JP3561476B2 - Boron carbide-chromium diboride sintered body and method for producing the same - Google Patents

Boron carbide-chromium diboride sintered body and method for producing the same Download PDF

Info

Publication number
JP3561476B2
JP3561476B2 JP2001065657A JP2001065657A JP3561476B2 JP 3561476 B2 JP3561476 B2 JP 3561476B2 JP 2001065657 A JP2001065657 A JP 2001065657A JP 2001065657 A JP2001065657 A JP 2001065657A JP 3561476 B2 JP3561476 B2 JP 3561476B2
Authority
JP
Japan
Prior art keywords
boron carbide
sintered body
chromium
chromium diboride
diboride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001065657A
Other languages
Japanese (ja)
Other versions
JP2002265269A (en
Inventor
喜代司 平尾
修司 阪口
幸彦 山内
修三 神崎
鈴弥 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001065657A priority Critical patent/JP3561476B2/en
Publication of JP2002265269A publication Critical patent/JP2002265269A/en
Application granted granted Critical
Publication of JP3561476B2 publication Critical patent/JP3561476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化硼素−二硼化クロム焼結体及びその製造方法に関するものであり、更に詳しくは、炭化硼素粒子が導電性の良好な二硼化クロム相の3次元ネットワーク構造により結合された微細な組織を有し、高い曲げ強度を有し、かつ高い導電率を有する炭化硼素(B C)−二硼化クロム(CrB )焼結体、更に、高い曲げ強度と高い導電率を有すると共に、高い破壊靭性値を兼ね備えた炭化硼素−二硼化クロム焼結体、及びそれらの製造方法に関するものである。
【0002】
【従来の技術】
炭化硼素焼結体は、軽量で高い硬度を有し、耐摩耗性や耐腐食性に優れた材料であり、現状では、サンドブラストノズル、線引きダイス、押し出しダイス等に使用されている。しかしながら、炭化硼素焼結体は、低強度、低靭性であるという欠点を有している。例えば、文献〔K.A.Schwetz,J.SolidState Chemistry,133,177−81(1997)〕では、様々な焼結条件にて炭化硼素焼結体をHIP処理にて作製しているが、600MPa以上の曲げ強度を持つ炭化硼素焼結体は得られていない。また、曲げ強度が高いほど破壊靭性値は低下する傾向があり、最も高い強度が得られた炭化硼素焼結体では、破壊靭性値は3MPa・ m1/2 以下の低い値となる。更に、炭化硼素焼結体は、難焼結性であることから、ホットプレス法やHIP処理により作製されるが、その硬度が極めて高いことから、通常の研削・研磨法では加工し難く、また、炭化硼素焼結体の導電率が10〜300S/mのレベルと低いために、放電加工が困難である、という問題があった。
上記のように、炭化硼素焼結体は、低強度、低靭性、難加工性であることから、現状では、極めて限定された用途にのみ使用されている。
【0003】
【発明が解決しようとする課題】
このような状況の中で、本発明者らは、上記従来技術に鑑みて、高強度、高靱性で、かつ高い導電率をもつ新しい炭化硼素−二硼化クロム焼結体の研究/開発を鋭意進める過程で、特定の物性を有する炭化硼素粉末に二硼化クロムを5〜25mol%添加し、20MPa以下の低い加圧条件下で二硼化クロムの液相が発生する液相焼結を行い、導電性の高い二硼化クロム相が3次元的にネットワーク構造を形成した微細な組織を有する焼結体を作製することで、優れた特性をもつ新しい炭化硼素−二硼化クロム焼結体が得られることを見出し、本発明を完成するに至った。
即ち、本発明は、600MPa以上の四点曲げ強度を有し、5×10 S/m以上の導電率を持つ炭化硼素−二硼化クロム焼結体、及び、600MPa以上の四点曲げ強度と5×10 S/m以上の導電率を維持すると共に、3. 0MPa・ m1/2 以上の破壊靭性値を兼ね備えた炭化硼素−二硼化クロム焼結体、及びそれらを20MPa以下の低い加圧条件下で二硼化クロムの液相が発生する液相焼結を行うことによって製造する方法を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)20MPa以下の低い加圧条件下で二硼化クロムの液相が発生する液相焼結を行うことによって作製される、炭化硼素(B C)に二硼化クロム(CrB )を5〜25mol%含有する炭化硼素−二硼化クロム焼結体であって、炭化硼素の最大粒子径が3μmより大きく20μm以下であり、600MPa以上の四点曲げ強度、及び5×10 S/m以上の導電率を有することを特徴とする炭化硼素−二硼化クロム焼結体。
(2)3.0MPa・m1/2 以上の破壊靱性値を有することを特徴とする前記(1)記載の炭化硼素−二硼化クロム焼結体。
(3)20MPa以下の低い加圧条件下で二硼化クロムの液相が発生する液相焼結を行うことにより炭化硼素−二硼化クロム焼結体を製造する方法であって、平均粒径(D50)が1μm以下で、最大粒子径が8μm以下であり、比表面積が10m/g以上である炭化硼素粉末に、二硼化クロム粉末を5〜25mol%添加し、炭化硼素−二硼化クロム焼結体中の炭化硼素の最大粒子が3μmより大きく20μm以下となるように、1950〜2100℃の温度範囲で20MPa以下の圧力下にて加圧焼結することを特徴とする炭化硼素−二硼化クロム焼結体の製造方法。
(4)前記炭化硼素粉末中のアルミニウム含有量が1500ppm以下であることを特徴とする前記(3)記載の炭化硼素−二硼化クロム焼結体の製造方法。
【0005】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
炭化硼素は、難焼結性であることから、粒成長が起こり易い極めて高い温度で焼結されるが、従来の技術では、得られた焼結体組織は、大きな粒子を含むこととなり、曲げ強度の劣化を招く。
本発明では、特定の物性を有する炭化硼素粉末を用いて、CrB を主成分とする液相が発生する温度領域にて、特定の条件下でホットプレス法等の加圧焼結を行うこと、即ち、20MPa以下の低い加圧条件下で二硼化クロムの液相が発生する液相焼結を行うことで、炭化硼素の最大粒子サイズが3μmより大きく20μm以下であり、導電性の高い二硼化クロム相が3次元的にネットワーク構造を形成した微細な組織を得ることによって、600MPa以上の高い四点曲げ強度及び5×10 S/m以上の導電率を有する炭化硼素−二硼化クロム焼結体を作製する。
【0006】
本発明では、炭化硼素粉末として、レーザー回折散乱分析計(マイクロトラック) にて測定した平均粒径(D50) が1μm以下0.1μm以上、最大粒子径が8μm以下1μm以上のものが用いられる。これらは、好ましくは、平均粒径(D50)が0.6μm以下〜0.3μm以上、最大粒径が6μm以下〜1.5μm以上である。平均粒径(D50)が1μmより大きいと焼結性が劣り、1950〜2100℃の温度範囲で緻密な焼結体が得らず、また、緻密化するためには、粒成長が起こり易いより高い焼結温度にする必要があり、曲げ強度の劣化を招く。比表面積(BET) については、焼結性が良好な10m/g以上30m /g以下の炭化硼素粉末が用いられ、好ましくは15m /g以上のものが用いられる。
【0007】
また、炭化硼素粉末中のアルミニウム不純物は、焼結中の炭化硼素の急激な粒成長を助長するので、1500ppm以下でなければならず、好ましくは1000ppm以下であることが望ましい。
前記の物性を有する炭化硼素粉末は、ふるい分け、沈降分離、粉砕等の手段によって調製して得られるが、前記の物性を有する市販品を入手して使用してもよい。
【0008】
上記の物性を有する炭化硼素粉末に、二硼化クロム粉末を5〜25mol%添加する。二硼化クロムの添加量が5mol%未満であると、十分な量の二硼化クロム系の液相が生成しないことから、緻密な焼結体が得られず、破壊靭性値の改善効果も十分でない。また、25mol%より多い場合には、焼結体の密度が3. 0g/cm よりも高くなり、炭化硼素系焼結体の軽量性の特徴が損なわれ、硬度も低下する。
次に、これらを混合して炭化硼素−二硼化クロムの混合粉を調製し、これを20MPa以下1MPa以上の圧力で、真空中あるいはAr等の不活性ガス雰囲気中、1950〜2100℃の焼結温度範囲で、二硼化クロム系の液相を発生させた状態にて液相焼結を行う。
本発明では、20MPa以下の低い加圧条件下で二硼化クロムの液相が発生する液相焼結を行うことが重要であり、それにより、通常の固相焼結では得られない優れた特性を有する炭化硼素−二硼化クロム焼結体を作製することができる。
【0009】
二硼化クロム粉は、焼結中に一部の炭化硼素と反応して溶融し、二硼化クロム系の液相を発生し、炭化硼素粒子間に浸透することから、炭化硼素粉末に比較して、粒径の大きな原料粉でも使用でき、平均粒径(D50)が8μm以下の二硼化クロム粉を用いることができるが、好ましくは平均粒径(D50)が4μm以下のものを使用するとよい。
【0010】
焼結温度が1950℃より低い場合には、十分に緻密な炭化硼素焼結体が作製できず、また、二硼化クロム系の液相が発生しないことから、二硼化クロム相が3次元ネットワークを形成できず、導電率が5×10 S/m未満となるので好ましくない。
また、2100℃より高い焼結温度では、粒成長により微細な焼結体組織が得られず、曲げ強度の低下を招くので好ましくない。焼結時の圧力が20MPaより大きい場合は、炭化硼素粒子同士の固相焼結が促進されることにより、二硼化クロム相の3次元ネットワーク形成が阻害されて、導電率が低くなる。また、二硼化クロム系の液相量が多い場合には、焼結時の圧力が20MPaより大きいと、焼結中に液相が流出する。
【0011】
高い密度を有する炭化硼素−二硼化クロム焼結体を得るために、1950〜2100℃の温度範囲で20MPa以下1MPa以上の圧力下にて、二硼化クロム系の液相を発生させて加圧焼結を行った後、引き続き、二硼化クロム系の液相が発生しない1900℃以上1950℃未満の温度領域まで下げて、より高い30MPa以上の圧力にて焼結する二段階の焼結を行うことも適宜可能である。
【0012】
本発明の炭化硼素−二硼化クロム焼結体は、導電性の良好な二硼化クロム相が3次元ネットワークを形成しており、最大粒子サイズが3μmより大きく20μm以下の炭化硼素粒子が二硼化クロム相によって結合された組織を有している。二硼化クロムの熱膨張率が炭化硼素より大きいため、破壊の進行時に炭化硼素粒子と二硼化クロム相との界面近傍にて亀裂の伝播の迂回やマイクロクロックが発生することによって破壊靭性値が改善される。また、最大粒子サイズが3μmより大きく20μm以下と微細であること、二硼化クロム系の液相による溶解・析出機構によって炭化硼素粒子の突起部分が消失して応力集中が緩和されること、炭化硼素粒子が二硼化クロム相によって結合されるため、加工時に炭化硼素粒子の脱落が抑制されること、及び破壊靭性値が改善されること等により、強度が改善され、600MPa以上の高い曲げ強度が得られる。
【0013】
【実施例】
以下に、本発明の内容を、実施例及び比較例により具体的に説明する。
実施例1〜2
(1)炭化硼素−二硼化クロム焼結体の作製
表1に示す物性を有する炭化硼素粉末I及びIIに、平均粒径(D50):3.5μmの二硼化クロム粉をそれぞれ20mol%配合し、メタノール溶媒を用いて、遊星ボールミルにて回転数:185rpm、30分の混合を行った後、エバポレーターで乾燥させ、更に、150℃、24時間の乾燥を行った後に、開き目250μmのふるいに通して、二種類の炭化硼素−二硼化クロム混合粉を調製した。黒鉛製ダイス中に炭化硼素−二硼化クロム混合粉を充填し、7.5MPaで成形した後、焼成炉に取り付けた。5MPaに加圧した状態にて、拡散ポンプを用いて2. 0×10−1〜2. 0×10−2Paの圧力に真空引きをしながら、40℃/minの昇温速度にて加熱を行った。1000℃に到達した時に真空引きを終了してArガスを導入し、Ar流量:2リットル/min、ガス圧力:0. 103MPaの雰囲気中で1500℃まで加熱した。1500℃から2050℃までは10℃/min昇温速度にて加熱した。2050℃に到達した後、1時間保持し、一段階めのホットプレス焼結を行った。保持後、15℃/minの速度で1900℃まで温度を下げ、圧力を50MPaに上げて、この温度で40分の保持を行って、二段階めの焼結を行って、炭化硼素−二硼化クロム焼結体を作製した。
【0014】
(2)測定方法
炭化硼素焼結体の四点曲げ強度、及び破壊靭性値をそれぞれJIS R1601、JIS R1607に基づいて測定した。テストピースの表面は、平面研削盤 400番にて仕上げた。また、アルキメデス法にてテストピースの密度を測定し、相対密度を計算した。テストピースの表面をラッピングし、エッチング処理を行った後にSEM観察を行い、炭化硼素の最大粒子サイズをもとめた。更に、導電率の測定を行った。
【0015】
(3)結果
評価の結果を表2に示す。何れの実施例も600MPa以上の四点曲げ強度、3.0MPa・m1/2 以上の破壊靱性値、及び5×10 S/m以上の導電率を有している。
【0016】
比較例1〜2
表1に示す物性を有する炭化硼素粉末IV及びVを用いて、実施例1〜2と同様の手順にて、炭化硼素−二硼化クロム焼結体を作製し、評価を行った。
表2に評価結果を示す。比較例1では、比表面積(BET) が10m /g以下の炭化硼素粉末を用いたが、緻密な焼結体ができずに、曲げ強度及び破壊靭性値は低い値となった。また、比較例2では、アルミニウム含有量が多い炭化硼素粉を用いたが、焼結中に炭化硼素粒子の急激な成長が起こり、最大粒子径が大きくなり、曲げ強度が低下した。
【0017】
比較例3
表1に示す物性を有する炭化硼素粉末Iを用い、二硼化クロム粉の配合を行わないこと以外は、実施例1〜3と同様の手順にて炭化硼素焼結体を作製し、評価を行った。
表2に評価結果を示す。緻密な焼結体ができずに、曲げ強度及び破壊靭性値は低い値となった。
【0018】
実施例3〜5
実施例1〜2と同じ二硼化クロム粉を実施例3では炭化硼素粉末III に20mol%、実施例4では炭化硼素粉末Iに20mol%、実施例5では炭化硼素粉末Iに22.5mol%配合し、メタノール溶媒を用いて、遊星ボールミルにて回転数:270rpm、1時間の混合を行った後、実施例1〜2と同様な手順にて、炭化硼素−二硼化クロム混合粉を調製した。二段階めの焼結を行わなかったこと以外は、同様の方法にて焼結を行って炭化硼素−二硼化クロム焼結体を作製し、評価を行った。
評価の結果を表2に示す。何れの実施例も600MPa以上の四点曲げ強度、3.0MPa・m1/2 以上の破壊靱性値、及び5×10 S/m以上の導電率を有している。
【0019】
比較例4
原料粉IIを用い、50MPaの圧力下にて1925℃で焼結を行ったこと以外は、実施例3と同様の手順にて、炭化硼素−二硼化クロム焼結体を作製し、評価を行った。
評価の結果を表2に示す。焼結温度が低く、二硼化クロム系の液相が発生しないため、緻密な焼結体が得られず、曲げ強度は低い値となった。また、二硼化クロム相の3次元ネットワークが形成されないため、導電率も低い値となった。
【0020】
比較例5
原料粉IIを用い、二硼化クロム粉の配合を行わずに50MPaの圧力下にて焼結を行ったこと以外は、実施例3と同様の手順にて、炭化硼素−二硼化クロム焼結体を作製し、評価を行った。
評価の結果を表2に示す。二硼化クロム系の液相が発生しないため、緻密な焼結体が得られず、曲げ強度は低い値となった。また、二硼化クロム相の3次元ネットワークが形成されないため、導電率も低い値となった。
【0021】
【表1】

Figure 0003561476
【0022】
【表2】
Figure 0003561476
【0023】
【発明の効果】
以上詳述した通り、本発明は、二硼化クロム系の液相を発生させた状態で液相焼結を行って作製された、炭化硼素−二硼化クロム焼結体とその製造方法に係るものであり、本発明により、600MPa以上の四点曲げ強度、5×10 S/m以上の導電率、3.0MPa・m1/2 以上の破壊靱性値を有する炭化硼素−二硼化クロム焼結体を製造し、提供することができる。
また、本発明により、二硼化クロム系の液相を発生させた状態で液相焼結を行うことで、炭化硼素粒子が導電性の良好な二硼化クロム相の3次元ネットワーク構造により結合された微細な組織を有する炭化硼素−二硼化クロム焼結体を作製することができる。
本発明の炭化硼素−二硼化クロム焼結体は、強度・靭性が高く、機械的特性が優れ、放電加工が可能で、加工性も良好であるので、摺動部品、切削工具や新しい耐摩耗性部品等、いろいろな用途で用いられることができ、産業上有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a boron carbide-chromium diboride sintered body and a method for producing the same, and more particularly, to a method in which boron carbide particles are bonded by a three-dimensional network structure of a chromium diboride phase having good conductivity. It has a fine structure, having a high bending strength, and boron carbide having a high conductivity (B 4 C) - diboride chromium (CrB 2) sintered body, further, a high bending strength and high electrical conductivity The present invention relates to a boron carbide-chromium diboride sintered body having a high fracture toughness value and a method for producing the same.
[0002]
[Prior art]
BACKGROUND ART A boron carbide sintered body is a material that is lightweight, has high hardness, and is excellent in wear resistance and corrosion resistance, and is currently used for a sandblast nozzle, a drawing die, an extrusion die, and the like. However, the boron carbide sintered body has disadvantages of low strength and low toughness. For example, the literature [K. A. Schwetz, J .; In Solid State Chemistry, 133, 177-81 (1997)], boron carbide sintered bodies are manufactured by HIP processing under various sintering conditions. However, boron carbide sintered bodies having a bending strength of 600 MPa or more are used. Not obtained. Also, the higher the bending strength, the lower the fracture toughness value tends to be. In the boron carbide sintered body having the highest strength, the fracture toughness value is a low value of 3 MPa · m 1/2 or less. Further, since the boron carbide sintered body is difficult to be sintered, it is manufactured by a hot press method or a HIP process. However, since its hardness is extremely high, it is difficult to process by a normal grinding and polishing method. Since the electrical conductivity of the boron carbide sintered body is as low as 10 to 300 S / m, there is a problem that electric discharge machining is difficult.
As described above, since the boron carbide sintered body has low strength, low toughness, and difficulty in processing, it is currently used only for extremely limited applications.
[0003]
[Problems to be solved by the invention]
Under these circumstances, the present inventors have studied and developed a new boron carbide-chromium diboride sintered body having high strength, high toughness, and high electrical conductivity in view of the above prior art. In the process of intensive progress, 5 to 25 mol% of chromium diboride is added to boron carbide powder having specific physical properties, and liquid phase sintering in which a liquid phase of chromium diboride is generated under a low pressure condition of 20 MPa or less. A new boron carbide-chromium diboride sintering with excellent properties is produced by producing a sintered body having a fine structure in which a highly conductive chromium diboride phase forms a three-dimensional network structure. They found that a body could be obtained and completed the present invention.
That is, the present invention provides a four-point bending strength of 600 MPa or more, a boron carbide-chromium diboride sintered body having a conductivity of 5 × 10 2 S / m or more, and a four-point bending strength of 600 MPa or more. And maintain a conductivity of 5 × 10 2 S / m or more, and 3. A boron carbide-chromium diboride sintered body having a fracture toughness value of 0 MPa · m 1/2 or more, and a liquid phase firing method for producing a chromium diboride liquid phase under a low pressure condition of 20 MPa or less. It is an object of the present invention to provide a method of manufacturing by performing knotting.
[0004]
[Means for Solving the Problems]
The present invention for solving the above-mentioned problems includes the following technical means.
(1) Boron carbide (B 4 C) produced by performing liquid phase sintering in which a liquid phase of chromium diboride is generated under a low pressure condition of 20 MPa or less, chromium diboride (CrB 2 ) , A boron carbide-chromium diboride sintered body containing 5 to 25 mol% of, the maximum particle diameter of boron carbide is more than 3 μm and 20 μm or less, a four-point bending strength of 600 MPa or more, and 5 × 10 2 S / Boron carbide-chromium diboride sintered body having a conductivity of at least / m.
(2) The boron carbide-chromium diboride sintered body according to the above (1), which has a fracture toughness value of 3.0 MPa · m 1/2 or more.
(3) A method for producing a boron carbide-chromium diboride sintered body by performing liquid phase sintering in which a liquid phase of chromium diboride is generated under low pressure conditions of 20 MPa or less, wherein A chromium diboride powder is added to a boron carbide powder having a diameter (D50) of 1 μm or less, a maximum particle diameter of 8 μm or less, and a specific surface area of 10 m 2 / g or more. Pressure sintering under a pressure of 20 MPa or less in a temperature range of 1950 to 2100 ° C. so that the maximum particle of boron carbide in the chromium boride sintered body is more than 3 μm and 20 μm or less. A method for producing a boron-chromium diboride sintered body.
(4) The method for producing a boron carbide-chromium diboride sintered body according to (3), wherein the aluminum content in the boron carbide powder is 1500 ppm or less.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail.
Since boron carbide is difficult to sinter, it is sintered at an extremely high temperature at which grain growth is likely to occur. However, according to the conventional technology, the obtained sintered body structure contains large particles, and is bent. This leads to deterioration in strength.
In the present invention, pressure sintering such as a hot press method is performed under specific conditions using a boron carbide powder having specific physical properties in a temperature range where a liquid phase mainly composed of CrB 2 is generated. That is, by performing liquid phase sintering in which a liquid phase of chromium diboride is generated under a low pressure condition of 20 MPa or less, the maximum particle size of boron carbide is larger than 3 μm and 20 μm or less, and the conductivity is high. By obtaining a fine structure in which the chromium diboride phase forms a three-dimensional network structure, boron carbide-diboron having a high four-point bending strength of 600 MPa or more and a conductivity of 5 × 10 2 S / m or more is obtained. A chromium oxide sintered body is produced.
[0006]
In the present invention, as the boron carbide powder, those having an average particle diameter (D50) of 1 μm or less and 0.1 μm or more and a maximum particle diameter of 8 μm or less and 1 μm or more measured by a laser diffraction scattering analyzer (Microtrac) are used. These preferably have an average particle size (D50) of 0.6 μm or less to 0.3 μm or more, and a maximum particle size of 6 μm or less to 1.5 μm or more. If the average particle size (D50) is larger than 1 μm, the sinterability is inferior, and a dense sintered body cannot be obtained in a temperature range of 1950 to 2100 ° C. A high sintering temperature is required, leading to a deterioration in bending strength. As for the specific surface area (BET), a boron carbide powder having a good sinterability of 10 m 2 / g or more and 30 m 2 / g or less is used, and preferably a powder of 15 m 2 / g or more is used.
[0007]
Further, the aluminum impurity in the boron carbide powder promotes rapid grain growth of boron carbide during sintering, so that it must be 1500 ppm or less, preferably 1000 ppm or less.
The boron carbide powder having the above-mentioned physical properties is obtained by being prepared by means such as sieving, sedimentation, and pulverization, but a commercially available product having the above-mentioned physical properties may be obtained and used.
[0008]
Chromium diboride powder is added to the boron carbide powder having the above-mentioned properties in an amount of 5 to 25 mol%. If the addition amount of chromium diboride is less than 5 mol%, a sufficient amount of chromium diboride-based liquid phase is not generated, so that a dense sintered body cannot be obtained and the effect of improving the fracture toughness value is also reduced. not enough. When the content is more than 25 mol%, the density of the sintered body is 3. It becomes higher than 0 g / cm 3 , and the light weight characteristics of the boron carbide based sintered body are impaired, and the hardness is also reduced.
Next, these are mixed to prepare a mixed powder of boron carbide and chromium diboride, which is sintered at 1950-2100 ° C. in a vacuum or an inert gas atmosphere such as Ar at a pressure of 20 MPa or less and 1 MPa or more. The liquid phase sintering is performed in a state in which a chromium diboride-based liquid phase is generated within the setting temperature range.
In the present invention, it is important to carry out liquid phase sintering in which a liquid phase of chromium diboride is generated under a low pressure condition of 20 MPa or less, whereby an excellent solid phase sintering that cannot be obtained by ordinary solid phase sintering is obtained. A boron carbide-chromium diboride sintered body having properties can be produced.
[0009]
Chromium diboride powder reacts with some boron carbide during sintering and melts, generating a chromium diboride-based liquid phase and penetrating between boron carbide particles. A raw material powder having a large particle size can be used, and a chromium diboride powder having an average particle size (D50) of 8 μm or less can be used. Preferably, a powder having an average particle size (D50) of 4 μm or less is used. Good to do.
[0010]
If the sintering temperature is lower than 1950 ° C., a sufficiently dense boron carbide sintered body cannot be produced, and a chromium diboride-based liquid phase is not generated. A network cannot be formed and the conductivity is less than 5 × 10 2 S / m, which is not preferable.
On the other hand, if the sintering temperature is higher than 2100 ° C., a fine sintered body structure cannot be obtained due to grain growth, resulting in a decrease in bending strength. When the pressure at the time of sintering is higher than 20 MPa, solid phase sintering of boron carbide particles is promoted, so that the formation of a three-dimensional network of the chromium diboride phase is inhibited, and the electrical conductivity is lowered. When the amount of the chromium diboride-based liquid phase is large, if the pressure during sintering is higher than 20 MPa, the liquid phase flows out during sintering.
[0011]
In order to obtain a boron carbide-chromium diboride sintered body having a high density, a chromium diboride-based liquid phase is generated at a temperature range of 1950 to 2100 ° C. under a pressure of 20 MPa or less and 1 MPa or more. After the pressure sintering, the two-stage sintering is performed by lowering the temperature to a temperature range of 1900 ° C. or more and less than 1950 ° C. where no chromium diboride-based liquid phase is generated and sintering at a higher pressure of 30 MPa or more. Can be appropriately performed.
[0012]
In the boron carbide-chromium diboride sintered body of the present invention, a chromium diboride phase having good conductivity forms a three-dimensional network, and boron carbide particles having a maximum particle size of more than 3 μm and 20 μm or less are formed. It has a tissue connected by a chromium boride phase. Since the thermal expansion coefficient of chromium diboride is larger than that of boron carbide, the fracture toughness value is generated by the detour of crack propagation and microclock generation near the interface between the boron carbide particles and the chromium diboride phase during the progress of fracture. Is improved. In addition, the maximum particle size is as fine as 3 μm or more and 20 μm or less, the protrusions of the boron carbide particles disappear due to the dissolution / precipitation mechanism of the chromium diboride-based liquid phase, and the stress concentration is reduced. Since the boron particles are bonded by the chromium diboride phase, the strength is improved by suppressing the falling of the boron carbide particles during processing, and the fracture toughness value is improved, and the high bending strength of 600 MPa or more is obtained. Is obtained.
[0013]
【Example】
Hereinafter, the content of the present invention will be specifically described with reference to Examples and Comparative Examples.
Examples 1-2
(1) Preparation of Boron Carbide-Chromium Diboride Sintered Body 20 mol% of chromium diboride powder having an average particle diameter (D50): 3.5 μm was added to each of boron carbide powders I and II having the physical properties shown in Table 1. After mixing, using a methanol solvent, mixing at a rotation speed of 185 rpm for 30 minutes in a planetary ball mill, drying with an evaporator, and further drying at 150 ° C. for 24 hours, the opening of 250 μm was obtained. The mixture was passed through a sieve to prepare two types of boron carbide-chromium diboride mixed powder. A graphite die was filled with a mixed powder of boron carbide and chromium diboride, molded at 7.5 MPa, and then attached to a firing furnace. 1. While pressurized to 5 MPa, use a diffusion pump. 0 × 10 −1 to 2. Heating was carried out at a heating rate of 40 ° C./min while evacuating to a pressure of 0 × 10 −2 Pa. When the temperature reached 1000 ° C., the evacuation was terminated and Ar gas was introduced, and the Ar flow rate was 2 liters / min and the gas pressure was 0.1 mL. Heated to 1500 ° C. in an atmosphere of 103 MPa. Heating was performed at a rate of 10 ° C./min from 1500 ° C. to 2050 ° C. After the temperature reached 2050 ° C., the temperature was maintained for one hour, and the first-stage hot press sintering was performed. After the holding, the temperature was lowered to 1900 ° C. at a rate of 15 ° C./min, the pressure was increased to 50 MPa, the holding was performed at this temperature for 40 minutes, and the second stage of sintering was performed. A chromium oxide sintered body was produced.
[0014]
(2) Measurement Method The four-point bending strength and the fracture toughness value of the boron carbide sintered body were measured based on JIS R1601 and JIS R1607, respectively. The surface of the test piece was finished with a surface grinder No. 400. Further, the density of the test piece was measured by the Archimedes method, and the relative density was calculated. After lapping the surface of the test piece and performing an etching treatment, SEM observation was performed to determine the maximum particle size of boron carbide. Further, the conductivity was measured.
[0015]
(3) Results The results of the evaluation are shown in Table 2. Each example has a four-point bending strength of 600 MPa or more, a fracture toughness value of 3.0 MPa · m 1/2 or more, and a conductivity of 5 × 10 2 S / m or more.
[0016]
Comparative Examples 1-2
Using boron carbide powders IV and V having the physical properties shown in Table 1, a boron carbide-chromium diboride sintered body was prepared in the same procedure as in Examples 1 and 2, and evaluated.
Table 2 shows the evaluation results. In Comparative Example 1, although a boron carbide powder having a specific surface area (BET) of 10 m 2 / g or less was used, a dense sintered body was not formed, and the flexural strength and fracture toughness were low. Further, in Comparative Example 2, although boron carbide powder having a high aluminum content was used, rapid growth of boron carbide particles occurred during sintering, the maximum particle diameter was increased, and the bending strength was reduced.
[0017]
Comparative Example 3
Using boron carbide powder I having the physical properties shown in Table 1, except that the chromium diboride powder was not blended, a boron carbide sintered body was prepared in the same procedure as in Examples 1 to 3, and evaluated. went.
Table 2 shows the evaluation results. Since a dense sintered body could not be formed, the flexural strength and fracture toughness were low.
[0018]
Examples 3 to 5
The same chromium diboride powder as in Examples 1 and 2 was used in Example 3 at 20 mol% in boron carbide powder III, in Example 4 at 20 mol% in boron carbide powder I, and in Example 5 at 22.5 mol% in boron carbide powder I. After mixing and mixing with a planetary ball mill using a methanol solvent at a rotation speed of 270 rpm for 1 hour, a boron carbide-chromium diboride mixed powder is prepared in the same procedure as in Examples 1-2. did. Sintering was performed in the same manner except that the second-stage sintering was not performed to produce a boron carbide-chromium diboride sintered body, which was evaluated.
Table 2 shows the results of the evaluation. Each example has a four-point bending strength of 600 MPa or more, a fracture toughness value of 3.0 MPa · m 1/2 or more, and a conductivity of 5 × 10 2 S / m or more.
[0019]
Comparative Example 4
A boron carbide-chromium diboride sintered body was prepared and evaluated in the same procedure as in Example 3 except that sintering was performed at 1925 ° C. under a pressure of 50 MPa using the raw material powder II. went.
Table 2 shows the results of the evaluation. Since the sintering temperature was low and a chromium diboride-based liquid phase was not generated, a dense sintered body could not be obtained, and the bending strength was low. Further, since the three-dimensional network of the chromium diboride phase was not formed, the conductivity also became a low value.
[0020]
Comparative Example 5
The same procedure as in Example 3 was carried out except that the raw material powder II was used and sintering was performed under a pressure of 50 MPa without blending the chromium diboride powder. The aggregate was produced and evaluated.
Table 2 shows the results of the evaluation. Since no chromium diboride-based liquid phase was generated, a dense sintered body could not be obtained, and the bending strength was low. Further, since the three-dimensional network of the chromium diboride phase was not formed, the conductivity also became a low value.
[0021]
[Table 1]
Figure 0003561476
[0022]
[Table 2]
Figure 0003561476
[0023]
【The invention's effect】
As described in detail above, the present invention relates to a boron carbide-chromium diboride sintered body produced by performing liquid phase sintering in a state where a chromium diboride-based liquid phase is generated, and a method for producing the same. According to the present invention, the present invention provides a four-point bending strength of 600 MPa or more, a conductivity of 5 × 10 2 S / m or more, and a boron carbide-diboride having a fracture toughness of 3.0 MPa · m 1/2 or more. A chromium sintered body can be manufactured and provided.
Further, according to the present invention, by performing liquid phase sintering in a state where a chromium diboride-based liquid phase is generated, the boron carbide particles are bonded by a three-dimensional network structure of the chromium diboride phase having good conductivity. Thus, it is possible to produce a boron carbide-chromium diboride sintered body having the obtained fine structure.
The boron carbide-chromium diboride sintered body of the present invention has high strength and toughness, has excellent mechanical properties, can be subjected to electric discharge machining, and has good workability. It can be used in various applications such as wear parts, and is industrially useful.

Claims (4)

20MPa以下の低い加圧条件下で二硼化クロムの液相が発生する液相焼結を行うことによって作製される、炭化硼素(B C)に二硼化クロム(CrB )を5〜25mol%含有する炭化硼素−二硼化クロム焼結体であって、炭化硼素の最大粒子径が3μmより大きく20μm以下であり、600MPa以上の四点曲げ強度、及び5×10 S/m以上の導電率を有することを特徴とする炭化硼素−二硼化クロム焼結体。Diboride chromium liquid phase in the following low pressure conditions 20MPa is produced by performing a liquid-phase sintering to occur, 5 to boron carbide (B 4 C) diboride chromium (CrB 2) A boron carbide-chromium diboride sintered body containing 25 mol%, wherein the maximum particle diameter of boron carbide is more than 3 μm and 20 μm or less, a four-point bending strength of 600 MPa or more, and 5 × 10 2 S / m or more. A boron carbide-chromium diboride sintered body having the following electrical conductivity: 3.0MPa・m1/2 以上の破壊靱性値を有することを特徴とする請求項1記載の炭化硼素−二硼化クロム焼結体。2. The boron carbide-chromium diboride sintered body according to claim 1, wherein the sintered body has a fracture toughness of 3.0 MPa · m 1/2 or more. 20MPa以下の低い加圧条件下で二硼化クロムの液相が発生する液相焼結を行うことにより炭化硼素−二硼化クロム焼結体を製造する方法であって、平均粒径(D50)が1μm以下で、最大粒子径が8μm以下であり、比表面積が10m /g以上である炭化硼素粉末に、二硼化クロム粉末を5〜25mol%添加し、炭化硼素−二硼化クロム焼結体中の炭化硼素の最大粒子が3μmより大きく20μm以下となるように、1950〜2100℃の温度範囲で20MPa以下の圧力下にて加圧焼結することを特徴とする炭化硼素−二硼化クロム焼結体の製造方法。A method for producing a boron carbide-chromium diboride sintered body by performing liquid phase sintering in which a liquid phase of chromium diboride is generated under a low pressure condition of 20 MPa or less. ) Is 1 μm or less, the maximum particle diameter is 8 μm or less, and 5-25 mol% of chromium diboride powder is added to boron carbide powder having a specific surface area of 10 m 2 / g or more. Pressure-sintering under a pressure of 20 MPa or less in a temperature range of 1950 to 2100 ° C. so that the maximum particle size of boron carbide in the sintered body is more than 3 μm and not more than 20 μm. A method for producing a chromium boride sintered body. 前記炭化硼素粉末中のアルミニウム含有量が1500ppm以下であることを特徴とする請求項3記載の炭化硼素−二硼化クロム焼結体の製造方法。The method for producing a boron carbide-chromium diboride sintered body according to claim 3, wherein the aluminum content in the boron carbide powder is 1500 ppm or less.
JP2001065657A 2001-03-08 2001-03-08 Boron carbide-chromium diboride sintered body and method for producing the same Expired - Lifetime JP3561476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001065657A JP3561476B2 (en) 2001-03-08 2001-03-08 Boron carbide-chromium diboride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001065657A JP3561476B2 (en) 2001-03-08 2001-03-08 Boron carbide-chromium diboride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002265269A JP2002265269A (en) 2002-09-18
JP3561476B2 true JP3561476B2 (en) 2004-09-02

Family

ID=18924267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001065657A Expired - Lifetime JP3561476B2 (en) 2001-03-08 2001-03-08 Boron carbide-chromium diboride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3561476B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5430869B2 (en) * 2008-03-07 2014-03-05 独立行政法人産業技術総合研究所 Dense boron carbide sintered body and method for producing the same
KR20200019070A (en) * 2018-08-13 2020-02-21 에스케이씨솔믹스 주식회사 Manufacturing method of boroncarbide sintered body and shaping die

Also Published As

Publication number Publication date
JP2002265269A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
US7417002B2 (en) Boron carbide based sintered compact and method for preparation thereof
JP6796266B2 (en) Cemented carbide and cutting tools
CN112159237A (en) High-thermal-conductivity silicon nitride ceramic material and preparation method thereof
CN113461426B (en) Compact high-hardness high-strength silicon nitride ceramic ball and preparation method and application thereof
JP3561476B2 (en) Boron carbide-chromium diboride sintered body and method for producing the same
WO2018037846A1 (en) Titanium carbonitride powder and method for producing titanium carbonitride powder
JP3686029B2 (en) Boron carbide-titanium diboride sintered body and manufacturing method thereof
CN110877980A (en) High-strength silicon carbide/silicon nitride composite ceramic and preparation method thereof
JP3926760B2 (en) Boron carbide-chromium diboride sintered body and method for producing the same
JP2001247366A (en) Boron carbide sintered compact and method for producing the same
JP3992474B2 (en) Method for producing boron carbide-aluminum nitride sintered body
JP4189723B2 (en) Tungsten-based sintered alloy mold suitable for hot press molding of high-precision optical glass lens
JP2002029850A (en) Sintered silicon nitride compact and method for manufacturing the same
JP7510645B2 (en) Method for producing raw material powder for producing oxidation-induced self-healing ceramics, and raw material powder for producing oxidation-induced self-healing ceramics
JP2001019557A (en) Silicon nitride sintered compact, its production and substrate
JP5408591B2 (en) Method for producing high-density metal boride
JP2000143351A (en) High-toughness silicon nitride-based sintered compact
JPH0826837A (en) High-strength and highly tough ceramic composite material and ceramic complex powder and their production
JP2004051459A (en) Silicon nitride sintered compact and its manufacturing method
JP3653533B2 (en) Silicon nitride composite material and method for producing the same
JP2001019550A (en) Crystallite granule silicon carbide sintered compact having superplasticity and its production
JP2573720B2 (en) Manufacturing method of silicon nitride sintered body
JPH0952768A (en) Silicon carbide based sintered compact and production therefore
JPH082961A (en) Sintered compact of metal particle-dispersed aluminum oxide base and its production
JPH11130543A (en) Beta-type silicon nitride crystal and its production and production of silicon nitride-based sintered compact

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3561476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term