JP3564928B2 - Manufacturing method of thin film solar cell - Google Patents

Manufacturing method of thin film solar cell Download PDF

Info

Publication number
JP3564928B2
JP3564928B2 JP07676397A JP7676397A JP3564928B2 JP 3564928 B2 JP3564928 B2 JP 3564928B2 JP 07676397 A JP07676397 A JP 07676397A JP 7676397 A JP7676397 A JP 7676397A JP 3564928 B2 JP3564928 B2 JP 3564928B2
Authority
JP
Japan
Prior art keywords
substrate
electrode layer
film
hole
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07676397A
Other languages
Japanese (ja)
Other versions
JPH10190024A (en
Inventor
広喜 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP07676397A priority Critical patent/JP3564928B2/en
Publication of JPH10190024A publication Critical patent/JPH10190024A/en
Application granted granted Critical
Publication of JP3564928B2 publication Critical patent/JP3564928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチックフィルムなどの可撓性基板上にシリコンなどのIV族元素を主成分とするアモルファス薄膜半導体からなる光電変換層が形成されてなる薄膜太陽電池の製造方法および製造装置に関する。
【0002】
【従来の技術】
プラスチックフィルムなどの可撓性基板上に薄膜太陽電池を形成する場合には、基板の太陽電池の反対側面(裏面とする)にも電極を配置し、基板を貫通して接続することにより、基板面積に対する太陽電池面積の比を大きくすることができる等の特長を持たせることができる。
【0003】
図8は裏面に電極を有する太陽電池の平面図である。図9は裏面に電極を有する太陽電池の製造工程順の図8におけるXX断面図であり、(a)は接続開孔、(b)は第1電極層と第2電極層成膜、(c)は集電孔開孔、(d)は光電変換層成膜、(e)は第3電極層成膜、(f)は第4電極層成膜、(g)は切断部を示す図である。図8では、分図符号と工程符号を同一としてある。可撓性で絶縁性の基板1aは、ポリイミド系のフィルムで厚さは50μm であるが、フィルムとしてはポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリエチレンテレフタレート(PET)またはアラミド系のフィルム等を用いることができる。この基板1aの所定位置に複数個の接続孔h1を開ける(工程(a))。接続孔h1の直径は1 mm のオーダーである。次に、基板1aの上に、第1電極層1b( この面を表面とする) 、それと反対側である裏面に第2電極層1cを順次成膜する。第1電極層1bと第2電極層1cの成膜順は逆でもよい。このとき、接続孔h1の内面で第1電極層1bと第2電極層2cとが重なり、互いに導通する(工程(b))。これら電極層としては、Agを数100nmの厚さにスパッタにより形成してある。Al、Cu、Ti等の金属をスパッタまたは電子ビーム蒸着等により成膜しても良く、金属酸化膜と金属の多層膜を電極層として形成しても良い。
【0004】
次に、再び複数個の集電孔h2を基板に開孔する。(工程(c))。
次に、光電変換層1dを成膜する。光電変換層1dは薄膜半導体層であり、a−Siはその代表例である(工程(d))。
次に、光電変換層1dの上に、第3電極層1eとして透明電極層を形成する。この工程を経て、例えば太陽電池に必要な層が全て積層される。透明電極層としてITO、SnO、ZnOなどの酸化物導電層を用いるのが一般的である。膜形成時に接続孔h1の周縁部をマスクで覆うなどして初めに形成した接続孔h1部分には膜が形成されないようにする(工程(e))。
【0005】
次に、裏面に金属膜などの低抵抗導電膜からなる第4電極層1fを成膜する。この工程により、集電孔h2の内面で第3電極層1eと第4電極層1fとが重なり、互いに導通させることができる。(工程(f))。
以上の成膜工程の終了後、基板両面の積層を所定の形状に切断し、ユニットセルの多段直列接続からなる太陽電池を形成する(工程(g))。図9(g)では太陽電池が光照射され発電しているときに同じ電位となる電極層に同じハッチングを施してある。ユニットセルUは集電孔h2のみを有するように、切断部1gにより切断されており、集電孔h2においてのみ第3電極層1eと裏側面の第4電極層1fと接続されている。一方、接続孔と1つのユニットセル中の集電孔とを有するように切断部1hにより切断されて裏面電極Eが形成される。接続孔h1においてはユニットセルUの下部電極(第1電極層1b)と裏面電極E(第2電極層1cと第4電極層1fの2重層)とが接続されている。従って、任意のユニットセルUに隣接し合う裏面電極En−1,n と裏面電極En,n+1 はEn−1,n −U−En,n+1 なる直列接続をなし、所定の多段直列接続された太陽電池を形成することができる。
【0006】
【発明が解決しようとする課題】
上記の開孔工程(工程(a)および工程(b))において、従来は、パンチを用いる機械加工またはレーザー光などのエネルギービームを用いるレーザー加工によっていた。しかし、レーザー加工においては、YAG レーザーなど赤外レーザーの場合は熱加工であるため、熱による凹凸が孔の内面と周縁に形成され、電極層が分離してしまうことがあった。一方、エキシマレーザーなど短波長レーザーの場合は凹凸の形成されない加工が可能ではあるが、量産性に劣り、運転コストが高いことなどから適用が困難であった。
【0007】
パンチを用いた機械加工においては、発明者らは量産性に富む連続開孔加工方法を既に提案した。図10は従来の開孔装置の断面模式図である。巻き出しロールR1から送りだされた基板1aは、順次、位置検出用孔開孔部P3、集電孔開孔部P2および接続開孔部P1で所定位置に所定数の位置検出孔、集電孔および接続孔を開けられ、洗浄装置で洗浄された後、巻き取りロールR2に巻き取られる。各種の孔位置に対応して基板1aの搬送方向および搬送距離を任意に制御される。
【0008】
図11は従来の開孔装置の開孔部の拡大断面模式図である。開孔部は断面が基板の孔形状のポンチPと、ポンチPと同じ断面形状の開孔部を有するストリッパープレートPsと同じ開口部を有するダイDからなっている。ダイDとストリッパープレートPsの上に搬送され停止した基板1aをストリッパープレートPsが押さえてから、ポンチPが基板1aを貫通し、基板1aに孔が開けられる。基板1a表面に傷を付けないように、ストリッパープレートPsと基板1aの間には僅かな隙間Rを持たせている。
【0009】
しかし、上記のパンチによる開孔では、孔の基板のダイ側に円周方向の溝が形成され、第2電極層および第4電極層が溝を被覆できず切れ目を生じ、孔を介した第1電極層と第2電極層、あるいは第3電極層と第4電極層の接続抵抗が著しく高くなることがあった。その結果、太陽電池の曲線因子が低下し、出力低下を来していた。
【0010】
本発明の目的は、上記の問題点に鑑み、孔周縁に溝がなく、太陽電池特性の低下を来さず、量産性に富み低コストの薄膜太陽電池の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を達成するために、絶縁性で可撓性の基板の一面上に光電変換層を挟んで基板側に第1電極層、反対側に透明な第3電極層が設けられており、前記第1電極層は基板の他面上に形成されている第2電極層と基板を貫通する接続孔の内面で接続され、前記第3電極層は基板の他面上に形成されている第4電極層と基板を貫通する集電孔の内面で接続されている薄膜太陽電池の製造方法において、前記接続孔または前記集電孔の開孔は、前記基板より硬度の高い材料からなる押さえ治具の間に、前記基板を複数枚重ねてまたは前記基板と補助フィルムを重ねて挟み込み、剪断加工または切削加工してなされることとする。
【0012】
前記剪断加工または切削加工は、前記基板と前記補助フィルムに同時に行われると良い。
前記剪断加工または切削加工は、前記基板と前記補助フィルムに同時に行われ、以降はこの開孔された補助フィルムを押さえ治具として働かせて、行われると良い。
【0013】
前記切削加工具はドリルであり、前記押さえ治具はドリル直径の孔が開けられた2枚の板である。
前記押さえ治具はダイとストリッパープレートであり、前記剪断加工具はポンチであると良い。
前記基板と補助フィルムの合計厚さまたは前記複数基板の合計厚さは100μm 以上であると良い。
【0014】
前記補助フィルムは樹脂フィルムであると良い。
前記補助フィルムは金属箔であると良い。
【0015】
【発明の実施の形態】
本発明は、次の実験事実を見いだしたことに基づいている。
従来の開孔装置(図10)において、基板の厚さより小さい隙間Rを維持したまま、基板の厚さを増加させると孔の基板のダイ側に円周方向の溝が形成されなくなり、そのため電極層の被覆に切れ目がなくなり、接続抵抗が低下した。図2は本発明に係る接続抵抗の基板厚さ依存性のグラフである。基板厚さ100μm 以上では接続抵抗が0.2Ω程度になっていることが判る。なお、用いた基板はポリイミドフィルムである。
【0016】
また、基板を少なくとも2枚以上重ねて厚さ100μm 以上とするか、または基板に金属箔を重ねた場合にも、同様に接続抵抗が低下した。
孔周縁部に溝が生じなくなる作用としては、このように被加工物の厚さが増加すると、被加工物の厚さに対するストリッパープレートと被加工物の距離(隙間)の比が小さくなり、またポンチとダイのクリアランスも実質的に小さくなるので、開孔時の被加工物の歪みの生ずる余地が小さくなり溝あるいはしわは生じないと推定できる。
実施例1
図1は本発明に係る実施例の開孔装置の開孔部の拡大断面模式図である。開孔装置全体の構成は従来の装置と同じである。ストリッパープレートPsに補助フィルムFとして、基板1aと同じ材質で厚さも同じフィルムを取り付け、基板を従来と同様にダイDと補助フィルムFの間に搬送し開孔加工を行った。最初の孔は補助フィルムFと基板1aと両者に同時に開けられ、以降、孔の開けられた補助フィルムFはストリッパープレートとして働かせた。
【0017】
基板1aとしては、本実施例では膜厚50μm のポリイミドフィルムを用いたが、PEN 、PES 、PET またはポリイミドなどの絶縁性プラスチックフィルムを用いることも出来る。また、膜厚は実施例では50μm のものを用いたがこの厚さに限定されるものではない。
図3は本発明の実施例における基板の位置検出用孔と接続孔の配置を示す平面図である。基板1aには位置検出用孔h3、接続孔h1の順に開孔される。位置検出用孔h3は太陽電池の所定のユニットのパターンの長さ間隔に開けられ、以降の搬送の位置決めに用いられる。
【0018】
先ず、位置検出用孔h3を開け、以降基板1aを所定の距離づつ搬送して停止し、フィルムの幅方向に1回のポンチ操作で複数個の接続孔h1の列を形成した。これを所定の回数繰り返した後、位置検出用孔h3を開ける。この位置検出用孔h3の距離を1基本パターンの長さとしこの繰り返しにより長尺の基板1aに多数の基本パターンを形成することができる。開孔後、同一の装置内で粘着ロールまたは、非接触の超音波などによるブローにより基板1a表面を清浄にした。
【0019】
この面に第1電極層1b、およびそれと反対側の面に第2電極層1cとしてAgをスパッタにより数百nm厚で形成した(図9(c) 参照)。材料としては、この他AlやAg/ 透明導電層などの多層構造膜などを用いることができる。第1電極層1b、第2電極層1cどちらが先でもよいが、逆順が好ましい。
この後、同じ開孔装置に装着し、位置検出用孔h3を位置検出センサにより検知し停止した後、集電孔h2の列を所定数開けた。図4は本発明の実施例においてさらに集電孔が開けられた基板の平面図である。実施例では集電孔列の間隔を5mmとしたが、この間隔は太陽電池パターンにより任意の値とすることができる。
【0020】
なお、この場合の孔形状は必ずしも円である必要はなく、例えば太陽電池の特性を向上させるためには集電孔h2の面積は出来るだけ小さく、しかも周辺の長さが出来る限り長くなる形状が良い。
実施例中では、1 動作で基板幅方向に1 ラインの孔形成を行ったが、複数ライン数として、その量産性を向上させることができる。
【0021】
こうした工程を経たうえで、光電変換層1dとして薄膜半導体層を形成した。本実施例では通常のグロー放電分解法により堆積される水素化アモルファスシリコン(a−Si:H)系の材料を用いてn−i−p 接合を形成した(図9(d) 参照)。その上に第3電極層として透明電極層を形成した。この層にはITO 、ZnO などの酸化物導電膜を用いることができるが、本実施例ではスパッタによるITO 膜を成膜した(図9(e) 参照)。このとき、膜形成時にマスクで覆うなどして接続孔h1には膜が形成されないようにする。次に太陽電池を形成した面とは反対側の基板面に金属膜などからなる第4電極層を最終的に成膜した。本実施例中では材料としてNiを用いたが、Niに限定されるものではない。成膜方法はスパッタである(図9(f) 参照)。
【0022】
最後に、直列構造を形成するため、YAG レーザーにより、表面の第1電極層から第3電極層までの3層と、裏面の第2、第4電極層の2層を切断し、所定のパターンとした。(図9(g) 参照)。
図5は本発明に係る実施例で作製した太陽電池と従来の製造方法で作製した太陽電池の接続抵抗を示すグラフである。従来の製造方法に比較して、本発明の製造方法では、接続抵抗は小さく、そのばらつきも小さいことが判る。また、そのため太陽電池特性の曲線因子も0.5程度だったものが0.6程度と改善することができた。
【0023】
以上は、補助フィルムを基板の上側としたが、ダイ上に取り付けその上に基板を搬送しても同様な効果が得られた。
実施例2
補助フィルムとして、Al箔およびSUS 箔を用いて、それぞれ実施例1と同様に太陽電池を作製した。接続抵抗とそのばらつきは実施例1と同様に低かった。
実施例3
図6は本発明に係る他の実施例の開孔装置の開孔部の拡大断面模式図である。開孔用のドリルDrの直径の孔を予め開けた押さえ治具PaとPbとの間に隙間無く補助フィルムFと基板1aを挟み、ドリルDrで孔を開けた。
【0024】
押さえ治具PaとPbとして厚さ1mmのステンレス鋼板、基板1aおよび補助フィルムFとして膜厚50μm のポリイミドフィルムを用いた。ドリルの直径は1.0mmとした。孔の周囲に溝は生じず、切削バリも殆どなく、この基板を用いた太陽電池の接続抵抗は実施例1と同様低かった。
実施例4
図7は本発明に係る2枚の基板に同時に開孔を行う場合の開孔装置の断面模式図である。
【0025】
2つの巻き出しロールR1、R11から別々に送り出された2枚の厚さ60μm の基板1aおよび基板11aを重ねて開孔装置にに送り込み、2枚の基板に同時にポンチにより開孔を行った。各基板は巻き取りロールR2、R21に巻き取られる。
開孔時の基板の厚さの合計が100μm を越えており(2枚の基板は互いに補助フィルムの役割を果たしている)いずれの基板の孔の周縁にも溝は生じず、接続抵抗は実施例1の同様に低かった。
【0026】
複数基板を同時に開孔するために、量産性は向上した。
実施例5
実施例4においてどちらかの基板を補助フィルムに置き換え、基板を補助フィルムに同時に開孔すれば、同様に良質の開孔を実施できるので、これを実施した。
【0027】
開孔時の基板と補助フィルムの厚さの合計が100μm を越えるようにしたので、基板の孔の周縁にも溝は生じず、接続抵抗は実施例1の同様に低かった。
補助フィルムを基板と同じ搬送ピッチで搬送してもよいが、補助フィルムの搬送ピッチを基板のそれより小さく、孔径より大きくすることにより補助フィルムの消費を抑えることができる(搬送のタイミングは基板と同期させる)。この実施例では、搬送ピッチを孔径の2倍とした。これより小さいと孔周縁部の強度が低下し、ストリッパープレートとしての作用が働かなくなることが判った。
【0028】
【発明の効果】
本発明によれば、絶縁性で可撓性の基板の一面上に光電変換層を挟んで基板側に第1電極層、反対側に透明な第3電極層が設けられており、前記第1電極層は基板の他面上に形成されている第2電極層と基板を貫通する接続孔の内面で接続され、前記第3電極層は基板の他面上に形成されている第4電極層と基板を貫通する集電孔の内面で接続されている薄膜太陽電池の製造方法において、前記基板より硬度の高い材料からなる押さえ治具の間に、前記基板を複数枚重ねてまたは前記基板と補助フィルムを重ねて挟み込み、剪断加工または切削加工して開孔したため、追加した補助フィルムあるいは基板の厚さが押さえ治具の間の隙間を少なくし、また追加した補助フィルムあるいは基板の厚さに対する加工具と押さえ治具のクリアランスも小さくなり実質的に、基板の歪む余地は減少され、孔周縁の円周状溝の発生は抑制される。従って、孔周縁の電極層には切れ目は生ぜず、接続抵抗は大きくならず、曲線因子の良い太陽電池を製造できる。
【図面の簡単な説明】
【図1】本発明に係る実施例の開孔装置の開孔部の拡大断面模式図
【図2】本発明に係る接続抵抗の基板厚さ依存性のグラフ
【図3】本発明の実施例における基板の位置検出用孔と接続孔の配置を示す平面図
【図4】本発明の実施例においてさらに集電孔が開けられた基板の平面図
【図5】本発明に係る実施例で作製した太陽電池と従来の製造方法で作製した太陽電池の接続抵抗を示すグラフ
【図6】本発明に係る他の実施例の開孔装置の開孔部の拡大断面模式図
【図7】本発明に係る2枚の基板に同時に開孔を行う場合の開孔装置の断面模式図
【図8】裏面に電極を有する太陽電池の平面図
【図9】裏面に電極を有する太陽電池の製造工程順の図8におけるXX断面図であり、(a)は接続開孔、(b)は第1電極層と第2電極層成膜、(c)は集電孔開孔、(d)は光電変換層成膜、(e)は第3電極層成膜、(f)は第4電極層成膜、(g)は切断部を示す図
【図10】従来の開孔装置の断面模式図
【図11】従来の開孔装置の開孔部の拡大断面模式図
【符号の説明】
1a 基板
11a 基板
h1 接続孔
h2 集電孔
h3 位置検出用孔
1b 第1電極層
1c 第2電極層
1d 光電変換層
1e 第3電極層
1f 第4電極層
1g 切断部
E 裏面電極
U ユニットセル
P1 接続開孔部
P2 集電孔開孔部
P3 位置検出用孔開孔部
P ポンチ
D ダイ
Ps ストリッパープレート
F 補助フィルム
R 隙間
R1 巻き出しロール
R11巻き出しロール
R2 巻き取りロール
R21巻き取りロール
Dr ドリル
Pa 押さえ治具
Pb 押さえ治具
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for manufacturing a thin-film solar cell in which a photoelectric conversion layer made of an amorphous thin-film semiconductor containing a Group IV element such as silicon as a main component is formed on a flexible substrate such as a plastic film.
[0002]
[Prior art]
When a thin-film solar cell is formed on a flexible substrate such as a plastic film, electrodes are arranged on the opposite side of the solar cell (hereinafter referred to as a back surface) of the substrate, and the substrate is connected by penetrating the substrate. Features such as an increase in the ratio of the solar cell area to the area can be provided.
[0003]
FIG. 8 is a plan view of a solar cell having electrodes on the back surface. FIG. 9 is a cross-sectional view taken along the line XX in FIG. 8 in the order of the manufacturing process of the solar cell having an electrode on the back surface, where (a) is a connection opening, (b) is a first electrode layer and a second electrode layer, and (c) ) Is a diagram showing a collector hole opening, (d) is a film of a photoelectric conversion layer, (e) is a film of a third electrode layer, (f) is a film of a fourth electrode layer, and (g) is a view showing a cut portion. is there. In FIG. 8, the same reference numerals are used as the division symbols and the process symbols. The flexible and insulating substrate 1a is a polyimide-based film having a thickness of 50 μm, and the film may be made of polyethylene naphthalate (PEN), polyether sulfone (PES), polyethylene terephthalate (PET) or aramid. Film or the like can be used. A plurality of connection holes h1 are opened at predetermined positions on the substrate 1a (step (a)). The diameter of the connection hole h1 is of the order of 1 mm. Next, a first electrode layer 1b (this surface is defined as a front surface) is formed on the substrate 1a, and a second electrode layer 1c is sequentially formed on a rear surface opposite to the first electrode layer 1b. The order of forming the first electrode layer 1b and the second electrode layer 1c may be reversed. At this time, the first electrode layer 1b and the second electrode layer 2c are overlapped on the inner surface of the connection hole h1 and conduct with each other (step (b)). These electrode layers are formed by sputtering Ag to a thickness of several 100 nm. A metal such as Al, Cu, Ti or the like may be formed by sputtering or electron beam evaporation, or a multi-layered film of a metal oxide film and a metal may be formed as an electrode layer.
[0004]
Next, a plurality of current collecting holes h2 are formed in the substrate again. (Step (c)).
Next, the photoelectric conversion layer 1d is formed. The photoelectric conversion layer 1d is a thin film semiconductor layer, and a-Si is a typical example (step (d)).
Next, a transparent electrode layer is formed as the third electrode layer 1e on the photoelectric conversion layer 1d. Through this step, for example, all layers necessary for the solar cell are stacked. It is common to use an oxide conductive layer of ITO, SnO 2 , ZnO, or the like as the transparent electrode layer. At the time of forming the film, the peripheral portion of the connection hole h1 is covered with a mask or the like so that the film is not formed on the portion of the connection hole h1 formed first (step (e)).
[0005]
Next, a fourth electrode layer 1f made of a low-resistance conductive film such as a metal film is formed on the back surface. By this step, the third electrode layer 1e and the fourth electrode layer 1f overlap with each other on the inner surface of the current collection hole h2, and can be electrically connected to each other. (Step (f)).
After the completion of the above film forming process, the laminate on both surfaces of the substrate is cut into a predetermined shape to form a solar cell including unit cells connected in multiple stages (step (g)). In FIG. 9 (g), the same hatching is applied to the electrode layers that have the same potential when the solar cell is irradiated with light to generate power. The unit cell U is cut by the cut portion 1g so as to have only the current collecting hole h2, and is connected to the third electrode layer 1e and the fourth electrode layer 1f on the rear side only at the current collecting hole h2. On the other hand, the back electrode E is formed by being cut by the cutting portion 1h so as to have the connection hole and the current collecting hole in one unit cell. In the connection hole h1, the lower electrode (first electrode layer 1b) of the unit cell U and the back electrode E (double layer of the second electrode layer 1c and the fourth electrode layer 1f) are connected. Thus, the back electrode E n-1 adjacent to an arbitrary unit cell U n, n and back electrode E n, n + 1 No E n-1, n -U n -E n, n + 1 becomes a series connection, a predetermined Multistage serially connected solar cells can be formed.
[0006]
[Problems to be solved by the invention]
Conventionally, in the hole forming step (step (a) and step (b)), mechanical processing using a punch or laser processing using an energy beam such as a laser beam has been used. However, in the case of laser processing, since infrared processing such as a YAG laser is performed by thermal processing, unevenness due to heat may be formed on the inner surface and peripheral edge of the hole, and the electrode layer may be separated. On the other hand, in the case of a short-wavelength laser such as an excimer laser, processing without forming irregularities is possible, but it is difficult to apply because of poor mass productivity and high operation cost.
[0007]
In machining using a punch, the inventors have already proposed a continuous hole forming method that is rich in mass productivity. FIG. 10 is a schematic sectional view of a conventional opening device. The substrate 1a sent out from the unwinding roll R1 is sequentially provided with a predetermined number of position detection holes at predetermined positions at a position detection hole opening P3, a current collection hole opening P2, and a connection opening P1. After the holes and the connection holes are opened, and the holes are washed by a cleaning device, the holes are wound around a winding roll R2. The transport direction and transport distance of the substrate 1a are arbitrarily controlled corresponding to various hole positions.
[0008]
FIG. 11 is an enlarged schematic cross-sectional view of an opening portion of a conventional opening device. The opening portion includes a punch P having a hole shape in the cross section of the substrate and a die D having the same opening portion as the stripper plate Ps having an opening portion having the same cross-sectional shape as the punch P. After the stripper plate Ps presses the substrate 1a conveyed and stopped on the die D and the stripper plate Ps, the punch P penetrates the substrate 1a, and a hole is formed in the substrate 1a. A small gap R is provided between the stripper plate Ps and the substrate 1a so as not to damage the surface of the substrate 1a.
[0009]
However, in the opening by the above-mentioned punch, a circumferential groove is formed on the die side of the substrate of the hole, and the second electrode layer and the fourth electrode layer cannot cover the groove, so that a cut is formed. In some cases, the connection resistance between the first electrode layer and the second electrode layer or between the third electrode layer and the fourth electrode layer was significantly increased. As a result, the fill factor of the solar cell was reduced, and the output was reduced.
[0010]
In view of the above problems, an object of the present invention is to provide a method for manufacturing a thin-film solar cell which is mass-produced and has a low cost without having a groove at the periphery of the hole, not deteriorating the characteristics of the solar cell.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a first electrode layer is provided on a substrate side with a photoelectric conversion layer interposed therebetween on one surface of an insulating and flexible substrate, and a transparent third electrode layer is provided on the opposite side. The first electrode layer is connected to a second electrode layer formed on the other surface of the substrate at an inner surface of a connection hole penetrating the substrate, and the third electrode layer is formed on the other surface of the substrate. In the method for manufacturing a thin-film solar cell in which the four electrode layers are connected to an inner surface of a current collecting hole penetrating the substrate, the connection hole or the opening of the current collecting hole is formed by a holding member made of a material having a higher hardness than the substrate. A plurality of the substrates or the substrate and the auxiliary film are sandwiched between tools and sandwiched, and shearing or cutting is performed.
[0012]
The shearing or cutting may be performed simultaneously on the substrate and the auxiliary film.
The shearing or cutting may be performed on the substrate and the auxiliary film at the same time, and thereafter, the opened auxiliary film may be operated as a holding jig.
[0013]
The cutting tool is a drill, and the holding jig is two plates having holes of a drill diameter.
The holding jig is preferably a die and a stripper plate, and the shearing tool is preferably a punch.
The total thickness of the substrate and the auxiliary film or the total thickness of the plurality of substrates is preferably 100 μm or more.
[0014]
The auxiliary film is preferably a resin film.
The auxiliary film is preferably a metal foil.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is based on the finding of the following experimental facts.
In the conventional opening apparatus (FIG. 10), if the thickness of the substrate is increased while maintaining the gap R smaller than the thickness of the substrate, no circumferential groove is formed on the die side of the substrate with the hole, and therefore the electrode is not formed. There was no break in the coating of the layer and the connection resistance was reduced. FIG. 2 is a graph showing the dependence of the connection resistance on the substrate thickness according to the present invention. It can be seen that the connection resistance is about 0.2Ω when the substrate thickness is 100 μm or more. The substrate used was a polyimide film.
[0016]
Similarly, when at least two substrates were stacked to a thickness of 100 μm or more, or when a metal foil was stacked on the substrate, the connection resistance was similarly reduced.
As a function of preventing a groove from being formed in the peripheral portion of the hole, as the thickness of the workpiece increases, the ratio of the distance (gap) between the stripper plate and the workpiece to the thickness of the workpiece decreases, and Since the clearance between the punch and the die is also substantially reduced, it is presumed that there is less room for distortion of the workpiece at the time of opening and no grooves or wrinkles occur.
Example 1
FIG. 1 is an enlarged schematic cross-sectional view of an opening portion of an opening device according to an embodiment of the present invention. The configuration of the entire opening apparatus is the same as that of the conventional apparatus. A film of the same material and thickness as the substrate 1a was attached to the stripper plate Ps as the auxiliary film F, and the substrate was conveyed between the die D and the auxiliary film F to form a hole as in the related art. The first hole was formed in both the auxiliary film F and the substrate 1a at the same time, and thereafter, the formed auxiliary film F served as a stripper plate.
[0017]
In this embodiment, a polyimide film having a thickness of 50 μm is used as the substrate 1a, but an insulating plastic film such as PEN, PES, PET, or polyimide may be used. Further, in the embodiment, the film thickness is 50 μm, but is not limited to this thickness.
FIG. 3 is a plan view showing the arrangement of the position detection holes and the connection holes of the substrate according to the embodiment of the present invention. A hole h3 for position detection and a connection hole h1 are formed in the substrate 1a in this order. The position detection holes h3 are formed at intervals of the pattern length of a predetermined unit of the solar cell, and are used for positioning of subsequent conveyance.
[0018]
First, a hole h3 for position detection was opened, and thereafter, the substrate 1a was conveyed by a predetermined distance and stopped, and a row of a plurality of connection holes h1 was formed by one punch operation in the width direction of the film. After repeating this a predetermined number of times, the position detecting hole h3 is opened. The distance between the position detection holes h3 is set to the length of one basic pattern, and by repeating this, a large number of basic patterns can be formed on the long substrate 1a. After the opening, the surface of the substrate 1a was cleaned by blowing with an adhesive roll or non-contact ultrasonic waves in the same apparatus.
[0019]
The first electrode layer 1b was formed on this surface, and the second electrode layer 1c was formed on the surface opposite to the first electrode layer 1b with a thickness of several hundred nm by sputtering (see FIG. 9C). As a material, a multilayer structure film such as Al or Ag / transparent conductive layer can be used. Either the first electrode layer 1b or the second electrode layer 1c may be first, but the reverse order is preferred.
After that, it was mounted on the same opening apparatus, and after detecting and stopping the position detecting holes h3 by the position detecting sensor, a predetermined number of rows of the current collecting holes h2 were opened. FIG. 4 is a plan view of a substrate in which a current collecting hole is further formed in the embodiment of the present invention. In the embodiment, the interval between the current collecting hole arrays is set to 5 mm. However, the interval can be set to an arbitrary value depending on the solar cell pattern.
[0020]
In this case, the shape of the hole is not necessarily a circle. For example, in order to improve the characteristics of the solar cell, the shape of the current collecting hole h2 should be as small as possible, and the peripheral length should be as long as possible. good.
In the embodiment, one line of holes is formed in the substrate width direction by one operation. However, the number of lines can be increased to improve the mass productivity.
[0021]
After these steps, a thin film semiconductor layer was formed as the photoelectric conversion layer 1d. In this embodiment, an nip junction is formed using a hydrogenated amorphous silicon (a-Si: H) -based material deposited by a normal glow discharge decomposition method (see FIG. 9D). A transparent electrode layer was formed thereon as a third electrode layer. An oxide conductive film such as ITO or ZnO can be used for this layer. In this embodiment, an ITO film is formed by sputtering (see FIG. 9E). At this time, a film is not formed in the connection hole h1 by, for example, covering with a mask when forming the film. Next, a fourth electrode layer made of a metal film or the like was finally formed on the substrate surface opposite to the surface on which the solar cells were formed. In this embodiment, Ni is used as a material, but the material is not limited to Ni. The film formation method is sputtering (see FIG. 9F).
[0022]
Finally, in order to form a series structure, the YAG laser is used to cut the three layers from the first electrode layer to the third electrode layer on the front surface and the two layers of the second and fourth electrode layers on the back surface, and to form a predetermined pattern. And (See FIG. 9 (g)).
FIG. 5 is a graph showing the connection resistance between the solar cell manufactured in the example according to the present invention and the solar cell manufactured by the conventional manufacturing method. It can be seen that, in comparison with the conventional manufacturing method, in the manufacturing method of the present invention, the connection resistance is small and its variation is small. Also, the fill factor of the solar cell characteristics was about 0.5, but could be improved to about 0.6.
[0023]
In the above description, the auxiliary film is provided on the upper side of the substrate, but the same effect can be obtained by mounting the auxiliary film on the die and transporting the substrate thereon.
Example 2
Using an Al foil and a SUS foil as auxiliary films, solar cells were produced in the same manner as in Example 1. The connection resistance and its variation were low as in Example 1.
Example 3
FIG. 6 is an enlarged cross-sectional schematic view of an opening portion of an opening device according to another embodiment of the present invention. The auxiliary film F and the substrate 1a were sandwiched without any gap between the holding jigs Pa and Pb in which a hole having a diameter of the opening drill Dr was previously formed, and a hole was formed with the drill Dr.
[0024]
A stainless steel plate having a thickness of 1 mm was used as the holding jigs Pa and Pb, and a polyimide film having a thickness of 50 μm was used as the substrate 1a and the auxiliary film F. The diameter of the drill was 1.0 mm. No groove was formed around the hole, there was almost no cutting burr, and the connection resistance of the solar cell using this substrate was as low as in Example 1.
Example 4
FIG. 7 is a schematic cross-sectional view of a hole-punching apparatus according to the present invention, in which holes are simultaneously punched in two substrates.
[0025]
Two 60 μm-thick substrates 1a and 11a separately fed from the two unwinding rolls R1 and R11 were superimposed and sent to a punching device, and the two substrates were simultaneously punched by a punch. Each substrate is taken up by take-up rolls R2 and R21.
The sum of the thicknesses of the substrates at the time of opening exceeds 100 μm (the two substrates serve as auxiliary films for each other). One was similarly low.
[0026]
Mass production is improved because multiple substrates are simultaneously opened.
Example 5
In Example 4, if one of the substrates was replaced with an auxiliary film and the substrate was simultaneously opened in the auxiliary film, the same high quality opening could be performed.
[0027]
Since the total thickness of the substrate and the auxiliary film at the time of opening was set to exceed 100 μm, no groove was formed on the periphery of the hole of the substrate, and the connection resistance was low as in Example 1.
The auxiliary film may be transported at the same transport pitch as the substrate. However, the auxiliary film can be transported at a pitch smaller than that of the substrate and larger than the hole diameter, so that consumption of the auxiliary film can be suppressed. Sync). In this embodiment, the transport pitch is twice the hole diameter. If it is smaller than this, it has been found that the strength of the peripheral portion of the hole is reduced and the function as the stripper plate does not work.
[0028]
【The invention's effect】
According to the present invention, the first electrode layer is provided on one side of the insulating and flexible substrate with the photoelectric conversion layer interposed therebetween on the substrate side, and the transparent third electrode layer is provided on the opposite side. The electrode layer is connected to a second electrode layer formed on the other surface of the substrate at an inner surface of a connection hole passing through the substrate, and the third electrode layer is formed on a fourth electrode layer formed on the other surface of the substrate. And a method of manufacturing a thin-film solar cell that is connected at the inner surface of a current collecting hole penetrating the substrate, wherein a plurality of the substrates are stacked or the substrate and Since the auxiliary film was sandwiched and sandwiched and opened by shearing or cutting, the thickness of the additional auxiliary film or substrate reduced the gap between the holding jigs, and the thickness of the additional auxiliary film or substrate Clearance between processing tool and holding jig In fence Nari substantially room distorted the substrate is reduced, generation of circumferential groove of the hole perimeter is suppressed. Therefore, there is no cut in the electrode layer around the hole, the connection resistance does not increase, and a solar cell with a good fill factor can be manufactured.
[Brief description of the drawings]
FIG. 1 is an enlarged schematic cross-sectional view of an opening portion of an opening device according to an embodiment of the present invention. FIG. 2 is a graph of a substrate thickness dependence of a connection resistance according to the present invention. FIG. FIG. 4 is a plan view showing an arrangement of a position detection hole and a connection hole of the substrate in FIG. 4 FIG. 4 is a plan view of a substrate in which a current collecting hole is further formed in the embodiment of the present invention FIG. Showing the connection resistance between a solar cell manufactured by a conventional manufacturing method and a solar cell manufactured according to the present invention. FIG. 6 is an enlarged schematic cross-sectional view of an opening of an opening device according to another embodiment of the present invention. FIG. 8 is a schematic cross-sectional view of a hole-forming apparatus when holes are simultaneously formed in two substrates according to the present invention. FIG. 8 is a plan view of a solar cell having electrodes on a back surface. FIG. 9 is a cross-sectional view taken along the line XX in FIG. 8, wherein (a) is a connection opening, (b) is a first electrode layer and a second electrode layer formed, ) Shows the opening of the current collecting hole, (d) shows the formation of the photoelectric conversion layer, (e) shows the formation of the third electrode layer, (f) shows the formation of the fourth electrode layer, and (g) shows the cut section. FIG. 10 is a schematic cross-sectional view of a conventional hole opening device. FIG. 11 is an enlarged schematic cross-sectional view of a hole opening portion of the conventional hole opening device.
1a Substrate 11a Substrate h1 Connection Hole h2 Current Collection Hole h3 Position Detection Hole 1b First Electrode Layer 1c Second Electrode Layer 1d Photoelectric Conversion Layer 1e Third Electrode Layer 1f Fourth Electrode Layer 1g Cut Section E Back Electrode U Unit Cell P1 Connection opening P2 Current collecting hole opening P3 Position detection hole opening P Punch D Die Ps Stripper plate F Auxiliary film R Gap R1 Unwind roll R11 Unwind roll R2 Take-up roll R21 Take-up roll Dr Drill Pa Holding jig Pb Holding jig

Claims (8)

絶縁性で可撓性の基板の一面上に光電変換層を挟んで基板側に第1電極層、反対側に透明な第3電極層が設けられており、前記第1電極層は基板の他面上に形成されている第2電極層と基板を貫通する接続孔の内面で接続され、前記第3電極層は基板の他面上に形成されている第4電極層と基板を貫通する集電孔の内面で接続されている薄膜太陽電池の製造方法において、前記接続孔または前記集電孔の開孔は、前記基板より硬度の高い材料からなる押さえ治具の間に、前記基板を複数枚重ねてまたは前記基板と補助フィルムを重ねて挟み込み、剪断加工または切削加工してなされることを特徴とする薄膜太陽電池の製造方法。A first electrode layer is provided on one surface of an insulating and flexible substrate with a photoelectric conversion layer interposed therebetween on the substrate side, and a transparent third electrode layer is provided on the other side, and the first electrode layer is provided on the other side of the substrate. The second electrode layer formed on the surface is connected to an inner surface of a connection hole penetrating the substrate, and the third electrode layer is connected to a fourth electrode layer formed on the other surface of the substrate and the collector penetrating the substrate. In the method for manufacturing a thin-film solar cell connected on the inner surface of the electric hole, the opening of the connection hole or the current collecting hole includes a plurality of the substrates between holding jigs made of a material having a higher hardness than the substrate. A method for manufacturing a thin-film solar cell, wherein the method is carried out by stacking or sandwiching the substrate and the auxiliary film, and performing shearing or cutting. 前記剪断加工または切削加工は、前記基板と前記補助フィルムに同時に行われることを特徴とする請求項1に記載の薄膜太陽電池の製造方法。The method according to claim 1, wherein the shearing or the cutting is performed on the substrate and the auxiliary film at the same time. 前記剪断加工または切削加工は、前記基板と前記補助フィルムに同時に行われ、以降はこの開孔された補助フィルムを押さえ治具として働かせて、行われることを特徴とする請求項1に記載の薄膜太陽電池の製造方法。The thin film according to claim 1, wherein the shearing or cutting is performed on the substrate and the auxiliary film at the same time, and thereafter, the opened auxiliary film is operated as a holding jig. Solar cell manufacturing method. 前記切削加工具はドリルであり、前記押さえ治具はドリル直径の孔が開けられた2枚の板であることを特徴とする請求項1に記載の薄膜太陽電池の製造方法。2. The method according to claim 1, wherein the cutting tool is a drill, and the holding jig is two plates having holes of a drill diameter. 3. 前記押さえ治具はダイとストリッパープレートであり、前記剪断加工具はポンチであることを特徴とする請求項1または2に記載の薄膜太陽電池の製造方法。3. The method according to claim 1, wherein the holding jig is a die and a stripper plate, and the shearing tool is a punch. 前記基板と補助フィルムの合計厚さまたは前記複数基板の合計厚さは100μm 以上であることを特徴とする請求項1ないし5に記載の薄膜太陽電池の製造方法。The method according to claim 1, wherein a total thickness of the substrate and the auxiliary film or a total thickness of the plurality of substrates is 100 μm or more. 前記補助フィルムは樹脂フィルムであることを特徴とする請求項1ないし6に記載の薄膜太陽電池の製造方法。7. The method according to claim 1, wherein the auxiliary film is a resin film. 前記補助フィルムは金属箔であることを特徴とする請求項1ないし7に記載の薄膜太陽電池の製造方法。The method according to claim 1, wherein the auxiliary film is a metal foil.
JP07676397A 1996-10-30 1997-03-28 Manufacturing method of thin film solar cell Expired - Fee Related JP3564928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07676397A JP3564928B2 (en) 1996-10-30 1997-03-28 Manufacturing method of thin film solar cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-287200 1996-10-30
JP28720096 1996-10-30
JP07676397A JP3564928B2 (en) 1996-10-30 1997-03-28 Manufacturing method of thin film solar cell

Publications (2)

Publication Number Publication Date
JPH10190024A JPH10190024A (en) 1998-07-21
JP3564928B2 true JP3564928B2 (en) 2004-09-15

Family

ID=26417894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07676397A Expired - Fee Related JP3564928B2 (en) 1996-10-30 1997-03-28 Manufacturing method of thin film solar cell

Country Status (1)

Country Link
JP (1) JP3564928B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4854105B2 (en) * 1999-09-17 2012-01-18 株式会社カネカ Thin film solar cell module and manufacturing method thereof
CN108649100B (en) * 2018-05-03 2019-10-22 繁昌县凯艺电子商务有限公司 A kind of solar film battery punching machine

Also Published As

Publication number Publication date
JPH10190024A (en) 1998-07-21

Similar Documents

Publication Publication Date Title
US10056521B2 (en) Wire network for interconnecting photovoltaic cells
US5733381A (en) Thin-film solar cell array and method of manufacturing same
US5421908A (en) Thin-film solar cell and method for the manufacture thereof
JP3449155B2 (en) Photoelectric conversion device and method of manufacturing the same
JP2002057357A (en) Thin-film solar battery and its manufacturing method
JP3564928B2 (en) Manufacturing method of thin film solar cell
JP4171959B2 (en) Method for manufacturing thin film solar cell
DE102009055031A1 (en) Back contact-solar cell for use in solar module, has perforated film and semi-conducting layer positioned on each other, and contact points whose portion is connected with conductive layer via solderless electrically conductive connection
JP3111820B2 (en) Manufacturing method of thin film solar cell
JP3564938B2 (en) Method and apparatus for manufacturing thin-film solar cell
JP2000223727A (en) Thin film solar battery and its manufacture
JP3565046B2 (en) Method and apparatus for manufacturing thin-film solar cell
JP2004153137A (en) Method and apparatus for manufacturing solar cell module
JP4403654B2 (en) Thin film solar cell
JP3111805B2 (en) Thin film solar cell and method of manufacturing the same
JP2000340816A (en) Manufacture of thin-film solar cell and processing device for through-hole of thin-film substrate
JP3687198B2 (en) Method for manufacturing thin film semiconductor device
JPS61187377A (en) Dividing method for processing of amorphous solar battery
JP2001156312A (en) Method for manufacturing thin-film solar battery and thin-film substrate through hole machining method
JP2000101108A (en) Thin-film solar battery and its manufacture
JP2006185979A (en) Thin-film solar battery module and its manufacturing method
JP4075254B2 (en) Method for manufacturing thin film solar cell
EP1732140A1 (en) Felxible substrate with photovoltaic cells and its manufacturing method
WO2012172827A1 (en) Thin film solar cell and method for manufacturing same
JP2009076715A (en) Manufacturing method of thin film solar cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees