JP3562166B2 - Method of forming printed circuit board having inspection electrode - Google Patents

Method of forming printed circuit board having inspection electrode Download PDF

Info

Publication number
JP3562166B2
JP3562166B2 JP25339096A JP25339096A JP3562166B2 JP 3562166 B2 JP3562166 B2 JP 3562166B2 JP 25339096 A JP25339096 A JP 25339096A JP 25339096 A JP25339096 A JP 25339096A JP 3562166 B2 JP3562166 B2 JP 3562166B2
Authority
JP
Japan
Prior art keywords
insulating resin
resin layer
electrode
forming
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25339096A
Other languages
Japanese (ja)
Other versions
JPH1098250A (en
Inventor
達広 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP25339096A priority Critical patent/JP3562166B2/en
Publication of JPH1098250A publication Critical patent/JPH1098250A/en
Application granted granted Critical
Publication of JP3562166B2 publication Critical patent/JP3562166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置や配線回路基板の導通検査をするために用いられる検査治具基板の製造方法に関する。
【0002】
【従来の技術】
従来、半導体装置や配線回路基板の導通検査には、ウェハプローブや布線検査で知られるように被検査体の電極部に針状の検査電極を接触させ導通テストを行っていた。また、比較的配線密度の低い配線回路基板では電極を有する検査用の配線回路基板を形成し、異方性導電シートを介して被検査体である配線回路基板との接触を採り、導通テストを行っている。
【0003】
【発明が解決しようとする課題】
従来のウェハプローブや布線検査による半導体装置や配線回路基板の導通検査の方法では、針状の検査電極を接触させるため、被検査体に検査痕を残し損傷を与える可能性がある。また、配線密度の増加や高集積化によっては、検査用のプローブの形成が困難になってきた。検査基板を用いる方法では、異方性導電シートの導通ピッチの関係などから200μmピッチ程度の被検査体には対応できるが、それ以上の微細ピッチの検査には対応することが出来ない。本発明は上記問題を解決するためになされたもので、微細ピッチの検査に対応した検査電極及び形成方法を改良した検査電極を有する配線回路基板形成方法を提供する。
【0004】
【課題を解決するための手段】
本発明において上記課題を解決するため配線回路に接続された検査電極であって、該検査電極の形状が電極先端部に向かうほど表面積が小さくなっており、且つ先端部が平坦になっていることを特徴とする検査電極を有する配線回路基板としたものである。上記の構造を採ることによって今まで対応することが出来なかった微細ピッチにも対応することができ、さらに電極先端部を平坦にしたことで、検査時の被検査体への損傷を防止することができる。
【0005】
請求項1においては、下記の一連の工程からなる検査電極を有する配線回路基板の形成方法としたものである。
(a)ベース基板上に絶縁樹脂層を形成する工程。
(b)前記絶縁樹脂層に開口部を形成する工程。
(c)前記開口部に導体電極を形成する工程。
(d)前記導体電極及び前記絶縁樹脂層上に導体薄膜層を形成する工程。
(e)前記導体薄膜層上に第2絶縁樹脂層を形成する工程。
(f)前記第2絶縁樹脂層に配線パターン状に第2開口部を形成する工程。
(g)前記第2絶縁樹脂層の第2開口部に導体層を形成し、配線回路を形成する工程。
(h)前記配線回路及び前記第2絶縁樹脂層上に第3絶縁樹脂層を形成する工程。
(i)ベース基板及び絶縁樹脂層及び導体電極部以外の導体薄膜層を除去し、検査電極及び配線回路基板を形成する工程。
これらの工程によって微細ピッチで、電極先端部が平滑な検査電極を有する配線回路基板を形成することができる。
【0006】
【発明の実施の形態】
本発明の検査電極を有する配線回路基板の構造は、ベース基板11上に絶縁樹脂層12を形成し、開口部13を形成する。次に開口部13に導体電極14を形成する。さらに基板全面に導体薄膜層15及び第2絶縁樹脂層16を形成する。第2絶縁樹脂層16に配線パターン状の第2開口部17を形成する。さらに第2開口部17に導体層を形成し、配線回路18を形成する。配線回路18及び第2絶縁樹脂層16a上に第3絶縁樹脂層19を形成する。その後ベース基板11及び絶縁樹脂層12a及び導体電極14以外の導体薄膜層15を除去することで本発明の検査電極を有する配線回路基板が得られる(図1参照)。
以下、検査電極を有する配線回路基板及びその形成方法について述べる。
【0007】
ベース基板11は、導体電極14を形成するためのめっき電極として使用するので、導電性を有し、平滑性のある金属板が好ましく、具体的には、0.2〜1.0mm厚の銅板や鉄・ニッケル合金板が使用できる。
【0008】
次に、ベース基板11上に絶縁樹脂層12を形成する(図1(a)参照)。絶縁樹脂層12は絶縁性を有する樹脂層であれば特に制限はなく、後工程の開口部13の形成方法によって選択する。開口部13をフォトリソグラフィー法を用いて形成する場合は、感光性を有し、電極のピッチによって解像度の良いものを選択する必要がある。また、この場合はドライフィルムレジストを選択しても良い。厚みの均一なドライフィルムの使用によって電極高さの制御が容易になる。
【0009】
次に、絶縁樹脂層12に開口部13を形成する(図1(b)参照)。開口部13の形成法としてはフォトリソグラフィー法、レーザー加工法等が使用でき、開口部の開口径、形状制御性、加工精度等により適宜選択することができるが微細加工性、形状制御性からレーザー加工法が好ましい。
レーザ加工の場合絶縁樹脂層12としては特に感光性を必要としないため、幅広い材料の選択が可能である。レーザ加工には、エキシマレーザ加工あるいは短パルスの炭酸ガスレーザ加工などが使用できる。特にこれらに限定されるものではなく、有機物質が除去できるものであれば良い。また、加工法は開口部の加工精度(この場合は開口径)によって選択することが望ましい。開口径が100〜200μmの場合には炭酸ガスレーザ加工が良いが、100μm以下の場合にはエキシマレーザ加工が適している。レーザ加工の場合、光学系にマスクを入れることにより様々な形の開口部を形成できるため、これによって電極形状を選択することができる。
【0010】
次に、開口部13に導体電極14を形成する(図1(c)参照)。導体電極14の形成法としては電解めっき法、無電解めっき法、導電ペーストを使った印刷法または注入法があるが、導体電極14の形状再現性、配線回路基板との電気的導通信頼性等により適宜選択して使い分けることができる。ここでは、形状再現性及び導通信頼性に優れた電解めっき法にて導体電極14を形成する。
さらに、検査電極の接触信頼性を向上させるために導体電極の先端に金めっき層24を形成した電極構造もある(図2(b)参照)。
【0011】
次に、基板表面に導体薄膜層15を形成する(図1(d)参照)。導体薄膜層15の形成法としては、スパッタ法、蒸着法、無電解めっき法及び電解めっき法等が使用できる。
【0012】
次に、導体薄膜層15上に配線回路を形成するための第2絶縁樹脂層16を形成する(図1(e)参照)。第2絶縁樹脂層16は感光性の絶縁樹脂層か、非感光性の絶縁樹脂層の2種類に大別され、後工程の加工法によって適宜選択する。絶縁樹脂層の形成法としては、熱硬化型のエポキシ樹脂やポリイミド樹脂を主成分とする樹脂溶液または感光性樹脂溶液などをスクリーン印刷、スピンコート、ロールコートするかあるいはドライフィルムをラミネートすることにより形成される。
【0013】
次に、第2絶縁樹脂層16に配線パターン状の第2開口部17を形成する(図1(f)参照)。第2開口部17の形成法としてはフォトリソグラフィー法またはレーザ加工法等が適用できる。
【0014】
次に、第2開口部17に、ベース基板を電極として、電解めっきにより導体層を形成し、配線回路18を形成する(図1(g)参照)。
【0015】
次に、第3絶縁樹脂層19を形成する(図1(h)参照)。第3絶縁樹脂層は前記絶縁樹脂層及び第2絶縁樹脂層と同様のものを使用することができるが、電極が被検査体と接触した時に被検査体の凹凸を吸収するために、第3絶縁樹脂層19に柔軟性を持たせることが望ましい。具体的には、上記の樹脂にゴムフィラーを入れることで改善が見られる。
【0016】
次に、ベース基板11をエッチングによって除去する。さらに絶縁樹脂層12aを除去し、さらに、導体電極14と接触している部分15a以外の導体薄膜層15をエッチングで除去して、検査電極20及び配線回路基板40が形成される(図1(i)参照)。
これらの工程によって、本発明の検査電極を有する配線回路基板を形成することができる。
【0017】
【実施例】
以下、実施例について図を用いて詳細に説明する。
<実施例1>
ベース基板11には、0.2mm厚の銅板を用いる。ベース基板11上にドライフィルム(DFR:日立化成工業(株)製)をラミネートによって形成し、加熱硬化して絶縁樹脂層12を形成した(図1(a)参照)。
【0018】
次に、絶縁樹脂層12にエキシマレーザ加工機を用いて50μmφの開口部13を形成した(図1(b)参照)。エキシマレーザ加工の条件は、エネルギ密度1.0J/cmであった。
【0019】
次に、開口部13にベース基板11をめっき電極にして電解銅めっき(電解銅めっき浴:硫酸銅20g/l、硫酸70g/l、塩酸50ppm、電流密度2A/dm)を行い、導体電極14を形成した(図1(c)参照)。
【0020】
次に、基板表面上にスパッタリングにより銅をスパッタした後電解銅めっきして導体薄膜層15を形成した(図1(d)参照)。銅スパッタ層は3000Å程度の膜厚で形成し、さらに電解銅めっきを行って、1〜3μm厚の導体薄膜層15を形成した。
【0021】
次に、導体薄膜層15上に熱硬化型のエポキシ樹脂溶液をスクリーン印刷して塗膜を形成し、加熱硬化して第2絶縁樹脂層16を形成した(図1(e)参照)。
【0022】
次に、第2絶縁樹脂層16をエキシマレーザ加工にて配線パターン状に加工し、第2開口部17を形成した(図1(f)参照)。
【0023】
次に、第2開口部17にベース基板11をめっき電極にして、電解銅めっき(電解銅めっき浴:硫酸銅20g/l、硫酸70g/l、塩酸50ppm、電流密度2A/dm)を行い、配線回路18を形成した(図1(f)参照)。
配線回路18を形成した後、配線回路18の表面を黒化(酸化)処理することで次に形成する第3絶縁樹脂層19との密着性を向上することができる。
【0024】
次に、熱硬化型のエポキシ樹脂溶液ををスクリーン印刷して塗膜を形成し、加熱硬化して、50μm厚の第3絶縁樹脂層19を形成した(図1(g)参照)。
【0025】
次に、ベース基板11をエッチングによって除去した後、絶縁樹脂層12aを所定の剥離液によって剥離除去した。さらに、導体電極14と接触している部分15a以外の導体薄膜層15をエッチングで除去して、検査電極20及び配線回路基板40を作製した(図1(i)参照)。
これらの工程によって本発明の検査電極を有する配線基板を得ることができた。
【0026】
<実施例2>
実施例1と同様の工程で、ベース基板21として0.2mm厚のCu板を用い、ベース基板21上にめっきレジスト(PMER:東京応化工業( 株) 製)をスピンコートによってコーティングし、絶縁樹脂層22を形成した(図2(a)参照)。 次に、エキシマレーザ加工機を用いて30μmφの開口部23を形成した。加工条件は実施例1と同様な工程で行った。
次に、開口部23の底部に、ベース基板21を電極とし、電解金めっきによって1μmの金めっき層24を形成した(図2(b)参照)。
【0027】
さらに、実施例1と同様な工程で、導体電極25、導体薄膜層26、第2絶縁樹脂層27を形成し、第2絶縁樹脂層27を配線パターン状に加工して第2開口部28を形成し、第2開口部に電解銅めっきによって配線回路29を形成し、第3絶縁樹脂層30を形成した(図2(c)〜図2(h)参照)。
【0028】
最後に、実施例1と同様な工程で、ベース基板21をエッチングによって除去した後、絶縁樹脂層22aを所定の剥離液によって剥離除去した。さらに、導体電極25と接触している部分26a以外の導体薄膜層26をエッチングで除去して、導体電極25の先端に金めき層24が形成された検査電極31及び配線回路基板50を作製した(図2(i)参照)。
これらの工程によって、実施例2の検査電極を有する配線回路基板を得ることができた。
【0029】
【発明の効果】
本発明の検査電極を有する配線回路基板を用いることにより、被検査基板との接触時に被検査基板を損傷させることなく導通をとることができる。また、本発明の検査電極の形成法では検査電極高さにバラツキがないため接触精度を上げることが可能である。基板自体が被検査体の凹凸を吸収するため従来のように異方性導電シートを必要としない。これによって微細ピッチの被検査体にも対応することが可能になる。また、電極の形状も比較的自由に設定できるため、従来よりも基板設計の自由度を向上することができる。
【図面の簡単な説明】
【図1】(a)〜(i)は、本発明の検査電極を有する配線回路基板の実施例1の製造工程を示す部分断面図である。
【図2】(a)〜(i)は、本発明の検査電極を有する配線回路基板の実施例2の製造工程を示す部分断面図である。
【符号の説明】
11、21……ベース基板
12、22……絶縁樹脂層
12a、22a……開口部が形成された絶縁樹脂層
13、23……開口部
14、25……導体電極
15、26……導体薄膜層
15a、26a……エッチング処理された導体薄膜層
16、27……第2絶縁樹脂層
16a、27a……第2開口部が形成された第2絶縁樹脂層
17、28……第2開口部
18、29……配線回路
19、30……第3絶縁樹脂層
20、31……検査電極
24……金めっき層
40、50……配線回路基板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing an inspection jig substrate used for conducting a continuity inspection of a semiconductor device or a printed circuit board.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a continuity test of a semiconductor device or a printed circuit board, a continuity test is performed by bringing a needle-shaped test electrode into contact with an electrode portion of a test object, as is known from a wafer probe or a wiring test. In the case of a wiring circuit board having a relatively low wiring density, a wiring circuit board for inspection having electrodes is formed, and a contact with a wiring circuit board to be inspected is taken through an anisotropic conductive sheet to conduct a continuity test. Is going.
[0003]
[Problems to be solved by the invention]
In a conventional method for inspecting the continuity of a semiconductor device or a printed circuit board by a wafer probe or a wiring inspection, a needle-like inspection electrode is brought into contact with the inspection electrode, so that there is a possibility that an inspection mark is left on the object to be inspected and damaged. Also, due to an increase in wiring density and higher integration, it has become difficult to form a probe for inspection. The method using an inspection substrate can cope with an object to be inspected having a pitch of about 200 μm due to the conductive pitch of the anisotropic conductive sheet and the like, but cannot cope with an inspection with a finer pitch than that. The present invention has been made to solve the above problems, provides a method of forming a wiring circuit board having testing electrodes having improved inspection electrodes and forming method corresponding to the inspection of fine pitch.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problem in the present invention, in the test electrode connected to the wiring circuit, the surface area decreases as the shape of the test electrode approaches the electrode tip, and the tip is flat. A printed circuit board having an inspection electrode is provided. By adopting the above structure, it is possible to respond to fine pitches that could not be handled until now, and by flattening the tip of the electrode, it is possible to prevent damage to the test object at the time of inspection. Can be.
[0005]
According to the first aspect of the present invention, there is provided a method for forming a printed circuit board having an inspection electrode, comprising the following series of steps.
(A) forming an insulating resin layer on a base substrate;
(B) forming an opening in the insulating resin layer;
(C) forming a conductor electrode in the opening;
(D) forming a conductor thin film layer on the conductor electrode and the insulating resin layer;
(E) forming a second insulating resin layer on the conductive thin film layer;
(F) forming a second opening in a wiring pattern in the second insulating resin layer;
(G) forming a conductor layer in the second opening of the second insulating resin layer to form a wiring circuit;
(H) forming a third insulating resin layer on the wiring circuit and the second insulating resin layer;
(I) forming a test electrode and a printed circuit board by removing the base substrate, the insulating resin layer, and the conductive thin film layer other than the conductive electrode portion;
Through these steps, a printed circuit board having an inspection electrode with a fine pitch and a smooth electrode tip can be formed.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
In the structure of the printed circuit board having the inspection electrodes according to the present invention, an insulating resin layer 12 is formed on a base substrate 11 and an opening 13 is formed. Next, a conductor electrode 14 is formed in the opening 13. Further, a conductive thin film layer 15 and a second insulating resin layer 16 are formed on the entire surface of the substrate. A second opening 17 having a wiring pattern is formed in the second insulating resin layer 16. Further, a conductor layer is formed in the second opening 17, and a wiring circuit 18 is formed. A third insulating resin layer 19 is formed on the wiring circuit 18 and the second insulating resin layer 16a. Thereafter, the printed circuit board having the inspection electrodes of the present invention is obtained by removing the base substrate 11, the insulating resin layer 12a, and the conductive thin film layer 15 other than the conductive electrodes 14 (see FIG. 1).
Hereinafter, a printed circuit board having an inspection electrode and a method for forming the same will be described.
[0007]
Since the base substrate 11 is used as a plating electrode for forming the conductor electrode 14, a metal plate having conductivity and smoothness is preferable, and specifically, a copper plate having a thickness of 0.2 to 1.0 mm. And iron / nickel alloy plates can be used.
[0008]
Next, an insulating resin layer 12 is formed on the base substrate 11 (see FIG. 1A). The insulating resin layer 12 is not particularly limited as long as it is an insulating resin layer, and is selected according to a method of forming the opening 13 in a later step. When the openings 13 are formed by photolithography, it is necessary to select a material having photosensitivity and good resolution depending on the electrode pitch. In this case, a dry film resist may be selected. The use of a dry film having a uniform thickness facilitates control of the electrode height.
[0009]
Next, an opening 13 is formed in the insulating resin layer 12 (see FIG. 1B). As a method for forming the opening 13, a photolithography method, a laser processing method, or the like can be used. The method can be appropriately selected depending on the opening diameter of the opening, shape controllability, processing accuracy, and the like. Processing methods are preferred.
In the case of laser processing, since the insulating resin layer 12 does not particularly require photosensitivity, a wide range of materials can be selected. Excimer laser processing or short-pulse carbon dioxide laser processing can be used for laser processing. It is not particularly limited to these, and any material can be used as long as it can remove an organic substance. Further, it is desirable to select a processing method depending on the processing accuracy of the opening (in this case, the opening diameter). When the opening diameter is 100 to 200 μm, carbon dioxide laser processing is good, but when the opening diameter is 100 μm or less, excimer laser processing is suitable. In the case of laser processing, various shapes of openings can be formed by inserting a mask into the optical system, and thus the electrode shape can be selected.
[0010]
Next, a conductor electrode 14 is formed in the opening 13 (see FIG. 1C). Examples of the method for forming the conductor electrode 14 include an electrolytic plating method, an electroless plating method, a printing method using a conductive paste or an injection method, and the reproducibility of the shape of the conductor electrode 14 and the reliability of electrical conduction with the printed circuit board. Can be appropriately selected and used. Here, the conductor electrode 14 is formed by an electrolytic plating method excellent in shape reproducibility and conduction reliability.
Further, there is an electrode structure in which a gold plating layer 24 is formed at the tip of a conductor electrode in order to improve the contact reliability of the inspection electrode (see FIG. 2B).
[0011]
Next, the conductor thin film layer 15 is formed on the substrate surface (see FIG. 1D). As a method for forming the conductive thin film layer 15, a sputtering method, an evaporation method, an electroless plating method, an electrolytic plating method, or the like can be used.
[0012]
Next, a second insulating resin layer 16 for forming a wiring circuit is formed on the conductive thin film layer 15 (see FIG. 1E). The second insulating resin layer 16 is roughly classified into two types, a photosensitive insulating resin layer and a non-photosensitive insulating resin layer, and is appropriately selected depending on a processing method in a later step. As a method for forming the insulating resin layer, a resin solution or a photosensitive resin solution containing a thermosetting epoxy resin or a polyimide resin as a main component is screen-printed, spin-coated, roll-coated, or laminated by dry film. It is formed.
[0013]
Next, a second opening 17 having a wiring pattern is formed in the second insulating resin layer 16 (see FIG. 1F). As a method for forming the second opening 17, a photolithography method, a laser processing method, or the like can be applied.
[0014]
Next, a conductor layer is formed in the second opening 17 by electrolytic plating using the base substrate as an electrode, and a wiring circuit 18 is formed (see FIG. 1G).
[0015]
Next, a third insulating resin layer 19 is formed (see FIG. 1H). The third insulating resin layer may be the same as the insulating resin layer and the second insulating resin layer. However, the third insulating resin layer absorbs irregularities of the object when the electrodes come into contact with the object. It is desirable that the insulating resin layer 19 has flexibility. Specifically, improvement can be seen by adding a rubber filler to the above resin.
[0016]
Next, the base substrate 11 is removed by etching. Further, the insulating resin layer 12a is removed, and the conductor thin film layer 15 other than the portion 15a in contact with the conductor electrode 14 is removed by etching, thereby forming the inspection electrode 20 and the printed circuit board 40 (FIG. 1 ( i)).
Through these steps, a printed circuit board having the inspection electrode of the present invention can be formed.
[0017]
【Example】
Hereinafter, embodiments will be described in detail with reference to the drawings.
<Example 1>
As the base substrate 11, a copper plate having a thickness of 0.2 mm is used. A dry film (DFR: manufactured by Hitachi Chemical Co., Ltd.) was formed on a base substrate 11 by lamination, and was cured by heating to form an insulating resin layer 12 (see FIG. 1A).
[0018]
Next, an opening 13 having a diameter of 50 μm was formed in the insulating resin layer 12 using an excimer laser processing machine (see FIG. 1B). The conditions for the excimer laser processing were an energy density of 1.0 J / cm 2 .
[0019]
Next, the opening 13 is subjected to electrolytic copper plating (electrolytic copper plating bath: copper sulfate 20 g / l, sulfuric acid 70 g / l, hydrochloric acid 50 ppm, current density 2 A / dm 2 ) using the base substrate 11 as a plating electrode. 14 was formed (see FIG. 1C).
[0020]
Next, copper was sputtered on the surface of the substrate, followed by electrolytic copper plating to form a conductive thin film layer 15 (see FIG. 1D). The copper sputtered layer was formed to a thickness of about 3000 °, and was further subjected to electrolytic copper plating to form a conductor thin film layer 15 having a thickness of 1 to 3 μm.
[0021]
Next, a thermosetting epoxy resin solution was screen-printed on the conductive thin film layer 15 to form a coating film, and then heat-cured to form a second insulating resin layer 16 (see FIG. 1E).
[0022]
Next, the second insulating resin layer 16 was processed into a wiring pattern by excimer laser processing to form a second opening 17 (see FIG. 1F).
[0023]
Next, electrolytic copper plating (electrolytic copper plating bath: copper sulfate 20 g / l, sulfuric acid 70 g / l, hydrochloric acid 50 ppm, current density 2 A / dm 2 ) is performed on the second opening 17 using the base substrate 11 as a plating electrode. Then, a wiring circuit 18 was formed (see FIG. 1F).
After the wiring circuit 18 is formed, the surface of the wiring circuit 18 is blackened (oxidized), whereby the adhesion to the third insulating resin layer 19 to be formed next can be improved.
[0024]
Next, a thermosetting epoxy resin solution was screen-printed to form a coating film, and then heat-cured to form a third insulating resin layer 19 having a thickness of 50 μm (see FIG. 1 (g)).
[0025]
Next, after the base substrate 11 was removed by etching, the insulating resin layer 12a was peeled and removed with a predetermined peeling liquid. Further, the conductor thin film layer 15 other than the portion 15a in contact with the conductor electrode 14 was removed by etching to produce the test electrode 20 and the printed circuit board 40 (see FIG. 1 (i)).
