JP3765862B2 - 車両用環境認識装置 - Google Patents

車両用環境認識装置 Download PDF

Info

Publication number
JP3765862B2
JP3765862B2 JP02783096A JP2783096A JP3765862B2 JP 3765862 B2 JP3765862 B2 JP 3765862B2 JP 02783096 A JP02783096 A JP 02783096A JP 2783096 A JP2783096 A JP 2783096A JP 3765862 B2 JP3765862 B2 JP 3765862B2
Authority
JP
Japan
Prior art keywords
image
pitch
vehicle
inclination
correspondence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02783096A
Other languages
English (en)
Other versions
JPH09223227A (ja
Inventor
千秋 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP02783096A priority Critical patent/JP3765862B2/ja
Publication of JPH09223227A publication Critical patent/JPH09223227A/ja
Application granted granted Critical
Publication of JP3765862B2 publication Critical patent/JP3765862B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ステレオ視を利用した車両用環境認識装置に関し、一層詳細には、例えば、自動車等の車両に搭載され、当該自動車の位置を基準として、風景や先行車等を含む情景に係る周囲環境を認識する車両用環境認識装置に関する。
【0002】
【従来の技術】
従来から、周囲環境を認識しようとする場合、ステレオ視を利用したステレオカメラにより得られる2枚の画像(ステレオ画像ともいう。)から三角測量の原理に基づき対象物(単に、物体ともいう。)までの距離を求め、対象物の位置を認識する、いわゆるステレオ法が採用されている。
【0003】
このステレオ法においては、前記距離を求める際に、レンズを通じて撮像した2枚の画像上において同一物体の対応が採れることが前提条件となる。
【0004】
撮像した2枚の画像上において同一物体の対応を採る技術として、画像中の領域に着目する方法がある。
【0005】
この方法は、まず、一方の画像上に適当なサイズのウィンドウを設定し、他方の画像においてこのウィンドウに対応する領域を求めるために、他方の画像に前記ウィンドウと同一サイズの領域を設定する。
【0006】
次に、両画像上の各ウィンドウ内の画像(単に、ウィンドウ画像ともいう。)を構成する対応する各画素(詳しく説明すると、マトリクス位置が対応する各画素)についての画素データ値を引き算して差を得、さらに差の絶対値を得る。
【0007】
そして、各画素についての差の絶対値の前記ウィンドウ内の和、いわゆる総和を求める。
【0008】
このようにウィンドウ内の各画素データ値の差の絶対値の総和を求める計算を他方の画像上のウィンドウの位置を変えて順次行い、前記総和が最小になる他方の画像のウィンドウを、前記一方の画像のウィンドウに対応する領域であると決定する方法である。
【0009】
この発明においても、基本的には、この画像中の領域に着目する方法を採用している。
【0010】
【発明が解決しようとする課題】
ところで、車両が走行中に路面の凹凸により車両にピッチング(縦揺れ:車両の前後が反対に上下する振動)が発生した場合、車両の周囲環境は静止しているのにもかかわらず、例えば、車両に搭載されている対応処理手段は、周囲環境が縦揺れしているように解釈し、捉えようとする物体が対応領域から外れてしまい、結局、距離を求めることができなくなってしまうという問題があった。
【0011】
なお、この出願に関連する技術として、例えば、特開平5−110906号公報に開示された技術を挙げることができる。この公報には、車両にピッチングが発生したとき、ビデオカメラの視野の中心(視線)をピッチングした方向と反対の方向に角度を変えて、常に、車両の前方の同一位置を撮像するようにするピッチ補正技術が開示されている。しかしながら、この補正技術は、視線を変更するためにカメラ自体の角度を機械的に変更するようにした技術であり、この技術では、撮像角度変更のための構造が複雑になるという問題があった。
【0012】
この発明はこのような課題を考慮してなされたものであり、車両にピッチングが発生した場合でも、簡単な構成で物体を確実に検出することを可能とする車両用環境認識装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
この発明は、例えば、図1、図6、図8および図16に示すように、
複数の撮像手段1R、1Lと、
前記複数の撮像手段からそれぞれ得られる画像IL、IRの対応を複数の画像の小領域31、32間で採る対応処理手段6と、
対応の採れた物体までの距離を三角測量の原理に基づき演算する位置演算手段7と、
車両のピッチ方向の傾斜を検出する傾斜量検出手段91、92と、
車両のピッチレートを検出するピッチレート検出手段93と、
入力側が前記傾斜量検出手段と前記ピッチレート検出手段とに接続されるピッチ角演算手段97とを備え、
前記ピッチ角演算手段は、前記傾斜量の低域通過成分と前記ピッチレートから求めたピッチ量の高域通過成分θp′とを合成した値を車体のピッチ角θapとして演算して、前記対応処理手段に供給し、
前記対応処理手段は、演算されたピッチ角に応じた分、複数の画像の対応を採るための前記小領域を画像の垂直方向に移動するようにしたことを特徴とする。
【0014】
この発明によれば、ピッチ角演算手段により車体のピッチ角を演算する際、傾斜量検出手段により検出されたピッチ方向の傾斜量の低域通過成分と、ピッチレート検出手段により検出されたピッチレートから求めたピッチ量の高域通過成分との合成値を車体のピッチ角として演算し、演算されたピッチ角に応じた分だけ対応処理手段で対応を採る小領域を画像の垂直方向に移動するようにしたので、複数の画像間で対応物体を確実に検出することができる。
【0015】
また、この発明は、例えば、図16に示すように、
前記ピッチ角演算手段の入力側にヨーレートを検出するヨーレート検出手段94を備え、
前記ピッチ角演算手段は、前記傾斜量の低域通過成分と、前記ピッチレートから求めたピッチ量の高域通過成分と、予め求めてあるピッチ量換算係数を前記ヨーレートに掛けた換算成分とを合成した値を車体のピッチ角として演算し、前記対応処理手段に供給するようにしたことを特徴とする。
【0016】
この発明によれば、車両のステアリングが切られて(操舵されて)車両にヨーイング(首振り:車両を上からみた場合、車体が回転運動すること)が発生し、これを原因としてロール(車両の左右が反対に上下する傾き)が発生し、見かけ上、ピッチレート(積分すると前後の傾斜量になる。)が変動した場合であっても、ヨーレートにピッチ量換算係数を掛けた換算ピッチ量を演算し、この換算成分を前記演算されたピッチ角に合成するようにしているので、例えば、車両に旋回が発生した場合であっても、対応物体を確実に検出することができる。また、前記対応処理手段は、前記小領域間の対応を採る際に、エピポーラライン上に前記各小領域をそれぞれ設定し、設定した一方の小領域に対して他方の小領域の位置を前記エピポーラライン上で移動させながら、前記一方の小領域を構成する各画素と、これらの各画素に対応する前記他方の小領域を構成する各画素との輝度差の絶対値の総和を求め、求めた前記総和に基づいて前記小領域間の対応を採ることが好ましい。
【0017】
【発明の実施の形態】
以下、この発明の一実施の形態について、図面を参照して説明する。
【0018】
図1はこの発明の一実施の形態の構成を示すブロック図である。
【0019】
図1において、ステレオカメラ1が、右側のビデオカメラ(以下、単にカメラまたは右カメラともいう。)1Rと、左側のビデオカメラ(同様に、カメラまたは左カメラともいう。)1Lとにより構成されている。左右のカメラ1R、1Lは、図2に示すように、自動車(車両ともいう。)Mのダッシュボード上に予め定めた所定の間隔、いわゆる基線長Dを隔てて設置してある。また、カメラ1R、1Lはダッシュボード上に水平面に対して平行に、かつ水平面上に配された車両Mの正面方向にある無限遠点が画像の中心となるように設置してある。さらに、カメラ1R、1Lはダッシュボード上に設置してあるために、カメラ1R、1Lを一体として連結することができ、上述の基線長Dを維持できる。
【0020】
