JP2004153137A - Method and apparatus for manufacturing solar cell module - Google Patents

Method and apparatus for manufacturing solar cell module Download PDF

Info

Publication number
JP2004153137A
JP2004153137A JP2002318323A JP2002318323A JP2004153137A JP 2004153137 A JP2004153137 A JP 2004153137A JP 2002318323 A JP2002318323 A JP 2002318323A JP 2002318323 A JP2002318323 A JP 2002318323A JP 2004153137 A JP2004153137 A JP 2004153137A
Authority
JP
Japan
Prior art keywords
solar cell
manufacturing
heating
protection member
adhesive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002318323A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yokoyama
康弘 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002318323A priority Critical patent/JP2004153137A/en
Publication of JP2004153137A publication Critical patent/JP2004153137A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify an apparatus for manufacturing a solar cell module and to reduce the manufacturing costs by cutting a predetermined portion including a part to form a solar cell out of a long flexible substrate without using a vacuum suction conveyance system as conventional. <P>SOLUTION: On a supporting sheet in which a front side protecting member or a rear side protecting member and an adhesive resin sealant are simply laminated, the predetermined portion including the part to form the solar cell is overlapped, pressed and heated to be cut out of the long substrate. For example, the apparatus for implementation is provided with a first conveyance line for conveying a long substrate 131 on which a plurality of sets of solar cells are formed, a second conveyance line which is orthogonal with the first conveyance line for conveying a supporting sheet 132 in which the front side protecting member or the rear side protecting member and the adhesive resin sealant are laminated, a means for pressing and heating the predetermined portion including a part 131a to form the solar cell while overlapping the portion at a predetermined position on the adhesive resin sealant of the supporting sheet, and a means for cutting out the predetermined portion including the part to form the solar cell out of the long substrate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、太陽電池モジュールの製造方法と装置、特に複数個の太陽電池素子を直列または並列接続した太陽電池を複数組形成した可撓性の長尺基板から、前記各組の太陽電池形成部を含む所定部分を切り出し、接着性樹脂封止材を介して、表面保護部材と裏面保護部材との間に封止してなる太陽電池モジュールの製造方法と装置に関する。
【0002】
【従来の技術】
同一基板上に形成された複数の太陽電池素子が、直列または並列接続されてなる太陽電池(光電変換装置)の代表例は、薄膜太陽電池である。
【0003】
薄膜太陽電池は、薄型で軽量、製造コストの安さ、大面積化が容易であることなどから、今後の太陽電池の主流となると考えられ、電力供給用以外に、建物の屋根や窓などにとりつけて利用される業務用,一般住宅用にも需要が広がってきている。一般住宅用として、太陽電池付き屋根瓦なども開発されている。
【0004】
近年では、プラスチックフィルムや絶縁被覆した薄板金属を用いたフレキシブルタイプの太陽電池の研究開発が進められており、このフレキシブル性を生かし、ロールツーロール方式やステップロール方式の製造方法により大量生産が可能となっている。
【0005】
上記薄膜太陽電池モジュールとして、電気絶縁性を有するフィルム基板上に形成された太陽電池を、電気絶縁性の保護材により封止するために、太陽電池の受光面側および非受光面側の双方に保護層を設けたものが知られている。
【0006】
図4は、従来の太陽電池モジュールの構造の一例の模式的側断面図を示す。
【0007】
図4において、太陽電池1は、複数個の太陽電池素子が直列または並列接続されており、その受光面側にガラス板などの表面保護部材2、裏面側に金属箔入り樹脂、例えばアルミ箔の両面に一弗化エチレンを接着してなる裏面保護部材3が設けられ、接着封止性に優れかつ安価なEVA(エチレン−酢酸ビニル共重合樹脂)などの接着性樹脂封止材4により熱融着封止されている。
【0008】
また太陽電池1は、そのプラス(+)極とマイナス(−)極に、内部リード線の引き出し線5、6が電気的に接続され、この内部リード線の引き出し線5、6は、例えば、裏面保護部材3に接着固定された接続端子ボックス7に、裏面保護部材3を貫通して導かれ、接続端子ボックス7の内部で外部リード線としてのケーブル8の芯線9、10と電気接続され、これら全体として太陽電池モジュール11を形成している。
【0009】
なお、前記表面保護部材2としては、ガラス板などの無機系材料の外に、透明アクリル板などの有機系材料を用いることもある。また、裏面保護部材3としては、上記金属箔入り樹脂以外に、フツ素系フィルムなどの有機系フィルム単体、有機系フィルムと金属箔を貼り合せた複合材料、もしくは金属板やガラス板などの金属・無機系材料を用いることもある。
【0010】
前記太陽電池1の方式としては、基板の片面に形成する方式や、裏面に接続電極層を形成する方式、例えば本件出願人の提案に係る、所謂SCAF(Series Connection through Apertures on Film)型の太陽電池など、種々の方式がある。
【0011】
図5は、上記SCAF型太陽電池の構造の理解の容易化のために、薄膜太陽電池の構成を簡略化して斜視図で示したものである。図5において、基板61の表面に形成した単位光電変換素子62および基板61の裏面に形成した接続電極層63は、それぞれ複数の単位ユニットに完全に分離され、それぞれの分離位置をずらして形成されている。このため、素子62のアモルファス半導体部分である光電変換層65で発生した電流は、まず透明電極層66に集められ、次に該透明電極層領域に形成された集電孔67を介して背面の接続電極層63に通じ、さらに該接続電極層領域で素子の透明電極層領域の外側に形成された直列接続用の接続孔68を介して上記素子と隣り合う素子の透明電極層領域の外側に延びている下電極層64に達し、両素子の直列接続が行われている。
【0012】
次に、図6および図7は、表面保護部材と裏面保護部材との間に、複数個の太陽電池素子を直列または並列接続した太陽電池を接着性樹脂封止材により封止し、かつ前記太陽電池と内部リード線とを接続してなる太陽電池モジュールの模式的構成図を示し、図6は平面図、図7は図6におけるA−A断面を含む太陽電池モジュールの部分側断面図を示す。
【0013】
図6および図7において、図4に示す太陽電池モジュールと同一機能部材には、同一番号を付して詳細説明を省略する。図6および図7に示す太陽電池モジュールは、複数個の太陽電池素子1aが直列に接続され、内部リード線12が端部の太陽電池素子1aに接続されて引き出される典型的な構成を示している。然して、複数個の太陽電池素子1aからなる太陽電池1と内部リード線12との接続体の上下面には、それぞれ接着性樹脂封止材4を介して、表面保護部材2と裏面保護部材3とが設けられている。
【0014】
太陽電池1と内部リード線12との電気的接続は、通常、はんだ付けまたは導電性粘着テープにより行なわれる。なお、内部リード線12の形状や個数、ならびに太陽電池モジュール全体における配置等は、太陽電池モジュールに対する要求仕様によって異なり、かならずしも図6および図7に示すような単純な構成とは限らない。しかしながら、要求仕様が決まれば、前記電気的接続部分は、通常、所定のパターンを備える。
【0015】
ところで、前記薄膜太陽電池を量産する場合に、基板は長尺基板とし、この長尺基板上に前記直列に接続してなる薄膜太陽電池と、電力を外部に取り出すための電力の取り出し用の電極層とを有する薄膜太陽電池の組を、基板の長尺方向に所定の間隔をおいてパターニングして複数形成し、基板の前記間隔領域に設けた位置決め用のマーカー穴を基準点として、前記第1電極層,光電変換層,透明電極層,接続電極層などの各層の形成ならびに各パターニング等の加工、さらには、マーカー穴を基準点として素子の特性評価や薄膜太陽電池群毎に裁断を行なう等の製造方法が採用されている。
【0016】
図8は、上記製造方法に関わり、長尺基板上に複数個の薄膜太陽電池群が形成された薄膜太陽電池の概略構成を示す模式的平面図である。図8においては、主に、レーザ加工により基板上で分離された薄膜太陽電池と位置決め用のマーカー穴の位置関係を示し、131は長尺基板、1は太陽電池、20はマーカー穴を示す。太陽電池1は、パターニングライン28により複数個のユニットセル1aと電力取り出し用の電極層27とに、用途に応じて適宜分割されている。
【0017】
マーカー穴20は、太陽電池の間隔領域に設けられ、この位置決め用のマーカー穴を、光透過型または光反射型のセンサーにより検出し、この穴を基準点として位置決めを行なった上で、太陽電池の各層の形成や各パターニング加工等が行なわれる。
【0018】
ここで、前記間隔領域に設けるマーカー穴20は、太陽電池の非発電領域、すなわち無効領域をできる限り少なくするために、長尺基板1の内方であって、少なくとも基板長尺方向の太陽電池の最外周延長線上より内方に設けられている。
【0019】
なお、図8において、部番29で示す部分は、パターニングラインのオーバーラン部分を示す。レーザ加工の場合、ラインの終点部で走査スピードが遅くなるので、ラインの交点で走査を停止すると、レーザ光の集中により、基板や薄膜が損傷する危険があるので、これを防止するために、オーバーランさせている。
【0020】
また、図8における製造方法における薄膜太陽電池群は、前記図5に示したSCAF型の薄膜太陽電池に限らず、基板の片面のみに第1電極層,光電変換層,透明電極層を順次積層し、単位部分にパターニングして複数個の単位光電変換部分(ユニットセル)に分割し、このユニットセル相互を電気的に直列に接続してなる片面型の薄膜太陽電池群であってもよく、その製造方法は前述の方法と同様である。
【0021】
次に、太陽電池モジュールの従来の製造装置について述べる。図9は、特許文献1の従来の技術の項に記載された製造装置を示す。この装置では、エチレンナフタレート(PEN)フィルムなどの絶縁性可撓性フィルム131の送り出しロール21と、エチレンビニルアセテート(EVA)フィルムなどの透明な熱接着性樹脂フィルム31の送り出しロール22とを一端にして、それらのフィルムを挟んで熱接着する二つの加熱ロール41、42、絶縁性可撓性フィルムからの薄膜光電変換素子(太陽電池)1の部分の打ち抜き加熱装置60および巻き取りロール71が一列上に配置されている。
【0022】
この列と打ち抜き加熱装置60の部分で直交して、保護フィルムとしての透光性の耐候性フィルム81の送り出しロール23を一端にし、加熱ロール43、44、加熱ロール45、46および巻き取りロール72が一列に配置されている。打ち抜き加熱装置60では、絶縁可撓性フィルム131の図では下面となる表面上に可撓性フィルム131の素子1の形成された部分を素子間に付けられたマーカー穴20で位置を検出して打抜くと共に、その透明電極側に耐候性フィルム81をフィルム31の熱接着性樹脂により加熱接着する。
【0023】
加熱ロール43、44は、送り出しロール24から送り出された導電性テープ9を、基板131の裏面側に設けられ、表面側の素子電極に接続された補助電極に、その補助電極の表面上にコートされたはんだを溶かして接続すると共に耐候性フィルム81に熱固定する。加熱ロール45、46は、送り出しロール25から送り出された裏面保護フィルム用の耐候性フィルム82を、送り出しロール26から送り出された熱接着性樹脂フィルム32を介して熱接着する。
【0024】
上記装置を用いれば特性不良の素子の部分を除いて基板上の素子35を熱接着性樹脂フィルムごとに打抜き、受光面に熱接着性樹脂フィルム31を介して耐候性保護フィルム81をラミネートして保護フィルムにより薄い可撓性基板131を補強し、露出した補助電極を用いての素子間の接続、モジュール化も容易にでき、不良素子を含まないモジュール形成が行える。また、素子供給ラインとモジュールベースフィルムの搬送ラインとが直交した装置構成とすることにより、モジュール組立が両ラインで連続して実施でき、高い生産効率での薄膜光電変換モジュール製造が可能である。
【0025】
前記特許文献1に記載された発明は、前記図9の装置の問題点を解消することを目的とした装置および製造方法を開示する。即ち、特許文献1に記載された装置は、「基板を表面上に素子外形と同形状の刃を有するロールカッタと吸着ロールの間に挟み、両ロールを回動させて素子を切り出し、切り出した素子を吸着ロールに真空吸着する。耐候性のフィルム上に素子を搭載するときは、吸着ロール内部の吸気室を大気圧にして素子を吸着ロール面から離す。」ことにより、「可撓性基板上に形成した薄膜光電変換素子を基板から切り出して耐候性フィルム上に搭載するときに面が波立たないようにする」ものである。
【0026】
さらに、特許文献2および3には、「保護フィルムを搬送ラインから連続的に繰り出し、多種の形状のモジュール製造が行える生産効率の高い光電変換モジュールの製造装置を提供する」ことを目的とした装置が開示されている。この目的を達成するため、特許文献2に開示された装置は、下記のように構成される。
【0027】
即ち、「複数の光電変換ユニットが形成されている可撓性のフィルム基板の搬送ラインと保護フィルムの搬送搬送ラインとを有し、前者の搬送ライン上でフィルム基板から前記ユニットを裁断する裁断手段と、裁断された前記ユニットを保護フィルム上に重ねる搭載手段と、重ねられた前記ユニットと保護フィルムを熱接着する加熱ロールとを有する光電変換モジュールの製造装置において、前記裁断手段を、前者の搬送ラインに平行な第1の2本の切れ目を入れるための2つの裁断刃と、後者の搬送ラインに垂直方向に移動しながら第2の2本の切れ目を入れるための2つの裁断刃とする。」
また、特許文献3においては、さらに、生産効率を向上するために、「前記搭載手段は吸着テーブルと、フィルム基板と光電変換ユニットを前記吸着テーブルとの間に挟み仮熱接着する前加熱ロールからなるものとする。」装置が記載されている。
【0028】
【特許文献1】
特開平9−64393号公報(第1〜3頁、図1および図2)
【特許文献2】
特開平10−12906号公報(第1頁、第4頁、図1)
【特許文献3】
特開平10−135496号公報(第1頁、第4〜5頁、図1)
【0029】
【発明が解決しようとする課題】
ところで、前記特許文献1〜3に記載された従来の太陽電池モジュールの製造装置は、いずれも、切り出した太陽電池形成部を吸着ロールに真空吸着することにより搬送しているため、装置が複雑となり、モジュールの製造コストが増加する問題があった。
【0030】
特に、前記図5に示したSCAF型の薄膜太陽電池の場合、可撓性基板を貫通する集電孔67や接続孔68を介して、隣接する太陽電池素子間の直列接続が行われているために、前記真空吸着を行なう際には、予め保護フィルム等を張合わせて、前述の可撓性基板を貫通する孔をふさぐ必要がある。従って、さらに製造手順や装置の複雑化を招き、モジュールの製造コストが増加する問題があった。
【0031】
この発明は、上記のような問題点を解消するためになされたもので、本発明の課題は、従来のように真空吸着搬送方式を用いることなく、可撓性長尺基板から太陽電池形成部を含む所定部分を切り出すことを可能とし、もって、太陽電池モジュールの製造装置の簡略化と製造コストの低減を図ることにある。
【0032】
【課題を解決するための手段】
前述の課題を解決するため、この発明においては、複数個の太陽電池素子を直列または並列接続した太陽電池を複数組形成した可撓性の長尺基板から、前記各組の太陽電池形成部を含む所定部分を切り出し、接着性樹脂封止材を介して、表面保護部材と裏面保護部材との間に封止してなる太陽電池モジュールの製造方法において、下記の工程を含むこととする(請求項1の発明)。
1)前記複数組の太陽電池を形成した長尺基板を、第1の搬送ラインにより所定位置に搬送する工程。
2)前記第1の搬送ラインと直交する第2の搬送ラインにより、表面保護部材または裏面保護部材と前記接着性樹脂封止材とを積層した支持シートを、前記太陽電池形成部を含む所定部分が接着性樹脂封止材と対面する所定位置に搬送する工程。
3)前記太陽電池形成部を含む所定部分を、前記支持シートの接着性樹脂封止材上の所定位置に重ねて加圧加熱し、前記所定部分と支持シートとを接着する工程。
4)前記太陽電池形成部を含む所定部分を、長尺基板から切り出し、前記所定部分と支持シートとを接着した長尺基板を所定位置に搬送する工程。
【0033】
上記製造方法によれば、表面保護部材または裏面保護部材と前記接着性樹脂封止材とを単に積層した支持シート上に、太陽電池形成部を含む所定部分を重ねて加圧加熱し、長尺基板から切り出すことができるので、真空吸着工程がなく、全体として製造プロセスが従来より簡素化され低コスト化が図れる。
【0034】
さらに、上記支持シートと太陽電池形成部とを接着したシート(以下、太陽電池シートという。)に、前記支持シートと反対側の太陽電池形成面に、第2の太陽電池保護層としての第2の支持シートを接着してモジュールを完成するためには、下記請求項2の発明が好ましい。即ち、前記請求項1に記載の製造方法において、さらに、裏面保護部材または表面保護部材と接着性樹脂封止材とを積層した第2の支持シートを、第3の搬送ラインから所定位置に搬送して、前記所定部分と第2の支持シートとを前記接着性樹脂封止材を介して接着する工程を含む。
【0035】
この場合、図9に示した装置と同様に、連続したプロセスで行なうこともできるし、詳細は後述するように、一旦、前記太陽電池シートをロールに巻き取って、第2の支持シートのロール搬送ラインと結合することもできる。さらに、太陽電池シートを予め所定寸法に裁断して、真空ラミネータにより、第2の支持シートと接着することもできる。
【0036】
次に、前記請求項1の発明を実施する装置としては、下記請求項3の発明が好ましい。即ち、前記請求項1に記載の製造方法を実施するための装置であって、複数組の太陽電池を形成した長尺基板を搬送する第1の搬送ラインと、表面保護部材または裏面保護部材と前記接着性樹脂封止材とを積層した支持シートを搬送する前記第1の搬送ラインと直交する第2の搬送ラインと、前記太陽電池形成部を含む所定部分を、前記支持シートの接着性樹脂封止材上の所定位置に重ねて加圧加熱する手段と、前記太陽電池形成部を含む所定部分を長尺基板から切り出す手段とを備えたものとする。
【0037】
また、上記請求項3の発明の実施態様としては、下記請求項4または5の発明が好ましい。即ち、請求項3に記載の製造装置において、前記加圧加熱する手段は、前記太陽電池形成部を加圧加熱する所定寸法の加熱平板プレスとし、前記切り出す手段は、前記所定部分を切り出す型刃を有する型抜きプレスとし、かつ前記型抜きプレスの型刃の内側に前記加熱平板プレスを配設したものとする(請求項4の発明)。
【0038】
さらに、請求項3に記載の製造装置において、前記加圧加熱する手段は、前記太陽電池形成部を加圧加熱する所定寸法の加熱ロールプレスとし、前記切り出す手段は、前記所定部分を切り出す型刃を有するロータリーダイカッターとし、かつ、前記加熱ロールプレスおよびロータリーダイカッターは、前記長尺基板の長手方向の所定位置にそれぞれ前記プレスおよびカッターを個別に位置決めする手段と、さらに、前記加圧加熱および切り出しのためにそれぞれ上下方向に移動可能な手段とを備えたものとする(請求項5の発明)。
【0039】
なお、上記請求項4ないし5の発明の詳細は後述する。
【0040】
【発明の実施の形態】
図面に基づき、本発明の実施例について以下に述べる。
【0041】
図1〜3は、それぞれ、この発明の太陽電池モジュールの異なる製造装置を説明する模式的構成を示す。まず、図1の装置について以下に述べる。図1は請求項3の発明の装置に関わり、図1(a)は平面図、図1(b)は側断面図を示す。
【0042】
第1の搬送ラインにおける送り出しロール121から供給される可撓性長尺基板131は、搭載する太陽電池形成部131aが切断外形161の位置になるように位置決めされ、太陽電池形成部131aが切り離された後に巻き取りロール122に廃材として巻き取られる。位置決めされた太陽電池形成部131aの下方には可撓性長尺基板131の搬送方向と直交する方向に移動し、太陽電池形成部131aに対して位置合わせ可能な移動ステージ151aを有する第2の搬送ラインとしての搬送機構151が配置されている。
【0043】
上面に接着性樹脂封止材としての熱接着性フィルム133を貼り合せた支持シート132は、図示しない供給装置により、移動ステージ151aに位置決め固定されている。位置決めされた太陽電池形成部131aの上方には、型台148からガイドポスト147により上下方向に移動可能な状態で支持された上型基台141が配置されている。
【0044】
上型基台141には、切り離す太陽電池形成部131aの切断外形161に合わせて、ビク刃142がビク型143を介して取付けられて、またビク刃142の内側には、ガイドピン144によりガイドされた加圧加熱手段の主要素としての加熱平板145が、スプリング146のバネ圧により押し下げられた状態で取付けられている。上型基台141が上端位置の時、加熱平板145の下面はビク刃142の刃先より突き出た状態にある。
【0045】
切断外形161の位置に太陽電池形成部131aと支持シート132を位置決めした後、図示しないプレスユニットにより、上型基台141を下降させ、加熱平板145が太陽電池形成部131aを挟んで支持シート132の上面の熱接着性フィルム133を加圧した状態で停止させる。この状態で加熱平板145により熱接着性フィルム133の加熱範囲162のみを加熱して支持シート132の上に太陽電池形成部131aを接着固定した後、上型基台141を下降させて、ビク刃142を可撓性長尺基板131に押し当てて、太陽電池形成部131aを型抜きして切り離すことができる。
【0046】
次に、請求項5の発明に関わる図2の装置について述べる。図2(a)は平面図、図2(b)は側断面図を示す。図2において、可撓性長尺基板131と支持シート132の供給、および切断外形161と加熱範囲162の位置関係は、前述の図1の実施例と同様であるため説明を省略する。
【0047】
位置決めされた太陽電池形成部131aの上方には、上下方向に移動可能な加熱ローラー172aを有する加熱ロールプレスユニット172と、上下方向に移動可能なロータリーダイカッター173aを有するロータリーカッターユニット173とが、ガイドレール170により案内され、可撓性長尺基板131の搬送方向に移動して位置決めが可能な状態で配置されている。
【0048】
切断外形161の位置に太陽電池形成部131aと支持シート132を位置決めした後、加熱ロールプレスユニット172は加熱範囲162の端部に加熱ローラー172aの軸心を合わせ位置決めする。次に加熱ローラー172aを下降させて太陽電池形成部131aを挟んで支持シート132の上面の熱接着性フィルム133を加圧した状態で、加熱ロールプレスユニット172を可撓性長尺基板131の搬送方向に走行させ、加熱範囲162のみを加熱して支持シート132の上に太陽電池形成部131aを接着固定した後、加熱ローラー172aを上昇させてから可撓性長尺基板131の搬送方向に移動して加熱範囲162の位置から退避させる。
【0049】
次に、ロータリーカッターユニット173は、切断外形161の端部にロータリーダイカッター173aの軸心を合わせて位置決めする。この時、ロータリーダイカッター173aの幅方向のカット刃173bは切断外形161の端部に位置が合うように位置決めを完了している。次にロータリーダイカッター173aを下降させてカット刃173bを可撓性長尺基板131に押し当てた状態で、ロータリーカッターユニット173を可撓性長尺基板131の搬送方向に走行させて太陽電池形成部131aを型抜きして切り離した後、ロータリーダイカッター173aを上昇させてから、可撓性長尺基板131の搬送方向に移動して切断外形161の位置から退避させる。
【0050】
上記図1または図2に示した装置により、前述のように、表面保護部材または裏面保護部材と前記接着性樹脂封止材とを単に積層した支持シート上に、太陽電池形成部を含む所定部分を重ねて加圧加熱し、長尺基板から切り出すことができる。
【0051】
次に、請求項2の発明に関わり、上記支持シートと太陽電池形成部とを接着した太陽電池シートに、前記支持シートと反対側の太陽電池形成面に、第2の太陽電池保護層としての第2の支持シートを接着してモジュールを完成する場合の実施例について、図3に基づいて述べる。
【0052】
図3において、92は裏面保護部材を貼り合わせた太陽電池シート93を巻き取ったロール、94は接着性樹脂封止材と表面保護部材を貼り合わせた複合シート95のロール、98は前記複合シートを太陽電池シート93に貼り付けるホットロール、91は裁断装置であり、これらはロール92から繰り出した太陽電池シート93の搬送経路上に配置されている。
【0053】
ここで、ロール92には太陽電池シート93がその光入射面を内側に向けて巻き付けられており、またロール94には前記複合シート95の接着性樹脂封止材が外側,表面保護部材が内側に向くように巻き付けられている。そして、ロール92から繰り出した太陽電池シート93をその光入射面を上側,裏面を下側にして送りながら、その搬送途上でまずロール94から繰り出した接着性樹脂封止材と表面保護部材の複合シート95を太陽電池シート93の表面(光入射側面)と重ね合わせ、ホットロール98を通過する際に両者を貼り付ける。
【0054】
続いて、表裏両面を複合シート95で被覆した太陽電池シート93は次の裁断装置91に進み、所定寸法に裁断して両面を樹脂封止したモジュールを完成する。なお、図3の装置のプロセスに代えて、前述のように、図9に示した装置と同様に連続したプロセスで行なうこともできるし、さらに、太陽電池シートを先に所定寸法に裁断して、真空ラミネータにより、第2の支持シートと接着することもできる。
【0055】
【発明の効果】
この発明によれば前述のように、表面保護部材または裏面保護部材と前記接着性樹脂封止材とを単に積層した支持シート上に、太陽電池形成部を含む所定部分を重ねて加圧加熱し、長尺基板から切り出すこととし、
その実施化装置として、複数組の太陽電池を形成した長尺基板を搬送する第1の搬送ラインと、表面保護部材または裏面保護部材と前記接着性樹脂封止材とを積層した支持シートを搬送する前記第1の搬送ラインと直交する第2の搬送ラインと、前記太陽電池形成部を含む所定部分を、前記支持シートの接着性樹脂封止材上の所定位置に重ねて加圧加熱する手段と、前記太陽電池形成部を含む所定部分を長尺基板から切り出す手段とを備えたものとしたことにより、
従来のように真空吸着搬送方式を用いることなく、可撓性長尺基板から太陽電池形成部を含む所定部分を切り出すことを可能とし、もって、太陽電池モジュールの製造装置の簡略化と製造コストの低減を図ることができる。
【図面の簡単な説明】
【図1】この発明の実施例に関わる太陽電池モジュールの製造装置の模式的構成図
【図2】図1とは異なる実施例に関わる太陽電池モジュールの製造装置の模式的構成図
【図3】請求項2の発明に関わる太陽電池モジュールの製造装置の模式的構成図
【図4】太陽電池モジュールの一例の側断面図
【図5】薄膜太陽電池の構成の一例を示す斜視図
【図6】太陽電池モジュールの異なる一例の平面図
【図7】図6におけるA−A側断面図
【図8】長尺基板上に複数個の太陽電池を形成した状態の概略構成を示す模式的平面図
【図9】従来の太陽電池モジュールの製造装置の一例を示す斜視図
【符号の説明】
1:太陽電池、1a:太陽電池素子、2:表面保護部材、3:裏面保護部材、4:接着性樹脂封止材、93:太陽電池シート、121:送り出しロール、122:巻き取りロール、131:長尺基板、131a:太陽電池形成部、132:支持シート、133:熱接着性フィルム、142:ビク刃、145:加熱平板、161:切断外形、162:加熱範囲、170:ガイドレール、172:加熱ロールプレスユニット、172a:加熱ローラ、173:ロータリーカッターユニット、173a:ロータリーダイカッター、173b:カット刃。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for manufacturing a solar cell module, and in particular, to a solar cell forming section of each set from a flexible long substrate formed of a plurality of sets of solar cells in which a plurality of solar cell elements are connected in series or in parallel. The present invention relates to a method and an apparatus for manufacturing a solar cell module formed by cutting out a predetermined portion including the above and sealing between a front surface protection member and a back surface protection member via an adhesive resin sealing material.
[0002]
[Prior art]
A typical example of a solar cell (photoelectric conversion device) in which a plurality of solar cell elements formed on the same substrate are connected in series or in parallel is a thin film solar cell.
[0003]
Thin-film solar cells are considered to be the mainstream of solar cells in the future because they are thin, lightweight, inexpensive in manufacturing cost, and easy to increase in area, so they are used not only for power supply but also for building roofs and windows. Demand is expanding for business use and general residential use. Roof tiles with solar cells have also been developed for general residential use.
[0004]
In recent years, research and development of flexible solar cells using plastic film or thin sheet metal coated with insulation have been promoted, and by utilizing this flexibility, mass production is possible by roll-to-roll or step-roll manufacturing methods. It has become.
[0005]
As the thin-film solar cell module, in order to seal a solar cell formed on an electrically insulating film substrate with an electrically insulating protective material, both on the light-receiving side and the non-light-receiving side of the solar cell. A device provided with a protective layer is known.
[0006]
FIG. 4 shows a schematic side sectional view of an example of the structure of a conventional solar cell module.
[0007]
In FIG. 4, a solar cell 1 has a plurality of solar cell elements connected in series or in parallel, a surface protection member 2 such as a glass plate on a light receiving surface side, and a resin containing a metal foil, for example, an aluminum foil on the back side. A back surface protection member 3 made of ethylene monofluoride is provided on both surfaces. The back surface protection member 3 is provided with an adhesive resin sealing material 4 such as EVA (ethylene-vinyl acetate copolymer resin) which is excellent in bonding and sealing properties and is inexpensive. Sealed.
[0008]
In the solar cell 1, the lead wires 5 and 6 of the internal lead wire are electrically connected to the plus (+) and minus (-) poles. The connection terminal box 7 adhered and fixed to the back surface protection member 3 is guided through the back surface protection member 3 and electrically connected to the core wires 9 and 10 of the cable 8 as an external lead inside the connection terminal box 7. The solar cell module 11 is formed as a whole.
[0009]
As the surface protection member 2, an organic material such as a transparent acrylic plate may be used in addition to an inorganic material such as a glass plate. In addition to the above-mentioned resin containing a metal foil, an organic film alone such as a fluorine-based film, a composite material obtained by laminating an organic film and a metal foil, or a metal such as a metal plate or a glass plate may be used as the back surface protective member 3. -In some cases, inorganic materials are used.
[0010]
As a method of the solar cell 1, a method of forming a connection electrode layer on one surface of a substrate or a method of forming a connection electrode layer on a back surface, for example, a so-called SCAF (Series Connection Through Properties on Film) type solar cell according to the proposal of the present applicant. There are various types such as batteries.
[0011]
FIG. 5 is a simplified perspective view of the configuration of the thin-film solar cell for facilitating understanding of the structure of the SCAF solar cell. In FIG. 5, the unit photoelectric conversion element 62 formed on the front surface of the substrate 61 and the connection electrode layer 63 formed on the back surface of the substrate 61 are completely separated into a plurality of unit units, respectively, and are formed with their separation positions shifted. ing. For this reason, the current generated in the photoelectric conversion layer 65, which is the amorphous semiconductor portion of the element 62, is first collected in the transparent electrode layer 66, and then through the current collecting hole 67 formed in the transparent electrode layer region, the current on the back surface is collected. Through the connection electrode layer 63, and further through the connection hole 68 for series connection formed outside the transparent electrode layer region of the device in the connection electrode layer region, outside the transparent electrode layer region of the device adjacent to the device. The extended lower electrode layer 64 is reached, and the two devices are connected in series.
[0012]
Next, FIGS. 6 and 7 show that a solar cell in which a plurality of solar cell elements are connected in series or in parallel between a front surface protection member and a back surface protection member is sealed with an adhesive resin sealing material, and FIG. 6 shows a schematic configuration diagram of a solar cell module in which a solar cell and an internal lead wire are connected, FIG. 6 is a plan view, and FIG. 7 is a partial side sectional view of the solar cell module including an AA cross section in FIG. Show.
[0013]
6 and 7, the same functional members as those of the solar cell module shown in FIG. 4 are denoted by the same reference numerals, and detailed description is omitted. The solar cell module shown in FIGS. 6 and 7 shows a typical configuration in which a plurality of solar cell elements 1a are connected in series, and an internal lead wire 12 is connected to and pulled out from the end solar cell element 1a. I have. However, the upper surface and the lower surface of the connection body between the solar cell 1 composed of the plurality of solar cell elements 1a and the internal lead wires 12 are respectively provided with the surface protection member 2 and the back surface protection member 3 via the adhesive resin sealing material 4. Are provided.
[0014]
The electrical connection between the solar cell 1 and the internal lead wire 12 is usually made by soldering or a conductive adhesive tape. Note that the shape and number of the internal lead wires 12 and the arrangement in the entire solar cell module and the like differ depending on the required specifications for the solar cell module, and are not necessarily limited to the simple configuration shown in FIGS. 6 and 7. However, once the required specifications are determined, the electrical connection part usually has a predetermined pattern.
[0015]
By the way, when mass-producing the thin-film solar cell, the substrate is a long substrate, and the thin-film solar cell connected in series on the long substrate, and an electrode for extracting electric power for extracting electric power to the outside. A set of thin-film solar cells having a plurality of layers, patterning them at predetermined intervals in the longitudinal direction of the substrate to form a plurality of pairs, and using the marker holes for positioning provided in the interval region of the substrate as reference points, Forming of each layer such as one electrode layer, photoelectric conversion layer, transparent electrode layer, connection electrode layer, and processing such as patterning, etc., and furthermore, evaluation of device characteristics and cutting for each thin film solar cell group using marker holes as reference points. Etc. are adopted.
[0016]
FIG. 8 is a schematic plan view showing a schematic configuration of a thin-film solar cell in which a plurality of thin-film solar cell groups are formed on a long substrate, which relates to the above-described manufacturing method. FIG. 8 mainly shows the positional relationship between the thin-film solar cells separated on the substrate by laser processing and the positioning marker holes, 131 denotes a long substrate, 1 denotes a solar cell, and 20 denotes a marker hole. The solar cell 1 is appropriately divided into a plurality of unit cells 1a and an electrode layer 27 for extracting electric power by a patterning line 28 according to the application.
[0017]
The marker hole 20 is provided in the interval region of the solar cell. The marker hole for positioning is detected by a light transmission type or light reflection type sensor, and the positioning is performed using this hole as a reference point. The formation of each layer and the respective patterning processes are performed.
[0018]
Here, in order to minimize the non-power generation area of the solar cell, that is, the ineffective area, the marker hole 20 provided in the space area is provided inside the long substrate 1 and at least in the substrate long direction. Are provided inwardly from the outermost extension line of.
[0019]
In FIG. 8, a portion indicated by a part number 29 indicates an overrun portion of the patterning line. In the case of laser processing, the scanning speed is slowed at the end point of the line, so if scanning is stopped at the intersection of the lines, there is a risk that the substrate and the thin film may be damaged due to the concentration of the laser beam, so to prevent this, Overrun.
[0020]
Further, the thin-film solar cell group in the manufacturing method in FIG. 8 is not limited to the SCAF-type thin-film solar cell shown in FIG. 5, and the first electrode layer, the photoelectric conversion layer, and the transparent electrode layer are sequentially laminated only on one surface of the substrate. Then, a single-sided thin-film solar cell group may be formed by patterning a unit portion, dividing the unit cell into a plurality of unit photoelectric conversion portions (unit cells), and electrically connecting the unit cells to each other in series. The manufacturing method is the same as the above-mentioned method.
[0021]
Next, a conventional apparatus for manufacturing a solar cell module will be described. FIG. 9 shows a manufacturing apparatus described in the related art section of Patent Document 1. In this apparatus, one end of a delivery roll 21 of an insulating flexible film 131 such as an ethylene naphthalate (PEN) film and a delivery roll 22 of a transparent heat-adhesive resin film 31 such as an ethylene vinyl acetate (EVA) film are connected. Then, the two heating rolls 41 and 42, which are thermally bonded with the films interposed therebetween, the punching heating device 60 for the portion of the thin film photoelectric conversion element (solar cell) 1 from the insulating flexible film, and the winding roll 71 are They are arranged in a line.
[0022]
At right angles to the row and the punching heating device 60, the delivery roll 23 of the translucent weather-resistant film 81 as a protective film is provided at one end, and the heating rolls 43 and 44, the heating rolls 45 and 46, and the winding roll 72. Are arranged in a line. In the punching heating device 60, the position where the element 1 of the flexible film 131 is formed on the surface which is the lower surface in the drawing of the insulating flexible film 131 is detected by the marker hole 20 provided between the elements. At the same time, the weather-resistant film 81 is heat-bonded to the transparent electrode side of the film 31 with the heat-adhesive resin of the film 31.
[0023]
The heating rolls 43 and 44 coat the conductive tape 9 delivered from the delivery roll 24 on the back surface of the substrate 131 and on the auxiliary electrode connected to the device electrode on the front surface on the surface of the auxiliary electrode. The melted solder is melted and connected, and is thermally fixed to the weather-resistant film 81. The heating rolls 45 and 46 thermally bond the weather-resistant film 82 for the back surface protective film sent from the delivery roll 25 via the heat-adhesive resin film 32 sent from the delivery roll 26.
[0024]
If the above-mentioned apparatus is used, the device 35 on the substrate is punched out for each heat-adhesive resin film except for the portion of the element having poor characteristics, and the light-receiving surface is laminated with the weather-resistant protective film 81 via the heat-adhesive resin film 31. The thin flexible substrate 131 is reinforced by the protective film, and the connection between the devices using the exposed auxiliary electrodes and the modularization can be easily performed, so that the module including no defective device can be formed. Further, by adopting an apparatus configuration in which the element supply line and the transport line for the module base film are orthogonal to each other, module assembly can be performed continuously on both lines, and thin film photoelectric conversion modules can be manufactured with high production efficiency.
[0025]
The invention described in Patent Document 1 discloses an apparatus and a manufacturing method for solving the problems of the apparatus shown in FIG. That is, the apparatus described in Patent Document 1 discloses that "a substrate is sandwiched between a roll cutter having a blade having the same shape as the outer shape of an element on a surface thereof and a suction roll, and both rolls are rotated to cut out the element. The element is vacuum-sucked on a suction roll. When mounting the element on a weather-resistant film, the suction chamber inside the suction roll is set to atmospheric pressure to separate the element from the suction roll surface. " When the thin film photoelectric conversion element formed thereon is cut out from the substrate and mounted on a weather-resistant film, the surface is prevented from waving. "
[0026]
Further, Patent Documents 2 and 3 disclose an apparatus for providing a photoelectric conversion module manufacturing apparatus with a high production efficiency capable of continuously feeding out a protective film from a transport line and manufacturing modules of various shapes. Is disclosed. To achieve this object, the device disclosed in Patent Document 2 is configured as follows.
[0027]
That is, "a cutting means having a flexible film substrate transport line on which a plurality of photoelectric conversion units are formed and a protective film transport line, and cutting the unit from the film substrate on the former transport line. And a mounting means for stacking the cut unit on a protective film, and a heating roll for thermally bonding the stacked unit and the protective film, in the apparatus for manufacturing a photoelectric conversion module, There are two cutting blades for making the first two cuts parallel to the line, and two cutting blades for making the second two cuts while moving vertically in the latter transport line. "
Further, in Patent Document 3, in order to further improve the production efficiency, "the mounting means is a suction table, a film substrate and a photoelectric conversion unit are sandwiched between the suction table and a pre-heating roll which is preliminarily heat-bonded. The device is described.
[0028]
[Patent Document 1]
JP-A-9-64393 (pages 1 to 3, FIGS. 1 and 2)
[Patent Document 2]
JP-A-10-12906 (page 1, page 4, FIG. 1)
[Patent Document 3]
JP-A-10-135496 (page 1, pages 4 to 5, FIG. 1)
[0029]
[Problems to be solved by the invention]
By the way, the conventional solar cell module manufacturing apparatuses described in Patent Documents 1 to 3 described above are all complicated in that the cut solar cell forming units are conveyed by vacuum suction on suction rolls. However, there has been a problem that the manufacturing cost of the module increases.
[0030]
In particular, in the case of the SCAF type thin-film solar cell shown in FIG. 5, the series connection between adjacent solar cell elements is performed through the current collecting holes 67 and the connection holes 68 penetrating the flexible substrate. Therefore, when performing the vacuum suction, it is necessary to cover a hole penetrating the above-mentioned flexible substrate by pasting a protective film or the like in advance. Therefore, there is a problem that the manufacturing procedure and the device are further complicated, and the manufacturing cost of the module is increased.
[0031]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a solar cell forming unit from a flexible long substrate without using a vacuum suction transfer system as in the related art. Therefore, it is possible to cut out a predetermined portion including the above, thereby achieving simplification of a solar cell module manufacturing apparatus and reduction in manufacturing cost.
[0032]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, each of the sets of solar cell forming portions is formed from a flexible long substrate in which a plurality of sets of solar cells in which a plurality of solar cell elements are connected in series or in parallel are formed. A method for manufacturing a solar cell module in which a predetermined portion including the above is cut out and sealed between a front surface protection member and a back surface protection member via an adhesive resin sealing material includes the following steps. Item 1)).
1) transporting the long substrate on which the plural sets of solar cells are formed to a predetermined position by a first transport line.
2) A support sheet, in which a surface protection member or a back surface protection member and the adhesive resin sealing material are laminated by a second conveyance line orthogonal to the first conveyance line, to a predetermined portion including the solar cell forming portion. Is transported to a predetermined position facing the adhesive resin sealing material.
3) a step of superposing a predetermined portion including the solar cell forming portion on a predetermined position on the adhesive resin sealing material of the support sheet and applying pressure and heat to bond the predetermined portion and the support sheet.
4) A step of cutting out a predetermined portion including the solar cell forming portion from the long substrate, and transporting the long substrate to which the predetermined portion and the support sheet are adhered, to a predetermined position.
[0033]
According to the above manufacturing method, a predetermined portion including a solar cell forming portion is overlapped on a support sheet in which a surface protection member or a back surface protection member and the adhesive resin sealing material are simply laminated, and heated and pressed, Since it can be cut out from the substrate, there is no vacuum suction step, and the manufacturing process is simplified as a whole and the cost can be reduced.
[0034]
Further, a sheet (hereinafter, referred to as a solar cell sheet) in which the support sheet and the solar cell forming portion are bonded to each other, and a second solar cell protective layer as a second solar cell protective layer is provided on a solar cell formation surface opposite to the support sheet. In order to complete the module by adhering the support sheet, the invention of claim 2 below is preferable. That is, in the manufacturing method according to the first aspect, the second support sheet in which the back surface protection member or the front surface protection member and the adhesive resin sealing material are laminated is further transported from the third transport line to a predetermined position. And bonding the predetermined portion and the second support sheet via the adhesive resin sealing material.
[0035]
In this case, similarly to the apparatus shown in FIG. 9, the process can be performed in a continuous process. As described in detail later, the solar cell sheet is once wound around a roll, and the roll of the second support sheet is rolled. It can also be connected to a transport line. Further, the solar cell sheet can be cut into a predetermined size in advance and bonded to the second support sheet by a vacuum laminator.
[0036]
Next, as an apparatus for carrying out the invention of claim 1, the following invention of claim 3 is preferable. That is, an apparatus for carrying out the manufacturing method according to claim 1, wherein the first transport line transports a long substrate on which a plurality of sets of solar cells are formed, and a front surface protection member or a rear surface protection member. A second transport line that is orthogonal to the first transport line that transports the support sheet on which the adhesive resin sealing material is laminated, and a predetermined portion including the solar cell forming portion are formed by using an adhesive resin of the support sheet. It is provided with means for overlapping and heating at a predetermined position on the sealing material and means for cutting out a predetermined portion including the solar cell forming portion from the long substrate.
[0037]
As an embodiment of the third aspect of the present invention, the following fourth or fifth aspect is preferable. That is, in the manufacturing apparatus according to claim 3, the means for pressurizing and heating is a heated flat plate press having a predetermined dimension for pressurizing and heating the solar cell forming portion, and the cutting means is a mold blade for cutting out the predetermined portion. And the heated flat plate press is disposed inside a die blade of the die press (the invention of claim 4).
[0038]
Further, in the manufacturing apparatus according to claim 3, the means for pressurizing and heating is a heating roll press having a predetermined size for pressurizing and heating the solar cell forming portion, and the cutting means is a mold blade for cutting out the predetermined portion. And a rotary die cutter, and the heating roll press and the rotary die cutter are means for individually positioning the press and the cutter at predetermined positions in the longitudinal direction of the long substrate, respectively, and further, the pressurizing heating and Means are provided for moving out in the vertical direction for cutting out (the invention of claim 5).
[0039]
The details of the fourth and fifth aspects of the present invention will be described later.
[0040]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0041]
1 to 3 each show a schematic configuration for explaining a different apparatus for manufacturing a solar cell module according to the present invention. First, the apparatus of FIG. 1 will be described below. FIG. 1 relates to the device according to the third aspect of the present invention. FIG. 1 (a) is a plan view and FIG. 1 (b) is a side sectional view.
[0042]
The flexible long substrate 131 supplied from the delivery roll 121 in the first transport line is positioned so that the solar cell forming section 131a to be mounted is at the position of the cut outer shape 161 and the solar cell forming section 131a is cut off. After that, it is taken up by a take-up roll 122 as waste material. A second moving stage 151a that moves in a direction perpendicular to the direction of transport of the flexible long substrate 131 below the positioned solar cell forming portion 131a and that can be positioned with respect to the solar cell forming portion 131a. A transport mechanism 151 as a transport line is provided.
[0043]
The support sheet 132 having an upper surface to which a heat-adhesive film 133 as an adhesive resin sealing material is adhered is positioned and fixed to the moving stage 151a by a supply device (not shown). Above the positioned solar cell forming portion 131a, an upper die base 141 supported by a guide post 147 so as to be vertically movable from the die base 148 is disposed.
[0044]
An upper blade 142 is mounted on the upper die base 141 via the upper die 143 in accordance with the cut outer shape 161 of the solar cell forming portion 131a to be cut off, and a guide pin 144 guides the inner side of the upper blade 142 with the guide pin 144. The heating flat plate 145 as a main element of the pressurizing and heating means is attached in a state where it is pressed down by the spring pressure of the spring 146. When the upper die base 141 is at the upper end position, the lower surface of the heating flat plate 145 is in a state of protruding from the cutting edge of the bik blade 142.
[0045]
After positioning the solar cell forming portion 131a and the support sheet 132 at the position of the cut outer shape 161, the upper die base 141 is lowered by a press unit (not shown), and the heating flat plate 145 sandwiches the solar cell forming portion 131a with the support sheet 132. Is stopped while the heat-adhesive film 133 on the upper surface is pressed. In this state, only the heating range 162 of the heat-adhesive film 133 is heated by the heating flat plate 145 to bond and fix the solar cell forming portion 131a on the support sheet 132. Then, the upper mold base 141 is lowered, and the By pressing the 142 against the flexible long substrate 131, the solar cell forming portion 131a can be cut out and cut off.
[0046]
Next, the apparatus of FIG. 2 according to the invention of claim 5 will be described. 2A is a plan view, and FIG. 2B is a side sectional view. In FIG. 2, the supply of the flexible long substrate 131 and the support sheet 132, and the positional relationship between the cut outer shape 161 and the heating range 162 are the same as in the above-described embodiment of FIG.
[0047]
Above the positioned solar cell forming portion 131a, a heating roll press unit 172 having a vertically movable heating roller 172a, and a rotary cutter unit 173 having a vertically movable rotary die cutter 173a, The flexible elongate substrate 131 is guided by the guide rail 170, and is arranged so as to be movable in the transport direction of the flexible elongate substrate 131 and positioned.
[0048]
After positioning the solar cell forming unit 131a and the support sheet 132 at the position of the cutting outer shape 161, the heating roll press unit 172 aligns the axis of the heating roller 172a with the end of the heating range 162 and positions it. Next, the heating roller press unit 172 transports the flexible elongate substrate 131 while the heating roller 172a is lowered to press the thermal adhesive film 133 on the upper surface of the support sheet 132 with the solar cell forming portion 131a interposed therebetween. After heating only the heating range 162 to bond and fix the solar cell forming portion 131a on the support sheet 132, the heating roller 172a is raised and then moved in the transport direction of the flexible long substrate 131. Then, it is retracted from the position of the heating range 162.
[0049]
Next, the rotary cutter unit 173 aligns the axis of the rotary die cutter 173a with the end of the cut outer shape 161 and performs positioning. At this time, the positioning is completed so that the cutting blade 173b in the width direction of the rotary die cutter 173a is aligned with the end of the cutting outline 161. Next, with the rotary die cutter 173a lowered and the cutting blade 173b pressed against the flexible elongate substrate 131, the rotary cutter unit 173 is moved in the transport direction of the flexible elongate substrate 131 to form a solar cell. After the portion 131a is cut out by cutting off, the rotary die cutter 173a is raised, and then moved in the transport direction of the flexible long substrate 131 to be retracted from the position of the cutting outline 161.
[0050]
By the apparatus shown in FIG. 1 or FIG. 2, as described above, a predetermined portion including a solar cell forming portion is provided on a support sheet obtained by simply laminating the front surface protection member or the back surface protection member and the adhesive resin sealing material. Can be cut out from a long substrate by heating under pressure.
[0051]
Next, according to the invention of claim 2, on the solar cell sheet on which the support sheet and the solar cell formation portion are bonded, on the solar cell formation surface opposite to the support sheet, a second solar cell protection layer is provided. An embodiment in which a second support sheet is bonded to complete a module will be described with reference to FIG.
[0052]
In FIG. 3, reference numeral 92 denotes a roll around which a solar cell sheet 93 to which a back surface protection member is bonded is wound, reference numeral 94 denotes a roll of a composite sheet 95 wherein an adhesive resin sealing material is bonded to a surface protection member, and reference numeral 98 denotes the composite sheet. And a cutting device 91, which is disposed on the transport path of the solar cell sheet 93 drawn out from the roll 92.
[0053]
Here, a solar cell sheet 93 is wound around the roll 92 with its light incident surface facing inward, and the roll 94 has an adhesive resin sealing material of the composite sheet 95 on the outside and a surface protection member on the inside. It is wound so that it faces. Then, while feeding the solar cell sheet 93 fed from the roll 92 with the light incident surface on the upper side and the back surface on the lower side, the composite of the adhesive resin sealing material and the surface protection member first fed from the roll 94 in the middle of the conveyance. The sheet 95 is superimposed on the surface (light incident side surface) of the solar cell sheet 93, and both are pasted when passing through the hot roll 98.
[0054]
Subsequently, the solar cell sheet 93 whose front and back surfaces are covered with the composite sheet 95 proceeds to the next cutting device 91, where the solar cell sheet 93 is cut to a predetermined size to complete a module in which both surfaces are resin-sealed. It should be noted that, instead of the process of the apparatus of FIG. 3, as described above, a continuous process can be performed similarly to the apparatus of FIG. 9, and further, the solar cell sheet is cut into a predetermined size first. By using a vacuum laminator, it can be bonded to the second support sheet.
[0055]
【The invention's effect】
According to the present invention, as described above, a predetermined portion including a solar cell forming portion is superimposed on a support sheet in which a surface protection member or a back surface protection member and the adhesive resin sealing material are simply laminated, and heated under pressure. , Cut out from a long board,
As an apparatus for implementing the method, a first transport line for transporting a long substrate on which a plurality of sets of solar cells are formed, and a support sheet on which a surface protection member or a back surface protection member and the adhesive resin sealing material are laminated are transported. Means for overlapping and heating a second transport line orthogonal to the first transport line and a predetermined portion including the solar cell forming portion at a predetermined position on the adhesive resin sealing material of the support sheet. And means for cutting out a predetermined portion including the solar cell forming portion from the long substrate,
It is possible to cut out a predetermined portion including a solar cell forming portion from a flexible long substrate without using a vacuum suction transfer method as in the related art, thereby simplifying a solar cell module manufacturing apparatus and reducing manufacturing costs. Reduction can be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an apparatus for manufacturing a solar cell module according to an embodiment of the present invention; FIG. 2 is a schematic configuration diagram of an apparatus for manufacturing a solar cell module according to an embodiment different from FIG. 1; FIG. 4 is a schematic cross-sectional view of an example of a solar cell module manufacturing apparatus according to the invention of claim 2. FIG. 4 is a side cross-sectional view of an example of a solar cell module. FIG. FIG. 7 is a cross-sectional view taken along the line AA in FIG. 6; FIG. 8 is a schematic plan view showing a schematic configuration in which a plurality of solar cells are formed on a long substrate; FIG. 9 is a perspective view showing an example of a conventional solar cell module manufacturing apparatus.
1: solar cell, 1a: solar cell element, 2: front surface protection member, 3: rear surface protection member, 4: adhesive resin sealing material, 93: solar cell sheet, 121: delivery roll, 122: take-up roll, 131 : Long substrate, 131a: solar cell forming part, 132: support sheet, 133: thermal adhesive film, 142: big blade, 145: heated flat plate, 161: cut outer shape, 162: heating range, 170: guide rail, 172 : Heating roll press unit, 172a: heating roller, 173: rotary cutter unit, 173a: rotary die cutter, 173b: cutting blade.

Claims (5)

複数個の太陽電池素子を直列または並列接続した太陽電池を複数組形成した可撓性の長尺基板から、前記各組の太陽電池形成部を含む所定部分を切り出し、接着性樹脂封止材を介して、表面保護部材と裏面保護部材との間に封止してなる太陽電池モジュールの製造方法において、下記の工程を含むことを特徴とする太陽電池モジュールの製造方法。
1)前記複数組の太陽電池を形成した長尺基板を、第1の搬送ラインにより所定位置に搬送する工程。
2)前記第1の搬送ラインと直交する第2の搬送ラインにより、表面保護部材または裏面保護部材と前記接着性樹脂封止材とを積層した支持シートを、前記太陽電池形成部を含む所定部分が接着性樹脂封止材と対面する所定位置に搬送する工程。
3)前記太陽電池形成部を含む所定部分を、前記支持シートの接着性樹脂封止材上の所定位置に重ねて加圧加熱し、前記所定部分と支持シートとを接着する工程。
4)前記太陽電池形成部を含む所定部分を、長尺基板から切り出し、前記所定部分と支持シートとを接着した長尺基板を所定位置に搬送する工程。
From a flexible long substrate formed with a plurality of sets of solar cells in which a plurality of solar cell elements are connected in series or in parallel, a predetermined portion including the solar cell forming portion of each set is cut out, and an adhesive resin sealing material is formed. A method for manufacturing a solar cell module, wherein the method includes the following steps in a method for manufacturing a solar cell module sealed between a front surface protection member and a back surface protection member.
1) transporting the long substrate on which the plural sets of solar cells are formed to a predetermined position by a first transport line.
2) A support sheet, in which a surface protection member or a back surface protection member and the adhesive resin sealing material are laminated by a second conveyance line orthogonal to the first conveyance line, to a predetermined portion including the solar cell forming portion. Is transported to a predetermined position facing the adhesive resin sealing material.
3) a step of superposing a predetermined portion including the solar cell forming portion on a predetermined position on the adhesive resin sealing material of the support sheet and applying pressure and heat to bond the predetermined portion and the support sheet.
4) A step of cutting out a predetermined portion including the solar cell forming portion from the long substrate, and transporting the long substrate to which the predetermined portion and the support sheet are adhered, to a predetermined position.
請求項1に記載の製造方法において、さらに、裏面保護部材または表面保護部材と接着性樹脂封止材とを積層した第2の支持シートを、第3の搬送ラインから所定位置に搬送して、前記所定部分と第2の支持シートとを前記接着性樹脂封止材を介して接着する工程を含むことを特徴とする太陽電池モジュールの製造方法。The manufacturing method according to claim 1, further comprising: transporting a second support sheet on which a back surface protection member or a surface protection member and an adhesive resin sealing material are laminated to a predetermined position from a third transportation line; A method for manufacturing a solar cell module, comprising a step of bonding the predetermined portion and a second support sheet via the adhesive resin sealing material. 請求項1に記載の製造方法を実施するための装置であって、複数組の太陽電池を形成した長尺基板を搬送する第1の搬送ラインと、表面保護部材または裏面保護部材と前記接着性樹脂封止材とを積層した支持シートを搬送する前記第1の搬送ラインと直交する第2の搬送ラインと、前記太陽電池形成部を含む所定部分を、前記支持シートの接着性樹脂封止材上の所定位置に重ねて加圧加熱する手段と、前記太陽電池形成部を含む所定部分を長尺基板から切り出す手段とを備えたことを特徴とする太陽電池モジュールの製造装置。An apparatus for carrying out the manufacturing method according to claim 1, wherein the first transport line transports a long substrate on which a plurality of sets of solar cells are formed, a front surface protection member or a rear surface protection member, and the adhesiveness. A second transport line orthogonal to the first transport line for transporting the support sheet on which the resin sealing material is laminated, and a predetermined portion including the solar cell forming portion, the adhesive resin sealing material for the support sheet. An apparatus for manufacturing a solar cell module, comprising: means for applying pressure and heating to an upper predetermined position; and means for cutting a predetermined portion including the solar cell forming portion from a long substrate. 請求項3に記載の製造装置において、前記加圧加熱する手段は、前記太陽電池形成部を加圧加熱する所定寸法の加熱平板プレスとし、前記切り出す手段は、前記所定部分を切り出す型刃を有する型抜きプレスとし、かつ前記型抜きプレスの型刃の内側に前記加熱平板プレスを配設したことを特徴とする太陽電池モジュールの製造装置。4. The manufacturing apparatus according to claim 3, wherein the pressurizing and heating unit is a heated flat plate press having a predetermined dimension for pressurizing and heating the solar cell forming unit, and the cutting unit includes a die blade for cutting the predetermined portion. 5. An apparatus for manufacturing a solar cell module, characterized in that the heating flat plate press is disposed inside a die blade of the die cutting press as a die cutting press. 請求項3に記載の製造装置において、前記加圧加熱する手段は、前記太陽電池形成部を加圧加熱する所定寸法の加熱ロールプレスとし、前記切り出す手段は、前記所定部分を切り出す型刃を有するロータリーダイカッターとし、かつ、前記加熱ロールプレスおよびロータリーダイカッターは、前記長尺基板の長手方向の所定位置にそれぞれ前記プレスおよびカッターを個別に位置決めする手段と、さらに、前記加圧加熱および切り出しのためにそれぞれ上下方向に移動可能な手段とを備えたことを特徴とする太陽電池モジュールの製造装置。4. The manufacturing apparatus according to claim 3, wherein the pressurizing and heating unit is a heating roll press having a predetermined dimension for pressurizing and heating the solar cell forming unit, and the cutting unit includes a die blade for cutting the predetermined portion. 5. A rotary die cutter, and the heating roll press and the rotary die cutter are means for individually positioning the press and the cutter at predetermined positions in the longitudinal direction of the long substrate, respectively, and further, the pressurizing heating and cutting A means for moving the solar cell module in the vertical direction.
JP2002318323A 2002-10-31 2002-10-31 Method and apparatus for manufacturing solar cell module Pending JP2004153137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002318323A JP2004153137A (en) 2002-10-31 2002-10-31 Method and apparatus for manufacturing solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318323A JP2004153137A (en) 2002-10-31 2002-10-31 Method and apparatus for manufacturing solar cell module

Publications (1)

Publication Number Publication Date
JP2004153137A true JP2004153137A (en) 2004-05-27

Family

ID=32461478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318323A Pending JP2004153137A (en) 2002-10-31 2002-10-31 Method and apparatus for manufacturing solar cell module

Country Status (1)

Country Link
JP (1) JP2004153137A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010015942A2 (en) 2008-08-04 2010-02-11 Grenzebach Maschinenbau Gmbh Method and device for producing photovoltaic modules
WO2010110778A2 (en) * 2008-02-27 2010-09-30 Applied Materials, Inc. Method and apparatus for forming an electrical connection on a solar cell
WO2011005472A2 (en) * 2009-06-23 2011-01-13 E. I. Du Pont De Nemours And Company Shaped photovoltaic module
EP2290702A1 (en) * 2008-05-28 2011-03-02 Advanced Technology & Materials Co., Ltd Method and device for assembling film solar battery subassembly and product fabricated therefrom
US7908743B2 (en) 2008-02-27 2011-03-22 Applied Materials, Inc. Method for forming an electrical connection
WO2013124438A3 (en) * 2012-02-22 2013-10-17 Muehlbauer Ag Method and device for producing a solar module and a solar module having flexible thin-film solar cells
CN108155134A (en) * 2018-02-09 2018-06-12 无锡奥特维科技股份有限公司 Cell piece breaks piece system and glass-severing method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110778A2 (en) * 2008-02-27 2010-09-30 Applied Materials, Inc. Method and apparatus for forming an electrical connection on a solar cell
WO2010110778A3 (en) * 2008-02-27 2010-11-25 Applied Materials, Inc. Method and apparatus for forming an electrical connection on a solar cell
US7908743B2 (en) 2008-02-27 2011-03-22 Applied Materials, Inc. Method for forming an electrical connection
US8065784B2 (en) 2008-02-27 2011-11-29 Applied Materials, Inc. Apparatus for forming an electrical connection on a solar cell
EP2290702A1 (en) * 2008-05-28 2011-03-02 Advanced Technology & Materials Co., Ltd Method and device for assembling film solar battery subassembly and product fabricated therefrom
EP2290702A4 (en) * 2008-05-28 2012-06-13 Advanced Technology & Mat Co Method and device for assembling film solar battery subassembly and product fabricated therefrom
KR101257446B1 (en) 2008-08-04 2013-04-23 그렌체바흐 마쉬넨바우 게엠베하 Method and device for producing photovoltaic modules
WO2010015942A3 (en) * 2008-08-04 2010-06-03 Grenzebach Maschinenbau Gmbh Method and device for producing photovoltaic modules
WO2010015942A2 (en) 2008-08-04 2010-02-11 Grenzebach Maschinenbau Gmbh Method and device for producing photovoltaic modules
US8646170B2 (en) 2008-08-04 2014-02-11 Grenzebach Maschinenbau Gmbh Device for producing photovoltaic modules
CN102089228A (en) * 2008-08-04 2011-06-08 格林策巴赫机械制造有限公司 Method and device for producing photovoltaic modules
WO2011005472A2 (en) * 2009-06-23 2011-01-13 E. I. Du Pont De Nemours And Company Shaped photovoltaic module
WO2011005472A3 (en) * 2009-06-23 2011-03-31 E. I. Du Pont De Nemours And Company Shaped photovoltaic module
WO2013124438A3 (en) * 2012-02-22 2013-10-17 Muehlbauer Ag Method and device for producing a solar module and a solar module having flexible thin-film solar cells
CN108155134A (en) * 2018-02-09 2018-06-12 无锡奥特维科技股份有限公司 Cell piece breaks piece system and glass-severing method
CN108155134B (en) * 2018-02-09 2024-03-01 无锡奥特维科技股份有限公司 Battery piece breaking system and breaking method

Similar Documents

Publication Publication Date Title
US10056521B2 (en) Wire network for interconnecting photovoltaic cells
EP2234181B1 (en) Manufacture method for a photovoltaic module
US9385255B2 (en) Integrated thin film solar cell interconnection
US9530926B2 (en) Automated flexible solar cell fabrication and interconnection utilizing rolls expanded metallic mesh
JP5268596B2 (en) Solar cell module and manufacturing method thereof
WO2012135052A1 (en) Foil-based interconnect for rear-contact solar cells
US20120279546A1 (en) Solar cell connector electrode, solar cell module and method for electrically connecting a plurality of solar cells
JP3099604B2 (en) Flexible photoelectric conversion module, its connection method and its manufacturing apparatus
JP2004153137A (en) Method and apparatus for manufacturing solar cell module
CN117153951B (en) Production method of back contact photovoltaic module and back contact photovoltaic module
JPH11103078A (en) Solar battery module, manufacture, thereof and manufacturing equipment
WO2020177530A1 (en) Photovoltaic assembly and manufacturing method thereof
JP3829973B2 (en) Thin film solar cell module manufacturing method and manufacturing apparatus
JP4085304B2 (en) Manufacturing method of solar cell module
JP2006295145A (en) Manufacturing method of solar cell module
CN111403556A (en) Method for manufacturing laminated assembly and laminated assembly
CN112216752A (en) Method for manufacturing photovoltaic module
CN112103271B (en) Double-sided light-receiving laminated solar cell module and preparation method thereof
JP4085306B2 (en) Manufacturing method of solar cell module
JP4304855B2 (en) Manufacturing method and manufacturing apparatus for composite metal tape
JP4106608B2 (en) Manufacturing method of solar cell module
SE1430133A1 (en) Method of Interconnecting Single Solar Cells into Solar CellModules
JP2012084782A (en) Method and apparatus for manufacturing solar cell module
US20120260973A1 (en) Busing sub-assembly for photovoltaic modules
JP2002217432A (en) Solar battery module manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080417