Through these steps, a wiring board having the inspection electrodes of the present invention was obtained.
[0026]
<Example 2>
In the same process as in Example 1, a 0.2 mm thick Cu plate was used as the base substrate 21, and a plating resist (PMER: manufactured by Tokyo Ohka Kogyo Co., Ltd.) was coated on the base substrate 21 by spin coating. The layer 22 was formed (see FIG. 2A). Next, an opening 23 having a diameter of 30 μm was formed using an excimer laser processing machine. The processing conditions were the same as in Example 1.
Next, a gold plating layer 24 of 1 μm was formed by electrolytic gold plating on the bottom of the opening 23 using the base substrate 21 as an electrode (see FIG. 2B).
[0027]
Further, the conductive electrode 25, the conductive thin film layer 26, and the second insulating resin layer 27 are formed in the same process as in the first embodiment, and the second insulating resin layer 27 is processed into a wiring pattern to form the second opening 28. Then, a wiring circuit 29 was formed in the second opening by electrolytic copper plating, and a third insulating resin layer 30 was formed (see FIGS. 2C to 2H).
[0028]
Lastly, in the same process as in Example 1, the base substrate 21 was removed by etching, and then the insulating resin layer 22a was peeled off by a predetermined peeling liquid. Further, the conductive thin film layer 26 other than the portion 26a in contact with the conductive electrode 25 was removed by etching to produce the test electrode 31 and the printed circuit board 50 having the gold plating layer 24 formed at the tip of the conductive electrode 25. (See FIG. 2 (i)).
Through these steps, a printed circuit board having the test electrodes of Example 2 could be obtained.
[0029]
【The invention's effect】
By using the printed circuit board having the inspection electrode of the present invention, electrical continuity can be obtained without damaging the substrate to be inspected at the time of contact with the substrate to be inspected. In addition, in the method of forming an inspection electrode according to the present invention, there is no variation in the height of the inspection electrode, so that the contact accuracy can be increased. Since the substrate itself absorbs the unevenness of the object to be inspected, an anisotropic conductive sheet is not required unlike the related art. This makes it possible to cope with a test object having a fine pitch. In addition, since the shape of the electrode can be set relatively freely, the degree of freedom in designing the substrate can be improved as compared with the related art.
[Brief description of the drawings]
FIGS. 1A to 1I are partial cross-sectional views illustrating a manufacturing process of a printed circuit board having an inspection electrode according to a first embodiment of the present invention.
FIGS. 2A to 2I are partial cross-sectional views illustrating manufacturing steps of a printed circuit board having an inspection electrode according to a second embodiment of the present invention.
[Explanation of symbols]
11, 21 ... base substrates 12, 22 ... insulating resin layers 12a, 22a ... insulating resin layers 13, 23 with openings formed ... openings 14, 25 ... conductor electrodes 15, 26 ... conductor thin film Layers 15a, 26a: Conductive thin film layers 16, 27 etched; Second insulating resin layers 16a, 27a: Second insulating resin layers 17, 28 with second openings formed: Second openings 18, 29 wiring circuits 19, 30 third insulating resin layers 20, 31 inspection electrodes 24 gold plating layers 40, 50 wiring circuit board

Claims (1)

下記の一連の工程からなる検査電極を有する配線回路基板の形成方法。
(a)ベース基板上に絶縁樹脂層を形成する工程。
(b)前記絶縁樹脂層に開口部を形成する工程。
(c)前記開口部に導体電極を形成する工程。
(d)前記導体電極及び前記絶縁樹脂層上に導体薄膜層を形成する工程。
(e)前記導体薄膜層上に第2絶縁樹脂層を形成する工程。
(f)前記第2絶縁樹脂層に配線パターン状に第2開口部を形成する工程。
(g)前記第2絶縁樹脂層の第2開口部に導体層を形成し、配線回路を形成する工程。
(h)前記配線回路及び前記第2絶縁樹脂層上に第3絶縁樹脂層を形成する工程。
(i)ベース基板及び絶縁樹脂層及び検査電極部以外の導体薄膜層を除去し、検査電極及び配線回路基板を形成する工程。
A method for forming a printed circuit board having an inspection electrode comprising the following series of steps.
(A) forming an insulating resin layer on a base substrate;
(B) forming an opening in the insulating resin layer;
(C) forming a conductor electrode in the opening;
(D) forming a conductor thin film layer on the conductor electrode and the insulating resin layer;
(E) forming a second insulating resin layer on the conductive thin film layer;
(F) forming a second opening in a wiring pattern in the second insulating resin layer;
(G) forming a conductor layer in the second opening of the second insulating resin layer to form a wiring circuit;
(H) forming a third insulating resin layer on the wiring circuit and the second insulating resin layer;
(I) forming a test electrode and a printed circuit board by removing the base substrate, the insulating resin layer, and the conductive thin film layer other than the test electrode portion;
JP25339096A 1996-09-25 1996-09-25 Method of forming printed circuit board having inspection electrode Expired - Fee Related JP3562166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25339096A JP3562166B2 (en) 1996-09-25 1996-09-25 Method of forming printed circuit board having inspection electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25339096A JP3562166B2 (en) 1996-09-25 1996-09-25 Method of forming printed circuit board having inspection electrode

Publications (2)

Publication Number Publication Date
JPH1098250A JPH1098250A (en) 1998-04-14
JP3562166B2 true JP3562166B2 (en) 2004-09-08

Family

ID=17250712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25339096A Expired - Fee Related JP3562166B2 (en) 1996-09-25 1996-09-25 Method of forming printed circuit board having inspection electrode

Country Status (1)

Country Link
JP (1) JP3562166B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4556327B2 (en) * 2000-12-25 2010-10-06 凸版印刷株式会社 Manufacturing method of inspection jig
CN100447573C (en) * 2002-07-15 2008-12-31 佛姆费克托公司 Fiducial alignment mark on microelectronic spring contact
US8802454B1 (en) * 2011-12-20 2014-08-12 Xilinx, Inc. Methods of manufacturing a semiconductor structure

Also Published As

Publication number Publication date
JPH1098250A (en) 1998-04-14

Similar Documents

Publication Publication Date Title
KR100777994B1 (en) Process to manufacture tight tolerance embedded elements for printed circuit boards
US6977349B2 (en) Method for manufacturing wiring circuit boards with bumps and method for forming bumps
JP2006100631A (en) Wiring board and its manufacturing method
JPH11238959A (en) Circuit board
JPH10125818A (en) Substrate for semiconductor device, semiconductor device and manufacture thereof
JP3562166B2 (en) Method of forming printed circuit board having inspection electrode
JP4288814B2 (en) Semiconductor inspection jig and manufacturing method thereof
JPH10197557A (en) Inspection member and manufacture thereof
JP3493931B2 (en) Method of forming printed circuit board having inspection electrode
JPH10246736A (en) Wiring circuit board with inspecting electrode and its forming method
JP3744079B2 (en) Wiring circuit board structure having contact electrode and method for forming the same
JP3646460B2 (en) Method for forming printed circuit board having inspection electrode
JPH11135907A (en) Wiring circuit board structure equipped with test electrode
JP3896611B2 (en) Wiring circuit board having inspection electrode and method for forming the same
JP4114235B2 (en) Inspection jig
JP4552317B2 (en) Manufacturing method of inspection jig
JPH04110491A (en) Circuit board
JPH0712849A (en) Wiring board for electrical test and production thereof
JP4439963B2 (en) Electrodeposition film forming method and semiconductor device
JP2001033485A (en) Inspecting jig and its manufacture
JPH1064341A (en) Anisotropic conductive film and manufacture thereof
JP4389321B2 (en) Manufacturing method of inspection jig
JP2720511B2 (en) Viafill formation method
JP4635395B2 (en) Manufacturing method of semiconductor circuit inspection jig
JP2004179485A (en) Printed wiring board and method of manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees