EP1732140A1 - Felxible substrate with photovoltaic cells and its manufacturing method - Google Patents

Felxible substrate with photovoltaic cells and its manufacturing method Download PDF

Info

Publication number
EP1732140A1
EP1732140A1 EP05405369A EP05405369A EP1732140A1 EP 1732140 A1 EP1732140 A1 EP 1732140A1 EP 05405369 A EP05405369 A EP 05405369A EP 05405369 A EP05405369 A EP 05405369A EP 1732140 A1 EP1732140 A1 EP 1732140A1
Authority
EP
European Patent Office
Prior art keywords
plastic film
substrate
layer
foil
aluminum foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05405369A
Other languages
German (de)
French (fr)
Inventor
Walter Hotz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alcan Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Technology and Management Ltd filed Critical Alcan Technology and Management Ltd
Priority to EP05405369A priority Critical patent/EP1732140A1/en
Publication of EP1732140A1 publication Critical patent/EP1732140A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a flexible substrate made of a plastic film and deposited on the plastic film by means of vacuum thin-film technology photovoltaic (PV) cells.
  • the invention further relates to a photovoltaic module with a flexible substrate made of a plastic film and deposited on the plastic film by means of vacuum thin-film technology comprising sequentially a first electrically conductive contact layer, a layer of PV cells and a second electrically conductive contact layer.
  • amorphous PV cells on a plastic film allows the continuous production of PV modules in ribbon form.
  • the deposition temperatures acting on the plastic film in a coating by means of vacuum thin-film technology are in a range of approximately 200 to 250 ° C. At these temperatures shrink virtually all eligible low-priced plastic films such.
  • PET polyethylene terephthalate
  • the use of polyimide films is known, but they are much more expensive than films with lower temperature resistance.
  • the invention has for its object to provide a suitable for the deposition of PV cells by means of vacuum thin-film technology flexible substrate of the type mentioned, which is less expensive than the currently used at the deposition temperatures dimensionally stable plastic films.
  • a further object of the invention is to provide a module with a flexible substrate of the kind which allows a simple derivation of the electrical current generated by the PV cells via electrical conductors.
  • the substrate is a composite film of at least one plastic film and at least one metal foil.
  • the essential core of the invention lies in the fixation of the plastic film provided for the deposition of the PV cells with a cost-effective material which is dimensionally stable at the deposition temperatures.
  • the metal foil used as a dimensionally stable material stabilizes the plastic film bonded to the metal foil over the entire surface and prevents a temperature-induced shrinkage of the plastic film.
  • metal foils are used as electrical conductors for the electrical contacting of the PV cells and the dissipation of the electrical current generated by the PV cells.
  • the substrate may be a composite foil made of a metal foil with plastic films arranged on both sides.
  • the metal foil is protected in this way from corrosion and other harmful environmental influences and is simultaneously electrically insulated on both sides.
  • the metal foil can also be divided into two electrical conductors.
  • the substrate may also be a composite foil of alternatingly arranged plastic films and metal foils, two metal foils advantageously serving as electrical conductors for the electrical contacting of the PV cells.
  • the plastic films may be made of any plastic and in principle also have a multilayer structure. However, films of polyethylene terephthalate (PET) are particularly preferred.
  • PET polyethylene terephthalate
  • Preferred metal foils are foils of aluminum or aluminum alloys and are generally referred to herein as aluminum foils.
  • the composite films consisting of one or more plastic films and one or more metal foils are usually coated by an adhesive, e.g. an adhesive based on polyurethane, bonded together.
  • an adhesive e.g. an adhesive based on polyurethane
  • Composite films of a PET film and an aluminum foil are produced as packaging materials in large quantities as roll goods and are therefore an inexpensive starting material for the production of the inventive substrate.
  • a photovoltaic module with a first electrically conductive contact layer, a layer with PV cells and a second electrically conductive contact layer is preferably produced from the flexible substrate according to the invention, wherein the metal foils form electrical conductors connected to the electrically conductive contact layers.
  • a flexible substrate 10 shown in Fig. 1 comprises a plastic film 12 of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the PET film 12 is bonded to an aluminum foil 14 on one side.
  • a first electrically conductive contact layer 16 On the other side of the PET film 12, a first electrically conductive contact layer 16, a photovoltaic layer 18 made of a plurality of PV cells or a single PV monocell, and a second electrically conductive contact layer 20 are arranged one above the other.
  • the production of these three layers takes place by deposition of the corresponding layer constituents by means of vacuum thin-layer technology.
  • the first electrically conductive layer 16 is a metallic layer of aluminum.
  • the second electrically conductive layer 20 is transparent to visible light and consists of optionally doped metal oxides. Such layers are widely used and known as Transparent Contacting Oxide (TCO).
  • TCO Transparent Contacting Oxide
  • the two electrically conductive layers 16, 20 serve for the electrical contacting of the two poles of the cells of the PV layer 18.
  • the aluminum foil 14 stabilizes the PET film 12 bonded thereto during the deposition of the layers 16, 18 and 20 from the vacuum and, in particular, prevents shrinkage of the PET film 12 under the influence of the heat generated in the deposition processes.
  • a further flexible substrate 110 shown in FIG. 2 likewise has the layer sequence aluminum foil 14 / PET film 12 / aluminum contact layer 16 / PV layer 18 / TCO contact layer 20 known from FIG.
  • a second PET film 22 on this a second aluminum foil 24 and on this a third PET film 26.
  • the third PET film 26 serves to electrically insulate the second aluminum foil 24 and at the same time protects it from corrosion and others harmful environmental influences.
  • the substrate 110 is adhered or sealed over the third PET film 26 to a substrate 28, such as an aluminum sheet, a lightweight board, or a sandwich composite.
  • a protective layer 30, which is arranged above the TCO contact layer 20 and consists of a translucent plastic which protects against mechanical damage and is optionally textured, is adhesively bonded or sealed to the carrier material 28 or the third PET film along a peripheral edge and hermetically encloses a PV module.
  • connection between the PET films and the aluminum foils is usually effected by means of an adhesive in the form of an adhesive layer, an adhesive film or as an extrusion lamination.
  • PV module The production of a PV module will be explained in more detail with reference to FIGS. 3 to 6.
  • edge strips 24a, 24b of the aluminum foil 24 are etched away on both sides in the case of a laminate A of the third PET film 26 and the second aluminum foil 24 in the form of a strip having a width a.
  • the aluminum foil 24 is covered with a cover strip 25.
  • Laminate B of the second PET film 22 and the first aluminum foil 14 is connected to the laminate A.
  • the width b of the laminate B is smaller than the width a of the laminate A, so that the now connected to the second aluminum foil 24 second PET film 22 on the right side directly adjacent to the cover strip 25 and on the left side, the second aluminum foil 24th surmounted.
  • an edge strip 14a of the first aluminum foil 14 is etched away on the right side, and the left edge of the first aluminum foil 14 is covered with a cover strip 15.
  • the PET film 12 present in the form of a strip with a width c is connected to the laminate B in such a way that it immediately adjoins the cover strip 15 on the left edge and covers the edge-etched edge strip 14a of the first aluminum foil 14 on the right edge ,
  • the laminate C produced in this way is shown in FIG. 4.
  • the cover strip 25 is removed from the second aluminum foil 24 and the first PET film 12 and the right side edge of the laminate C coated with the aluminum contact layer 16 by means of vacuum thin-film technology. In this way, an electrically conductive connection is formed on the right edge of the laminate C between the aluminum contact layer 16 on the first PET film 12 and the second aluminum foil 24.
  • the next step is the deposition of the PV layer 18 by means of vacuum thin-film technology on the aluminum contact layer 16.
  • the TCO contact layer 20 is deposited on the PV layer 18 and on the left edge on the exposed aluminum foil 14 , In this way, a connection between the TCO contact layer 20 and the first aluminum foil 14 is formed on the left edge of the laminate C.
  • the laminate C thus coated with PV cells is shown in FIG. 5.
  • the coated substrate provided with a translucent protective layer 30.
  • the protective layer 30 is sealed against the third PET film 26 at the side edges.
  • the present in strip form product can be divided according to FIG. 6 into individual PV modules 32 of any length I.
  • a transverse strip 34 of a width e is not coated.
  • the separation into the individual PV modules 32 can be done by simply cutting the tape within the transverse strips 34.
  • the contacting of the PV modules 32 with the first aluminum foil 14 takes place in the left edge strip and with the second aluminum foil 24 in the right edge strip (FIG. 5).
  • FIGs. 7 and 8 two substrates produced by the method described in Figs. 3 to 5 are shown with a single photovoltaic cell.
  • the aluminum contact layer 16 is deposited on the first PET film 12, on the right side at the side edge of the laminate and on an edge strip of the second aluminum foil 24 and thus electrically connected to the second aluminum foil 24.
  • the deposited on the PV layer 18 TCO contact layer 20 is deposited on the left side on the side edge and on an edge strip of the first aluminum foil 14 and thus electrically connected to the first aluminum foil 14.
  • the aluminum contact layer 16 is deposited directly on the first aluminum foil 14.
  • the TCO contact layer 20 is deposited on the right side at the side edge of the laminate and on an edge strip of the second aluminum foil 24 and thus electrically conductively connected to the second aluminum foil 24.
  • FIGS. 9 to 11 A further possibility for electrical contacting of the PV layer over the two aluminum foils 14, 24 is shown in FIGS. 9 to 11.
  • a laminate D shown in Fig. 9 having the structure of third PET film 26 / second aluminum foil 24 / second PET film 22 / first aluminum foil 14 / first PET film 12 is formed on the side edges by cutting in the dashed edge portions machined so that the laminate D at the side edges has the configuration shown in Fig. 10.
  • portions of the monolayers may be formed on the side edges such that the aluminum foils 14, 24 serving as electrical conductors are insulated from each other by the second PET film 22 and allow contacting of the electrically conductive layers 16, 20.
  • the configuration of the aluminum foils 14, 24 shown in FIG. 11 arises on the right-hand side edge.
  • FIGS. 12 to 14 show a possibility for electrical contacting of the PV layer via a single aluminum foil 14.
  • edge strips 14a, 14b and one aluminum foil 14 are divided into two foils 14d, 14e on both sides of a laminate E in the form of a strip having a width s with the structure of second PET film 22 / aluminum foil 14 on the aluminum foil 14 Center strip 14c etched away. At both side edges, the aluminum foil 14 is covered with a cover strip 15a, 15b.
  • the first PET film 12 in the form of a strip having a width t is joined to the laminate E.
  • the width t of the first PET film 12 is smaller than the width s of the laminate E, so that now with the aluminum foil 14 connected first PET film 12 on both sides directly adjacent to the cover strips 15a, 15b.
  • the laminate F produced in this way is shown in FIG.
  • the cover strip 15a is removed from the aluminum foil 14 and the first PET film 12 and the right side edge of the laminate F are coated with the aluminum contact layer 16 by means of vacuum thin-film technology. In this way, an electrically conductive connection is formed on the right edge of the laminate F between the aluminum contact layer 16 on the first PET film 12 and the right-hand aluminum foil 14d.
  • the next step is the deposition of the PV layer 18 onto the aluminum contact layer 16 by means of vacuum thin-film technology.
  • the TCO contact layer 20 is applied to the PV layer 18 and at the left edge to the exposed left aluminum foil 14e deposited. In this way, on the left edge of the laminate F, a connection is formed between the TCO contact layer 20 and the left-hand aluminum foil 14e.
  • the thus PV cell coated substrate is shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The substrate includes a plastic film (12) made from Polyethyleneterephthalate, where the plastic film is connected on a side with an aluminum foil (14). An electrically conducting contact layer (16), a photovoltaic layer (18) and another electrically conducting contact layer are arranged one above the other in another side of the plastic film. The contact layers and the photovoltaic layers are produced by depositing the layer components by vacuum-thin layer technique. An independent claim is also included for a photovoltaic module including a flexible substrate.

Description

Die Erfindung betrifft ein flexibles Substrat aus einem Kunststofffilm und auf dem Kunststofffilm mittels Vakuum-Dünnschichttechnik abgeschiedenen Photovoltaik (PV)-Zellen. Weiter betrifft die Erfindung ein Photovoltaik-Modul mit einem flexiblen Substrat aus einem Kunststofffilm und auf dem Kunststofffilm mittels Vakuum-Dünnschichttechnik abgeschiedenen Schichten umfassend nacheinander eine erste elektrisch leitende Kontaktschicht, eine Schicht mit PV-Zellen und eine zweite elektrisch leitende Kontaktschicht.The invention relates to a flexible substrate made of a plastic film and deposited on the plastic film by means of vacuum thin-film technology photovoltaic (PV) cells. The invention further relates to a photovoltaic module with a flexible substrate made of a plastic film and deposited on the plastic film by means of vacuum thin-film technology comprising sequentially a first electrically conductive contact layer, a layer of PV cells and a second electrically conductive contact layer.

Die Abscheidung amorpher PV-Zellen auf einem Kunststofffilm ermöglicht die kontinuierliche Herstellung von PV-Modulen in Bandform. Die bei einer Beschichtung mittels Vakuum-Dünnschichttechnik auf den Kunststofffilm einwirkenden Abscheidungstemperaturen liegen in einem Bereich von etwa 200 bis 250 °C. Bei diesen Temperaturen schrumpfen praktisch alle in Frage kommenden preisgünstigen Kunststofffilme, wie z. B. Filme aus Polyethylenterephthalat (PET). Als Substrat zur Abscheidung amorpher PV-Zellen können daher nur ausreichend temperaturbeständige Filme eingesetzt werden. Bekannt ist die Verwendung von Polyimid-Filmen, die allerdings gegenüber Filmen mit geringerer Temperaturbeständigkeit wesentlich teurer sind.The deposition of amorphous PV cells on a plastic film allows the continuous production of PV modules in ribbon form. The deposition temperatures acting on the plastic film in a coating by means of vacuum thin-film technology are in a range of approximately 200 to 250 ° C. At these temperatures shrink virtually all eligible low-priced plastic films such. B. films of polyethylene terephthalate (PET). As a substrate for the deposition of amorphous PV cells, therefore, only sufficiently temperature-resistant films can be used. The use of polyimide films is known, but they are much more expensive than films with lower temperature resistance.

Der Erfindung liegt die Aufgabe zugrunde, ein zur Abscheidung von PV-Zellen mittels Vakuum-Dünnschichttechnik geeignetes flexibles Substrat der eingangs genannten Art bereitzustellen, welches kostengünstiger ist als die heute eingesetzten, bei den Abscheidungstemperaturen formbeständigen Kunststofffilme. Ein weiteres Ziel der Erfindung ist die Schaffung eines Moduls mit einem flexiblen Substrat der eingangs Art, welches auf einfache Weise eine Ableitung des durch die PV-Zellen erzeugten elektrischen Stroms über elektrische Leiter ermöglicht.The invention has for its object to provide a suitable for the deposition of PV cells by means of vacuum thin-film technology flexible substrate of the type mentioned, which is less expensive than the currently used at the deposition temperatures dimensionally stable plastic films. A further object of the invention is to provide a module with a flexible substrate of the kind which allows a simple derivation of the electrical current generated by the PV cells via electrical conductors.

Zur erfindungsgemässen Lösung der Aufgabe führt, dass das Substrat eine Verbundfolie aus wenigstens einem Kunststofffilm und wenigstens einer Metallfolie ist.For the inventive solution of the problem results in that the substrate is a composite film of at least one plastic film and at least one metal foil.

Der wesentliche Kern der Erfindung liegt in der Fixierung des zur Abscheidung der PV-Zellen vorgesehenen Kunststofffilms mit einem kostengünstigen, bei den Abscheidungstemperaturen formbeständigen Material. Die als formbeständiges Material eingesetzte Metallfolie stabilisiert den mit der Metallfolie verklebten Kunststofffilm über die gesamte Oberfläche und verhindert ein temperaturbedingtes Schrumpfen des Kunststofffilms.The essential core of the invention lies in the fixation of the plastic film provided for the deposition of the PV cells with a cost-effective material which is dimensionally stable at the deposition temperatures. The metal foil used as a dimensionally stable material stabilizes the plastic film bonded to the metal foil over the entire surface and prevents a temperature-induced shrinkage of the plastic film.

Ein weiterer wesentlicher Vorteil von Metallfolien liegt darin, dass sie als elektrische Leiter für die elektrische Kontaktierung der PV-Zellen und die Ableitung des durch die PV-Zellen erzeugten elektrischen Stroms eingesetzt werden können.Another important advantage of metal foils is that they can be used as electrical conductors for the electrical contacting of the PV cells and the dissipation of the electrical current generated by the PV cells.

Das Substrat kann eine Verbundfolie aus einer Metallfolie mit beidseitig angeordneten Kunststofffilmen sein. Die Metallfolie ist auf diese Weise vor Korrosion und anderen schädlichen Umwelteinflüssen geschützt und ist gleichzeitig auf beiden Seiten elektrisch isoliert. Die Metallfolie kann auch in zwei elektrische Leiter aufgeteilt sein.The substrate may be a composite foil made of a metal foil with plastic films arranged on both sides. The metal foil is protected in this way from corrosion and other harmful environmental influences and is simultaneously electrically insulated on both sides. The metal foil can also be divided into two electrical conductors.

Das Substrat kann auch eine Verbundfolie aus alternierend angeordneten Kunststofffilmen und Metallfolien sein, wobei zweckmässigerweise zwei Metallfolien als elektrische Leiter für die elektrische Kontaktierung der PV-Zellen dienen.The substrate may also be a composite foil of alternatingly arranged plastic films and metal foils, two metal foils advantageously serving as electrical conductors for the electrical contacting of the PV cells.

Die Kunststofffilme können aus irgendeinem Kunststoff sein und grundsätzlich auch einen mehrschichtigen Aufbau aufweisen. Besonders bevorzugt werden jedoch Filme aus Polyethylenterephthalat (PET).The plastic films may be made of any plastic and in principle also have a multilayer structure. However, films of polyethylene terephthalate (PET) are particularly preferred.

Bevorzugte Metallfolien sind Folien aus Aluminium oder Aluminiumlegierungen und werden hier allgemein als Aluminiumfolien bezeichnet.Preferred metal foils are foils of aluminum or aluminum alloys and are generally referred to herein as aluminum foils.

Die aus einem oder mehreren Kunststofffilmen und einer oder mehreren Metallfolien bestehenden Verbundfolien sind üblicherweise über einen Kleber, z.B. einen Kleber auf der Basis von Polyurethan, miteinander verbunden.The composite films consisting of one or more plastic films and one or more metal foils are usually coated by an adhesive, e.g. an adhesive based on polyurethane, bonded together.

Verbundfolien aus einem PET-Film und einer Aluminiumfolie werden als Verpackungsmaterialien in grossen Mengen als Rollenware hergestellt und sind daher ein kostengünstiges Ausgangsmaterial zur Herstellung des erfindungsgemässen Substrats.Composite films of a PET film and an aluminum foil are produced as packaging materials in large quantities as roll goods and are therefore an inexpensive starting material for the production of the inventive substrate.

Aus dem erfindungsgemässen flexiblen Substrat wird bevorzugt ein Photovoltaik-Modul mit einer ersten elektrisch leitenden Kontaktschicht, einer Schicht mit PV-Zellen und einer zweiten elektrisch leitenden Kontaktschicht hergestellt, wobei die Metallfolien mit den elektrisch leitenden Kontaktschichten verbundene elektrische Leiter bilden.A photovoltaic module with a first electrically conductive contact layer, a layer with PV cells and a second electrically conductive contact layer is preferably produced from the flexible substrate according to the invention, wherein the metal foils form electrical conductors connected to the electrically conductive contact layers.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt schematisch in

  • Fig. 1 einen Querschnitt durch ein erstes flexibles Substrat mit einer PV-Schicht;
  • Fig. 2 einen Querschnitt durch ein zweites flexibles Substrat mit einer PV-Schicht;
  • Fig. 3 - 5 die Herstellungsstufen einer ersten Ausführungsform eines Substrats mit einer aus einer Vielzahl von Einzelzellen aufgebauten PV-Schicht im Querschnitt;
  • Fig. 6 eine Draufsicht auf das Substrat von Fig. 5;
  • Fig. 7 einen Querschnitt durch eine erste Ausführungsform eines Substrats mit einer PV-Monozelle;
  • Fig. 8 einen Querschnitt durch eine zweite Ausführungsform eines Substrats mit einer PV-Monozelle;
  • Fig. 9-11 die Herstellungsstufen einer zweiten Ausführungsform eines Substrats mit einer aus einer Vielzahl von Einzelzellen aufgebauten PV-Schicht im Querschnitt;
  • Fig. 12 - 14 die Herstellungsstufen einer dritten Ausführungsform eines Substrats mit einer aus einer Vielzahl von Einzelzellen aufgebauten PV-Schicht im Querschnitt.
Further advantages, features and details of the invention will become apparent from the following description of preferred embodiments and from the drawing; this shows schematically in
  • 1 shows a cross section through a first flexible substrate with a PV layer.
  • FIG. 2 shows a cross section through a second flexible substrate with a PV layer; FIG.
  • 3 to 5 show the manufacturing steps of a first embodiment of a substrate having a PV layer composed of a plurality of individual cells in cross-section;
  • Fig. 6 is a plan view of the substrate of Fig. 5;
  • 7 shows a cross section through a first embodiment of a substrate with a PV monocell;
  • 8 shows a cross section through a second embodiment of a substrate with a PV monocell;
  • 9-11 the production stages of a second embodiment of a substrate with a built up of a plurality of individual cells PV layer in cross section;
  • 12-14 show the manufacturing steps of a third embodiment of a substrate having a PV array composed of a plurality of individual cells in cross-section.

Ein in Fig. 1 gezeigtes flexibles Substrat 10 weist einen Kunststofffilm 12 aus Polyethylenterephthalat (PET) auf. Der PET-Film 12 ist auf einer Seite mit einer Aluminiumfolie 14 verbunden. Auf der anderen Seite des PET-Films 12 sind übereinander eine erste elektrisch leitende Kontaktschicht 16, eine Photovoltaik-Schicht 18 aus einer Vielzahl von PV-Zellen oder einer einzigen PV-Monozelle, und eine zweite elektrisch leitende Kontaktschicht 20 angeordnet. Die Herstellung dieser drei Schichten erfolgt durch Abscheidung der entsprechenden Schichtbestandteile mittels Vakuum-Dünnschichttechnik.A flexible substrate 10 shown in Fig. 1 comprises a plastic film 12 of polyethylene terephthalate (PET). The PET film 12 is bonded to an aluminum foil 14 on one side. On the other side of the PET film 12, a first electrically conductive contact layer 16, a photovoltaic layer 18 made of a plurality of PV cells or a single PV monocell, and a second electrically conductive contact layer 20 are arranged one above the other. The production of these three layers takes place by deposition of the corresponding layer constituents by means of vacuum thin-layer technology.

Die erste elektrisch leitende Schicht 16 ist eine metallische Schicht aus Aluminium. Die zweite elektrisch leitende Schicht 20 ist für sichtbares Licht transparent und besteht aus ggf. gedopten Metalloxiden. Derartige Schichten sind weit verbreitet und unter dem Namen Transparent Contacting Oxide (TCO) bekannt. Die beiden elektrisch leitenden Schichten 16, 20 dienen der elektrischen Kontaktierung der beiden Pole der Zellen der PV-Schicht 18.The first electrically conductive layer 16 is a metallic layer of aluminum. The second electrically conductive layer 20 is transparent to visible light and consists of optionally doped metal oxides. Such layers are widely used and known as Transparent Contacting Oxide (TCO). The two electrically conductive layers 16, 20 serve for the electrical contacting of the two poles of the cells of the PV layer 18.

Die Aluminiumfolie 14 stabilisiert den mit ihr verbundenen PET-Film 12 während der Abscheidung der Schichten 16, 18 und 20 aus dem Vakuum und verhindert insbesondere ein Schrumpfen des PET-Films 12 unter dem Einfluss der bei den Abscheidungsvorgängen erzeugten Wärme.The aluminum foil 14 stabilizes the PET film 12 bonded thereto during the deposition of the layers 16, 18 and 20 from the vacuum and, in particular, prevents shrinkage of the PET film 12 under the influence of the heat generated in the deposition processes.

Ein in Fig. 2 dargestelltes weiteres flexibles Substrat 110 weist ebenfalls die aus Fig. 1 bekannte Schichtfolge Aluminiumfolie 14 / PET-Film 12 / Aluminium-Kontaktschicht 16 / PV-Schicht 18 / TCO-Kontaktschicht 20 auf. Zusätzlich folgt auf die Metallfolie 14 ein zweiter PET-Film 22, auf diesen eine zweite Aluminiumfolie 24 und auf diese ein dritter PET-Film 26. Wie weiter unten näher erläutert, dienen die zur Stabilisierung des ersten PET-Films 12 vorgesehene Aluminiumfolie 14 und die von dieser durch den zweiten PET-Film 22 getrennte und elektrisch isolierte zweite Aluminiumfolie 24 als elektrische Leiter zur elektrischen Kontaktierung der Zellen der PV-Schicht 18. Der dritte PET-Film 26 dient zur elektrischen Isolation der zweiten Aluminiumfolie 24 und schützt diese gleichzeitig vor Korrosion und anderen schädlichen Umwelteinflüssen.A further flexible substrate 110 shown in FIG. 2 likewise has the layer sequence aluminum foil 14 / PET film 12 / aluminum contact layer 16 / PV layer 18 / TCO contact layer 20 known from FIG. In addition follows on the metal foil 14, a second PET film 22, on this a second aluminum foil 24 and on this a third PET film 26. As explained in more detail below, serve to stabilize the first PET film 12 provided aluminum foil 14 and the latter of these second aluminum foil 24, separated and electrically insulated by the second PET film 22, as electrical conductors for electrically contacting the cells of the PV layer 18. The third PET film 26 serves to electrically insulate the second aluminum foil 24 and at the same time protects it from corrosion and others harmful environmental influences.

Das Substrat 110 ist über den dritten PET-Film 26 auf ein Trägermaterial 28, beispielsweise ein Aluminiumblech, eine Leichtbauplatte oder ein Sandwich-Verbundmaterial, geklebt oder gesiegelt. Eine über der TCO-Kontaktschicht 20 angeordnete Schutzschicht 30 aus einem lichtdurchlässigen, gegen mechanische Beschädigungen schützenden und gegebenenfalls texturierten Kunststoff ist mit dem Trägermaterial 28 oder mit dem dritten PET-Film längs eines umlaufenden Randes verklebt oder versiegelt und umschliesst ein PV-Modul hermetisch.The substrate 110 is adhered or sealed over the third PET film 26 to a substrate 28, such as an aluminum sheet, a lightweight board, or a sandwich composite. A protective layer 30, which is arranged above the TCO contact layer 20 and consists of a translucent plastic which protects against mechanical damage and is optionally textured, is adhesively bonded or sealed to the carrier material 28 or the third PET film along a peripheral edge and hermetically encloses a PV module.

Die Verbindung zwischen den PET-Filmen und den Aluminiumfolien erfolgt üblicherweise mittels eines Klebers in der Form einer Klebstoffschicht, eines Klebstofffilms oder als Extrusionskaschierung.The connection between the PET films and the aluminum foils is usually effected by means of an adhesive in the form of an adhesive layer, an adhesive film or as an extrusion lamination.

Die Herstellung eines PV-Moduls wird nachfolgend anhand der Fig. 3 bis 6 näher erläutert.The production of a PV module will be explained in more detail with reference to FIGS. 3 to 6.

Gemäss Fig.3 werden bei einem in Form eines Bandes mit einer Breite a vorliegenden Laminat A aus dem dritten PET-Film 26 und der zweiten AluminiumFolie 24 beidseitig Randstreifen 24a, 24b der Aluminiumfolie 24 weggeätzt. Auf der in der Zeichnung rechten Seite wird die Aluminiumfolie 24 mit einem Abdeckstreifen 25 abgedeckt.According to FIG. 3, edge strips 24a, 24b of the aluminum foil 24 are etched away on both sides in the case of a laminate A of the third PET film 26 and the second aluminum foil 24 in the form of a strip having a width a. On the right side in the drawing, the aluminum foil 24 is covered with a cover strip 25.

In einem zweiten Schritt wird ein in Form eines Bandes mit einer Breite b vorliegendes Laminat B aus dem zweiten PET-Film 22 und der ersten Aluminiumfolie 14 mit dem Laminat A verbunden. Die Breite b des Laminates B ist kleiner als die Breite a des Laminates A, so dass der nun mit der zweiten Aluminiumfolie 24 verbundene zweite PET-Film 22 auf der rechten Seite unmittelbar an den Abdeckstreifen 25 angrenzt und auf der linken Seite die zweite Aluminiumfolie 24 überragt. Beim Laminat B ist auf der rechten Seite ein Randstreifen 14a der ersten Aluminiumfolie 14 weggeätzt, und der linke Rand der ersten Aluminiumfolie 14 ist mit einem Abdeckstreifen 15 abgedeckt.In a second step, one in the form of a band with a width b present Laminate B of the second PET film 22 and the first aluminum foil 14 is connected to the laminate A. The width b of the laminate B is smaller than the width a of the laminate A, so that the now connected to the second aluminum foil 24 second PET film 22 on the right side directly adjacent to the cover strip 25 and on the left side, the second aluminum foil 24th surmounted. In the laminate B, an edge strip 14a of the first aluminum foil 14 is etched away on the right side, and the left edge of the first aluminum foil 14 is covered with a cover strip 15.

In einem weiteren Schritt wird der in Form eines Bandes mit einer Breite c vorliegende PET-Film 12 so mit dem Laminat B verbunden, dass er am linken Rand unmittelbar an den Abdeckstreifen 15 anschliesst und am rechten Rand den weggeätzten Randstreifen 14a der ersten Aluminiumfolie 14 überdeckt. Das auf diese Weise hergestellte Laminat C ist in Fig. 4 dargestellt.In a further step, the PET film 12 present in the form of a strip with a width c is connected to the laminate B in such a way that it immediately adjoins the cover strip 15 on the left edge and covers the edge-etched edge strip 14a of the first aluminum foil 14 on the right edge , The laminate C produced in this way is shown in FIG. 4.

In einem nächsten Schritt wird der Abdeckstreifen 25 von der zweiten Aluminiumfolie 24 entfernt und der erste PET-Film 12 sowie der rechte Seitenrand des Laminates C mit der Aluminium-Kontaktschicht 16 mittels Vakuum-Dünnschichttechnik beschichtet. Auf diese Weise entsteht am rechten Rand des Laminates C eine elektrisch leitende Verbindung zwischen der Aluminium-Kontaktschicht 16 auf dem ersten PET-Film 12 und der zweiten Aluminiumfolie 24.In a next step, the cover strip 25 is removed from the second aluminum foil 24 and the first PET film 12 and the right side edge of the laminate C coated with the aluminum contact layer 16 by means of vacuum thin-film technology. In this way, an electrically conductive connection is formed on the right edge of the laminate C between the aluminum contact layer 16 on the first PET film 12 and the second aluminum foil 24.

Als nächster Schritt folgt die Abscheidung der PV-Schicht 18 mittels Vakuum-Dünnschichttechnik auf die Aluminium-Kontaktschicht 16. Nach dem Entfernen des Abdeckstreifens 15 wird die TCO-Kontaktschicht 20 auf die PV-Schicht 18 und am linken Rand auf die freiliegende Aluminiumfolie 14 abgeschieden. Auf diese Weise entsteht am linken Rand des Laminates C eine Verbindung zwischen der TCO-Kontaktschicht 20 und der ersten Aluminiumfolie 14. Das derart mit PV-Zellen beschichtete Laminat C ist in Fig. 5 dargestellt.The next step is the deposition of the PV layer 18 by means of vacuum thin-film technology on the aluminum contact layer 16. After removing the cover strip 15, the TCO contact layer 20 is deposited on the PV layer 18 and on the left edge on the exposed aluminum foil 14 , In this way, a connection between the TCO contact layer 20 and the first aluminum foil 14 is formed on the left edge of the laminate C. The laminate C thus coated with PV cells is shown in FIG. 5.

Zum Schutz der abgeschiedenen Schichten 16, 18, 20 vor schädlichen Umwelteinflüssen und mechanischer Verletzungen wird das beschichtete Substrat mit einer lichtdurchlässigen Schutzschicht 30 versehen. Die Schutzschicht 30 wird an den Seitenrändern gegen den dritten PET-Film 26 gesiegelt.To protect the deposited layers 16, 18, 20 from harmful environmental influences and mechanical injuries becomes the coated substrate provided with a translucent protective layer 30. The protective layer 30 is sealed against the third PET film 26 at the side edges.

Das in Bandform vorliegende Produkt kann gemäss Fig. 6 in einzelne PV-Module 32 von beliebiger Länge I unterteilt werden. Hierzu wird nach der jeweils gewünschten Länge I eines PV-Moduls 32 ein Querstreifen 34 einer Breite e nicht beschichtet. Die Trennung in die einzelnen PV-Module 32 kann durch einfaches Schneiden des Bandes innerhalb der Querstreifen 34 erfolgen. Die Kontaktierung der PV-Module 32 mit der ersten Aluminiumfolie 14 erfolgt im linken Randstreifen und mit der zweiten Aluminiumfolie 24 im rechten Randstreifen (Fig. 5).The present in strip form product can be divided according to FIG. 6 into individual PV modules 32 of any length I. For this purpose, after the respectively desired length I of a PV module 32, a transverse strip 34 of a width e is not coated. The separation into the individual PV modules 32 can be done by simply cutting the tape within the transverse strips 34. The contacting of the PV modules 32 with the first aluminum foil 14 takes place in the left edge strip and with the second aluminum foil 24 in the right edge strip (FIG. 5).

In den Fig. 7 und 8 sind zwei nach dem in den Fig. 3 bis 5 beschriebenen Verfahren hergestellte Substrate mit einer PV-Monozelle dargestellt.In Figs. 7 and 8, two substrates produced by the method described in Figs. 3 to 5 are shown with a single photovoltaic cell.

Bei der in Fig. 7 gezeigten Ausführungsform ist die Aluminium-Kontaktschicht 16 auf dem ersten PET-Film 12, auf der rechten Seite am Seitenrand des Laminates und auf einem Randstreifen der zweiten Aluminiumfolie 24 abgeschieden und so mit der zweiten Aluminiumfolie 24 elektrisch leitend verbunden. Die auf der PV-Schicht 18 abgeschiedene TCO-Kontaktschicht 20 ist auf der linken Seite am Seitenrand und auf einem Randstreifen der ersten Aluminiumfolie 14 abgeschieden und so mit der ersten Aluminiumfolie 14 elektrisch leitend verbunden.In the embodiment shown in FIG. 7, the aluminum contact layer 16 is deposited on the first PET film 12, on the right side at the side edge of the laminate and on an edge strip of the second aluminum foil 24 and thus electrically connected to the second aluminum foil 24. The deposited on the PV layer 18 TCO contact layer 20 is deposited on the left side on the side edge and on an edge strip of the first aluminum foil 14 and thus electrically connected to the first aluminum foil 14.

Bei der in Fig. 8 gezeigten Variante ist die Aluminium-Kontaktschicht 16 direkt auf der ersten Aluminiumfolie 14 abgeschieden. Die TCO-Kontaktschicht 20 ist in diesem Fall auf der rechten Seite am Seitenrand des Laminates und auf einem Randstreifen der zweiten Aluminiumfolie 24 abgeschieden und so mit der zweiten Aluminiumfolie 24 elektrisch leitend verbunden.In the variant shown in FIG. 8, the aluminum contact layer 16 is deposited directly on the first aluminum foil 14. In this case, the TCO contact layer 20 is deposited on the right side at the side edge of the laminate and on an edge strip of the second aluminum foil 24 and thus electrically conductively connected to the second aluminum foil 24.

In den Fig. 9 bis 11 ist eine weitere Möglichkeit zur elektrischen Kontaktierung der PV-Schicht über die zwei Aluminiumfolien 14, 24 dargestellt.A further possibility for electrical contacting of the PV layer over the two aluminum foils 14, 24 is shown in FIGS. 9 to 11.

Ein in Fig.9 gezeigtes Laminat D mit dem Aufbau dritter PET-Film 26 / zweite Aluminiumfolie 24 / zweiter PET-Film 22 / erste Aluminiumfolie 14 / erster PET-Film 12 wird an den Seitenrändern durch Schneiden bzw. Ätzen in den strichliniert dargestellten Randbereichen so bearbeitet, dass das Laminat D an den Seitenrändern die in Fig. 10 gezeigte Konfiguration aufweist. Bei diesen Seitenrandkonfigurationen können Teile der Einzelschichten an den Seitenrändern so geformt werden, dass die als elektrische Leiter dienenden Aluminiumfolien 14, 24 einerseits durch den zweiten PET-Film 22 von einander isoliert sind und andererseits eine Kontaktierung der elektrisch leitenden Schichten 16, 20 ermöglichen. Durch entsprechendes Formen der Seitenränder des Laminates D entsteht die in Fig. 11 gezeigte Konfiguration der Aluminiumfolien 14, 24 am rechten Seitenrand. Bei der nachfolgenden Abscheidung der Schichten 16, 18, 20 erfolgt auf der linken Seite die Kontaktierung der TCO-Kontaktschicht 20 mit der ersten Aluminiumfolie 14 durch Abscheidung auf einen schmalen Randstreifen der Aluminiumfolie 14. Auf der rechten Seite erfolgt die Kontaktierung der TCO-Kontaktschicht 20 durch Abscheidung auf einem schmalen Streifen der zweiten Aluminiumfolie 24.A laminate D shown in Fig. 9 having the structure of third PET film 26 / second aluminum foil 24 / second PET film 22 / first aluminum foil 14 / first PET film 12 is formed on the side edges by cutting in the dashed edge portions machined so that the laminate D at the side edges has the configuration shown in Fig. 10. In these side edge configurations, portions of the monolayers may be formed on the side edges such that the aluminum foils 14, 24 serving as electrical conductors are insulated from each other by the second PET film 22 and allow contacting of the electrically conductive layers 16, 20. By corresponding shaping of the side edges of the laminate D, the configuration of the aluminum foils 14, 24 shown in FIG. 11 arises on the right-hand side edge. In the subsequent deposition of the layers 16, 18, 20 takes place on the left side, the contacting of the TCO contact layer 20 with the first aluminum foil 14 by deposition on a narrow edge strip of the aluminum foil 14. On the right side, the contacting of the TCO contact layer 20th by deposition on a narrow strip of the second aluminum foil 24.

In den Fig. 12 bis 14 ist eine Möglichkeit zur elektrischen Kontaktierung der PV-Schicht über eine einzige Aluminiumfolie 14 dargestellt.FIGS. 12 to 14 show a possibility for electrical contacting of the PV layer via a single aluminum foil 14.

Gemäss Fig.12 werden bei einem in Form eines Bandes mit einer Breite s vorliegenden Laminat E mit dem Aufbau zweiter PET-Film 22 / Aluminiumfolie 14 an der Aluminiumfolie 14 beidseitig Randstreifen 14a, 14b und ein die Aluminiumfolie 14 in zwei Folien 14d, 14e unterteilender Mittelstreifen 14c weggeätzt. An beiden Seitenrändern wird die Aluminiumfolie 14 mit je einem Abdeckstreifen 15a, 15b abgedeckt.According to FIG. 12, edge strips 14a, 14b and one aluminum foil 14 are divided into two foils 14d, 14e on both sides of a laminate E in the form of a strip having a width s with the structure of second PET film 22 / aluminum foil 14 on the aluminum foil 14 Center strip 14c etched away. At both side edges, the aluminum foil 14 is covered with a cover strip 15a, 15b.

In einem zweiten Schritt wird der in Form eines Bandes mit einer Breite t vorliegende erste PET-Film 12 mit dem Laminat E verbunden. Die Breite t des ersten PET-Films 12 ist kleiner als die Breite s des Laminates E, so dass der nun mit der Aluminiumfolie 14 verbundene erste PET-Film 12 beidseitig unmittelbar an die Abdeckstreifen 15a, 15b angrenzt. Das auf diese Weise hergestellte Laminat F ist in Fig. 13 dargestellt.In a second step, the first PET film 12 in the form of a strip having a width t is joined to the laminate E. The width t of the first PET film 12 is smaller than the width s of the laminate E, so that now with the aluminum foil 14 connected first PET film 12 on both sides directly adjacent to the cover strips 15a, 15b. The laminate F produced in this way is shown in FIG.

In einem nächsten Schritt wird der Abdeckstreifen 15a von der Aluminiumfolie 14 entfernt und der erste PET-Film 12 sowie der rechte Seitenrand des Laminates F mit der Aluminium-Kontaktschicht 16 mittels Vakuum-Dünnschichttechnik beschichtet. Auf diese Weise entsteht am rechten Rand des Laminates F eine elektrisch leitende Verbindung zwischen der Aluminium-Kontaktschicht 16 auf dem ersten PET-Film 12 und der rechten Aluminiumfolie 14d. Als nächster Schritt folgt die Abscheidung der PV-Schicht 18 mittels Vakuum-Dünnschichttechnik auf die Aluminium-Kontaktschicht 16. Nach dem Entfernen des Abdeckstreifens 15b wird die TCO-Kontaktschicht 20 auf die PV-Schicht 18 und am linken Rand auf die freiliegende linke Aluminiumfolie 14e abgeschieden. Auf diese Weise entsteht am linken Rand des Laminates F eine Verbindung zwischen der TCO-Kontaktschicht 20 und der linken Aluminiumfolie 14e. Das derart mit PV-Zellen beschichtete Substrat ist in Fig. 14 dargestellt.In a next step, the cover strip 15a is removed from the aluminum foil 14 and the first PET film 12 and the right side edge of the laminate F are coated with the aluminum contact layer 16 by means of vacuum thin-film technology. In this way, an electrically conductive connection is formed on the right edge of the laminate F between the aluminum contact layer 16 on the first PET film 12 and the right-hand aluminum foil 14d. The next step is the deposition of the PV layer 18 onto the aluminum contact layer 16 by means of vacuum thin-film technology. After removing the cover strip 15b, the TCO contact layer 20 is applied to the PV layer 18 and at the left edge to the exposed left aluminum foil 14e deposited. In this way, on the left edge of the laminate F, a connection is formed between the TCO contact layer 20 and the left-hand aluminum foil 14e. The thus PV cell coated substrate is shown in FIG.

Claims (12)

Flexibles Substrat aus einem Kunststofffilm (12) und auf dem Kunststofffilm mittels Vakuum-Dünnschichttechnik abgeschiedenen Photovoltaik (PV)-Zellen,
dadurch gekennzeichnet, dass
das Substrat eine Verbundfolie aus wenigstens einem Kunststofffilm (12) und wenigstens einer Metallfolie (14) ist.
Flexible substrate made of a plastic film (12) and photovoltaic (PV) cells deposited on the plastic film by means of vacuum thin-film technology,
characterized in that
the substrate is a composite film of at least one plastic film (12) and at least one metal foil (14).
Flexibles Substrat nach Anspruch 1, dadurch gekennzeichnet, dass das Substrat eine Verbundfolie aus einer Metallfolie (14) mit beidseitig angeordneten Kunststofffilmen (12, 22) ist.Flexible substrate according to claim 1, characterized in that the substrate is a composite foil of a metal foil (14) with plastic films (12, 22) arranged on both sides. Flexibles Substrat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Metallfolie (14) ein elektrischer Leiter für die elektrische Kontaktierung der PV-Zellen ist.Flexible substrate according to claim 1 or 2, characterized in that the metal foil (14) is an electrical conductor for the electrical contacting of the PV cells. Flexibles Substrat nach Anspruch 3, dadurch gekennzeichnet, dass die Metallfolie (14) in zwei elektrische Leiter (14d, 14 e) aufgeteilt ist.Flexible substrate according to claim 3, characterized in that the metal foil (14) is divided into two electrical conductors (14d, 14e). Flexibles Substrat nach Anspruch 1, dadurch gekennzeichnet, dass das Substrat eine Verbundfolie aus alternierend angeordneten Kunststofffilmen (12, 22, 26) und Metallfolien (14, 24) ist und zwei Metallfolien (14, 24) elektrische Leiter für die elektrische Kontaktierung der PV-Zellen sind.Flexible substrate according to claim 1, characterized in that the substrate is a composite foil of alternatingly arranged plastic films (12, 22, 26) and metal foils (14, 24) and two metal foils (14, 24) electrical conductors for the electrical contacting of the PV Cells are. Flexibles Substrat nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der/die Kunststofffilm/e (12, 22, 26) aus Polyethylenterephthalat (PET) ist/sind.A flexible substrate according to any one of claims 1 to 5, characterized in that the plastic film (12, 22, 26) is / are polyethylene terephthalate (PET). Flexibles Substrat nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Metallfolie/n (14, 24) aus Aluminium ist/sind.Flexible substrate according to one of claims 1 to 6, characterized characterized in that the metal foil / s (14, 24) is / are made of aluminum. Photovoltaik (PV)-Modul mit einem flexiblen Substrat aus einem Kunststofffilm (12) und auf dem Kunststofffilm mittels Vakuum-Dünnschichttechnik abgeschiedenen Schichten umfassend nacheinander - eine erste elektrisch leitende Kontaktschicht (16), - eine Schicht mit PV-Zellen (18) und - eine zweite elektrisch leitende Kontaktschicht (20), dadurch gekennzeichnet, dass
das Substrat eine Verbundfolie aus wenigstens einem Kunststofffilm (12) und wenigstens einer Metallfolie (14) ist, wobei die Metallfolie/n (14, 24) zwei mit den elektrisch leitenden Kontaktschichten (16, 20) verbundene elektrische Leiter bildet/bilden.
Photovoltaic (PV) module comprising a flexible substrate made of a plastic film (12) and deposited on the plastic film by means of vacuum thin-film technology layers comprising successively a first electrically conductive contact layer (16), a layer of PV cells (18) and a second electrically conductive contact layer (20), characterized in that
the substrate is a composite foil of at least one plastic film (12) and at least one metal foil (14), the metal foil (s) (14, 24) forming two electrical conductors connected to the electrically conductive contact layers (16, 20).
Photovoltaik-Modul nach Anspruch 8, dadurch gekennzeichnet, dass das Substrat eine Verbundfolie aus einer in zwei elektrische Leiter (14d, 14e) geteilten Metallfolie (14) mit wenigstens einem auf einer der Seiten angeordneten Kunststofffilm (12, 22) ist.Photovoltaic module according to claim 8, characterized in that the substrate is a composite foil of a divided into two electrical conductors (14d, 14e) metal foil (14) having at least one arranged on one of the sides plastic film (12, 22). Photovoltaik-Modul nach Anspruch 8, dadurch gekennzeichnet, dass das Substrat eine Verbundfolie aus alternierend angeordneten Kunststofffilmen (12, 22, 26) und Metallfolien (14, 24) ist, wobei die Metallfolien (14, 24) zwei mit den elektrisch leitenden Kontaktschichten (16, 20) verbundene elektrische Leiter bilden.Photovoltaic module according to claim 8, characterized in that the substrate is a composite foil of alternatingly arranged plastic films (12, 22, 26) and metal foils (14, 24), wherein the metal foils (14, 24) two with the electrically conductive contact layers ( 16, 20) form connected electrical conductors. Photovoltaik-Modul nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass der/die Kunststofffilm/e (12, 22, 26) aus Polyethylenterephthalat (PET) ist/sind.Photovoltaic module according to one of claims 8 to 10, characterized in that the / the plastic film (12, 22, 26) of polyethylene terephthalate (PET) is / are. Photovoltaik-Modul nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Metallfolie/n (14, 24) aus Aluminium ist/sind.Photovoltaic module according to one of claims 8 to 10, characterized in that the metal foil / s (14, 24) is / are made of aluminum.
EP05405369A 2005-06-06 2005-06-06 Felxible substrate with photovoltaic cells and its manufacturing method Withdrawn EP1732140A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05405369A EP1732140A1 (en) 2005-06-06 2005-06-06 Felxible substrate with photovoltaic cells and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05405369A EP1732140A1 (en) 2005-06-06 2005-06-06 Felxible substrate with photovoltaic cells and its manufacturing method

Publications (1)

Publication Number Publication Date
EP1732140A1 true EP1732140A1 (en) 2006-12-13

Family

ID=34942994

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05405369A Withdrawn EP1732140A1 (en) 2005-06-06 2005-06-06 Felxible substrate with photovoltaic cells and its manufacturing method

Country Status (1)

Country Link
EP (1) EP1732140A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159848A1 (en) * 2008-08-29 2010-03-03 Dickson Constant Roll-up photovoltaic composite and solar-protection device comprising such a composite
EP2535946A4 (en) * 2010-02-12 2015-10-21 Mitsubishi Chem Corp Solar cell module and production method for solar cell module
CN111002663A (en) * 2019-11-21 2020-04-14 苏州顺创新能源科技有限公司 Solar photovoltaic back panel film and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461922A (en) * 1983-02-14 1984-07-24 Atlantic Richfield Company Solar cell module
EP0341756A2 (en) * 1981-11-04 1989-11-15 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Flexible photovoltaic device
WO1994022172A1 (en) * 1993-03-24 1994-09-29 E.I. Du Pont De Nemours And Company Solar panels and process for manufacture thereof
US6133521A (en) * 1997-03-13 2000-10-17 Sanyo Electric Co., Ltd. Solar battery output section and its method of manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341756A2 (en) * 1981-11-04 1989-11-15 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Flexible photovoltaic device
US4461922A (en) * 1983-02-14 1984-07-24 Atlantic Richfield Company Solar cell module
WO1994022172A1 (en) * 1993-03-24 1994-09-29 E.I. Du Pont De Nemours And Company Solar panels and process for manufacture thereof
US6133521A (en) * 1997-03-13 2000-10-17 Sanyo Electric Co., Ltd. Solar battery output section and its method of manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159848A1 (en) * 2008-08-29 2010-03-03 Dickson Constant Roll-up photovoltaic composite and solar-protection device comprising such a composite
FR2935541A1 (en) * 2008-08-29 2010-03-05 Dickson Constant PHOTOVOLTAIC ROLL-UP COMPOSITE AND SOLAR PROTECTION DEVICE HAVING SUCH COMPOSITE
US8704079B2 (en) 2008-08-29 2014-04-22 Dickson Constant S.A. Photovoltaic windable composite and solar protective device comprising such a composite
EP2535946A4 (en) * 2010-02-12 2015-10-21 Mitsubishi Chem Corp Solar cell module and production method for solar cell module
CN111002663A (en) * 2019-11-21 2020-04-14 苏州顺创新能源科技有限公司 Solar photovoltaic back panel film and preparation method thereof

Similar Documents

Publication Publication Date Title
EP2879869B1 (en) Laminated glass pane with electric contacts
EP2936925B1 (en) Glasspane with electrical heating layer
DE69429027T2 (en) Transparent flat heating element, process for its production and transparent conductive layer
DE69128600T2 (en) Integrated photovoltaic device
EP2936926B1 (en) Glasspane with electrical heating layer
DE3303926C2 (en)
DE102009002823A1 (en) Solar cell, this solar cell comprehensive solar module and method for their preparation and for producing a contact foil
EP3189706B1 (en) Pane with electric heating area
DE19953162A1 (en) Laminate sticking type chip thermistor manufacturing method, involves laminating and fixing elements in brake groove during simultaneous cutting of motherboards
DE112011104782T5 (en) Photovoltaic module and method
DE68906431T2 (en) Extended electroluminescent cell and method of manufacture.
EP2058870A2 (en) Contacts and module switching from thin layer solar cells to polymer carriers
EP2629339A1 (en) Film system for contacting photovoltaic cells
EP1732140A1 (en) Felxible substrate with photovoltaic cells and its manufacturing method
DE3317309C2 (en)
DE19956021C1 (en) Solar panel, for use in sun roof of cars, comprises transparent panel with solar cell unit connected to collector electrode consisting of coating applied directly to panel or to intermediate coating
WO2009010052A2 (en) Module, and method for the production thereof
DE102008046480A1 (en) A method for producing a solderable LFC solar cell backside and solar module interconnected from such LFC solar cells
DE102009055031A1 (en) Back contact-solar cell for use in solar module, has perforated film and semi-conducting layer positioned on each other, and contact points whose portion is connected with conductive layer via solderless electrically conductive connection
EP4106992B1 (en) Laminated panel with multiple functional elements and busbar on barrier film
DE3529341A1 (en) Solar cell module
DE10020784A1 (en) Photovoltaic module and method for its production
DE3235493C2 (en)
WO2021197949A1 (en) Method for producing a composite pane with an electrically controllable optical property
DE102010015942A1 (en) Solar module for providing power in small electrical device, has strip guard exhibiting spacing, which is less than centre distance between solar cells, where electrical interconnection is implemented by strip guard

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20070613

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070828

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: FLEXIBLE SUBSTRATE WITH PHOTOVOLTAIC CELLS AND ITS MANUFACTURING METHOD

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080715