また、カメラ1R、1Lは、車両Mのワイパーのワイパー拭き取り範囲内に配置し、かつワイパーが左右にあって同方向に回動する場合には、左右のワイパーブレードの始点から同一位置になるように配置することで、ワイパーブレードによる遮光位置の変化が左右のカメラ1R、1Lで同一となり、認識対象物体(物体、対象物、対象物体、または、単に、対象ともいう。)の撮像に対してワイパーブレードの撮像の影響を少なくすることができる。左右のカメラ1R、1Lの光軸15R、15L(図1参照)は、同一水平面上において平行になるように設定されている。
【0021】
図1から分かるように、右と左のカメラ1R、1Lには、光軸15R、15Lに略直交する方向に、画像情報を有する光Icrをとらえる同一の焦点距離Fを有する対物レンズ11R、11Lと、減光フィルタとしてのNDフィルタ組立体12R、12Lと、対物レンズ11R、11Lによって結像された像を撮像するエリアセンサ型のCCDイメージセンサ(CCDエリアセンサ、撮像素子部)13R、13Lとが配設されている。この場合、それぞれの光学系(光学部ともいう。)とも、例えば、右側の光学系で説明すれば、対物レンズ11R、NDフィルタ組立体12Rを構成する1つのNDフィルタ(または素通しの状態)およびCCDイメージセンサ13Rは、いわゆる共軸光学系を構成する。
【0022】
カメラ1R、1Lには、CCDイメージセンサ13R、13Lの読み出しタイミング、電子シャッタ時間等の各種タイミングを制御したり、CCDイメージセンサ13R、13Lを構成する撮像素子群を走査して得られる光電変換信号である撮像信号を、いわゆる映像信号に変換するための信号処理回路14R、14Lが配設されている。
【0023】
左右のカメラ1R、1Lの出力信号、言い換えれば、信号処理回路14R、14Lの出力信号である映像信号は、増幅利得等を調整するCCU2R、2Lを通じて、例えば、8ビット分解能のAD変換器3R、3Lに供給される。
【0024】
AD変換器3R、3Lによりアナログ信号である映像信号がデジタル信号に変換され、水平方向の画素数768列、垂直方向の画素数240行の画素の信号の集合としての画像信号(以下、必要に応じて、画素データの集合としての画像データともいい、実際上は濃度を基準とする画像信号ではなく輝度を基準とする映像信号データであるので、映像信号データともいう。)としてフレームバッファ等の画像メモリ4R、4Lに格納される。画像メモリ4R、4Lには、それぞれ、Nフレーム(Nコマ)分、言い換えれば、ラスタディスプレイ上の画面N枚分に相当する画面イメージが保持される。一実施の形態においてはNの値として、N=2〜6までの値が当てはめられる。2枚以上を保持できるようにしたために、画像の取り込みと対応処理とを並行して行うことが可能である。
【0025】
画像メモリ(画像を構成する画素を問題とする場合には、画素メモリともいう。)4R、4Lは、この実施の形態においては、上記水平方向の画素数×垂直方向の画素数と等しい値の1フレーム分の画素メモリを有するものと考える。各画素メモリ4R、4Lは8ビットのデータを格納することができる。なお、各画素メモリ4R、4Lに格納されるデータは、上述したように、映像信号の変換データであるので輝度データである。
【0026】
画像メモリ4R、4Lに格納される画像は、上述したように1枚の画面イメージ分の画像であるので、これを明確にするときには、必要に応じて、全体画像ともいう。
【0027】
右側用の画像メモリ4Rの所定領域の画像データ(ウィンドウ画像ともいう。)に対して、左側の画像メモリ4Lの同じ大きさの領域の画像データ(ウィンドウ画像ともいう。)を位置(実際には、アドレス)を変えて順次比較して所定演算を行い、物体の対応領域を求める対応処理装置6が、画像メモリ4R、4Lに接続されている。
【0028】
左右の画像メモリ4R、4L中の対象の対応領域(対応アドレス位置)に応じ三角測量法(両眼立体視)に基づいて、対象の相対位置を演算する位置演算装置7が対応処理装置6に接続されている。
【0029】
また、姿勢推定装置9は、後に詳しく説明するように、車両Mの姿勢角であるピッチ角θapを推定し、これを姿勢角メモリ10に送出する。姿勢推定装置9により新たなピッチ角θapが推定され、姿勢角メモリ10に送出されたとき、姿勢角メモリ10の内容が更新される。
【0030】
姿勢角メモリ10に格納されているピッチ角θapは、露光量調整装置8および対応処理装置6により読み取られるようになっている。
【0031】
対応処理装置6および位置演算装置7における対応処理・位置演算に先立ち、入力側が画像メモリ4Rに接続される露光量調整装置8の制御により、CCDイメージセンサ13R、13Lに入射される画像情報を有する光Icrの露光量が適正化される。
【0032】
露光量調整装置8は、ピッチ角θapおよび画像メモリ4Rの所定領域の画像データに基づいて、ルックアップテーブル等を参照して露光量を決定し、CCU2R、2Lの増幅利得と、CCDイメージセンサ13R、13Lの電子シャッタ時間と、NDフィルタ組立体12R、12Lのうちの所望のフィルタとを、それぞれ、同じ値、同じものに同時に決定する。
【0033】
NDフィルタ組立体12R、12Lのうち、所望のNDフィルタが、駆動回路5R、5Lを通じて切り換え選定されるが、この切り換えには、NDフィルタを使用しない場合、いわゆる素通し(必要に応じて、素通しのNDフィルタとして考える。)の場合も含まれる。
【0034】
次に、上記実施の形態の動作および必要に応じてさらに詳細な構成について説明する。
【0035】
図3は、三角測量の原理説明に供される、対象物体Sを含む情景を左右のカメラ1R、1Lにより撮像している状態の平面視的図を示している。対象物体Sの相対位置をRPで表すとき、相対位置RPは、既知の焦点距離FからのZ軸方向(奥行き方向)の距離Zdと右カメラ1RのX軸方向(水平方向)中心位置からの水平方向のずれ距離DRとによって表される。すなわち、相対位置RPがRP=RP(Zd、DR)で定義されるものとする。もちろん、相対位置RPは、既知の焦点距離Fからの距離Zdと左カメラ1LのX軸(水平方向)中心位置からの水平方向のずれ距離DLとによって表すこともできる。すなわち、相対位置RPをRP=RP(Zd、DL)と表すことができる。
【0036】
図4Aは、右側のカメラ1Rによって撮像された対象物体Sを含む画像(右画像または右側画像ともいう。)IRを示し、図4Bは、左側のカメラ1Lによって撮像された同一対象物体Sを含む画像(左画像または左側画像ともいう。)ILを示している。これら画像IRと画像ILとがそれぞれ画像メモリ4Rおよび画像メモリ4Lに格納されていると考える。右側画像IR中の対象物体画像SRと左側画像IL中の対象物体画像SLとは、画像IR、ILのX軸方向の中心線35、36に対してそれぞれ視差dRと視差dLとを有している。対象物体画像SRと対象物体画像SLとは、エピポーラーライン(視線像)EP上に存在する。
【0037】
車両Mが水平面上に傾きがなく配置された状態において、対象物体Sが無限遠点に存在するとき、対象物体画像SRと対象物体画像SLとは、中心線35、36上の同一位置に撮像され、視差dR、dLは、dR=dL=0になる。
【0038】
なお、CCDエリアセンサ13R、13L上における図3に示す視差dR、dLとは、画像IR、IL上の図4A、図4Bに示す視差dR、dLとは極性が異なるが、CCDエリアセンサ13R、13Lからの読み出し方向を変えることで同一極性とすることができる。光学部に配設するレンズの枚数を適当に設定することによりCCDエリアセンサ13R、13L上における視差dR、dLと画像IR、IL上の視差dR、dLの極性とを合わせることもできる。
【0039】
図3から、次の(1)式〜(3)式が成り立つことが分かる。
【0040】
DR:Zd=dR:F …(1)
DL:Zd=dL:F …(2)
D=DR+DL …(3)
これら(1)式〜(3)式から距離Zdとずれ距離DRとずれ距離DLとをそれぞれ(4)式〜(6)式で求めることができる。
【0041】
Zd=F×D/(DR+DL) …(4)
DR=dR×D/(dL+dR) …(5)
DL=dL×D/(dL+dR) …(6)
これら位置情報である距離Zdとずれ距離DRとずれ距離DLとをクラスタリングして、対象物体Sについての識別符号としての、いわゆるアイディ(ID:Identification)を付けることで、車両追従装置等への応用を図ることができる。
【0042】
なお、実際上の問題として、CCDイメージセンサ13R、13Lの実効1画素の物理的な大きさの測定や焦点距離Fの測定は困難であるため、比較的正確に測定可能な画角を利用して距離Zd、ずれ距離DR、DLを求める。
【0043】
すなわち、例えば、カメラ1R、1Lの水平画角をθ、カメラ1R、1Lの水平方向の実効画素数(画像メモリ4R、4Lの水平画素数に等しい画素数)をN、視差dR、dLに対応する画像メモリ4R、4L上の画素数をNR、NLとすると、次に示す(7)式〜(9)式から距離Zdとずれ距離DRとずれ距離DLとをそれぞれ求めることができる。
【0044】
Zd=N×D/{2(NL+NR)tan(θ/2)} …(7)
DR=NR・D/(NL+NR) …(8)
DL=NL・D/(NL+NR) …(9)
ここで、水平画角θは測定可能な値であり、水平方向の実効画素数N(この実施の形態では、上述したようにN=768)は予め定められており、視差dR、dLに対応する画素数NRおよびNLも取り込んだ画像から分かる値である。
【0045】
次に、上述の画像の取り込みからIDを付けるまでの過程をフローチャートを利用して全体的に説明すれば、図5に示すようになる。
【0046】
すなわち、AD変換器3R、3Lから出力される映像信号データがそれぞれ画像メモリ4R、4Lに取り込まれて格納される(ステップS1)。
【0047】
ステップS1に続いて、画像メモリ4Rに記憶されたある領域の画像に対応する画像を画像メモリ4Lから求め、いわゆる画像の左右の対応を採る(ステップS2)。
【0048】
対応を取った後、カメラ1R、1Lにおける視差dR、dLを求め、位置情報に変換する(ステップS3)。
【0049】
その位置情報をクラスタリングし(ステップS4)、IDを付ける(ステップS5)。
【0050】
位置演算装置7の出力である、IDの付けられた出力は、本発明の要部ではないので、詳しく説明しないが、図示していない、例えば、道路・障害物認識装置等に送出されて自動運転システムを構成することができる。この自動運転システムでは、運転者に対する警告、自動車(ステレオカメラ1を積んだ車両)Mの衝突回避、前走車の自動追従等の動作を行うことができる。
【0051】
この実施の形態において、上述の左右の画像の対応を採るステップS2では、いわゆる特徴に着目した方法ではなく、基本的には、従来技術の項で説明した画像中の領域に着目する方法を採用している。
【0052】
すなわち、エッジ、線分、特殊な形など何らかの特徴を抽出し、それらの特徴が一致する部分が対応の取れた部分であるとする特徴に着目する方法は、取り扱う情報量が低下するので採用せず、一方の画像、この実施の形態では、右画像IRから対象物体画像SRを囲む小領域、いわゆるウィンドウを切り出し、この小領域に似た小領域を他方の左画像ILから探すことにより対応を決定する方法を採用している。
【0053】
この実施の形態において採用した画像中の領域に着目する方法では、2枚の画像IL、IR上において同一対象物体Sの対応を採る技術として、一方の画像上に適当なサイズのウィンドウを設定し、他方の画像においてこのウィンドウに対応する領域を求めるために、他方の画像に前記ウィンドウと同一サイズの領域を設定する。
【0054】
次に、両画像上の各ウィンドウ内の画像(単に、ウィンドウ画像ともいう。)を構成する対応する各画素(詳しく説明すると、ウィンドウ画像中のマトリクス位置が対応する各画素)についての画素データ値、すなわち、輝度値を引き算して差を得、さらに輝度差の絶対値を得る。
【0055】
そして、各対応する画素についての輝度差の絶対値の前記ウィンドウ内の和、いわゆる総和を求める。
【0056】
この総和を左右画像の一致度(対応度ともいう。)Hと定義する。このとき、右画像IRと左画像ILのウィンドウ内の対応座標点(x,y)の輝度(画素データ値)をそれぞれIR(x,y)、IL(x,y)とし、ウィンドウの横幅をn画素(nは画素数)、縦幅をm画素(mも画素数)とするとき、ずらし量をdx(後述する)とすれば、一致度Hは、次の(10)式により求めることができる。
【0057】
H(x,y)=Σ(j=1→m)Σ(i=1→n)|Id| …(10)
ここで、
|Id|=|IR(x+i,y+j)−IL(x+i+dx,y+j)|
である。記号Σ(i=1→n)は、|Id|についてのi=1からi=nまでの総和を表し、記号Σ(j=1→m)は、Σ(i=1→n)|Id|の結果についてのj=1からj=mまでの総和を表すものとする。
【0058】
この(10)式から、一致度Hが小さいほど、言い換えれば、輝度差の絶対値の総和が小さいほど、左右のウィンドウ画像が良く一致していることが分かる。
【0059】
この場合、分割しようとするウィンドウ、すなわち小領域の大きさが大きすぎると、その領域内に相対距離Zdの異なる他の物体が同時に存在する可能性が大きくなって、誤対応の発生する可能性が高くなる。一方、小領域の大きさが小さすぎると、誤った位置で対応してしまう誤対応、あるいは、ノイズを原因とする誤対応が増加してしまうという問題がある。本発明者等は、種々の実験結果から、最も誤対応が少なくなる小領域の大きさは、横方向の画素数nがn=7〜9程度、縦方向の画素数mがm=12〜15程度の大きさであることをつきとめた。
【0060】
図6と図7は、対応処理装置6において一致度Hを求める対応計算を行う際の領域の動かし方の概念を示している。
【0061】
図6に示すように、対応を採る元となる右画像IR上の所定領域(小領域、原領域またはウィンドウ画像ともいう。)31は、左右画像IL、IRを横断して水平方向に延びる帯状領域33中をX軸方向左端位置から右へ1画素ずつ640画素分移動していき、対応を採られる左画像ILの所定領域(小領域、検索領域またはウィンドウ画像ともいう。)32は、右画像IRの原領域31の左端位置に対応する位置(以下、原領域31の水平方向の変移位置という。)から対応計算を行い、ずらし量dxを右方向にエピポーラーラインEP上を0〜最大127画素分だけ1画素ずつ移動させて対応計算を行うようにしている。最大127画素のずれが有効な一致度Hの計算は、合計で(640−n)×128回行われる。
【0062】
なお、128画素分に限定する理由は、出力結果を利用する側の要求から水平画角θがθ=40°、最短の距離ZdがZd=5m、使用できるステレオカメラ1(カメラ1Rとカメラ1L)の水平方向の画素数NがN=768、設置できる基線長DがD=0.5mから、下記の(11)式に当てはめると、NL+NR=105画素となり、ハードウエアにおいて都合のよい2の累乗でこれに近い値の2=128を選んだからである。
【0063】
Figure 0003765862
このことは、右画像IR中、X=0(左端)の位置に撮像された対象が、かならず、左画像ILのずらし量dxがdx=0〜127に対応する0番目の画素位置から127番目の画素位置内に撮像されていることを意味する。したがって、X座標値(変移位置ともいう。)XがX=0を基準とする原領域31内の撮像対象は、左画像ILのX座標値XがX=0を基準として、ずらし量dxがdx=0〜127の範囲に撮像されていることを意味する。同様にして右画像IRのX座標値XがX=640−nを基準とする原領域31内の撮像対象は、左画像ILのX座標値XがX=640−nを基準として、ずらし量dxがdx=0〜127の範囲に撮像されていることになる。
【0064】
このとき、検索領域32の最右端の画素がX座標値XがX=640+n+127=767(768番目)の最右端の画素になるので、それ以上、右画像IRの原領域31を右方向にずらすことは、一般に、無意味である。右画像IR中、X座標値XがX=640−nより右側の撮像対象は、左画像ILに撮像されないからである。しかし、遠方の画像については対応がとれるため、有意なこともあるので、本発明においては、対応すべき画像のない部分の画素については8ビットの最大値255があるものとして一応計算を行っている。メモリや計算時間を節約するためにはX座標値XをX=640−nまでで打ち切ることが有効である。
【0065】
そこで、図7のフローチャートに示すように、まず、右画像IR中のX座標値XがX=0を変移位置とする原領域31を取り出し(ステップS11)、左画像ILの検索領域32のずらし量dxをdx=0に設定する(ステップS12)。
【0066】
次に、ずらし量dxがdx=127を超える値であるかどうか、すなわちdx=128であるかどうかを判定する(ステップS13)。
【0067】
この判定が否定的であるときには、対応度Hの計算をするために、左画像ILの検索領域(小領域)32分の画素データを取り出す(ステップS14)。
【0068】
次いで、小領域31と小領域32の各画素の差の絶対値の総和、すなわち、(10)式に示す一致度Hを求め記憶する(ステップS15)。
【0069】
次に、ずらし量dxをdx→dx+1(この場合、dx=1)として1画素分増加する(ステップS16)。
【0070】
このとき、ステップS13の判定は成立しないので、次に、ずらし量dxがdx=1を基準に検索領域32を取り出し(再び、ステップS14)、このずらし量dxがdx=1を基準の検索領域32とX座標値(変移位置ともいう。)XがX=0の原領域31とで一致度Hを計算して記憶する(再び、ステップS15)。
【0071】
同様にして、ずらし量dxがdx=128になるまで(ステップS13の判定が成立するまで)X座標値XがX=0の原領域31についての一致度Hを計算する。
【0072】
ステップS13の判定が肯定的であるとき、すなわち、X座標値XがX=0の原領域31について計算した一致度Hのうち、負のピーク値である最小値Hminとその近傍の値を求め、記憶しておく(ステップS17)。
【0073】
次に、繁雑になるので、図7のフローチャート中には記載しないが、右画像IR中の変移位置XがX=1〜767(または640−n)まで、上述のステップS11〜S17を繰り返し、各変移位置Xにおける右画像IRの原領域31に最も対応する左画像ILの検索領域32を検出する。
【0074】
図8は、図6の動作説明図、図7のフローチャートに基づいて、一致度Hの計算等を行う対応処理装置6の詳細な構成を示すブロック図である。
【0075】
図8中、スキャン座標生成部61において、対応処理を行おうとする右画像IRに対する原領域31と左画像ILに対する検索領域32の座標(上述の図6に示す変移位置Xとずらし量dxおよびエピポーラーラインEPのY座標値)が生成される。なお、後に説明するように、座標を生成する際に、姿勢角メモリ10からのピッチ角θapが考慮される。
【0076】
このスキャン座標生成部61で生成された座標(X,Y)に基づいて、画像メモリ4R、4Lから読み出す小領域のアドレスデータが画像メモリアドレス生成部64により生成される。
【0077】
画像メモリアドレス生成部64で、画像メモリ4R、4Lに対する読み出しアドレスデータが生成され、それぞれ、画像メモリ4R、4Lに供給される。
【0078】
画像メモリ4R、4Lから読み出された画像データに基づく一致度Hの計算、いわゆる相関演算が相関演算部65で行われ、相関演算結果が相関メモリ67に記憶される。また、ずらし量dxに対応して相関演算結果のピーク値、すなわち一致度Hの最小値Hmin等がピーク値検出部66により検出され、検出されたピーク値がピーク値メモリ68に記憶される。
【0079】
次に、図9は、図6、図7を参照して説明した一致度Hを求めるための相関演算部65の詳細な構成を示している。
【0080】
この相関演算部65は、基本的には、第1〜第4の演算ブロック81、82、83、84を有する、いわゆるパイプライン方式的処理である並列処理方式を採用している。
【0081】
理解の容易化のために、まず、パイプライン方式的処理を考慮しないで、具体的には、FIFOメモリ65iが存在しないものとして、第1演算ブロック81のみで、図6、図7を参照して説明した一致度Hを求めるための動作について説明する。そして、上述のように、誤対応が最も少なくなるそれぞれの小領域(原領域31と検索領域32)の大きさとしては、横方向の画素数nがn=7〜9画素程度、縦方向の画素数mがm=12〜15画素程度であるが、ここでは、理解を容易にするために、n=4、m=5として説明する。
【0082】
図10は、このような前提のもとでの、エピポーラーラインEP上に乗る仮想的な右画像データIrdの例を示している。原領域31の対象となる全画素データ数は、m×640=5×640箇であるものとする。
【0083】
図11は、同様に、エピポーラーラインEP上に乗る仮想的な左画像データIldの例を示している。検索領域32の対象となる全画素データ数は、m×768=5×768箇であるものとする。
【0084】
図9において、画像メモリ4Rから端子85を通じて原領域31の右画像データIrdが減算器65aの被減算入力端子に供給され、画像メモリ4Lから端子86を通じて検索領域32の左画像データIldが減算器65aの減算入力端子に供給される。
【0085】
まず、一般的に説明すると、減算器65aでは、縦方向の左右の画素データの差を取り、その差の絶対値が絶対値演算器65bで取られる。加算器65cは、縦方向の左右の画素データの差の絶対値の和を取るとともに、ラッチ65dにラッチされている前列の縦方向の左右の画素データの差の絶対値の和を加算する。
【0086】
FIFOメモリ65eには、横方向の画素数nに対応するn段分、この実施の形態では、当該列の分を除いて左側(前側)に4(=n)列分の縦方向の左右の画素データの差の絶対値の和が保持される。すなわち、この実施の形態において、FIFOメモリ65eは、最初(入力側)のメモリ65e1〜最後(出力側)のメモリ65e4までの4段ある。
【0087】
具体的に説明すると、1回目の演算(1列1行目)で加算器65cの出力側には、1列1行目の左右の画素データの差の絶対値|A1−a1|が現れ、かつ、この値|A1−a1|がラッチ65dに保持される。
【0088】
2回目の演算(1列2行目)で1列2行目の左右の画素データの差の絶対値|A2−a2|とラッチ65dに保持されているデータ|A1−a1|との和、すなわち、|A2−a2|+|A1−a1|が加算器65cの出力側に現れる。
【0089】
したがって、5回目の演算後には、次の(12)式に示す1列目の左右の画素データの差の絶対値の和(データ)Σ▲1▼(以下、2列目以降を順次、Σ▲2▼、Σ▲3▼、Σ▲4▼、…Σ641とする。)が加算器65cの出力側に現れ、この和Σ▲1▼は、ラッチ65dに保持される。また、このデータΣ▲1▼は、FIFOメモリ65eの最初のメモリ65e1に格納される。
【0090】
Figure 0003765862
この1列目の左右の画素データの差の絶対値の和Σ▲1▼が、最初のメモリ65e1に格納された後、ラッチ65dは、端子89から供給される制御信号によりリセットされる。
【0091】
このようにして、ずらし量dxの値がdx=0での小領域31、32間での全ての1回目の計算が終了する4列(4=n)5行(5=m)目の演算終了後のラッチ65dに格納されるデータ値とFIFOメモリ65eに格納されるデータ値とラッチ65hに格納されるデータ値等を図12に模式的に示す。
【0092】
図12において、ずらし量dxの値がdx=0の場合における次の(13)式に示す最初に求められる一致度H0が加算器65gの出力側に現れている点に留意する。
【0093】
H0=Σ▲1▼+Σ▲2▼+Σ▲3▼+Σ▲4▼ …(13)
次に、5列5行目の演算終了後の図12に対応する図を図13に示す。図13から分かるように、ずらし量dxの値がdx=0の場合の検索領域32に対する一致度H0が出力端子90に現れる。
【0094】
この場合、加算器65fの出力側には、5列目のデータΣ▲5▼と1列目のデータΣ▲1▼との差Σ▲5▼−Σ▲1▼が現れるので、加算器65gの出力側には、ずらし量dxの値がdx=1の場合の検索領域32に対する次の(14)式に示す一致度H1が現れることになる。
【0095】
H1=Σ▲2▼+Σ▲3▼+Σ▲4▼+Σ▲5▼ …(14)
ここで、実際の15×15の小領域を水平方向にX=0〜639まで移動し、ずらし量dxをdx=128までの各一致度Hを求める際に、この実施の形態では、原領域31の左画像IL上で1画素分右にずらした位置での対応度Hを求めるとき、左端の縦方向の和(上例ではΣ▲1▼)を減じて右に加わる新たな列の縦方向の和(上例ではΣ▲5▼)を加えるようにしているので、演算回数を15×640×128=1,228,800回にすることができる。すなわち、小領域の横方向の幅(画素数)は計算時間に無関係になる。
【0096】
もし、上例のように演算しなくて、15×15の小領域を移動させこの小領域毎に各領域を構成する画素データの差を取って、一致度Hを、水平方向XをXがX=0〜639まで、ずらし量dxを128まで計算することにすると、演算回数は15×15×640×128=18,432,000回となり、最も演算時間のかかる絶対値演算器65bの1回の演算時間を100nsで実行した場合でも、総演算時間が1843msかかることになる。これに対して上例では、総演算時間が123msであり、約1/15に低減することができる。
【0097】
しかし、この総演算時間123msは、NTSC方式のフレームレートである33msより大きいので、フレームレート毎に、言い換えれば、1画面毎に一致度Hを計算する場合には、総演算時間123msを約1/4以下の時間にする必要がある。
【0098】
そこで、この実施の形態では、図9に示したように、第1演算ブロック81と同一構成の第2〜第4演算ブロック82、83、84を設け、縦方向の画素数mと同数のFIFOメモリ65iを直列に接続している。
【0099】
この場合、簡単のために、図10、図11と同じ画像データを利用してパイプライン方式的処理動作を説明すれば、最初に、第1と第2の演算ブロック81、82を構成するFIFOメモリ65eを通じて、第3演算ブロック83を構成するFIFOメモリ65iに左1列目の画素データa1〜a5までを転送する。したがって、この転送時点で、第2演算ブロック82を構成するFIFOメモリ65iには2列目の画素データb1〜b5が転送され、第1演算ブロック81を構成するFIFOメモリ65iには3列目の画素データc1〜c5が転送される。
【0100】
次に、次の4列目の画素データd1〜d5を第1演算ブロック81のFIFOメモリ65iに順次転送したとき、第4演算ブロック84では右1列目の画素データA1〜A5と左1列目の画素データa1〜a5に関連する上述の演算が行われ、第3演算ブロック83では右1列目の画素データA1〜A5と左2列目の画素データb1〜b5に関連する上述の演算が行われ、第2演算ブロック82では右1列目の画素データA1〜A5と左3列目の画素データc1〜c5に関連する上述の演算が行われ、第1演算ブロック81では右1列目の画素データA1〜A5と左4列目の画素データd1〜d5に関連する上述の演算が行われる。
【0101】
次いで、右2列目の画素データB1〜B5の転送に同期して次の左5列目の画素データe1〜e5を第1演算ブロック81のFIFOメモリ65iに順次転送したとき、第4演算ブロック84では右2列目の画素データB1〜B5と左2列目の画素データb1〜b5に関連する演算が行われ、第3演算ブロック83では右2列目の画素データB1〜B5と左3列目の画素データc1〜c5に関連する演算が行われ、第2演算ブロック82では右2列目の画素データB1〜B5と左4列目の画素データd1〜d5に関連する演算が行われ、第1演算ブロック81では右2列目の画素データB1〜B5と左5列目の画素データe1〜e5に関連する上述の演算が行われる。
【0102】
このようにして、次に、右3列目の画素データC1〜C5の転送に同期して次の左6列目の画素データf1〜f5を順次同期して転送するようにすれば、第4演算ブロック84では、ずらし量dxがdx=0、dx=4、……についての一致度Hを計算でき、同様に、第3演算ブロック83では、ずらし量dxがdx=1、dx=5、……についての一致度Hを計算でき、第2演算ブロック82では、ずらし量dxがdx=2、dx=6、……についての一致度Hを計算でき、第1演算ブロック81では、ずらし量dxがdx=3、dx=7、……についての一致度Hを同時に計算することできる。
【0103】
このように、パイプライン方式的処理の4並列にすれば、演算時間を約1/4に低減することができる。なお、上述の説明から理解できるように、第4演算ブロック84中のFIFOメモリ65iは不要である。
【0104】
この場合、図9例の4並列による動作によれば、1フレームレートで1フレームの画像についての640点の距離情報が求まり、左画像ILの横768画素×縦15画素の帯領域の処理が完了するが、これは1画像領域が768×240画素であることを考えると、全画像領域の1/16になる。
【0105】
なお、左右のカメラ1R、1Lの上下方向の取付位置がずれた場合等を想定すると、当初のエピポーラーラインEP上に対応する対象物画像が存在しなくなる場合も考えられる。この場合、図示はしないが、例えば、図9の対応処理装置6の構成を4並列にし、画像の縦方向の処理を4並列にすることにより、横768画素、縦15画素の帯領域4つをフレームレート内で処理することが可能となる。この場合に、領域が重ならないようにすることで、最大127画素のずれまで検出できる距離情報を1フレームレート内で(640−n)×4点出力できる。
【0106】
図9例の相関演算部65の処理により、1本のエピポーラーラインEP上における右画像IR中の640個の原領域31のそれぞれに対して、ずらし量dxがdx=0〜127の検索領域32についての128個の一致度Hが演算され、この演算結果の一致度Hが、相関メモリ67に格納される。
【0107】
また、1個の原領域31、すなわち、各変移位置Xに対する128個の検索領域32のうち、一致度Hが最小値となる値(ピーク値ともいう。)をピーク値検出部66で検出し、検出したピーク値(最小値)Hminを、そのときの変移位置Xとずらし量dxに対応させてピーク値メモリ68に記憶する。ピーク値メモリ68は、一致度Hのピーク値(最小値)記憶テーブルとして機能する。
【0108】
変移位置Xとずらし量dxをアドレスとして一致度Hが記憶されている相関メモリ67と、その最小値としてのピーク値Hminが記憶されているピーク値メモリ68が位置演算装置7に接続されている。
【0109】
位置演算装置7は、一致度Hとそのピーク値Hminとを参照し、図14に示すフローチャートに基づいて、対象物体Sの3次元空間での位置Pを求める。
【0110】
変移位置Xが所定の変移位置であるX=Xpの原領域31についての位置Pの算出方法について説明する。
【0111】
まず、所定の変移位置Xpの原領域31についての一致度Hのピーク値Hminと、そのときのずらし量dx(このずらし量dxをずらし量dxminと呼ぶ)をピーク値メモリ68から取り込む(ステップS21)。
【0112】
次に、このずらし量dxminの近傍の左右各2個の一致度H、すなわち、ずらし量dxがずらし量dxminより3つ少ないずれ量dxmin-2および3つ多いずれ量dxmin+2の各位置における一致度Hmin-2、Hmin+2を取り込む(ステップS22)。
【0113】
次に、次の(15)式に基づいて谷の深さ(ピーク深さともいう。)Qを求める(ステップS23)。
【0114】
Q=min{Hmin-2/Hmin,Hmin+2/Hmin} …(15)
この(15)式は、ピーク値Hminに対する、これから2つ隣の一致度Hmin-2、Hmin+2の大きさの各比のうち、最小値を取ることを意味する。
【0115】
そして、この谷の深さQが所定の閾値TH以上の値であるかどうか(Q≧TH)を判定し(ステップS24)、所定の閾値TH以上の値である場合には、ピーク値Hminであり、ずらし量dxminの検索領域32が所定の変移位置Xpの原領域31に対応する領域であると同定して次のステップS25に進む。
【0116】
一方、ステップS24の結果が否定的である場合には、ピーク値Hminであり、ずらし量dxminの検索領域32が所定の変移位置Xpの原領域31に対応する領域ではないと判断して、次の変移位置Xp+1の原領域31に対する対応する検索領域32を求める処理が全て終了したかどうかを判定し(ステップS28)、全ての変移位置Xに対応する処理が終了していない場合には、そのステップS21〜S24の処理を繰り返す。
【0117】
この実施の形態において、一致度Hのピーク値Hminを変移位置Xpの原領域31に対応する検索領域32であると直ちに同定しないで、その近傍を見て(ステップS22)、その谷の深さQを計算し(ステップS23)、その谷の深さQが所定の閾値TH以上の場合にのみ、一致度Hのピーク値Hminが得られるずらし量dxminの検索領域32が、変移位置Xpの原領域31に対応する検索領域32であると同定する理由は、雑音の混入または画像IR、ILの被写体の画像濃度が一様である場合等に、一致度Hのピーク値Hminが得られ、ずらし量dxminの検索領域32が、変移位置Xpの原領域31に必ずしも対応するとは限らないからである。
【0118】
すなわち、ずらし量dxminの位置の近傍領域を考慮して、谷の深さQが、所定の閾値THより小さいものは、対応がよく取れていないと判断し、その一致度Hのピーク値Hminは利用しないこととした。なお、所定の閾値THは、この実施の形態においては、TH=1.2とした。
【0119】
ステップS24の判断が肯定的であるとき、ずらし量dxの真の値(真のピーク位置という)dsを次に示す補間処理により求める(ステップS25)。すなわち、図15に示すように、最小位置座標を(dxmin,Hmin)とし、その前後の位置座標をそれぞれ(dxmin-1,Hmin-1)、(dxmin+1,Hmin+1)とするとき、前後の一致度Hmin-1、Hmin+1の大きさを比較して、それぞれ次の(16)式〜(18)式で示す値に推定する。
【0120】
Figure 0003765862
この(16)式〜(18)式の補間式を用いて真のピーク位置dsを求めた場合には、補間しない場合に比較して、位置精度が3倍向上することを実験的に確認することができた。
【0121】
結局、ステップS25の補間処理終了後に、変移位置Xpの原領域31に最も対応する検索領域32の真のピーク位置dsが求まることになる。
【0122】
このようにして求められた変移位置Xpと真のピーク位置dsは、それぞれ、図5に示す右画像IR上の対象物体画像SRの視差dRと左画像IL上の対象物体画像SLの視差dLに対応する。
【0123】
しかし、実際上、フロントガラスやカメラ1R、1Lの対物レンズ11R、11Lの光学特性によって、左右の画像IR、ILには、例えば、ピンクッション的歪み、あるいはバレル的歪みが存在するので、これらによる歪み補正を行った視差dRと視差dLとを求める(ステップS26)。
【0124】
そこで、これら歪み補正を行った視差dRと視差dLを測定値として、上述の(4)式〜(6)式から対象物体Sまでの奥行き方向の距離Zdと、その距離Zdからの左右の偏差にかかるずれ距離DRとずれ距離DLとの3次元位置情報を求めることができる(ステップS27)。
【0125】
ステップS28では、エピポーラーラインEP上の全ての変移位置Xでの原領域31に対応する検索領域32中の真のピーク位置dsを求める演算が終了したかどうか、すなわち、変移位置XがX=767であるかどうかを確認して処理を終了する。
【0126】
位置演算装置7で作成された、これら3次元位置情報である距離Zdとずれ距離DRとずれ距離DLとはクラスタリングされ、対象物体Sについての識別符号としての、いわゆるアイディ(ID:Identification)が付けられて、出力端子101を通じて、次の処理過程である、図示しない道路・障害物認識装置等に接続される。
【0127】
道路・障害物認識装置等は、自動運転システムを構成し、運転者に対する警告、車体の自動衝突回避、前走車への自動追従走行などの動作を行うことができる装置である。この場合、例えば、自動追従走行を行うシステムとして、本出願人の出願による「物体検出装置およびその方法」(特願平7−249747号)を挙げることができる。
【0128】
図16は、車両Mとの関係において、図1に示した姿勢推定装置9の詳細な構成を示している。
【0129】
この姿勢推定装置9は、基本的には、走行中の車体Mの揺れや、乗車人員の数や荷物の重量による車体の傾きにより、距離検出領域が消失点よりずれることを補正する装置である。なお、消失点とは、エピポーラーラインEPが通る点であって、車両Mの正面方向にある無限遠点に対応する画像の中心とした点である。消失点は、例えば、車両Mの前方に真っ直ぐな道路が存在するとき、画像上、その道路の両側の線の延長線の前方での交点と考えることができる。
【0130】
車両Mの前部のバンパーの下部に前部車高センサ91が固定され、後部のホイールハウスの下部に後部車高センサ92が固定されている。傾斜量検出手段を構成する車高センサ91、92は、例えば、レーザ測長器または超音波測長器等を用いることができる。また、トランクの近くに、それぞれ、角速度センサであるピッチレートセンサ93とヨーレートセンサ94とが、ピッチレートとヨーレートを検出する方向に固定されている。これらセンサ91〜94は、車体を上側から見た場合、ロールによるピッチ角の誤差の発生を防止するために、車体の前後を結ぶ中心線から同じ方向に同じだけ離れた位置に配置されている。
【0131】
前部車高センサ91と後部車高センサ92との車軸上での間隔(長さ)はLとされている。傾きのない路面102からの前部車高センサ91および後部車高センサ92で測定される高さをそれぞれHfo、Hroとし、ある状態における路面102からの高さをそれぞれHf、Hrとするとき、ピッチ方向の傾き(傾斜量)θhは、(19)式で与えられる。
【0132】
θh=arctan[ {(Hf−Hfo)−(Hr−Hro)}/L] …(19)
車高センサ91、92の出力である高さHf、Hrは、路面102の細かい凹凸による影響を避ける等の理由により、それぞれ、ローパスフィルタ95、96を通して演算器97にその低域通過成分である高さHf′とHr′とが供給されるように構成されている。これら高さHf′、Hr′から求められるピッチ方向の傾きは、θh′とする。
【0133】
一方、ピッチレートセンサ93の出力信号は、各速度信号であるので、それを1回積分器98で積分することでピッチ方向の傾きを求めることができる。求めた傾き(傾斜量)をθpとする。
【0134】
しかし、ピッチレートセンサ93には、通常、ドリフト等の誤差を有しているため、長時間積分すると誤差が累積されてしまうという問題が発生する。
【0135】
そこで、傾きθpをハイパスフィルタ99を通過させてその高域通過成分である傾きθp′を演算器97に供給するようにする。ハイパスフィルタ99を通過させることで、静止していると傾きθp′は0値に近づくことになる。このようにすることで、坂道のように路面に傾斜がある場合でも路面の向きに沿った方向を推定することができる。
【0136】
そこで、演算器97では、基本的には、ピッチ方向の傾きθapを、傾きθh′と傾きθp′とを合成した(20)式で示す式で求めるようにしている。
【0137】
θap=θh′+θp′ …(20)
この場合、ローパスフィルタ95、96とハイパスフィルタ99との時定数を同一の値にしておくことで、車体の揺れと傾斜を好適に検出することができる。
【0138】
すなわち、図17に示すように、車体Mが突然傾きθα°だけ傾いたとする。このとき、車高センサ91、92の出力を基に得られる傾きθh′は、ローパスフィルタ95、96を挿入しているので時間の経過とともに傾きθα°に近づき、ピッチレートセンサ93に基づく傾きθp′は、ハイパスフィルタ99を挿入しているので時間の経過とともに傾き0°に近づくことになる。したがって、これを合成した傾きθap(θap=θh′+θp′)は、突然傾いた時点からステップ関数的に立ち上がることになるので、車体Mの揺れと傾斜を直ちにしかも正確に検出することができる。
【0139】
なお、合成されたピッチ方向の傾きθapは、後部車高センサ92の位置を相対的な原点として路面102から時計方向に回転する方向を正方向としている。
【0140】
(20)式で傾きθapを求めた場合には、車体Mにヨーイングが発生する転回時などにおいては、車体Mがロールし、このロールを原因としてピッチレートが発生するので、正しく路面との平行面を推定できなくなる。
【0141】
この場合、図示しない3軸のレートセンサを設けて車体Mの軸回転を推定して、ピッチ方向の傾きθapを求めるようにしてもよいが、ヨーレートとロール量は比例関係にあり、したがって、ヨーレートからロール量を推定することが可能となり、結果として、ヨーレートからピッチレートを擬似的に補正することが可能となる。
【0142】
例えば、ヨーレートからピッチ方向の角度への換算係数(ピッチ量換算係数)をKとして予め求めておくことで、ヨーレートセンサ94により検出されたヨーレートRyawに、この換算係数Kを掛けることで、ピッチ方向の傾斜θapの補正量を求めることができる。
【0143】
そこで、演算器97では、車体Mのピッチ方向の傾斜(ピッチ角)θapを(21)式により算出することとする。
【0144】
θap=θh′+θp′−Kyaw …(21)
このようにして算出された傾斜θapが端子103を通じて図1に示す姿勢角メモリ10に格納される。
【0145】
姿勢角メモリ10の内容は、対応処理装置6(図8参照)内で相関演算をする際にスキャン座標生成装置61により読み取られる。
【0146】
スキャン座標生成装置61では、傾斜θapが正の値であった場合には、傾斜θapに対応するS個の画素分だけ、左右画像IL、IR(図6参照)の対応を採る領域(ウィンドウ画像)32、31を選択する際の帯状領域33の座標を下側に下げる。したがって、傾斜θapが負の値であった場合には、傾斜θapに対応するS個の画素分だけ、左右画像IL、IRの対応を採る領域32、31を選択する際の帯状領域33の座標を上側に上げる。
【0147】
なお、傾斜θap、すなわちピッチ角θapと帯状領域33(エピポーラーラインEP)との対応関係は、予め測定してルックアップテーブルまたは演算式としてスキャン座標生成装置61に格納しておく。
【0148】
例えば、傾きθap、ステレオカメラ1の縦方向の画角がθv、縦方向のカメラの画素数がNv(この実施の形態では、上述したように、Nv=240)であるとき、距離検出用対応領域32、31の縦方向の中央付近に消失点を含む帯状領域33が入るように、次の(22)式に基づいて、画素数Sを求めればよい。
【0149】
Figure 0003765862
なお、図1に示すように露光量調整装置8でも姿勢角メモリ10の内容を読み取ることができるように構成しているのは、露光調整基準領域も(21)式に基づいて補正できるようにするためである。
【0150】
また、この発明は上述の実施の形態に限らず、この発明の要旨を逸脱することなく種々の構成を採り得ることはもちろんである。
【0151】
【発明の効果】
以上説明したように、この発明によれば、ピッチ角演算手段により車体のピッチ角を演算する際、傾斜量検出手段により検出されたピッチ方向の傾斜量の低域通過成分と、ピッチレート検出手段により検出されたピッチレートから求めたピッチ量の高域通過成分との合成値を車体のピッチ角として演算し、演算されたピッチ角に応じた分だけ対応処理手段で対応を採るための小領域を画像の垂直方向に移動するようにしたので、たとえ、路面の凹凸や搭乗者の数等に応じて車体にピッチングが発生したり、車両が傾斜したり、旋回により車体が傾斜した場合においても路面と平行な方向が安定して推定でき、対応しようとする物体がエピポーラーラインの近傍に存在することから、複数の画像間で対応物体を確実に検出することができるという効果が達成される。これにより、車両の環境の認識を正確に行うことができるという利点が得られる。
【0152】
また、この発明によれば、従来技術のようにカメラ自体の角度を機械的に変更することなく、画像領域上で対応領域を移動するようにしているので、機械的構成が必要なくなり、構成がきわめて簡単になり信頼性も向上するという効果も達成される。
【図面の簡単な説明】
【図1】この発明の一実施の形態の構成を示すブロック図である。
【図2】ステレオカメラの据えつけ位置の説明に供される概略斜視図である。
【図3】三角測量の原理で距離を求める際の説明に供される平面視的図である。
【図4】対象物体にかかる左右画像上での視差の説明に供される線図であって、Aは左側画像、Bは右側画像をそれぞれ表す図である。
【図5】図1例の装置の全体的な動作説明に供されるフローチャートである。
【図6】左右の小領域の対応処理の仕方の説明に供される図である。
【図7】図6例の説明に供されるフローチャートである。
【図8】対応処理装置の詳細な構成を含む装置の構成を示すブロック図である。
【図9】相関演算部の詳細な構成を示す回路ブロック図である。
【図10】エピポーラーライン上の左画像データの一部を模式的に表す線図である。
【図11】エピポーラーライン上の右画像データの一部を模式的に表す線図である。
【図12】図9例中、第1演算ブロックの動作説明に供されるブロック図である。
【図13】図9例中、第1演算ブロックの動作説明に供される他のブロック図である。
【図14】位置演算装置の動作説明に供されるフローチャートである。
【図15】補間演算の説明に供される線図である。
【図16】姿勢推定装置の詳細な構成を含む線図である。
【図17】ピッチ角の合成説明に供される線図である。
【符号の説明】
1…ステレオカメラ 1R、1L…ビデオカメラ
2R、2L…CCU 4R、4L…画像メモリ
5R、5L…駆動回路 6…対応処理装置
7…位置演算装置 8…露光量調整装置
9…姿勢推定装置 10…姿勢角メモリ
13R、13L…CCDイメージセンサ
31、32…小領域(ウィンドウ画像)
33…帯状領域
91、92…車高センサ 93…ピッチレートセンサ
94…ヨーレートセンサ 95、96…ローパスフィルタ
97…演算器
θap…傾斜(ピッチ角)

Claims (2)

  1. 複数の撮像手段と、
    前記複数の撮像手段からそれぞれ得られる画像の対応を、複数の画像の小領域間で採る対応処理手段と、
    対応の採れた物体までの距離を三角測量の原理に基づき演算する位置演算手段と、
    車両のピッチ方向の傾斜を検出する傾斜量検出手段と、
    車両のピッチレートを検出するピッチレート検出手段と、
    入力側が前記傾斜量検出手段と前記ピッチレート検出手段とに接続されるピッチ角演算手段と
    前記ピッチ角演算手段の入力側にヨーレートを検出するヨーレート検出手段とを備え、
    前記ピッチ角演算手段は、前記傾斜量の低域通過成分と前記ピッチレートから求めたピッチ量の高域通過成分と、予め求めてあるピッチ量換算係数を前記ヨーレートに掛けた換算成分とを合成した値を車体のピッチ角として演算して、前記対応処理手段に供給し、
    前記対応処理手段は、演算されたピッチ角に応じた分、複数の画像の対応を採るための前記小領域を画像の垂直方向に移動するようにしたことを特徴とする車両用環境認識装置。
  2. 請求項1記載の車両用環境認識装置において、
    前記対応処理手段は、前記小領域間の対応を採る際に、エピポーラライン上に前記各小領域をそれぞれ設定し、設定した一方の小領域に対して他方の小領域の位置を前記エピポーラライン上で移動させながら、前記一方の小領域を構成する各画素と、これらの各画素に対応する前記他方の小領域を構成する各画素との輝度差の絶対値の総和を求め、求めた前記総和に基づいて前記小領域間の対応を採ることを特徴とする車両用環境認識装置。
JP02783096A 1996-02-15 1996-02-15 車両用環境認識装置 Expired - Fee Related JP3765862B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02783096A JP3765862B2 (ja) 1996-02-15 1996-02-15 車両用環境認識装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02783096A JP3765862B2 (ja) 1996-02-15 1996-02-15 車両用環境認識装置

Publications (2)

Publication Number Publication Date
JPH09223227A JPH09223227A (ja) 1997-08-26
JP3765862B2 true JP3765862B2 (ja) 2006-04-12

Family

ID=12231868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02783096A Expired - Fee Related JP3765862B2 (ja) 1996-02-15 1996-02-15 車両用環境認識装置

Country Status (1)

Country Link
JP (1) JP3765862B2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223083B1 (en) 1999-09-20 2004-03-17 Matsushita Electric Industrial Co., Ltd. Device for assisting automobile driver
JP2001111990A (ja) * 1999-10-12 2001-04-20 Calsonic Kansei Corp 車両用画像信号処理回路
JP3951734B2 (ja) * 2002-02-13 2007-08-01 日産自動車株式会社 車両用外界認識装置
JP2004038877A (ja) * 2002-07-08 2004-02-05 Yazaki Corp 車両用周辺監視装置及び画像処理装置
KR100446636B1 (ko) * 2002-11-21 2004-09-04 삼성전자주식회사 이동체의 움직임 및 이동체 전방에 위치한 물체의 3차원정보 측정 기능을 구비한 이동체 및 그 방법
DE10350919A1 (de) * 2003-10-31 2005-05-25 Robert Bosch Gmbh Steuergerät und Beschleunigungssensorik
DE102004060292A1 (de) * 2004-12-15 2006-07-06 Robert Bosch Gmbh Neigungswinkelermittlung für ein Motorrad
JP2006217447A (ja) * 2005-02-07 2006-08-17 Yazaki Corp 車両用表示装置
JP2006275969A (ja) * 2005-03-30 2006-10-12 Clarion Co Ltd 傾斜角算出装置及びナビゲーション装置
DE102009007842A1 (de) * 2009-02-06 2010-08-12 Adc Automotive Distance Control Systems Gmbh Verfahren und Vorrichtung zum Betrieb eines videobasierten Fahrerassistenzsystems in einem Fahrzeug
JP2011064594A (ja) * 2009-09-17 2011-03-31 Sony Corp 角速度補正装置、角速度補正方法、ナビゲーション装置及びナビゲーション機能付携帯電話機
JP5108057B2 (ja) * 2010-05-21 2012-12-26 矢崎総業株式会社 車両用表示装置
KR101907852B1 (ko) * 2012-09-06 2018-10-15 현대모비스 주식회사 스테레오 영상 처리 방법 및 장치
KR101519261B1 (ko) 2013-12-17 2015-05-11 현대자동차주식회사 차량의 모니터링 방법 및 자동 제동 장치
JP6416712B2 (ja) * 2015-08-06 2018-10-31 株式会社Soken ピッチ角推定装置
JP6289546B2 (ja) * 2016-06-17 2018-03-07 三菱電機株式会社 駐車支援装置
JP6787297B2 (ja) * 2017-11-10 2020-11-18 株式会社Soken 表示制御装置、及び表示制御プログラム
JP7436331B2 (ja) * 2020-09-02 2024-02-21 日立Astemo株式会社 画像処理装置
CN112937486B (zh) * 2021-03-16 2022-09-02 吉林大学 一种道路积水车载在线监测与驾驶辅助系统及方法

Also Published As

Publication number Publication date
JPH09223227A (ja) 1997-08-26

Similar Documents

Publication Publication Date Title
JP3765862B2 (ja) 車両用環境認識装置
US6381360B1 (en) Apparatus and method for stereoscopic image processing
US9105080B2 (en) Method and a system for calibrating an image capture device
KR100550299B1 (ko) 차량 주변 이미지 처리 장치 및 기록 매체
JP3284190B2 (ja) ステレオカメラの画像補正装置
US5307136A (en) Distance detection system for vehicles
JP4788798B2 (ja) 物体検出装置
JP3349121B2 (ja) ステレオカメラの取付構造
JP4958279B2 (ja) 物体検出装置
US20100013908A1 (en) Asynchronous photography automobile-detecting apparatus
JP2013001366A (ja) 駐車支援装置および駐車支援方法
WO2018179281A1 (ja) 物体検出装置及び車両
JP5421819B2 (ja) 車線認識装置
US20020196423A1 (en) Range finder for finding range by image realization
JP2012019552A (ja) 運転支援装置
JP3599255B2 (ja) 車両用環境認識装置
JP7311407B2 (ja) 姿勢推定装置、および、姿勢推定方法
JPH07152914A (ja) 車輌用距離検出装置
JP2007221199A (ja) 車載カメラ表示装置及び画像処理装置
JP2018136739A (ja) キャリブレーション装置
JPH09126758A (ja) 車両用環境認識装置
US11477371B2 (en) Partial image generating device, storage medium storing computer program for partial image generation and partial image generating method
WO2022118513A1 (ja) 位置姿勢算出装置、位置姿勢算出方法及び測量装置
KR101293263B1 (ko) 복수개의 영상을 합성한 합성 영상에서 거리 정보를 제공하는 기능을 구비하는 영상 처리 장치 및 방법
JPH1141521A (ja) 撮像装置および車間距離計測装置ならびに車間距離計測方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees