JP3571828B2 - 車両用環境認識装置 - Google Patents

車両用環境認識装置 Download PDF

Info

Publication number
JP3571828B2
JP3571828B2 JP28102095A JP28102095A JP3571828B2 JP 3571828 B2 JP3571828 B2 JP 3571828B2 JP 28102095 A JP28102095 A JP 28102095A JP 28102095 A JP28102095 A JP 28102095A JP 3571828 B2 JP3571828 B2 JP 3571828B2
Authority
JP
Japan
Prior art keywords
image
window
filter
value
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28102095A
Other languages
English (en)
Other versions
JPH09126758A (ja
Inventor
千秋 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP28102095A priority Critical patent/JP3571828B2/ja
Publication of JPH09126758A publication Critical patent/JPH09126758A/ja
Application granted granted Critical
Publication of JP3571828B2 publication Critical patent/JP3571828B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ステレオ視を利用した車両用環境認識装置に関し、一層詳細には、例えば、自動車等の車両に搭載され、当該自動車の位置を基準として、風景や先行車等を含む情景に係る周囲環境を認識する車両用環境認識装置に関する。
【0002】
【従来の技術】
従来から、周囲環境を認識しようとする場合、ステレオ視を利用したステレオカメラにより得られる2枚の画像(ステレオ画像ともいう。)から三角測量の原理に基づき対象物(単に、物体ともいう。)までの距離を求め、対象物の位置を認識する、いわゆるステレオ法が採用されている。
【0003】
このステレオ法においては、前記距離を求める際に、撮像した2枚の画像上において同一物体の対応が採れることが前提条件となる。
【0004】
撮像した2枚の画像上において同一物体の対応を採る技術として、画像中の領域に着目する方法がある。
【0005】
この方法は、まず、一方の画像上に適当なサイズのウィンドウを設定し、他方の画像においてこのウィンドウに対応する領域を求めるために、他方の画像に前記ウィンドウと同一サイズの領域を設定する。
【0006】
次に、両画像上の各ウィンドウ内の画像(単に、ウィンドウ画像ともいう。)を構成する対応する各画素(詳しく説明すると、マトリクス位置が対応する各画素)についての画素データ値を引き算して差を得、さらに差の絶対値を得る。
【0007】
そして、各画素についての差の絶対値の前記ウィンドウ内の和、いわゆる総和を求める。
【0008】
このようにウィンドウ内の各画素データ値の差の絶対値の総和を求める計算を他方の画像上のウィンドウの位置を変えて順次行い、前記総和が最小になる他方の画像のウィンドウを、前記一方の画像のウィンドウに対応する領域であると決定する方法である。
【0009】
この発明においても、基本的には、この画像中の領域に着目する方法を採用している。
【0010】
【発明が解決しようとする課題】
ところで、自然環境下においては、照度が変化し、これに応じて物体の輝度が変化する。
【0011】
ところが、カメラを構成するCCDイメージセンサ等の撮像素子で取り扱うことの可能な明るさや露光量(透過光量)は、上限値および下限値が設定されており、この上下限値以外では、信号処理として取り扱える電気信号の適切な振幅変化(レベル変化)が得られない。
【0012】
電気信号として適切な振幅変化が得られない場合には、画像の濃度範囲(実際上は、映像の輝度範囲)が狭くなり、結局、前記差の絶対値の総和がウィンドウ毎にそれほど変わらないこととなり、対応を採ることができなくなるという問題がある。
【0013】
そこで、この問題を解決するために、例えば、特開平4−336514号公報に公表された従来の技術では、露光量を適切な値に設定するために、ウィンドウ内の画像の濃度に応じて開口絞りの絞り量を可変とするとともに、CCDイメージセンサの電子シャッタ時間を制御するようにしている。
【0014】
しかしながら、開口絞りにより露光量を変化させた場合には、レンズの周辺光量の特性が変化する。このため、周辺光量の低下の補正が必要となるが、この補正は、絞り量に応じて行う必要があり、相当に繁雑である。
【0015】
また、通常、絞り羽根等を使用する開口絞りは、機械的な位置決め誤差、摩擦、バックラッシ等が存在することから、この開口絞りのための露光量のフィードバック制御は、連続的かつ精密な制御が必要になるという問題もある。
【0016】
この発明はこのような課題を考慮してなされたものであり、簡単な構成で露光量を正確に調整することの可能な車両用環境認識装置を提供することを目的とする。
【0017】
第1のこの発明は、例えば、図1に示すように、
画像情報を有する光ILを光学部11R、11L及び撮像素子13R、13Lを有するステレオカメラにより電気信号に変換した後、増幅器で増幅した画像信号を得、該画像信号に基づく画像により物体までの距離を三角測量の原理に基づき測定する車両用環境認識装置において、
減光率の異なる2つの減光フィルタを備えた減光フィルタ組立体12R、12L(図3をも参照)が機械的に挿入・非挿入可能に設けられた、前記ステレオカメラの左右それぞれの光学部と
露光時間が可変される前記撮像素子と、
増幅利得が可変される前記増幅器と、
前記減光フィルタ、前記露光時間及び前記増幅利得による合成利得を、前記減光フィルタ組立体の挿入・非挿入回数が最小となるように、外光による周囲の明るさが明から暗に変化する時帯では徐々に大きく設定し、暗から明に変化する時帯では徐々に小さくなるように設定した2つの露光量設定テーブル8A、8B(図11参照)と
前記各時間帯に応じて前記2つの露光量設定テーブルのいずれか一方を参照し、前記減光フィルタ組立体の挿入・非挿入、前記撮像素子の露光時間及び前記増幅器の増幅利得の設定を行う露光量調整手段8と、
を備えることを特徴とする。
【0018】
第1のこの発明によれば、減光フィルタを挿入または非挿入とすることで、入射光量、言い換えれば、露光量を変化させているので、開口絞りを変化させる必要がなくなり、実質的に開放状態とすることができる。すなわち、機械的に複雑な構成の開口絞りがなくてもよい。また、光量をステップ的に変化させるので、連続的なフィードバック制御が不要となる。
【0021】
この場合、増幅利得値と減光フィルタと露光時間値との予め定められた組み合わせにより、光学部から画像信号出力手段までの合成利得値を決定するようにしているので、細かいステップで露光量を調整することができる。
【0022】
なお、撮像素子はCCDイメージセンサし、露光時間は、このCCDイメージセンサの電子シャッタ時間とすることができる。
【0023】
また、減光フィルタとしては、NDフィルタや、多数の孔が開けられた孔あき板を使用することができる。孔あき板としては、金属板等に多数の孔が等間隔に開けられた、いわゆるパンチングメタルを採用することができる。
【0024】
【発明の実施の形態】
以下、この発明の一実施の形態について、図面を参照して説明する。
【0025】
なお、この発明の理解を容易にするために、この実施の形態の要部の一部を簡明に説明すると、図1に示すように、画像情報を有する光ILをとらえる光学部を構成する対物レンズ11R、11Lを通じて得た光を、CCDイメージセンサ13R、13Lと信号処理回路14R、14Lとカメラ制御ユニット(以下、CCUという。)2R、2LとAD変換器3R、3Lを通じてデジタル画像信号に変換し、この複数のデジタル画像信号に基づく画像により物体までの距離を三角測量の原理に基づき測定する車両用環境認識装置において、光学部にNDフィルタ組立体12R、12Lを配設し、このNDフィルタ組立体12R、12Lの、光軸15R、15Lと略直交する方向への同時挿入、非挿入を切り換える駆動回路5R、5Lを、CCDイメージセンサ13R、13Lへの入射光量を所定光量に調整する露光量調整装置8により駆動し、光学部の開口絞りを実質的に不要(開放)としたものである。
【0026】
以下、この発明の一実施の形態の詳細を説明する。
【0027】
図1はこの発明の一実施の形態の構成を示すブロック図である。
【0028】
図1において、ステレオカメラ1が、右側のビデオカメラ(以下、単にカメラまたは右カメラともいう。)1Rと、左側のビデオカメラ(同様に、カメラまたは左カメラともいう。)1Lとにより構成されている。左右のカメラ1R、1Lは、図2に示すように、自動車(車両ともいう。)Mのダッシュボード上に予め定めた所定の間隔、いわゆる基線長Dを隔てて設置してある。また、カメラ1R、1Lはダッシュボード上に水平面に対して平行に、かつ車両Mの正面方向にある無限遠点が画像の中心となるように設置してある。さらに、カメラ1R、1Lはダッシュボード上に設置してあるために、カメラ1R、1Lを一体として連結することができ、上述の基線長Dを維持できる。
【0029】
また、カメラ1R、1Lは、車両Mのワイパーのワイパー拭き取り範囲内に配置し、かつワイパーが左右にあって同方向に回動する場合には、左右のワイパーブレードの始点から同一位置になるように配置することで、ワイパーブレードによる遮光位置の変化が左右のカメラ1R、1Lで同一となり、認識対象物体(物体、対象物、対象物体、または、単に、対象ともいう。)の撮像に対してワイパーブレードの撮像の影響を少なくすることができる。左右のカメラ1R、1Lの光軸15R、15L(図1参照)は、同一水平面上において平行になるように設定されている。
【0030】
図1から分かるように、右と左のカメラ1R、1Lには、光軸15R、15Lに略直交する方向に、画像情報を有する光ILをとらえる同一の焦点距離Fを有する対物レンズ11R、11Lと、減光フィルタとしてのNDフィルタ組立体12R、12Lと、対物レンズ11R、11Lによって結像された像を撮像するエリアセンサ型のCCDイメージセンサ(撮像素子部)13R、13Lとが配設されている。この場合、それぞれの光学系(光学部ともいう。)とも、例えば、右側の光学系で説明すれば、対物レンズ11R、NDフィルタ組立体12Rを構成する1つのNDフィルタ(後述する。)または素通しの状態およびCCDイメージセンサ13Rは、いわゆる共軸光学系を構成する。
【0031】
カメラ1R、1Lには、CCDイメージセンサ13R、13Lの読み出しタイミング、電子シャッタ時間等の各種タイミングを制御したり、CCDイメージセンサ13R、13Lを構成する撮像素子群を走査して得られる光電変換信号である撮像信号を、いわゆる映像信号に変換するための信号処理回路14R、14Lが配設されている。
【0032】
左右のカメラ1R、1Lの出力信号、言い換えれば、信号処理回路14R、14Lの出力信号である映像信号は、増幅利得等を調整するCCU2R、2Lを通じて、例えば、8ビット分解能のAD変換器3R、3Lに供給される。なお、実際上、CCU2R、2Lから信号処理回路14R、14Lに対して前記電子シャッタ時間を可変する制御信号が送出される。
【0033】
AD変換器3R、3Lによりアナログ信号である映像信号がデジタル信号に変換され、水平方向の画素数768列、垂直方向の画素数240行の画素の信号の集合としての画像信号(以下、必要に応じて、画素データの集合としての画像データともいい、実際上は濃度を基準とする画像信号ではなく輝度を基準とする映像信号データであるので、映像信号データともいう。)としてフレームバッファ等の画像メモリ4R、4Lに格納される。画像メモリ4R、4Lには、それぞれ、Nフレーム(Nコマ)分、言い換えれば、ラスタディスプレイ上の画面N枚分に相当する画面イメージが保持される。一実施の形態においてはNの値として、N=2〜6までの値が当てはめられる。2枚以上を保持できるようにしたために、画像の取り込みと対応処理とを並行して行なうことが可能である。
【0034】
画像メモリ(画像を構成する画素を問題とする場合には、画素メモリともいう。)4R、4Lは、この実施の形態においては、上記水平方向の画素数×垂直方向の画素数と等しい値の1フレーム分の画素メモリを有するものと考える。各画素メモリ4R、4Lは8ビットのデータを格納することができる。なお、各画素メモリ4R、4Lに格納されるデータは、上述したように、映像信号の変換データであるので輝度データである。
【0035】
画像メモリ4R、4Lに格納される画像は、上述したように1枚の画面イメージ分の画像であるので、これを明確にするときには、必要に応じて、全体画像ともいう。
【0036】
右側用の画像メモリ4Rの所定領域の画像データに対して、左側の画像メモリ4Lの同じ大きさの領域の画像データを位置(実際には、アドレス)を変えて順次比較して所定演算を行い、物体の対応領域を求める対応処理装置6が、画像メモリ4R、4Lに接続されている。
【0037】
左右の画像メモリ4R、4L中の対象の対応領域(対応アドレス位置)に応じ三角測量法(両眼立体視)に基づいて、対象の相対位置を演算する位置演算装置7が対応処理装置6に接続されている。
【0038】
対応処理装置6および位置演算装置7における対応処理・位置演算に先立ち、入力側が画像メモリ4Rに接続される露光量調整装置8の制御により、CCDイメージセンサ13R、13Lに入射される画像情報を有する光ILの露光量が適正化される。
【0039】
露光量調整装置8は、画像メモリ4Rの所定領域の画像データに基づいて、口述するルックアップテーブル等を参照して露光量を決定し、CCU2R、2Lの増幅利得と、CCDイメージセンサ13R、13Lの電子シャッタ時間{通常の場合、シャッタ速度と称されるが、単位は時間(具体的には、電荷蓄積時間)であるので、この実施の形態においては電子シャッタ時間という。なお、必要に応じて電子シャッタ速度ともいう。}と、NDフィルタ組立体12R、12Lのうちの所望のフィルタとを、それぞれ、同じ値、同じものに同時に決定する。
【0040】
NDフィルタ組立体12R、12Lのうち、所望のNDフィルタが、駆動回路5R、5Lを通じて切り換え選定されるが、この切り換えには、NDフィルタを使用しない場合、いわゆる素通し(必要に応じて、素通しのNDフィルタとして考える。)の場合も含まれる。
【0041】
図3は、右側のカメラ1Rに係るNDフィルタ組立体12Rの原理的構成を示している。左側のNDフィルタ組立体12Lも右側のカメラ1Rに係るNDフィルタ組立体12Rと同一の構成であるので、図示を省略する。
【0042】
NDフィルタ組立体12Rは、枠体21とスライダ22を有し、この枠体21中を駆動回路5Rを構成するフィルタ切換用モータ25の回転によりリンク26を通じて矢印PあるいはQ方向にスライダ22が摺動する。スライダ22には、CCU2Rの出力信号に換算して利得を18dB低下させるNDフィルタ23と、36dB低下させるNDフィルタ24とが配設されている。
【0043】
図3A中、記号「+」で表す箇所が光軸15Rであり、スライダ22が図示の位置にあるとき、光ILは、減光されないでそのまま通過する。上述したように、減光量が0dBの仮想的な素通しのNDフィルタが光軸15Rに対して挿入されていると考えることもできる。
【0044】
スライダ22が図3Bに示す状態にあるとき、光路上に、すなわち光軸15R上に光量を18dB減光するNDフィルタ23が配置され、図3Cに示す状態にあるとき、光軸15R上に光量を36dB減光するNDフィルタ24が配置されることになる。したがって、この実施の形態において、NDフィルタは、0dB、−18dB、−36dBの3段階にステップ的(階段的、段階的)に切り換えられるようになっている。
【0045】
次に、上記実施の形態の動作および必要に応じてさらに詳細な構成について説明する。
【0046】
図4は、三角測量の原理説明に供される、対象物体Sを含む情景を左右のカメラ1R、1Lにより撮像している状態の平面視的図を示している。対象物体Sの相対位置をRPで表すとき、相対位置RPは、既知の焦点距離FからのZ軸方向(奥行き方向)の距離Zdと右カメラ1RのX軸方向(水平方向)中心位置からの水平方向のずれ距離DRとによって表される。すなわち、相対位置RPがRP=RP(Zd、DR)で定義されるものとする。もちろん、相対位置RPは、既知の焦点距離Fからの距離Zdと左カメラ1LのX軸(水平方向)中心位置からの水平方向のずれ距離DLとによって表すこともできる。すなわち、RP=RP(Zd、DL)と表すことができる。
【0047】
図5Aは、右側のカメラ1Rによって撮像された対象物体Sを含む画像(右画像または右側画像ともいう。)IRを示し、図5Bは、左側のカメラ1Lによって撮像された同一対象物体Sを含む画像(左画像または左側画像ともいう。)ILを示している。これら画像IRと画像ILとがそれぞれ画像メモリ4Rおよび画像メモリ4Lに格納されていると考える。右側画像IR中の対象物体画像SRと左側画像IL中の対象物体画像SLとは、画像IR、ILのX軸方向の中心線35、36に対してそれぞれ視差dRと視差dLとを有している。対象物体画像SRと対象物体画像SLとは、エピポラーライン(視線像)EP上に存在する。対象物体Sが無限遠点に存在するとき、対象物体画像SRと対象物体画像SLとは、中心線35、36上の同一位置に撮像され、視差dR、dLは、dR=dL=0になる。
【0048】
なお、CCDエリアセンサ13R、13L上における図4に示す視差dR、dLとは、画像IR、IL上の図5に示す視差dR、dLとは極性が異なるが、CCDエリアセンサ13R、13Lからの読み出し方向を変えることで同一極性とすることができる。光学部に配設するレンズの枚数を適当に設定することによりCCDエリアセンサ13R、13L上における視差dR、dLと画像IR、IL上の視差dR、dLの極性とを合わせることもできる。
【0049】
図4から、次の(1)式〜(3)式が成り立つことが分かる。
【0050】
DR:Zd=dR:F …(1)
DL:Zd=dL:F …(2)
D=DR+DL …(3)
これら(1)式〜(3)式から距離Zdとずれ距離DRとずれ距離DLとをそれぞれ(4)式〜(6)式で求めることができる。
【0051】
Zd=F×D/(DR+DL) …(4)
DR=dR×D/(dL+dR) …(5)
DL=dL×D/(dL+dR) …(6)
これら位置情報である距離Zdとずれ距離DRとずれ距離DLとをクラスタリングして、対象物体Sについての識別符号としての、いわゆるアイディ(ID:Identification)を付けることで、車両追従装置等への応用を図ることができる。
【0052】
なお、実際上の問題として、CCDイメージセンサ13R、13Lの実効1画素の物理的な大きさの測定や焦点距離Fの測定は困難であるため、比較的正確に測定可能な画角を利用して距離Zd、ずれ距離DR、DLを求める。
【0053】
すなわち、例えば、カメラ1R、1Lの水平画角をθ、カメラ1R、1Lの水平方向の実効画素数(画像メモリ4R、4Lの水平画素数に等しい画素数)をN、視差dR、dLに対応する画像メモリ4R、4L上の画素数をNR、NLとすると、次に示す(7)式〜(9)式から距離Zdとずれ距離DRとずれ距離DLとをそれぞれ求めることができる。
【0054】
Zd=N×D/{2(NL+NR)tan(θ/2)} …(7)
DR=NR・D/(NL+NR) …(8)
DL=NL・D/(NL+NR) …(9)
ここで、水平画角θは測定可能な値であり、水平方向画素数N(この実施の形態では、上述したようにN=768)は予め定められており、視差dR、dLに対応する画素数NRおよびNLも取り込んだ画像から分かる値である。
【0055】
次に、上述の画像の取り込みからIDを付けるまでの過程をフローチャートを利用して全体的に説明すれば、図6に示すようになる。
【0056】
すなわち、AD変換器3R、3Lから出力される映像信号データがそれぞれ画像メモリ4R、4Lに取り込まれて格納される(ステップS1)。
【0057】
ステップS1に続いて、画像メモリ4Rに記憶されたある領域の画像に対応する画像を画像メモリ4Lから求め、いわゆる画像の左右の対応を取る(ステップS2)。
【0058】
対応を取った後、カメラ1R、1Lにおける視差dR、dLを求め、位置情報に変換する(ステップS3)。
【0059】
その位置情報をクラスタリングし(ステップS4)、IDを付ける(ステップS5)。
【0060】
位置演算装置7の出力である、IDの付けられた出力は、本発明の要部ではないので、詳しく説明しないが、図示していない、例えば、道路・障害物認識装置等に送出されて自動運転システムを構成することができる。この自動運転システムでは、運転者に対する警告、自動車(ステレオカメラ1を積んだ自車)Mの衝突回避、前走車の自動追従等の動作を行うことができる。
【0061】
この実施の形態において、上述の左右の画像の対応を取るステップS2では、いわゆる特徴に着目した方法ではなく、基本的には、従来技術の項で説明した画像中の領域に着目する方法を採用している。
【0062】
すなわち、エッジ、線分、特殊な形など何らかの特徴を抽出し、それらの特徴が一致する部分が対応の取れた部分であるとする特徴に着目する方法は、取り扱う情報量が低下するので採用せず、一方の画像、この実施の形態では、右画像IRから対象物体画像SRを囲む小領域、いわゆるウィンドウを切り出し、この小領域に似た小領域を他方の左画像ILから探すことにより対応を決定する方法を採用している。
【0063】
この実施の形態において採用した画像中の領域に着目する方法では、2枚の画像IL、IR上において同一対象物体Sの対応を採る技術として、一方の画像上に適当なサイズのウィンドウを設定し、他方の画像においてこのウィンドウに対応する領域を求めるために、他方の画像に前記ウィンドウと同一サイズの領域を設定する。
【0064】
次に、両画像上の各ウィンドウ内の画像(単に、ウィンドウ画像ともいう。)を構成する対応する各画素(詳しく説明すると、ウィンドウ画像中のマトリクス位置が対応する各画素)についての画素データ値、すなわち、輝度値を引き算して差を得、さらに輝度差の絶対値を得る。
【0065】
そして、各対応する画素についての輝度差の絶対値の前記ウィンドウ内の和、いわゆる総和を求める。
【0066】
この総和を左右画像の一致度(対応度ともいう。)Hと定義する。このとき、右画像IRと左画像ILのウィンドウ内の対応座標点(x,y)の輝度(画素データ値)をそれぞれIR(x,y)、IL(x,y)とし、ウィンドウの横幅をn画素(nは画素数)、縦幅をm画素(mも画素数)とするとき、ずらし量をdx(後述する)とすれば、一致度Hは、次の(10)式により求めることができる。
【0067】
H(x,y)=Σ(j=1→m)Σ(i=1→n)|Id| …(10)
ここで、
|Id|=|IR(x+i,y+j)−IL(x+i+dx,y+j)|
である。記号Σ(i=1→n)は、|Id|についてのi=1からi=nまでの総和を表し、記号Σ(j=1→m)は、Σ(i=1→n)|Id|の結果についてのj=1からj=mまでの総和を表すものとする。
【0068】
この(10)式から、一致度Hが小さいほど、言い換えれば、輝度差の絶対値の総和が小さいほど、左右のウィンドウ画像が良く一致していることが分かる。
【0069】
この場合、分割しようとするウィンドウ、すなわち小領域の大きさが大きすぎると、その領域内に相対距離Zdの異なる他の物体が同時に存在する可能性が大きくなって、誤対応の発生する可能性が高くなる。一方、小領域の大きさが小さすぎると、誤った位置で対応してしまう誤対応、あるいは、ノイズを原因とする誤対応が増加してしまうという問題がある。本発明者等は、種々の実験結果から、最も誤対応が少なくなる小領域の大きさは、横方向の画素数nがn=7〜9程度、縦方向の画素数mがm=12〜15程度の大きさであることをつきとめた。
【0070】
図7と図8は、対応処理装置6において一致度Hを求める対応計算を行う際の領域の動かし方の概念を示している。
【0071】
図7に示すように、対応を取る元となる右画像IR上の所定領域(小領域または原領域ともいう。)31は、X軸方向左端位置から右へ1画素ずつ640画素分移動していき、対応を取られる左画像ILの所定領域(小領域または検索領域ともいう。)32は、右画像IRの原領域31の左端位置に対応する位置(以下、原領域31の水平方向の変移位置という。)から対応計算を行い、ずらし量dxを右方向にエピポラーラインEP上を0〜最大127画素分だけ1画素ずつ移動させて対応計算を行うようにしている。最大127画素のずれが有効な一致度Hの計算は、合計で(640−n)×128回行われる。
【0072】
なお、128画素分に限定する理由は、出力結果を利用する側の要求から水平画角θがθ=40°、最短の距離ZdがZd=5m、使用できるステレオカメラ1(カメラ1Rとカメラ1L)の水平方向の画素数NがN=768、設置できる基線長DがD=0.5mから、下記の(11)式に当てはめると、NL+NR=105画素となり、ハードウェアにおいて都合のよい2の累乗でこれに近い値の2=128を選んだからである。
【0073】
Figure 0003571828
このことは、右画像IR中、X=0(左端)の位置に撮像された対象が、かならず、左画像ILのずらし量dx=0〜127に対応する0番目の画素位置から127番目の画素位置内に撮像されていることを意味する。したがって、X座標値(変移位置ともいう。)X=0を基準とする原領域31内の撮像対象は、左画像ILのX座標値X=0を基準として、ずらし量dx=0〜127の範囲に撮像されていることを意味する。同様にして右画像IRのX座標値X=640−nを基準とする原領域31内の撮像対象は、左画像ILのX座標値X=640−nを基準として、ずらし量dx=0〜127の範囲に撮像されていることになる。
【0074】
このとき、検索領域32の最右端の画素がX座標値X=640+n+127=767(768番目)の最右端の画素になるので、それ以上、右画像IRの原領域31を右方向にずらすことは、一般に、無意味である。右画像IR中、X座標値X=640−nより右側の撮像対象は、左画像ILに撮像されないからである。しかし、遠方の画像については対応がとれるため、有意なこともあるので、本発明においては、対応すべき画像のない部分の画素については8ビットの最大値255があるものとして一応計算を行なっている。メモリや計算時間を節約するためにはX座標値X=640−nまでで打ち切ることが有効である。
【0075】
そこで、図8のフローチャートに示すように、まず、右画像IR中のX座標値X=0を変移位置とする原領域31を取り出し(ステップS11)、左画像ILの検索領域32のずらし量dxをdx=0に設定する(ステップS12)。
【0076】
次に、ずらし量dxがdx=127を超える値であるかどうか、すなわちdx=128であるかどうかを判定する(ステップS13)。
【0077】
この判定が否定的であるときには、対応度Hの計算をするために、左画像ILの検索領域(小領域)32分の画素データを取り出す(ステップS14)。
【0078】
次いで、小領域31と小領域32の各画素の差の絶対値の総和、すなわち、(10)式に示す一致度Hを求め記憶する(ステップS15)。
【0079】
次に、ずらし量dxをdx→dx+1(この場合、dx=1)として1画素分増加する(ステップS16)。
【0080】
このとき、ステップS13の判定は成立しないので、次に、ずらし量dx=1を基準に検索領域32を取り出し(再び、ステップS14)、このずらし量dx=1基準の検索領域32とX座標値(変移位置ともいう。)XがX=0の原領域31とで一致度Hを計算して記憶する(再び、ステップS15)。
【0081】
同様にして、ずらし量dxがdx=128になるまで(ステップS13の判定が成立するまで)X座標値X=0の原領域31についての一致度Hを計算する。
【0082】
ステップS13の判定が肯定的であるとき、すなわち、X座標値XがX=0の原領域31について計算した一致度Hのうち、負のピーク値である最小値Hminとその近傍の値を求め、記憶しておく(ステップS17)。
【0083】
次に、繁雑になるので、図8のフローチャート中には記載しないが、右画像IR中の変移位置X=1〜767(または640−n)まで、上述のステップS11〜17を繰り返し、各変移位置Xにおける右画像IRの原領域31に最も対応する左画像ILの検索領域32を検出する。
【0084】
図9は、図7の動作説明図、図8のフローチャートに基づいて、一致度Hの計算等を行う対応処理装置6の詳細な構成を示すブロック図である。
【0085】
図9中、スキャン座標生成部61において、対応処理を行おうとする右画像IRに対する原領域31と左画像ILに対する検索領域32の座標(上述の図7に示す変移位置Xとずらし量dxおよびエピポラーラインEPのY座標値)が生成される。
【0086】
このスキャン座標生成部61で生成された座標に基づいて、画像メモリ4R、4Lから読み出す小領域のアドレスを画像メモリアドレス生成部64により生成する。
【0087】
さらにスキャン座標生成部61で生成された座標に基づいて、詳細を後述する補正テーブル63から補正データ(補正情報)を読み出すための補正テーブルアドレスが補正テーブルアドレス生成部62で生成される。
【0088】
画像メモリ4R、4Lから読み出された画像データに基づく一致度Hの計算、いわゆる相関演算が相関演算部65で行われ、相関演算結果が相関メモリ67に記憶される。また、ずらし量dxに対応して相関演算結果のピーク値、すなわち一致度Hの最小値Hmin等がピーク値検出部66により検出され、検出されたピーク値がピーク値メモリ68に記憶される。
【0089】
補正テーブル63に格納される補正データは、いわゆるシェージング補正のためのデータである。
【0090】
すなわち、図10に示すように、理想的レンズの透過強度特性71に比較して実際のレンズ11の場合には、透過強度特性72に示すように、レンズ11の中心、すなわち、光軸15R、15Lからの距離に応じて周辺光量(透過強度)が低下する、いわゆるコサイン4乗則による強度低下が発生する。コサイン4乗則は、入射強度をIin、出射強度をIoutとするとき、周知のように、次の(12)式により得られる。
【0091】
Iout=Iin×(cosφ) …(12)
但し、φ:入射光の傾きの角度
なお、この実施の形態においては、後に詳しく説明するように、NDフィルタ組立体12Rを使用しているので、いわゆる機械的な開口絞りは設けておらず、したがって、開口絞りの開口径の変化を原因とする口径食に基づくシェージングの変化はない。実際上、シェージング補正データは、CCDイメージセンサ13R、13Lも含めて、基準となる明度の被写体を測定することで得ることができる。カメラ1R、1Lで得られた画像データをシェージング補正データで補正することにより、図10の理想的レンズの場合の透過強度特性71が得られる。このシェージング補正データが補正テーブル63に格納されている。
【0092】
対応処理装置6により一致度Hを計算する相関演算の際には、対応を取る領域の原領域31と検索領域32とは、上述したようにエピポラーラインEP上を水平方向に移動させる必要がある。したがって、対応する原領域31と検索領域32の明るさ(輝度)が、上述のシェージングを原因として左右の画像IR、IL上で異なってしまうため、シェージング補正は重要である。
【0093】
上述したように、スキャン座標生成部61で生成された対応を取るべき座標に基づいて、補正テーブルアドレス生成部62により生成された指定アドレスにより補正テーブル63からシェージング補正データ(補正情報)を読み出し、画素の画像情報(輝度情報)に乗算してシェージング補正後の画像データを得ることができる。補正乗数Cは、画像メモリ4R、4Lの各画素位置毎に、固定小数点の8ビット(整数部1ビット、小数部7ビット)で持っている。なお、画像情報が対数的に変化する場合には、符号付き整数の加算を行うことで補正が可能であることはいうまでもない。
【0094】
ここで、本発明の要部に係る減光機能を制御する露光量調整装置8に係る動作を説明する。
【0095】
露光量調整装置8は、この実施の形態において、右画像IR中の原領域31を構成する画素データを平均し、その値が、所定の範囲、この実施の形態においては、画素データが8ビットデータであるので256階調あり、その中央付近の80〜160階調の間に入るように、図11Aおよび図11Bに示すルックアップテーブルである露光量設定テーブル(合成利得設定テーブルともいう。)8Aおよび8Bを参照して、合成利得AS〔dB〕を決定する。合成利得ASを決定することにより、CCU2R、2Lの増幅利得a1〔dB〕と、CCDイメージセンサ13R、13Lの電子シャッタ時間(正確には、電子シャッタ時間を図11A、Bの( )中に示す利得に換算した等価的な利得〔dB〕)a2と、NDフィルタ組立体12R、12Lに係る光量低下利得a3〔dB〕とが自動的に決定される。
【0096】
たとえば、周囲の明るさが明から暗に変化する正午を超える夕方時から午前0時まで等においては、図11Aに示す露光量設定テーブル8Aを参照する。例として、合成利得ASがAS=−18dBに選定された場合には、CCU2R、2Lの増幅利得a1が共にa1=0dBに設定され、CCDイメージセンサ13R、13Lの電子シャッタ時間a2が1/500秒(利得換算では−18dB)に設定され、NDフィルタ組立体12R、12Lが、それぞれ、素通し(図3A)の状態(利得換算では、光量低下利得a3=0dB)に設定される。
【0097】
この場合、夕方時においては、周囲の明るさが徐々に暗くなることから、映像信号の振幅を増加させるために合成利得ASを時間の経過に応じて徐々に大きくする方向に変化させる必要があるが、明から暗時用の露光量設定テーブル8Aを参照して合成利得ASを設定した場合には、合成利得ASをAS=−18dBから大きくする場合に電気的に切換可能な電子シャッタ時間a2と増幅利得a1のみを大きくすれば済むように設定しているので、機械的に作動するNDフィルタ組立体12R、12Lを切り換える作業が不要となり(上例では、素通しのまま)、信頼性が向上し、かつその作動に伴う騒音等の発生を少なくすることができるという効果が達成される。
【0098】
なお、実際上、正午時等においては、周囲の明るさが6dB変化することは希であり、明るさが変化しない時刻においても、当然、NDフィルタ組立体12R、12Lの作動が最小限になる。
【0099】
同様に、例えば、明け方時等においては、周囲の明るさが徐々に明るくなることから、映像信号の振幅を減少させるために合成利得ASを小さくする方向に変化させる必要があるが、図11Bの暗から明時に係る露光量設定テーブル8Bを参照して合成利得ASを、例えば、当初、合成利得AS=−18dBに設定した場合には、駆動回路5R、5Lを通じてフィルタ切換用モータ25が回転され、利得を18dB低下させるNDフィルタ23が光軸15Rに設定された後、合成利得ASがAS=−30dBから−36dBに変化する時点でのみ1回だけNDフィルタ組立体12R、12Lが作動される。
このように、この実施の形態では、明から暗時への変化用の露光量設定テーブル8Aと、暗から明時への変化用の露光量設定テーブル8Bとを備え、周囲の明るさが明るくなっていく場合と暗くなっていく場合とでは組み合わせを変え、NDフィルタ組立体12R、12Lの利得切り換えにさしかかる明度変化ではNDフィルタ組立体12R、12Lが繁雑に作動しないように工夫している。
【0100】
ステップ的に3段階(0dB、−18dB、−36dB)に変化する減光機構であるNDフィルタ組立体12R、12Lを採用することにより、従来技術のように、開口絞りを連続的にフィードバック制御する必要がなくなるという利点が得られる。
【0101】
また、開口絞りを使用していないので、絞りの変化による上述のシェージング量の変化が一定になる、言い換えれば、絞りの変化による周辺光量の増減がなくなることから、補正テーブル63に準備しておくシェージング補正データも1種類でよくなる。したがって、補正値を絞りに応じて変化させる必要がなくなり、メモリ素子等のトータル的な資源の減少および演算時間を短くすることができるという利点も得られる。
【0102】
すなわち、この実施の形態によれば、光学的絞りが、実際上、実質的に開放状態となり、周辺光量の変化の割合は一定になる。開口絞りは不要となり、その分、機構を簡単にすることができる。
【0103】
さらに、レンズ11R、11Lの口径を、常に、最大限に使用することができるため、レンズ11R、11Lの前方(被写体側)に配される光学ガラスに付着した汚れやごみを原因とする画像上の影響を低減できる。すなわち、開口絞りを使う場合に、例えば、日中には、絞りが絞りこまれることから被写体深度が深くなり、汚れやごみ等が画像上に雑音としてはっきり写ってしまい、誤対応が発生する可能性が大きくなるが、このような問題をNDフィルタ組立体12R、12Lの利用により未然に回避することができる。
【0104】
次に、図12は、図6、図7を参照して説明した一致度Hを求めるための相関演算部65の詳細な構成を示している。
【0105】
この相関演算部65は、基本的には、第1〜第4の演算ブロック81〜84を有する、いわゆるパイプライン方式的処理である並列処理方式を採用している。
【0106】
理解の容易化のために、まず、パイプライン方式的処理を考慮しないで、具体的には、FIFOメモリ65iが存在しないものとして、第1の演算ブロック81のみで、図6、図7を参照して説明した一致度Hを求めるための動作について説明する。そして、上述のように、誤対応が最も少なくなるそれぞれの小領域(原領域31と検索領域32)の大きさとしては、横方向の画素数nがn=7〜9画素程度、縦方向の画素数mがm=12〜15画素程度であるが、ここでは、理解を容易にするために、n=4、m=5として説明する。
【0107】
図13は、このような前提のもとでの、エピポラーラインEP上に乗る仮想的な右画像データIrdの例を示している。原領域31の対象となる全画素データ数は、m×640=5×640箇であるものとする。
【0108】
図14は、同様に、エピポラーラインEP上に乗る仮想的な左画像データIldの例を示している。検索領域32の対象となる全画素データ数は、m×768=5×768箇であるものとする。
【0109】
図12において、画像メモリ4Rから端子85を通じて原領域31の右画像データIrdが乗算器65jの一方の端子に供給され、画像メモリ4Lから端子86を通じて検索領域32の左画像データIldが乗算器65kの一方の端子に供給される。
【0110】
乗算器65j、乗算器65kの他方の端子には、補正テーブル63からそれぞれ端子87、88を通じてシェージング補正データが供給され、シェージング補正後の右画像データIrdが減算器65aの被減算入力端子に供給され、シェージング補正後の左画像データIldが減算器65aの減算入力端子に供給される。
【0111】
一般的に説明すると、減算器65aでは、縦方向の左右の画素データの差を取り、その差の絶対値が絶対値演算器65bで取られる。加算器65cは、縦方向の左右の画素データの差の絶対値の和を取るとともに、ラッチ65dにラッチされている前列の縦方向の左右の画素データの差の絶対値の和を加算する。
【0112】
FIFOメモリ65eには、横方向の画素数nに対応するn段分、この実施の形態では、当該列の分を除いて左側(前側)に4(=n)列分の縦方向の左右の画素データの差の絶対値の和が保持される。すなわち、この実施の形態において、FIFOメモリ65eは、最初(入力側)のメモリ65e1〜最後(出力側)のメモリ65e4までの4段ある。
【0113】
具体的に説明すると、1回目の演算(1列1行目)で加算器65cの出力側には、1列1行目の左右の画素データの差の絶対値|A1−a1|が現れ、かつ、この値|A1−a1|がラッチ65dに保持される。
【0114】
2回目の演算(1列目2行目)で1列2行目の左右の画素データの差の絶対値|A2−a2|とラッチ65dに保持されているデータ|A1−a1|との和、すなわち、|A2−a2|+|A1−a1|が加算器65cの出力側に現れる。
【0115】
したがって、5回目の演算後には、次の(13)式に示す1列目の左右の画素データの差の絶対値の和(データ)Σ▲1▼(以下、2列目以降を順次、Σ▲2▼、Σ▲3▼、Σ▲4▼、…Σ641とする。)が加算器65cの出力側に現れ、この和Σ▲1▼は、ラッチ65dに保持される。また、このデータΣ▲1▼は、FIFOメモリ65eの最初のメモリ65e1に格納される。
【0116】
Σ▲1▼=|A1−a1|+|A2−a2|+|A3−a3|+|A4−a4|+|A5−a5| …(13)
この1列目の左右の画素データの差の絶対値の和Σ▲1▼が、最初のメモリ65e1に格納された後、ラッチ65dは、端子89から供給される制御信号によりリセットされる。
【0117】
このようにして、ずらし量dxの値がdx=0での小領域31、32間での全ての1回目の計算が終了する4列(4=n)5行(5=m)目の演算終了後のラッチ65dに格納されるデータ値とFIFOメモリ65eに格納されるデータ値とラッチ65hに格納されるデータ値等を図15に模式的に示す。
【0118】
図15において、ずらし量dxの値がdx=0の場合における次の(14)式に示す最初に求められる一致度H0が加算器65gの出力側に現れている点に留意する。
【0119】
H0=Σ▲1▼+Σ▲2▼+Σ▲3▼+Σ▲4▼ …(14)
次に、5列5行目の演算終了後の図15に対応する図を図16に示す。図16から分かるように、ずらし量dxの値がdx=0の場合の検索領域32に対する一致度H0が出力端子90に現れる。
【0120】
この場合、加算器65fの出力側には、5列目のデータΣ▲5▼と1列目のデータΣ▲1▼との差Σ▲5▼−Σ▲1▼が現れるので、加算器65gの出力側には、ずらし量dxの値がdx=1の場合の検索領域32に対する次の(15)式に示す一致度H1が現れることになる。
【0121】
H1=Σ▲2▼+Σ▲3▼+Σ▲4▼+Σ▲5▼ …(15)
ここで、実際の小領域15×15を水平方向にX=0〜639まで移動し、ずらし量dxをdx=128までの各一致度Hを求める際に、この実施の形態では、原領域31の左画像IL上で1画素分右にずらした位置での対応度Hを求めるとき、左端の縦方向の和(上例ではΣ▲1▼)を減じて右に加わる新たな列の縦方向の和(上例ではΣ▲5▼)を加えるようにしているので、演算回数を15×640×128=1,228,800回にすることができる。すなわち、小領域の横方向の幅(画素数)は計算時間に無関係になる。
【0122】
もし、上例のように演算しなくて、15×15の小領域を移動させこの小領域毎に各領域を構成する画素データの差を取って、一致度Hを、水平方向X=0〜639までずらし量dxを128まで計算することにすると、演算回数は15×15×640×128=18,432,000回となり、最も演算時間のかかる絶対値演算器65bの1回の演算時間を100nsで実行した場合でも、総演算時間が1843msかかることになる。これに対して上例では、総演算時間を123msであり、約1/15に低減することができる。
【0123】
しかし、この総演算時間123msは、NTSC方式のフレームレートである33msより大きいので、フレームレート毎に、言い換えれば、1画面毎に一致度Hを計算する場合には、総演算時間123msを約1/4以下の時間にする必要がある。
【0124】
そこで、この実施の形態では、図12に示したように、第1演算ブロック81と同一構成の第2〜第4演算ブロック82〜84を設け、縦方向の画素数mと同数のFIFOメモリ65iを直列に接続している。
【0125】
この場合、簡単のために、図13、図14と同じ画像データを利用してパイプライン方式的処理動作を説明すれば、最初に、第1〜第2演算ブロック81、82を構成するFIFOメモリ65eを通じて、第3の演算ブロック83を構成するFIFOメモリ65iに1列目の画素データa1〜a5までを転送する。したがって、この転送時点で、第2の演算ブロックを構成するFIFOメモリ65iには2列目の画素データb1〜b5が転送され、第1の演算ブロックを構成するFIFOメモリ65iには3列目の画素データc1〜c5が転送される。
【0126】
次に、次の4列目の画素データd1〜d5を第1演算ブロック81のFIFOメモリ65iに順次転送したとき、第4演算ブロック84では右1列目の画素データA1〜A5と左1列目の画素データa1〜a5に関連する上述の演算が行われ、第3演算ブロック83では右1列目の画素データA1〜A5と左2列目の画素データb1〜b5に関連する上述の演算が行われ、第2演算ブロック82では右1列目の画素データA1〜A5と左3列目の画素データc1〜c5に関連する上述の演算が行われ、第1演算ブロック81では右1列目の画素データA1〜A5と左4列目の画素データd1〜d5に関連する上述の演算が行われる。
【0127】
次いで、右2列目の画素データB1〜B5の転送に同期して次の左5列目の画素データe1〜e5を第1の演算ブロック81のFIFOメモリ65iに順次転送したとき、第4演算ブロック84では右2列目の画素データB1〜B5と左2列目の画素データb1〜b5に関連する演算が行われ、第3演算ブロック83では右2列目の画素データB1〜B5と左3列目の画素データc1〜c5に関連する演算が行われ、第2演算ブロック82では右2列目の画素データB1〜B5と左4列目の画素データd1〜d5に関連する演算が行われ、第1演算ブロック81では右2列目の画素データB1〜B5と左5列目の画素データe1〜e5に関連する上述の演算が行われる。
【0128】
このようにして、次に、右3列目の画素データC1〜C5の転送に同期して次の左6列目の画素データf1〜f5を順次同期して転送するようにすれば、第4演算ブロック84では、ずらし量dxがdx=0、dx=4、……についての一致度Hを計算でき、同様に、第3の演算ブロック83では、ずらし量dxがdx=1、dx=5、……についての一致度Hを計算でき、第2の演算ブロック82では、ずらし量dxがdx=2、dx=6、……についての一致度Hを計算でき、第1の演算ブロック81では、ずらし量dxがdx=3、dx=7、……についての一致度Hを同時に計算することできる。
【0129】
このように、パイプライン方式的処理の4並列にすれば、演算時間を約1/4に低減することができる。なお、上述の説明から理解できるように、第4演算ブロック84中のFIFOメモリ65iは不要である。
【0130】
この場合、図12例の4並列による動作によれば、1フレームレートで1フレームの画像についての640点の距離情報が求まり、左画像ILの横768画素×縦15画素の帯領域の処理が完了するが、これは1画像領域が768×240画素であることを考えると、全画像領域の1/16になる。
【0131】
なお、左右のカメラ1R、1Lの上下方向の取付位置がずれた場合等を想定した場合には、当初のエピポラーラインEP上に対応する対象物画像が存在しなくなる場合も考えられる。この場合、図示はしないが、例えば、図9の対応処理装置6の構成を4並列にし、画像の縦方向の処理を4並列にすることにより、横768画素、縦15画素の帯領域4つをフレームレートで処理することが可能となる。この場合に、領域が重ならないようにすることで、最大127画素のずれまで検出できる距離情報を1フレームレートで(640−n)×4点出力できる。
【0132】
図12例の相関演算部65の処理により、1本のエピポラーラインEP上における右画像IR中の640個の原領域31のそれぞれに対して、ずらし量dxがdx=0〜127の検索領域32についての128個の一致度Hが演算され、この演算結果の一致度Hが、相関メモリ67に格納される。
【0133】
また、1個の原領域31、すなわち、各変移位置Xに対する128個の検索領域32のうち、一致度Hが最小値となる値(ピーク値ともいう。)をピーク値検出部66で検出し、検出したピーク値(最小値)Hminを、そのときの変移位置Xとずらし量dxに対応させてピーク値メモリ68に記憶する。ピーク値メモリ68は、一致度Hのピーク値(最小値)記憶テーブルとして機能する。
【0134】
変移位置Xとずらし量dxをアドレスとして一致度Hが記憶されている相関メモリ67と、その最小値としてのピーク値Hminが記憶されているピーク値メモリ68が位置演算装置7に接続されている。
【0135】
位置演算装置7は、一致度Hとそのピーク値Hminとを参照し、図17に示すフローチャートに基づいて、対象物体Sの3次元空間での位置Pを求める。
【0136】
変移位置Xが所定の変移位置であるX=Xpの原領域31についての位置Pの算出方法について説明する。
【0137】
まず、所定の変移位置Xpの原領域31についての一致度Hについての、ピーク値Hminと、そのときのずらし量dx(このずらし量dxをずらし量dxminと呼ぶ)をピーク値メモリ68から取り込む(ステップS21)。
【0138】
次に、このずらし量dxminの近傍の左右各2個の一致度H、すなわち、ずらし量dxがずらし量dxminより3つ少ないずれ量dxmin−2および3つ多いずれ量dxmin+2の各位置における一致度Hmin−2、Hmin+2を取り込む(ステップS22)。
【0139】
次に、次の(16)式に基づいて谷の深さ(ピーク深さともいう。)Qを求める(ステップS23)。
【0140】
Q=min{Hmin−2/Hmin,Hmin+2/Hmin} …(16)
この(16)式は、ピーク値Hminに対する、これから2つ隣の一致度Hmin−2、Hmin+2の大きさの各比のうち、最小値を取ることを意味する。
【0141】
そして、この谷の深さQが所定の閾値TH以上の値であるかどうか(Q≧TH)を判定し(ステップS24)、所定の閾値TH以上の値である場合には、ピーク値Hminであり、ずらし量dxminの検索領域32が所定の変移位置Xpの原領域31に対応する領域であると同定して次のステップS25に進む。
【0142】
一方、ステップS24の結果が否定的である場合には、ピーク値Hminであり、ずらし量dxminの検索領域32が所定の変移位置Xpの原領域31に対応する領域ではないと判断して、次の変移位置Xp+1の原領域31に対する対応する検索領域32を求める処理が全て終了したかどうかを判定し(ステップS28)、全ての変移位置Xに対応する処理が終了していない場合には、そのステップS21〜S24の処理を繰り返す。
【0143】
この実施の形態において、一致度Hのピーク値Hminを変移位置Xpの原領域31に対応する検索領域32であると直ちに同定しないで、その近傍を見て(ステップS22)、その谷の深さQを計算し(ステップS23)、その谷の深さQが所定の閾値TH以上の場合にのみ、一致度Hのピーク値Hminが得られるずらし量dxminの検索領域32が、変移位置Xpの原領域31に対応する検索領域32であると同定する理由は、雑音の混入または画像IR、ILの被写体の画像濃度が一様である場合等に、一致度Hのピーク値Hminが得られる。ずらし量dxminの検索領域32が、変移位置Xpの原領域31に必ずしも対応するとは限らないからである。
【0144】
すなわち、ずらし量dxminの位置の近傍領域を考慮して、谷の深さQが、所定の閾値THより小さいものは、対応がよく取れていないと判断し、その一致度Hのピーク値Hminは利用しないこととした。なお、所定の閾値THは、この実施の形態においては、TH=1.2とした。
【0145】
ステップS24の判断が肯定的であるとき、ずらし量dxの真の値(真のピーク位置という)dsを次に示す補間処理により求める(ステップS25)。すなわち、図18に示すように、最小位置座標を(dxmin,Hmin)とし、その前後の位置座標をそれぞれ(dxmin−1,Hmin−1)、(dxmin+1,Hmin+1)とするとき、前後の一致度Hmin−1、Hmin+1の大きさを比較して、それぞれ次の(17)式〜(19)式で示す値に推定する。
【0146】
Figure 0003571828
この(17)式〜(19)式の補間式を用いて真のピーク位置dsを求めた場合には、補間しない場合に比較して、位置精度が3倍向上することを実験的に確認することができた。
【0147】
結局、ステップS25の補間処理終了後に、変移位置Xpの原領域31に最も対応する検索領域32の真のピーク位置dsが求まることになる。
【0148】
このようにして求められた変移位置Xpと真のピーク位置dsは、それぞれ、図5に示す右画像IR上の対象物体画像SRの視差dRと左画像IL上の対象物体画像SLの視差dLに対応する。
【0149】
しかし、実際上、フロントガラスやカメラ1R、1Lの対物レンズ11R、11Lの光学特性によって、左右の画像IR、ILには、例えば、ピンクッション的歪、あるいはバレル的歪が存在するので、これらによる歪補正を行った視差dRと視差dLとを求める。
【0150】
そこで、これら歪補正を行った視差dRと視差dLを測定値として、上述の(4)式〜(6)式から対象物体Sまでの奥行き方向の距離Zdと、その距離Zdからの左右の偏差にかかるずれ距離DRとずれ距離DLとの3次元位置情報を求めることができる(ステップS27)。
【0151】
ステップS28では、エピポラーラインEP上の全ての変移位置Xでの原領域31に対応する検索領域32中の真のピーク位置dsを求める演算が終了したかどうか、すなわち、X=767であるかどうかを確認して処理を終了する。
【0152】
位置演算装置7で作成された、これら3次元位置情報である距離Zdとずれ距離DRとずれ距離DLとはクラスタリングされ、対象物体Sについての識別符号としての、いわゆるアイディ(ID:Identification)が付けられて、出力端子90を通じて、次の処理過程である、図示しない道路・障害物認識装置等に接続される。
【0153】
道路・障害物認識装置等は、自動運転システムを構成し、運転者に対する警告、車体の自動衝突回避、前走車への自動追従走行などの動作を行うことができる装置である。この場合、例えば、自動追従走行を行うシステムとして、本出願人の出願による「物体検出装置およびその方法」(特願平7−249747号)を挙げることができる。
【0154】
なお、この発明は上述の実施の形態に限らず、この発明の要旨を逸脱することなく種々の構成を採り得ることはもちろんである。
【0155】
【発明の効果】
以上説明したように、この発明によれば、減光フィルタを挿入または非挿入とすることで入射光量、言い換えれば、露光量を変化させているので、開口絞りを変化させる必要がなくなり、実質的に開放状態とすることができるという効果が達成される。すなわち、開口絞りを不要にすることができる。また、光量をステップ的に変化させるので、連続的なフィードバック制御が不要となり、装置構成が簡単になるという利点が得られる。
【0156】
その上、減光フィルタの光軸への挿抜機構は、同心状に口径が連続的に変化するもの(いわゆるアイリス絞り機構)に比較して構造が簡単であり、結果として簡便な機構で、複数のカメラ間の連動した光量調整を精度よく行うことができるという効果も達成される。
【0157】
これらにより、左右画像間の対応処理を正確なデータに基づいて行うことが可能となり、距離測定の精度が向上し、結果として、装置の信頼性が向上するという効果も達成される。
【0160】
さらにまた、この発明によれば、増幅利得値と減光フィルタと露光時間値との予め定められた組み合わせにより、光学部から画像信号出力手段までの合成利得値を決定するようにしているので、一層細かいステップで露光量を調整することができるとともに、より入射(外界)光量の大きな光量変化にも対応可能な最適な露光量を調整することができるという効果が達成される。
【0161】
なお、撮像素子部にCCDイメージセンサを有するものとした場合に、露光時間は、このCCDイメージセンサの電子シャッタ時間とすることができるので、CCDイメージセンサは元来正確なクロックパルスに基づいて動作しており、このクロックパルスを利用して露光時間の調整を電気的にかつ正確に行うことができるという派生的な効果が達成される。
【0162】
また、減光フィルタとしては、NDフィルタや、多数の孔が開けられた孔あき板を使用することができる。孔あき板としては、金属板等に多数の孔が等間隔に開けられた、いわゆるパンチングメタルを採用することができる。NDフィルタやパンチングメタルを利用した減光フィルタを絞りとすることで、上述のアイリス絞りに比較して、構成を簡単化でき、かつコストを低減することが可能となるという効果も達成される。
【図面の簡単な説明】
【図1】この発明の一実施の形態の構成を示すブロック図である。
【図2】ステレオカメラの据えつけ位置の説明に供される概略斜視図である。
【図3】NDフィルタ組立体の構成および作用の説明に供される正面視的図であって、Aは、いわゆる素通しの状態、Bは、−18dBのNDフィルタを光軸上に挿入した状態、Cは、−36dBのNDフィルタを光軸上に挿入した状態をそれぞれ示す図である。
【図4】三角測量の原理で距離を求める際の説明に供される平面視的図である。
【図5】対象物体にかかる左右画像上での視差の説明に供される線図であって、Aは、左側画像、Bは、右側画像をそれぞれ表す図である。
【図6】図1例の装置の全体的な動作説明に供されるフローチャートである。
【図7】左右の小領域の対応処理の仕方の説明に供される図である。
【図8】図7例の説明に供されるフローチャートである。
【図9】対応処理装置の詳細な構成を含む装置の構成を示すブロック図である。
【図10】レンズのシェージング補正の説明に供される特性図である。
【図11】露光量調整用ルックアップテーブルを表す図であり、Aは、周囲の明るさが明るい状態から暗い状態になる夕方時等に採用されるルックアップテーブル、Bは、周囲の明るさが暗い状態から明るい状態になる明け方時等に採用されるルックアップテーブルをそれぞれ表す図である。
【図12】相関演算部の詳細な構成を示す回路ブロック図である。
【図13】エピポラーライン上の左画像データの一部を模式的に表す線図である。
【図14】エピポラーライン上の右画像データの一部を模式的に表す線図である。
【図15】図12例中、第1演算ブロックの動作説明に供されるブロック図である。
【図16】図12例中、第1演算ブロックの動作説明に供される他のブロック図である。
【図17】位置演算装置の動作説明に供されるフローチャートである。
【図18】補間演算の説明に供される線図である。
【符号の説明】
1…ステレオカメラ 1R、1L…ビデオカメラ
2R、2L…カメラ制御ユニット 4R、4L…画像メモリ
5R、5L…駆動回路 6…対応処理装置
7…位置演算装置 8…露光量調整装置
11R、11L…対物レンズ
12R、12L…NDフィルタ組立体
13R、13L…CCDイメージセンサ 14R、14L…信号処理回路
15R、15L…光軸 23、24…NDフィルタ

Claims (6)

  1. 画像情報を有する光を光学部及び撮像素子を有するステレオカメラにより電気信号に変換した後、増幅器で増幅した画像信号を得、該画像信号に基づく画像により物体までの距離を三角測量の原理に基づき測定する車両用環境認識装置において、
    減光率の異なる2つの減光フィルタを備えた減光フィルタ組立体が機械的に挿入・非挿入可能に設けられた、前記ステレオカメラの左右それぞれの光学部と、
    露光時間が可変される前記撮像素子と、
    増幅利得が可変される前記増幅器と、
    前記減光フィルタ、前記露光時間及び前記増幅利得による合成利得を、前記減光フィルタ組立体の挿入・非挿入回数が最小となるように、外光による周囲の明るさが明から暗に変化する時帯では徐々に大きく設定し、暗から明に変化する時帯では徐々に小さくなるように設定した2つの露光量設定テーブルと
    前記各時間帯に応じて前記2つの露光量設定テーブルのいずれか一方を参照し、前記減光フィルタ組立体の挿入・非挿入、前記撮像素子の露光時間及び前記増幅器の増幅利得の設定を行う露光量調整手段と、
    を備えることを特徴とする車両用環境認識装置。
  2. 請求項1記載の装置において、
    前記撮像素子はCCDイメージセンサ、前記露光時間は、このCCDイメージセンサの電子シャッタ時間であることを特徴とする車両用環境認識装置。
  3. 請求項1または2記載の装置において、
    前記減光フィルタをNDフィルタとしたことを特徴とする車両用環境認識装置。
  4. 請求項1または2記載の装置において、
    前記減光フィルタを減光率の異なる2つのNDフィルタとし、この2つのNDフィルタの非挿入を含めて、前記露光量調整手段は、露光量を3段に切り換えることを特徴とする車両用環境認識装置。
  5. 請求項3または4記載の装置において、
    前記NDフィルタを、多数の孔が開けられた孔あき板に代替することを特徴とする車両用環境認識装置。
  6. 請求項1記載の装置において、
    前記ステレオカメラを構成する左右のカメラから得られる画像信号により物体までの距離を三角測量の原理に基づき測定する際に、左右の画像上に同一サイズのウインドウ画像を設定し、左右ウインドウ画像内の各画素データ値の差の絶対値の総和を、前記左右のウインドウ画像中、一方のウインドウ画像に対する他方のウインドウ画像の一致度として求め、この一致度を求める計算を、前記左右の画像中、他方の画像上のウインドウ画像位置を変えて順次行い、前記一致度が最小になる他方の画像のウインドウ画像を、前記一方の画像のウインドウ画像に対応する領域であると計算する際前記ウインドウ画像の大きさの横方向の画素数を7〜9に選択し、縦方向の画素数を12〜15に選択した
    ことを特徴とする車両用環境認識装置。
JP28102095A 1995-10-27 1995-10-27 車両用環境認識装置 Expired - Fee Related JP3571828B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28102095A JP3571828B2 (ja) 1995-10-27 1995-10-27 車両用環境認識装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28102095A JP3571828B2 (ja) 1995-10-27 1995-10-27 車両用環境認識装置

Publications (2)

Publication Number Publication Date
JPH09126758A JPH09126758A (ja) 1997-05-16
JP3571828B2 true JP3571828B2 (ja) 2004-09-29

Family

ID=17633175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28102095A Expired - Fee Related JP3571828B2 (ja) 1995-10-27 1995-10-27 車両用環境認識装置

Country Status (1)

Country Link
JP (1) JP3571828B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2900760B2 (ja) * 1993-07-22 1999-06-02 神鋼電機株式会社 舶用油圧クラッチユニットの冷却構造
JP3939436B2 (ja) * 1998-05-14 2007-07-04 富士重工業株式会社 ステレオカメラの絞り装置
JP3587506B2 (ja) 1999-08-30 2004-11-10 富士重工業株式会社 ステレオカメラの調整装置
JP4009163B2 (ja) * 2002-08-30 2007-11-14 富士通株式会社 物体検知装置、物体検知方法および物体検知プログラム
JP4380412B2 (ja) * 2004-05-10 2009-12-09 株式会社デンソー 撮像制御装置及びプログラム
JP4956452B2 (ja) * 2008-01-25 2012-06-20 富士重工業株式会社 車両用環境認識装置
JP5898412B2 (ja) * 2011-04-04 2016-04-06 株式会社東芝 Ccdカメラを使用した測定装置
JP6156724B2 (ja) * 2013-03-14 2017-07-05 株式会社リコー ステレオカメラ
JP6225137B2 (ja) * 2015-03-27 2017-11-01 日立オートモティブシステムズ株式会社 車載カメラ画像処理装置
US10453208B2 (en) 2017-05-19 2019-10-22 Waymo Llc Camera systems using filters and exposure times to detect flickering illuminated objects

Also Published As

Publication number Publication date
JPH09126758A (ja) 1997-05-16

Similar Documents

Publication Publication Date Title
EP1087205B1 (en) Stereo range finder
US6373518B1 (en) Image correction apparatus for stereo camera
US7911516B2 (en) Camera module and electronic apparatus provided with it
US6381360B1 (en) Apparatus and method for stereoscopic image processing
JP3280001B2 (ja) ステレオ画像の位置ずれ調整装置
US8023016B2 (en) Imaging device and manufacturing method thereof
KR20120068655A (ko) 무선통신장치를 이용하여 양질의 홍채 및 피사체 영상을 편리하게 촬영하기 위한 방법 및 한 개의 밴드패스필터로 가시광선과 근적외선 일부영역을 투과시키는 카메라 장치
JP3571828B2 (ja) 車両用環境認識装置
JP3765862B2 (ja) 車両用環境認識装置
JP2020056839A (ja) 撮像装置
EP2109061B1 (en) Image processing apparatus for vehicle
JP3287465B2 (ja) ステレオ画像処理装置
JP3599255B2 (ja) 車両用環境認識装置
US20060115163A1 (en) Apparatus for and method of extracting image
JP2001174696A (ja) カラー撮像装置
US6714732B2 (en) Phase difference detection method, phase difference detection apparatus, range finding apparatus and imaging apparatus
WO2023074452A1 (ja) カメラ装置、および、カメラ装置の制御方法
JP4539400B2 (ja) ステレオカメラの補正方法、ステレオカメラ補正装置
JP2008042227A (ja) 撮像装置
JPH10262176A (ja) 映像形成方法
CN112866554B (zh) 对焦方法和装置、电子设备、计算机可读存储介质
JP4435525B2 (ja) ステレオ画像処理装置
JPH09163359A (ja) 車両用環境認識装置
JP2001298657A (ja) 映像形成方法及び装置
JPH07120257A (ja) 車輌用距離検出装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees