetment 3 installed on the foundation ground 1 is prevented. It replaces each block 40, 40, ... of the newly constructed revetment 4 as a wave body. 5 is a back lining stone or earth and sand (back lining stone etc.).

基礎地盤1は、海底地盤を掘削して埋め戻した砂層11と、その砂層11上に積層された捨石マウンド12とからなり、岸に沿って形成されている。なお、図中では、海2側に幅広となっているが、これは将来の消波工の積層等にも対応できるようにしているものである。   The foundation ground 1 is composed of a sand layer 11 excavated and backfilled from the seabed ground, and a rubble mound 12 stacked on the sand layer 11, and is formed along the shore. In addition, in the figure, it is wide on the sea 2 side, but this is designed to be compatible with future layering of wave breakers.

既設護岸3は、もともと基礎地盤1上に一体的に形成されたRC構造物であるが、ここでは海2側に垂直壁をなす防波面33をもった断面矩形状の下側部分31のみが利用されている。   The existing revetment 3 is originally an RC structure integrally formed on the foundation ground 1, but here, only the lower part 31 having a rectangular cross section having a wave-breaking surface 33 forming a vertical wall on the sea 2 side is provided. It's being used.

新設護岸4は、適当数に分割されたRCブロック40,40,・・・として形成されており(図1中では、岸に沿う方向に3分割されている例を示す)、各ブロック40,40,・・・が上記既設護岸3の下側部分31の上に設置され、その下側部分31と図示しない固定手段で固定されている。   The new revetment 4 is formed as RC blocks 40, 40,... Divided into an appropriate number (in FIG. 1, an example divided into three in the direction along the shore) is shown. 40,... Are installed on the lower portion 31 of the existing revetment 3, and are fixed to the lower portion 31 by fixing means (not shown).

各ブロック40,40,・・・は、沖側に向かって滑らかに迫り出す曲面状の防波面41をもっており、その防波面41の下端での接線方向が、上記既設護岸3の下側部分31における防波面33の上端での接線方向とほぼ合致するように形成されている。これにより、既設護岸3の下側部分31の防波面33と、新設護岸4の各ブロック40,40,・・・の防波面41との間で、滑らかに連続した防波面が得られるようになる。したがって、波があたったときに、その滑らかに連続した防波面にそって波が円滑に案内されて沖側に戻されるので、新設護岸4には大きな鉛直波力が作用しにくくなり、強度的に有利となる。   Each of the blocks 40, 40,... Has a curved wave-proof surface 41 that smoothly protrudes toward the offshore side, and the tangential direction at the lower end of the wave-proof surface 41 is the lower portion 31 of the existing revetment 3. Is formed so as to substantially coincide with the tangential direction at the upper end of the wave preventing surface 33. As a result, a smoothly continuous wave-breaking surface is obtained between the wave-breaking surface 33 of the lower part 31 of the existing revetment 3 and the wave-breaking surface 41 of each block 40, 40,. Become. Therefore, when a wave hits, the wave is smoothly guided along the smoothly continuous wave-breaking surface and returned to the offshore side, so that a large vertical wave force is unlikely to act on the newly constructed revetment 4 and is strong. Is advantageous.

各ブロック40,40,・・・の背後形状は下り傾斜面をなしており、かつその最下部に水平な突出部分43を設けるとともに、この突出部分43の後端を既設護岸3の陸側の垂直壁と一致させている。これにより、各ブロック40,40,・・・は既設護岸3の下側部分31の上に安定して設置され、固定される。そして、突出部分43上に裏込石等5を被せている。   The rear shape of each block 40, 40,... Has a downwardly inclined surface, and a horizontal projecting portion 43 is provided at the lowermost portion, and the rear end of the projecting portion 43 is located on the land side of the existing revetment 3. Match with the vertical wall. Thereby, each block 40,40, ... is stably installed and fixed on the lower part 31 of the existing revetment 3. Then, a back stone 5 or the like is placed on the protruding portion 43.

図2は本発明の特徴をなす護岸の改良施工方法を示す説明図である。なお、図2中においては、新設護岸を構成する各ブロックの1つを表している。   FIG. 2 is an explanatory view showing an improved construction method for revetment that characterizes the present invention. In FIG. 2, one of the blocks constituting the newly constructed revetment is shown.

この方法には、既設護岸3を切除する切除工程と、新設護岸4を工場で製造する製造工程(防波体製造工程)と、切除後の既設護岸3の上に新設護岸4を載置して接合する接合工程(防波体接合工程)とが含まれている。以下、図2(a)〜(c)を参照して各工程を詳述する。   In this method, an excavation process for excising the existing revetment 3, a manufacturing process for manufacturing the new revetment 4 at the factory (wavebreaker manufacturing process), and a new revetment 4 placed on the existing revetment 3 after excision. And a joining step (a wave-protecting body joining step) for joining together. Hereinafter, each step will be described in detail with reference to FIGS.

図2(a)は既設護岸3の改良施工前の状態を示している。すなわち、既設護岸3は紙面と直角方向に延びるように基礎地盤1上に設置されており、海側垂直壁(防波面)33と陸側垂直壁34と天井面35と底面36とからなる略矩形断面を有している。なお、天井面35の海2側には波避けの上部パラペット37が形成されている。   FIG. 2A shows the state of the existing revetment 3 before improvement work. That is, the existing revetment 3 is installed on the foundation ground 1 so as to extend in a direction perpendicular to the paper surface, and is composed of a sea-side vertical wall (wave-proof surface) 33, a land-side vertical wall 34, a ceiling surface 35, and a bottom surface 36. It has a rectangular cross section. An upper parapet 37 for avoiding waves is formed on the sea 2 side of the ceiling surface 35.

切除工程:
この工程では、既設護岸3の上側部分32を、図示しないコンクリート用カッターで一気に切除する。この切除位置(図2(a)中の破線で示す。)は、工事の安全性と容易さとを考慮して満潮時の静水面よりも若干上に設定されるのが好ましい。
Excision process:
In this step, the upper portion 32 of the existing revetment 3 is cut at a stretch with a concrete cutter (not shown). This excision position (indicated by a broken line in FIG. 2A) is preferably set slightly above the still water surface at high tide in consideration of the safety and ease of construction.

そして、図2(b)に示すように、上側部分32が切除された既設護岸3は下側部分31だけが残された状態となる。この下側部分31の上面38が水平になるように適当な方法で均し加工を施した上で、この上面38の適当箇所にアンカー用鉄筋6を上向きに植設する。   And as shown in FIG.2 (b), the existing revetment 3 from which the upper part 32 was excised will be in the state in which only the lower part 31 was left. After leveling by an appropriate method so that the upper surface 38 of the lower portion 31 is horizontal, the anchor reinforcing bars 6 are implanted upwards at appropriate locations on the upper surface 38.

製造工程:
この工程では、新設護岸4を図外の工場でブロック単位にて製造する。各ブロック40,40,・・・は、通常のRC構造物と同様に、所定形状の型枠内に鉄筋を敷設し、コンクリートを打設し、所定期間だけ養生することによって成形される。ここで新設護岸4は、現場工事を少なくするためには、そのブロック数が少なくなるようにブロック寸法をできるだけ大きくするのが好ましい。また、新設護岸4が垂直波力に対抗できるようにするためには、ブロック重量をできるだけ重くするのが好ましい。その一方、各ブロック40,40,・・・の工場から現場への運搬や、現場での組み立て時の吊り下げ作業等を考慮すると一定の制限がある。そこで、各ブロック40,40,・・・は、上記設計、運搬、波浪条件等を考慮した適当な大きさや重量となるように設定される。なお、吊りピース等は図示を省略している。
Manufacturing process:
In this process, the newly constructed revetment 4 is manufactured in units of blocks at a factory not shown. Each block 40, 40,... Is formed by laying a reinforcing bar in a predetermined formwork, placing concrete, and curing for a predetermined period, as in a normal RC structure. Here, the new revetment 4 is preferably made as large as possible so that the number of blocks is reduced in order to reduce site construction. In order to allow the newly constructed revetment 4 to counter the vertical wave force, it is preferable to make the block weight as heavy as possible. On the other hand, there are certain limitations in consideration of transportation of each block 40, 40,... From the factory to the site, suspension work during assembly at the site, and the like. Therefore, each block 40, 40,... Is set to have an appropriate size and weight in consideration of the design, transportation, wave conditions, and the like. In addition, illustration of a hanging piece etc. is omitted.

成形後の各ブロック40,40,・・・は、図2(b)に示すように、海側屈曲壁(防波面)41と陸側垂直壁45と階段状の天井面46と底面47とからなる異形断面を有している。海側屈曲壁41の形状は、上端付近では強度を確保するために垂直面としているが、その直下から下端にかけては沖側に迫り出す円弧状(或いは放物線状等)となっている。   As shown in FIG. 2 (b), each block 40, 40,... After molding has a sea-side bent wall (wave-proof surface) 41, a land-side vertical wall 45, a stepped ceiling surface 46, and a bottom surface 47. And has a deformed cross section. The shape of the sea-side bent wall 41 is a vertical surface in the vicinity of the upper end in order to ensure strength, but has an arc shape (or a parabolic shape or the like) that protrudes offshore from just below to the lower end.

また各ブロック40,40,・・・の底面47には、上記成形後に、既設護岸3の下側部分31に植設されたアンカー用鉄筋6に対応するように所定深さの接合用縦穴42が形成される。このようにして製造された新設護岸4の各ブロック40,40,・・・は、上記既設護岸3が設置された現場に陸路又は海路を通って運搬される。   Further, on the bottom surface 47 of each block 40, 40,..., A joining vertical hole 42 having a predetermined depth so as to correspond to the anchor reinforcing bar 6 planted in the lower portion 31 of the existing revetment 3 after the molding. Is formed. The blocks 40, 40,... Of the newly constructed revetment 4 thus manufactured are transported through the land or sea to the site where the existing revetment 3 is installed.

接合工程:
この工程では、図2(b)に示すように、工場から運搬されてきた新設護岸4の各ブロック40,40,・・・を、例えば海上クレーンで吊り下げて上記既設護岸3の下側部分31の上に一列に並べて設置する。その際、各ブロック40,40,・・・は、図2(c)に示すように、接合用縦穴42にアンカー用鉄筋6の先端が入るように位置決めされる。
Joining process:
In this step, as shown in FIG. 2 (b), each block 40, 40,... Of the newly constructed revetment 4 transported from the factory is suspended by, for example, a marine crane, and the lower part of the existing revetment 3 Install in a row on top of 31. At that time, as shown in FIG. 2C, the blocks 40, 40,... Are positioned so that the distal ends of the anchor reinforcing bars 6 enter the joining vertical holes.

そして、接合用縦穴42とアンカー用鉄筋6の先端との隙間にモルタル等を注入して固めることにより、各ブロック40,40,・・・と既設護岸3の下側部分31とを接合する。また、各ブロック40,40,・・・間、及び、各ブロック40,40,・・・と既設護岸3の下側部分31との間にはゴム等の止水材を適宜充填しておく。改良施工後の本護岸は、図1に示した通りである。   Then, each block 40, 40,... And the lower portion 31 of the existing revetment 3 are joined by injecting mortar or the like into the gap between the joining vertical hole 42 and the tip of the anchor reinforcing bar 6. Moreover, between each block 40,40, ... and between each block 40,40, ... and the lower part 31 of the existing revetment 3, the water-stopping material, such as rubber | gum, is filled suitably. . The revetment after the improvement work is as shown in FIG.

ところで、上記図1では、既設護岸3の下側部分31の防波面33として海側垂直壁をもつ場合を示しているが、その防波面33は必ずしも垂直壁である必要はない。また、新設護岸4の背後のブロック形状を既設護岸3の陸側垂直壁と一致させる必要もない。例えば図3(a)に示すように、既設護岸3aの下側部分の防波面33を陸側に向かう上り傾斜面とし、新設護岸4aの各ブロック40,40,・・・の背後形状を下り傾斜面としてかつその最下部に水平な突出部分43を設けてもよい。   By the way, in FIG. 1, a case where a sea-side vertical wall is provided as the wave-preventing surface 33 of the lower part 31 of the existing revetment 3 is shown, but the wave-preventing surface 33 is not necessarily a vertical wall. Further, it is not necessary to make the block shape behind the newly constructed revetment 4 coincide with the land-side vertical wall of the existing revetment 3. For example, as shown in FIG. 3 (a), the wave-breaking surface 33 in the lower part of the existing revetment 3a is an upward inclined surface toward the land, and the shape behind each block 40, 40,. You may provide the horizontal protrusion part 43 as an inclined surface and the lowest part.

その場合でも、既設護岸3aの防波面33と新設護岸4aの各ブロック40,40,・・・の防波面41とが滑らかに曲面状に連なったものでありさえすれば、既設護岸3aの防波面33から登ってきた波を新設護岸4aの各ブロック40,40,・・・の迫り出した曲面状の防波面41で沖側に戻して、越波流量を低減することができる。   Even in that case, as long as the breakwater surface 33 of the existing revetment 3a and the breakwater surface 41 of each block 40, 40,... The wave rising from the wave surface 33 can be returned to the offshore side by the curved wave-proof surface 41 protruded from each block 40, 40,... Of the newly constructed revetment 4a, and the overtopping flow rate can be reduced.

また、上記図3(a)では、新設護岸4aの各ブロック40,40,・・・の背後形状を陸側に傾斜させかつ水平な突出部分43を設けているが、必ずしもその形状である必要はない。例えば図3(b)では、新設護岸4bの各ブロック40,40,・・・の背後形状を階段状の垂直壁としかつ水平な突出部分43を設けており、図3(c)では、新設護岸4cの各ブロック40,40,・・・の背後形状を既設護岸3aから全体を突出させている。   In FIG. 3 (a), the rear shape of each block 40, 40,... Of the newly constructed revetment 4a is inclined to the land side and a horizontal projecting portion 43 is provided. There is no. For example, in FIG. 3 (b), the back shape of each block 40, 40,... Of the newly constructed revetment 4b is a stepped vertical wall and a horizontal protruding portion 43 is provided, and in FIG. The entire shape of each block 40, 40,... Of the revetment 4c protrudes from the existing revetment 3a.

これらについても、既設護岸3aの防波面33と新設護岸4b,4cの各ブロック40,40,・・・の防波面41とが滑らかに曲面状に連続したものでありさえすれば、既設護岸3aの防波面33から登ってきた波を新設護岸4b,4cの各ブロック40,40,・・・の迫り出した曲面状の防波面41で沖側に戻して、越波流量を低減することができる。   As for these, as long as the breakwater surface 33 of the existing revetment 3a and the breakwater surfaces 41 of the respective blocks 40, 40,... The wave rising from the breakwater surface 33 can be returned to the offshore side by the curved curved wavebreak surface 41 of each block 40, 40,... Of the newly constructed revetments 4b, 4c, and the overtopping flow rate can be reduced. .

さらに、上記図3(d)〜(f)は、(a)〜(c)にそれぞれ上部パラペット44を設けた場合を示しているが、この上部パラペット43により、さらに越波流量を減少させることができる。   Further, FIGS. 3D to 3F show the case where the upper parapet 44 is provided in each of FIGS. 3A to 3C. However, the upper parapet 43 can further reduce the overtopping flow rate. it can.

引き続き、上記改良施工した本護岸と、改良施工前の既設護岸とについて行った水理実験について説明する。   Next, hydraulic experiments conducted on the above-mentioned improved revetment and the existing revetment before the improved construction will be described.

本護岸は、上記図3(d)に示した通りの断面構造を有し、新設護岸4の各ブロック40,40,・・・の沖側への迫り出し量は約1mであり、満潮時の静水面(海底+3.2m)から約1.5m上(海底+4.7m)に防波面41の円弧上端がある。さらに0.6m上(海底+5.3m)に上部パラペット44の上端があり、この改良施工前の既設護岸3の天端高さと一致させている。   This revetment has a cross-sectional structure as shown in FIG. 3 (d), and the amount of the block 40, 40,... The top end of the arc of the wave-breaking surface 41 is about 1.5 m above the sea level (sea floor +3.2 m) (sea floor +4.7 m). Furthermore, there is an upper end of the upper parapet 44 above 0.6 m (the seabed + 5.3 m), which matches the height of the top of the existing revetment 3 before this improvement work.

ここで、現地緒元で換算した沖波波高Ho’=2.0m、周期To=4.5sec、波長L=32mの不規則波を用いて越波流量実験を行った。 Here, an overtopping flow rate experiment was conducted using an irregular wave having an offshore wave height H o ′ = 2.0 m, a period T o = 4.5 sec, and a wavelength L = 32 m, converted in accordance with the local specifications.

その結果、既設護岸及び本護岸については、ともに天端高さは5.30mであるが、越波流量については、既設護岸は8.65×10-33/m/secであるのに対し、本護岸は1.20×10-33/m/secと約1/7となり、大幅に越波流量を低減できることがわかった。 As a result, the height of the top of the existing revetment and the main revetment is 5.30 m, but the overtopping flow rate is 8.65 × 10 −3 m 3 / m / sec. This revetment was 1.20 × 10 −3 m 3 / m / sec, about 1/7, and it was found that the overtopping flow rate can be greatly reduced.

以上説明したように、本実施形態によれば、岸沿いに設置された既設護岸3の上側部分32が切除される。その切除された上側部分32よりも沖側への迫り出し量が大きい形状をもつ新設護岸4の各ブロック40,40,・・・が工場で製造される。その製造された新設護岸4の各ブロック40,40,・・・が、切除された既設護岸3の上側部分32に代えてその下側部分31の上に設置され、新設護岸4の各ブロック40,40,・・・と既設護岸3の下側部分31とがアンカー用鉄筋6等で接合される。かかる改良施工を行った後の護岸に波がかかったときには、海側に大きく迫り出した新設護岸4の各ブロック40,40,・・・により、その波を沖側に返すことができる。したがって、護岸天端高を高くすることなく、越波流量を低減させて、その越波阻止性能を向上させることができる。   As described above, according to the present embodiment, the upper portion 32 of the existing revetment 3 installed along the shore is excised. Each block 40, 40,... Of the newly constructed revetment 4 having a shape that has a larger amount of protrusion to the offshore side than the excised upper portion 32 is manufactured at the factory. Each block 40, 40,... Of the manufactured new revetment 4 is installed on the lower portion 31 instead of the removed upper portion 32 of the existing revetment 3. , 40,... And the lower portion 31 of the existing revetment 3 are joined by anchor reinforcing bars 6 or the like. When a wave is applied to the revetment after such improvement work is performed, the wave can be returned to the offshore side by the blocks 40, 40,... Accordingly, the overtopping flow rate can be reduced and the overtopping prevention performance can be improved without increasing the revetment top height.

また、予め工場で製造された新設護岸4の各ブロック40,40,・・・を現地で設置するだけなので、たとえ各ブロック40,40,・・・が海側に大きく迫り出した曲面状の比較的複雑な形状のものであっても、工事期間、コストを抑えることができる。なお、鋼/コンクリート合成構造とした場合には、新設護岸4の各ブロック40,40,・・・を垂直波力に対抗できる範囲で軽量化することができ、工事期間、コストをRC構造やコンクリート構造に比較して大幅に低減させることができる。   Moreover, since the blocks 40, 40,... Of the newly constructed revetment 4 manufactured in advance at the factory are only installed locally, even if each block 40, 40,. Even with a relatively complicated shape, the construction period and cost can be reduced. When the steel / concrete composite structure is adopted, each block 40, 40,... Of the newly built revetment 4 can be reduced in weight within the range that can counter the vertical wave force. Compared to a concrete structure, it can be greatly reduced.

また、海上でのコンクリート打設工事がなくなるため、コンクリート成分が海に流れ出す虞がなくなり、環境面での問題がなくなる。さらに、護岸天端高さが高くならないので、陸側からの景観を損なうことがない。しかも、従来例のように消波工を海側に積層することもないため、海岸線を潰すことがなくなり、環境面での問題がなくなる。   In addition, since there is no concrete placement work at sea, there is no risk of the concrete component flowing out into the sea, and there are no environmental problems. In addition, since the height of the revetment top does not increase, the landscape from the land side is not impaired. Moreover, since the wave-dissipating work is not laminated on the sea side as in the conventional example, the coastline is not crushed, and there is no environmental problem.

なお、上記実施形態では、既設護岸3の下側部分31の上面38を水平に均し、その上に新設護岸4の各ブロック40,40,・・・を、その水平な底面47が当接するようにして載置しているが、その場合にはアンカー用鉄筋6だけで波力に対抗するようになっているので、ストレスが過大となる虞がある。そこで、アンカー用鉄筋6にかかるストレスを軽減するために、既設護岸3の下側部分31の上面38と、新設護岸4の各ブロック40,40,・・・の底面47との間に、互いに凹凸面のかみ合う部分を設けるようにしてもよい。各ブロック40,40,・・・相互間についても同様である。   In addition, in the said embodiment, the upper surface 38 of the lower part 31 of the existing revetment 3 is leveled, and the horizontal bottom face 47 contacts each block 40,40, ... of the new revetment 4 on it. In this case, the anchor rebar 6 alone is used to counter the wave force, so that there is a possibility that the stress becomes excessive. Therefore, in order to reduce the stress applied to the anchor reinforcing bars 6, the upper surface 38 of the lower portion 31 of the existing revetment 3 and the bottom surface 47 of each block 40, 40,. You may make it provide the part which an uneven surface meshes. The same applies to the blocks 40, 40,.

また、上記実施形態では、新設護岸4の各ブロック40,40,・・・は、図1では岸に沿う方向に分割しているが、同様に、新設護岸4の各ブロック40,40,・・・を上下方向に分割することもできる。   Moreover, in the said embodiment, although each block 40,40, ... of the new revetment 4 is divided | segmented in the direction along a shore in FIG. 1, similarly, each block 40,40, ... of the new revetment 4 is divided. .. can also be divided vertically.

本発明の一実施形態における護岸の全体構成を示す斜視図である。It is a perspective view which shows the whole bank protection structure in one Embodiment of this invention. 本護岸の改良施工方法を示す説明図である。It is explanatory drawing which shows the improvement construction method of this revetment. 本護岸の変形例である。This is a modification of the revetment. 従来の護岸の改良施工方法の一例を示す説明図である。It is explanatory drawing which shows an example of the improvement construction method of the conventional revetment. 従来の護岸の改良工方法の他の例を示す説明図である。It is explanatory drawing which shows the other example of the conventional revetment improvement method.

符号の説明Explanation of symbols

1 基礎地盤
11 砂層
12 捨石マウンド
2 海
3 既設護岸(既設の防波構造物)
31 下側部分
32 上側部分
33 防波面
4 新設護岸(防波体)
40 ブロック
41 防波面
42 接合用縦穴
43 突出部分
44 上部パラペット
5 裏込石等
6 アンカー用鉄筋
1 Foundation Ground 11 Sand Layer 12 Rubble Mound 2 Sea 3 Existing Revetment (Existing Wave Structure)
31 Lower part 32 Upper part 33 Wave breaker 4 New revetment (wave breaker)
40 Block 41 Wave-proof surface 42 Vertical hole for joining 43 Projecting part 44 Upper parapet 5 Backing stone, etc. 6 Reinforcing bar for anchor

Claims (3)

岸沿いに設置された既設の防波構造物を改良施工するための方法であって、
前記防波構造物の上側部分を切除する切除工程と、
その切除された上側部分よりも沖側への迫り出し量が大きい形状をもつ防波体を工場で製造する防波体製造工程と、
その製造した防波体を、前記切除工程で切除された上側部分に代えて前記防波構造物の上に設置し、当該防波構造物に接合する防波体接合工程と
を含むことを特徴とする防波構造物の改良施工方法。
A method for improving an existing wave-breaking structure installed along the shore,
Excision step of excising the upper part of the wave-breaking structure;
A wave breaker manufacturing process for manufacturing a wave breaker having a shape with a large amount of protrusion to the offshore side than the excised upper part,
A wave-breaking body joining step of installing the wave-breaking body manufactured on the wave-breaking structure instead of the upper part cut out in the cutting step and bonding the wave-breaking structure to the wave-breaking structure. An improved construction method for wave-proof structures.
請求項1記載の防波構造物の改良施工方法において、前記防波体製造工程では、沖側に向かって滑らかな曲面状に迫り出す防波面を持つ防波体を製造することを特徴とする防波構造物の改良施工方法。   In the improvement construction method of the wave-proof structure according to claim 1, the wave-blocking body manufacturing process includes manufacturing a wave-blocking body having a wave-blocking surface that protrudes toward a smooth curved surface toward the offshore side. An improved construction method for wave-breaking structures. 請求項2記載の防波構造物の改良施工方法において、前記防波体製造工程では、前記防波面の下端での接線方向が前記切除工程で上側部分が切除された防波構造物の防波面の上端での接線方向とほぼ合致する形状の防波体を製造することを特徴とする防波構造物の改良施工方法。   The improved construction method for a wave preventing structure according to claim 2, wherein, in the wave preventing body manufacturing step, the wave tangent direction at the lower end of the wave preventing surface is the wave preventing surface of the wave preventing structure whose upper portion is cut away in the cutting step. An improved construction method for a wave-breaking structure, characterized in that a wave-breaking body having a shape substantially matching the tangential direction at the upper end of the wave-breaking structure is manufactured.
JP2004354251A 2004-12-07 2004-12-07 Construction method for improving water breaking structure Pending JP2006161402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004354251A JP2006161402A (en) 2004-12-07 2004-12-07 Construction method for improving water breaking structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004354251A JP2006161402A (en) 2004-12-07 2004-12-07 Construction method for improving water breaking structure

Publications (1)

Publication Number Publication Date
JP2006161402A true JP2006161402A (en) 2006-06-22

Family

ID=36663724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004354251A Pending JP2006161402A (en) 2004-12-07 2004-12-07 Construction method for improving water breaking structure

Country Status (1)

Country Link
JP (1) JP2006161402A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106427A (en) * 2006-10-23 2008-05-08 Penta Ocean Construction Co Ltd Method for raising existing breakwater
JP2008106428A (en) * 2006-10-23 2008-05-08 Penta Ocean Construction Co Ltd Method for raising existing breakwater
JP2009287318A (en) * 2008-05-30 2009-12-10 Infratec Co Ltd Raising block for concrete skeleton
JP2010126977A (en) * 2008-11-27 2010-06-10 Fujita Corp Precast concrete member for parapet part of training wall of dam and method of manufacturing the same
JP2015132101A (en) * 2014-01-14 2015-07-23 日本原子力発電株式会社 Tide structure and construction method for the same
JP2017186759A (en) * 2016-04-04 2017-10-12 株式会社神戸製鋼所 Improvement method for breakwater structure
JP2017186758A (en) * 2016-04-04 2017-10-12 株式会社神戸製鋼所 Improvement method for breakwater structure
JP2017206863A (en) * 2016-05-18 2017-11-24 大成建設株式会社 Embankment structure
JP2020026671A (en) * 2018-08-10 2020-02-20 株式会社神戸製鋼所 Designed wave pressure derivation method, design method, and manufacturing method of cured upper face revetment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106427A (en) * 2006-10-23 2008-05-08 Penta Ocean Construction Co Ltd Method for raising existing breakwater
JP2008106428A (en) * 2006-10-23 2008-05-08 Penta Ocean Construction Co Ltd Method for raising existing breakwater
JP2009287318A (en) * 2008-05-30 2009-12-10 Infratec Co Ltd Raising block for concrete skeleton
JP2010126977A (en) * 2008-11-27 2010-06-10 Fujita Corp Precast concrete member for parapet part of training wall of dam and method of manufacturing the same
JP2015132101A (en) * 2014-01-14 2015-07-23 日本原子力発電株式会社 Tide structure and construction method for the same
JP2017186759A (en) * 2016-04-04 2017-10-12 株式会社神戸製鋼所 Improvement method for breakwater structure
WO2017175676A1 (en) * 2016-04-04 2017-10-12 株式会社神戸製鋼所 Method for improving breakwater structure
JP2017186758A (en) * 2016-04-04 2017-10-12 株式会社神戸製鋼所 Improvement method for breakwater structure
JP2017206863A (en) * 2016-05-18 2017-11-24 大成建設株式会社 Embankment structure
JP2020026671A (en) * 2018-08-10 2020-02-20 株式会社神戸製鋼所 Designed wave pressure derivation method, design method, and manufacturing method of cured upper face revetment
JP7060241B2 (en) 2018-08-10 2022-04-26 ケイコン株式会社 Design wave pressure derivation method of upper curved revetment, design method of upper curved revetment and manufacturing method of upper curved revetment

Similar Documents

Publication Publication Date Title
JP6370295B2 (en) Embankment reinforcement structure and its construction method
CN102080364B (en) Pile bearing caisson seawall and construction method thereof
CN201962644U (en) Pile-supported type caisson seawall
KR100854338B1 (en) Construction structure of open caisson cofferdam using holding type sheet pile
JP2006161402A (en) Construction method for improving water breaking structure
CN109594530B (en) Novel structure of fine sand stratum flood control dykes and dams
US10400407B2 (en) Modular wave-break and bulkhead system
JP5846150B2 (en) Construction method of river revetment structure
JP4819835B2 (en) Offshore structure and construction method of offshore structure
WO2017175676A1 (en) Method for improving breakwater structure
CN213709370U (en) Ocean fishing port wave-proof impact structure
CN209989781U (en) Novel structure of silty-fine sand stratum flood control dam
JP4504864B2 (en) Dam body reinforcement structure with wave-dissipating function
AU2012392206A1 (en) A versatile erosion control system
JP2015519489A (en) Partially floating offshore platform for offshore wind power, bridges and offshore structures, and construction method
CN201883413U (en) Combined concrete rectangular open caisson harbor basin
JP2015190109A (en) Scouring-resistant apron floor structure
JPH1054019A (en) Artificial sands nourishment method of seashore making use of lattice-like frame wave dissipation construction material and construction method thereof
KR100227536B1 (en) Bell type caisson foundation method
JP7495904B2 (en) Improvement structure and method of existing wharf
CN216765948U (en) Flood prevention cofferdam structure
CN112900364B (en) Anti-scouring and anti-sliding structure of diversion tunnel outlet opposite-bank road side slope and construction method thereof
JP6659430B2 (en) How to improve wavebreak structures
CN102071663A (en) Combined concrete rectangular sunk well basin and construction method thereof
EP2189576A1 (en) Foundation system for marine structures in deep water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108