JP4114235B2 - Inspection jig - Google Patents

Inspection jig Download PDF

Info

Publication number
JP4114235B2
JP4114235B2 JP18639598A JP18639598A JP4114235B2 JP 4114235 B2 JP4114235 B2 JP 4114235B2 JP 18639598 A JP18639598 A JP 18639598A JP 18639598 A JP18639598 A JP 18639598A JP 4114235 B2 JP4114235 B2 JP 4114235B2
Authority
JP
Japan
Prior art keywords
electrode
inspection
conductor layer
thin film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18639598A
Other languages
Japanese (ja)
Other versions
JP2000021527A (en
Inventor
昭裕 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP18639598A priority Critical patent/JP4114235B2/en
Publication of JP2000021527A publication Critical patent/JP2000021527A/en
Application granted granted Critical
Publication of JP4114235B2 publication Critical patent/JP4114235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Connecting Device With Holders (AREA)
  • Measuring Leads Or Probes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体や配線回路基板の導通検査や熱衝撃等信頼性試験に用いられる検査治具に関し、特にBGA(ボール・グリッド・アレイ)チップ対応の検査治具に関する。
【0002】
【従来の技術】
従来、BGA等半導体チップの導通検査は図3に示すような円錐台状の検査電極21を有する検査治具を用いて、BGA等半導体チップのソルダーボールに押圧して導通検査や熱衝撃等の信頼性試験を行っていた。
【0003】
このような導通検査や熱衝撃等の信頼性試験の方法では円錐台状の検査電極とBGA等半導体チップのソルダーボールの中心位置が合った状態では検査電極とソルダーボールの接触は安定しているが、少しでも、中心位置がずれると検査電極とソルダーボールの接触面積が減少し電気的接続が不安定になるという問題や、中心からずれると検査電極とソルダーボールに斜めの力が加わり、ハンダボールの変形が起こり、歪みとなって蓄積し、金属疲労となるため検査電極の繰り返し使用寿命が短かくなるという問題がある。
【0004】
また、検査治具を取り付けるソケットの構造によっては、ソケットに取り付ける際に検査治具と半導体チップに横方向の力が加わり、接続不良が発生したり、検査電極に歪みが蓄積し検査治具の寿命を低下させるという問題がある。
【0005】
【発明が解決しようとする課題】
本発明は上記問題点を解決するためになされたものであり、BGA等半導体チップのソルダーボールと検査治具との僅かな(約10〜20μm)位置ずれに対して確実な電気的接続が得られる検査治具を提供することを目的とする。
【0006】
【課題を解決するための手段】
そこで本発明は上記問題を解決するため、BGA等半導体チップのソルダーボール(半田ボール)に検査電極を押圧して導通検査等を行う検査治具であって、前記検査電極の先端形状が楕円筒状をしていることを特徴とする検査治具としたものである。
【0007】
上記検査治具の検査電極の先端形状を楕円筒状にすることにより、半導体チップのハンダボールと検査治具電極が僅かな(約10〜20μm)位置ずれを起こしても、その形状から接触面積が十分取れるため、確実な電気的接触が行えるものである。また、BGA等のチップ形状が長方形の場合には、楕円筒状の楕円長軸を長方形の長辺方向に合わしてやれば、長辺方向の僅かな(約10〜20μm)位置ずれに対して確実な電気的接触が行えるようになる。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態につき説明する。
図1に本発明の検査治具の部分斜視図及び部分断面図を示す。図1に示すように、フィルム状の絶縁性基板13の片面に楕円筒状の検査電極19が、もう一方の面に配線パターン18a及び配線電極18bが形成されており、検査電極19と配線パターン18aは配線電極18bを介して電気的に接続されている。さらに、配線パターン18aは絶縁性基板13の周辺に形成されている外部接続端子に接続されている。
【0009】
以下、本発明の検査治具の作製方法について図2(a)〜(f)を用いて説明する。
まず、金属基板11上に樹脂層12及び絶縁性基板13を形成する(図2(a)参照)。金属基板11は導電性を有する金属であれば使用可能であるが、ここでは製造プロセス上ステンレス板が好ましい。樹脂層12は後述の検査電極19の高さを調整するためのもので、絶縁性を有する樹脂であれば使用可能であるが、後工程で最終的には剥離・除去されるため、剥離処理が容易な液状の感光性レジスト或いはドライフィルムが好適である。
【0010】
絶縁性基板13は検査治具の支持基板になるもので、絶縁性、耐熱性、寸法安定性及び機械強度が求められ、ポリエステル、エポキシ、アクリル及びポリイミド樹脂等が使用可能であるが、ポリイミド樹脂が好適である。
【0011】
次に、樹脂層12及び絶縁性基板13の所定の位置に楕円状の開口部14をレーザ加工にて形成する(図2(b)参照)。
具体的には、ガラス基板上に形成されたレーザ不透過性の膜(金属膜又は誘電体多層膜等)に楕円状の開口パターンを形成したマスクを準備し、このマスクを通してエキシマレーザを樹脂層12及び絶縁性基板13に照射して、楕円状の開口部14を形成する。
【0012】
次に、金属基板11をめっき電極のカソードにして、電解めっきにて開口部14に導体電極15を形成する(図2(c)参照)。導体電極15は、銅、ニッケル、アルミニウム等の導電性に優れた金属材料であれば使用可能であるが、単体で用いる場合や強度及び硬度等を考慮して組み合わせて用いる場合もある。また、貴金属(金、プラチナ、パラジウム、タングステン等)材料と組み合わせて使用しても良いが、物理的強度と導電性とコスト等からニッケル金属が好適である。
【0013】
次に、セミアディティブ法により配線パターンを形成するために、絶縁性基板13及び導体電極15上に蒸着スパッタ或いは無電解めっき等により薄膜導体層16を形成する。さらに、フォトリソ法にて薄膜導体層16上にレジストパターン17を形成する(図2(d)参照)。
【0014】
次に、薄膜導体層16をめっきのカソード(陰極)電極として電解銅めっきを行い、レジストパターン17以外の薄膜導体層16上に銅からなる導体層18を形成する(図2(e)参照)。
さらに、レジストパターン17を剥離し、レジストパターン17の下部にあった薄膜導体層16をソフトエッチングして配線パターン18a及び配線電極18bを形成する。
【0015】
ここで、配線パターン18a及び配線電極18bをセミアディティブ法にて形成するようにしたが、これに限定されるものではなく、サブトラクティブ法及び印刷法等の通常一般に使用されている配線パターン形成プロセスが適用可能である。
【0016】
次に、金属基板11及び樹脂層12を除去することで、支持基板である絶縁性基板13の片面に楕円筒状の検査電極19が、もう一方の面に配線パターン18a及び配線電極18bが形成された本発明の検査治具を得ることができる(図2(f)参照)。
【0017】
【実施例】
以下、実施例により本発明を詳細に説明する。
0.25mm厚のSUS板からなる金属基板11上に50μm厚のドライフィルムレジスト(日立化成工業(株)製)をラミネートして樹脂層12を形成し、さらに、その上に25μm厚のポリイミドロールフィルム(宇部興産(株)製)をラミネートして絶縁性基板13を形成した。
【0018】
次に、樹脂層12及び絶縁性基板13の所定位置に楕円状の開口パターンを有するマスクを用いてKrFエキシマレーザを照射して楕円状の開口部14を形成した。KrFエキシマレーザの加工条件は、エネルギー密度1.5j/cm2 で行った。ここで、上記条件でエキシマレーザを照射しても金属基板11にはほとんど損傷を与えないで、樹脂層12及び絶縁性基板13に開口部14を形成できる。
【0019】
次に、金属板11をカソード(陰極)電極にして、電解ニッケルめっきを行い、開口部14に導体電極15を形成した。
【0020】
次に、絶縁性基板13及び導体電極15上に金属クロム及び銅をDCマグネトロンスパッタ装置でスパッタリングを行い、約0.2〜0.3μm厚の薄膜導体層16を形成した。
【0021】
次に、50μm厚のドライフィルムレジストを薄膜導体層16上にラミネートし、70℃30分間ベークして感光層を形成し、配線パターンのネガマスクを両面プリンター(オーク製作所(株))で、光量100mj/cm2 で露光し、3%の炭酸ソーダ溶液にて現像して、レジストパターン17を形成した。
【0022】
次に、薄膜導体層16をめっき電極にして、レジストパターン17以外の薄膜導体層16上に電解銅めっきを行い、レジストパターン17とほぼ同厚の導体層18を形成した。
【0023】
次に、レジストパターン17を3%水酸化ナトリウム水溶液で溶解・剥離し、さらに、レジストパターン17の下部にあったの薄膜導体層16をソフトエッチングして、配線パターン18a及び配線電極18bを形成した。
【0024】
次に、導体電極15、配線パターン18a及び配線電極18bが形成された基板を3%水酸化ナトリウム水溶液に浸せきし、金属基板11及び樹脂層12を剥離・除去して、支持基板である絶縁性基板13の片面に楕円筒状の検査電極19を、もう一方の面に配線パターン18a及び配線電極18bを形成し、本発明の検査治具を作製した。
【0025】
【発明の効果】
楕円筒状の検査電極を有する本発明の検査治具を用いることにより、BGA等半導体チップのソルダーボールと検査治具との僅かな(約10〜20μm)位置ずれに対して確実な電気的接続が得られ、検査時の信頼性が向上した。
また、位置ずれに対する電極の歪みが小さくなり、検査治具の寿命がのびた。
【図面の簡単な説明】
【図1】(a)は、本発明の検査治具の一実施例を示す模式部分斜視図である。
(b)は、本発明の検査治具の一実施例を示す模式部分斜視図をA−A’線で切断した検査治具の構成断面図を示す。
【図2】(a)〜(f)は、本発明の検査治具の製造工程を工程順に示す構成断面図である。
【図3】従来の検査治具の検査電極の一実施例を示す模式斜視図である。
【符号の説明】
11……金属基板
12……樹脂層
13……絶縁性基板
14……開口部
15……導体電極
16……薄膜導体層
17……レジストパターン
18……導体層
18a……配線パターン
18b……配線電極
19、21……検査電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inspection jig used for reliability tests such as continuity inspection and thermal shock of a semiconductor or a printed circuit board, and more particularly to an inspection jig compatible with a BGA (ball grid array) chip.
[0002]
[Prior art]
Conventionally, a continuity test of a semiconductor chip such as a BGA is performed by using a test jig having a frustoconical test electrode 21 as shown in FIG. A reliability test was conducted.
[0003]
In such reliability testing methods such as continuity inspection and thermal shock, the contact between the inspection electrode and the solder ball is stable when the center position of the truncated conical inspection electrode and the solder ball of the semiconductor chip such as BGA is aligned. However, even if a slight shift occurs, the contact area between the test electrode and the solder ball decreases and the electrical connection becomes unstable, and if it is shifted from the center, an oblique force is applied to the test electrode and the solder ball. There is a problem in that the deformation of the ball occurs, accumulates as strain, and causes metal fatigue, resulting in a short repeated use life of the test electrode.
[0004]
In addition, depending on the structure of the socket to which the inspection jig is attached, a lateral force is applied to the inspection jig and the semiconductor chip when attaching to the socket, resulting in poor connection or distortion in the inspection electrode and accumulation of the inspection jig. There is a problem of reducing the life.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and a reliable electrical connection is obtained with respect to a slight (about 10 to 20 μm) positional deviation between a solder ball of a semiconductor chip such as a BGA and an inspection jig. An object of the present invention is to provide an inspection jig.
[0006]
[Means for Solving the Problems]
Therefore, in order to solve the above problems, the present invention is an inspection jig that performs continuity inspection by pressing a test electrode against a solder ball (solder ball) of a semiconductor chip such as a BGA, and the tip shape of the test electrode is an elliptic cylinder. The inspection jig is characterized by having a shape.
[0007]
By making the tip shape of the inspection electrode of the inspection jig into an elliptical cylindrical shape, even if the solder ball of the semiconductor chip and the inspection jig electrode are slightly displaced (about 10 to 20 μm), the contact area is determined from the shape. Therefore, reliable electrical contact can be made. In addition, when the chip shape of BGA or the like is rectangular, if the elliptical long axis of the elliptical cylinder is aligned with the long side direction of the rectangle, it is possible to reliably prevent slight positional deviation (about 10 to 20 μm) in the long side direction. Can make electrical contact.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
FIG. 1 shows a partial perspective view and a partial cross-sectional view of an inspection jig of the present invention. As shown in FIG. 1, an elliptical cylindrical inspection electrode 19 is formed on one surface of a film-like insulating substrate 13, and a wiring pattern 18a and a wiring electrode 18b are formed on the other surface. 18a is electrically connected through the wiring electrode 18b. Furthermore, the wiring pattern 18 a is connected to external connection terminals formed around the insulating substrate 13.
[0009]
Hereinafter, a method for producing the inspection jig of the present invention will be described with reference to FIGS.
First, the resin layer 12 and the insulating substrate 13 are formed on the metal substrate 11 (see FIG. 2A). The metal substrate 11 can be used as long as it is a metal having conductivity. Here, a stainless steel plate is preferable in terms of the manufacturing process. The resin layer 12 is for adjusting the height of the inspection electrode 19 to be described later, and any resin having an insulating property can be used. A liquid photosensitive resist or dry film that is easy to handle is suitable.
[0010]
The insulating substrate 13 serves as a support substrate for the inspection jig, and is required to have insulation, heat resistance, dimensional stability, and mechanical strength. Polyester, epoxy, acrylic, polyimide resin, etc. can be used. Is preferred.
[0011]
Next, an elliptical opening 14 is formed by laser processing at predetermined positions of the resin layer 12 and the insulating substrate 13 (see FIG. 2B).
Specifically, a mask in which an elliptical opening pattern is formed in a laser-impermeable film (such as a metal film or a dielectric multilayer film) formed on a glass substrate is prepared, and an excimer laser is passed through this mask to a resin layer. 12 and the insulating substrate 13 are irradiated to form an elliptical opening 14.
[0012]
Next, the metal substrate 11 is used as the cathode of the plating electrode, and the conductive electrode 15 is formed in the opening 14 by electrolytic plating (see FIG. 2C). The conductor electrode 15 can be used as long as it is a metal material excellent in conductivity such as copper, nickel, and aluminum, but may be used alone or in combination in consideration of strength, hardness, and the like. Further, although it may be used in combination with a noble metal (gold, platinum, palladium, tungsten, etc.) material, nickel metal is preferable from the viewpoint of physical strength, conductivity, cost, and the like.
[0013]
Next, in order to form a wiring pattern by a semi-additive method, the thin film conductor layer 16 is formed on the insulating substrate 13 and the conductor electrode 15 by vapor deposition sputtering or electroless plating. Further, a resist pattern 17 is formed on the thin film conductor layer 16 by photolithography (see FIG. 2D).
[0014]
Next, electrolytic copper plating is performed using the thin film conductor layer 16 as a cathode (cathode) electrode for plating to form a conductor layer 18 made of copper on the thin film conductor layer 16 other than the resist pattern 17 (see FIG. 2E). .
Further, the resist pattern 17 is peeled off, and the thin film conductor layer 16 under the resist pattern 17 is soft-etched to form the wiring pattern 18a and the wiring electrode 18b.
[0015]
Here, the wiring pattern 18a and the wiring electrode 18b are formed by the semi-additive method, but the present invention is not limited to this, and a wiring pattern forming process that is generally used, such as a subtractive method and a printing method. Is applicable.
[0016]
Next, by removing the metal substrate 11 and the resin layer 12, an elliptical cylindrical inspection electrode 19 is formed on one side of the insulating substrate 13 as a support substrate, and a wiring pattern 18a and a wiring electrode 18b are formed on the other side. The obtained inspection jig of the present invention can be obtained (see FIG. 2F).
[0017]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
A resin film 12 is formed by laminating a 50 μm thick dry film resist (manufactured by Hitachi Chemical Co., Ltd.) on a metal substrate 11 made of a 0.25 mm thick SUS plate, and a 25 μm thick polyimide roll is further formed thereon. An insulating substrate 13 was formed by laminating a film (manufactured by Ube Industries).
[0018]
Next, an elliptical opening 14 was formed by irradiating a KrF excimer laser using a mask having an elliptical opening pattern at predetermined positions on the resin layer 12 and the insulating substrate 13. The KrF excimer laser was processed at an energy density of 1.5 j / cm 2 . Here, the opening 14 can be formed in the resin layer 12 and the insulating substrate 13 without damaging the metal substrate 11 even if the excimer laser is irradiated under the above conditions.
[0019]
Next, electrolytic nickel plating was performed using the metal plate 11 as a cathode (cathode) electrode to form a conductor electrode 15 in the opening 14.
[0020]
Next, metal chromium and copper were sputtered on the insulating substrate 13 and the conductor electrode 15 with a DC magnetron sputtering apparatus to form a thin film conductor layer 16 having a thickness of about 0.2 to 0.3 μm.
[0021]
Next, a dry film resist having a thickness of 50 μm is laminated on the thin film conductor layer 16 and baked at 70 ° C. for 30 minutes to form a photosensitive layer, and a negative mask of the wiring pattern is formed with a double-sided printer (Oak Manufacturing Co., Ltd.). The resist pattern 17 was formed by exposure at / cm 2 and development with a 3% sodium carbonate solution.
[0022]
Next, using the thin film conductor layer 16 as a plating electrode, electrolytic copper plating was performed on the thin film conductor layer 16 other than the resist pattern 17 to form a conductor layer 18 having substantially the same thickness as the resist pattern 17.
[0023]
Next, the resist pattern 17 was dissolved and peeled with a 3% aqueous sodium hydroxide solution, and the thin-film conductor layer 16 under the resist pattern 17 was soft etched to form the wiring pattern 18a and the wiring electrode 18b. .
[0024]
Next, the substrate on which the conductor electrode 15, the wiring pattern 18 a and the wiring electrode 18 b are formed is dipped in a 3% aqueous sodium hydroxide solution, and the metal substrate 11 and the resin layer 12 are peeled and removed, so that the insulating substrate serving as a support substrate is obtained. An inspection electrode 19 having an elliptical cylindrical shape was formed on one side of the substrate 13, and a wiring pattern 18 a and a wiring electrode 18 b were formed on the other side to produce an inspection jig of the present invention.
[0025]
【The invention's effect】
By using the inspection jig of the present invention having an elliptical cylindrical inspection electrode, it is possible to securely connect the solder ball of a semiconductor chip such as a BGA to the inspection jig with a slight (about 10 to 20 μm) positional deviation. And improved reliability during inspection.
In addition, the distortion of the electrode with respect to the positional shift is reduced, and the life of the inspection jig is extended.
[Brief description of the drawings]
FIG. 1A is a schematic partial perspective view showing an embodiment of an inspection jig of the present invention.
(B) shows the structure sectional view of the inspection jig which cut the typical partial perspective view showing one example of the inspection jig of the present invention by the AA 'line.
FIGS. 2A to 2F are cross-sectional views showing the manufacturing steps of the inspection jig of the present invention in the order of steps.
FIG. 3 is a schematic perspective view showing an embodiment of an inspection electrode of a conventional inspection jig.
[Explanation of symbols]
11 ... Metal substrate 12 ... Resin layer 13 ... Insulating substrate 14 ... Opening 15 ... Conductor electrode 16 ... Thin film conductor layer 17 ... Resist pattern 18 ... Conductor layer 18a ... Wiring pattern 18b ... Wiring electrodes 19, 21 ... Inspection electrodes

Claims (1)

BGA等半導体チップのソルダーボール(半田ボール)に検査電極を押圧して導通検査等を行う検査治具であって、
金属基板上に樹脂層及び絶縁性基板を形成する工程、
前記樹脂層及び前記絶縁性基板上の所定の位置に楕円状の開口部をレーザ加工にて形成する工程、
前記金属基板をカソードとして電解めっきにて前記開口部に検査電極を形成する工程、
前記絶縁性基板及び前記導体電極上に蒸着スパッタ或いは無電解めっきにより薄膜導体層を形成する工程、
前記薄膜導体層上にレジスト層を形成した後、所定の配線パターンを露光および現像してレジストパターンを形成する工程、
前記薄膜導体層をカソードとして電解銅めっきを行い、レジストパターンのない薄膜導体層上に銅からなる導体層を形成する工程、
前記レジストパターンを剥離した後、レジストパターン下部にあった薄膜導体層をソフトエッチングして配線パターン及び配線電極を形成する工程、
前記金属基板及び前記樹脂層を除去する工程、
とを備えた製造方法によって製造され、前記絶縁性基板の片面に先端形状が楕円筒状の前記検査電極が形成されており、もう一方の面に前記配線パターン及び前記配線電極が形成されていることを特徴とする検査治具。
An inspection jig that performs continuity inspection by pressing an inspection electrode against a solder ball (solder ball) of a semiconductor chip such as BGA,
Forming a resin layer and an insulating substrate on a metal substrate;
Forming an elliptical opening at a predetermined position on the resin layer and the insulating substrate by laser processing;
Forming an inspection electrode in the opening by electrolytic plating using the metal substrate as a cathode;
Forming a thin film conductor layer by vapor deposition sputtering or electroless plating on the insulating substrate and the conductor electrode;
Forming a resist layer on the thin film conductor layer, and then exposing and developing a predetermined wiring pattern to form a resist pattern;
Performing electrolytic copper plating using the thin film conductor layer as a cathode, and forming a conductor layer made of copper on a thin film conductor layer without a resist pattern;
After peeling off the resist pattern, soft etching the thin film conductor layer that was under the resist pattern to form a wiring pattern and a wiring electrode,
Removing the metal substrate and the resin layer;
The inspection electrode having an elliptical cylindrical tip shape is formed on one surface of the insulating substrate, and the wiring pattern and the wiring electrode are formed on the other surface. Inspection jig characterized by that.
JP18639598A 1998-07-01 1998-07-01 Inspection jig Expired - Fee Related JP4114235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18639598A JP4114235B2 (en) 1998-07-01 1998-07-01 Inspection jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18639598A JP4114235B2 (en) 1998-07-01 1998-07-01 Inspection jig

Publications (2)

Publication Number Publication Date
JP2000021527A JP2000021527A (en) 2000-01-21
JP4114235B2 true JP4114235B2 (en) 2008-07-09

Family

ID=16187659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18639598A Expired - Fee Related JP4114235B2 (en) 1998-07-01 1998-07-01 Inspection jig

Country Status (1)

Country Link
JP (1) JP4114235B2 (en)

Also Published As

Publication number Publication date
JP2000021527A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
JPH1012677A (en) Manufacture of double-side wiring tape carrier for semiconductor device
JPH11238959A (en) Circuit board
JP2003321796A (en) Plating apparatus and method of manufacturing wiring board using the same
JP4288814B2 (en) Semiconductor inspection jig and manufacturing method thereof
JP4114235B2 (en) Inspection jig
JP3096233B2 (en) Probe structure
JPH10197557A (en) Inspection member and manufacture thereof
JP3562166B2 (en) Method of forming printed circuit board having inspection electrode
JP4556327B2 (en) Manufacturing method of inspection jig
JPH1064341A (en) Anisotropic conductive film and manufacture thereof
JP2006038457A (en) Film probe manufacturing method
JPH10221372A (en) Wiring circuit board with inspection electrode and method for forming the same
JP4390930B2 (en) Multilayer wiring board, manufacturing method thereof, and semiconductor device
JPH10246736A (en) Wiring circuit board with inspecting electrode and its forming method
JP2000121671A (en) Inspecting jig
JP2000155132A (en) Inspecting jig and its manufacture
JPH11135907A (en) Wiring circuit board structure equipped with test electrode
JP3646460B2 (en) Method for forming printed circuit board having inspection electrode
JP2000162240A (en) Inspection jig and its manufacture
JP3826651B2 (en) Wiring board manufacturing method
JPH11326371A (en) Inspection jig
JPH06140739A (en) Method for forming small diameter through hole and via hole
JPH11287835A (en) Inspection jig responsible for bga chip
JP2002076582A (en) Component mounting board and its producing method
JP4389321B2 (en) Manufacturing method of inspection jig

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees