JP3992474B2 - Method for producing boron carbide-aluminum nitride sintered body - Google Patents

Method for producing boron carbide-aluminum nitride sintered body Download PDF

Info

Publication number
JP3992474B2
JP3992474B2 JP2001327508A JP2001327508A JP3992474B2 JP 3992474 B2 JP3992474 B2 JP 3992474B2 JP 2001327508 A JP2001327508 A JP 2001327508A JP 2001327508 A JP2001327508 A JP 2001327508A JP 3992474 B2 JP3992474 B2 JP 3992474B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
boron carbide
sintered body
pressure
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001327508A
Other languages
Japanese (ja)
Other versions
JP2003137655A (en
Inventor
鈴弥 山田
卓 川崎
正浩 伊吹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001327508A priority Critical patent/JP3992474B2/en
Publication of JP2003137655A publication Critical patent/JP2003137655A/en
Application granted granted Critical
Publication of JP3992474B2 publication Critical patent/JP3992474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高い相対密度を有する炭化硼素(B4C)−窒化アルミニウム(AlN)焼結体の製造方法に関する。
【0002】
【従来の技術】
炭化硼素焼結体は、軽量で高い硬度を有し、耐摩耗性や耐腐食性に優れた材料であるので、サンドブラストノズル、線引きダイス、押し出しダイス等に使用されている。炭化硼素焼結体は、難焼結性であることから、通常2100℃以上の高い温度領域、30MPa以上の大きな加圧下にてホットプレス法により製造されているが、生産コストが高くなるのでその応用を妨げている。
【0003】
これに対して、特開昭59‐184767号公報では、炭化硼素に焼結助剤としてAl、Al合金及びAl化合物を添加している。しかしながら、真空または不活性ガス雰囲気にて常圧焼結を行う間に、Al、Al合金及びAl化合物が分解・蒸発するので、焼結性が改善されないだけでなく、重量減少して95%以上の相対密度は得られない。
【0004】
【発明が解決しようとする課題】
以上のように、炭化硼素焼結体は難焼結性であることから、高密度で高強度のものを安価に提供することができず、用途に制約を受けた。本発明の目的は、相対密度が95%以上の炭化硼素−窒化アルミニウム焼結体を安価に提供することにある。本発明の目的は、炭化硼素粉末と窒化アルミニウム粉末とからなる混合粉末の成形体を特定条件でホットプレス焼結又は常圧焼結することによって達成することができる。
【0005】
【課題を解決するための手段】
本発明は、レーザー回折散乱分析計にて測定された平均粒径(D50)が10μm以下の炭化硼素粉末と、窒化アルミニウム粉末とからなる混合粉末の成形体を昇温し、1900℃以上、2200℃以下の温度範囲でホットプレス焼結又は常圧焼結するにあたり、1000℃以上の雰囲気をアルゴンガスと窒素ガスの混合雰囲気とし、しかもN 分圧を窒化アルミニウムの分解N 圧以上とすることを特徴とする、炭化硼素(B4C)が99.5〜70mol%、窒化アルミニウム(AlN)が0.5〜30mol%、相対密度が95%以上である炭化硼素−窒化アルミニウム焼結体の製造方法である。本発明においては、ホットプレス焼結を20MPa以下の加圧力にて行うことが好ましい。
【0006】
【発明の実態の形態】
本発明で製造される炭化硼素−窒化アルミニウム焼結体は、炭化硼素(B4C)99.5〜70mol%、窒化アルミニウム(AlN)を0.5〜30mol%、相対密度が95%以上である。窒化アルミニウム(AlN)が0.5mol%未満では、実用的な焼結スケジュールの中で焼結助剤としての効果が十分に発揮せず、また30mol%を超えると、炭化硼素焼結体の軽量、高硬度で、耐摩耗性や耐腐食性に優れるという特性、特に高弾性の特性が維持し難くなる。また、相対密度が95%未満のものは強度が低く、実用に供するに際して用途が限定される。また、四点曲げ強度が600MPa以上の焼結体であれば、サンドブラストノズル、線引きダイス、押し出しダイス等の用途に好適なものとなる。
【0007】
本発明においては、炭化硼素粉末の焼結性を改善するため、焼結助剤として窒化アルミニウム粉末を炭化硼素粉末に0.5〜30mol%添加される。この混合粉末の成形体を昇温し焼結するにあたり、窒化アルミニウムが分解・蒸発しないようにするため、1000℃以上の昇温と焼結は、アルゴンガスと窒素ガスの混合雰囲気下であって、しかもN 分圧が窒化アルミニウムの分解N 圧以上に保たれた雰囲気下で行われる。これによって、窒化アルミニウム粉末の表面付近の一部が炭化硼素粉末と反応して粒界反応相を形成し、焼結中の拡散が活性化されて焼結が促進される。これに対し、従来技術は、真空中や不活性雰囲気で焼結を行っているために、窒化アルミニウムが分解(2AlN→2Al+N)して焼結助剤としての効果が十分に発揮されず、NとともにAl分も蒸発して大きな重量減少が生じ、十分に緻密化された焼結体が得られなかった。また、1000℃以上の昇温と焼結をアルゴンガスと窒素ガスの混合雰囲気とした理由は、過大な窒素圧を加えた場合に高温下で炉を構成する材料と反応するなどの弊害が生じるのを避けるためである。
0008
焼結温度は、1900℃以上、2200℃以下の範囲で選択される。1900℃未満では十分に焼結が進行せず、また2200℃を超えると、焼結体中の炭化硼素が粒成長したり、窒化アルミニウムの分解が抑え難くなる等の問題が起こる。
【0009】
ホットプレス焼結時の加圧力は20MPa以下であることが好ましい。これによって、過大な加圧装置を必要とせずに、比較的高密度の焼結体を得ることができる。また、従来のホットプレス装置を適用する際に、大きな加圧力を必要とするがために製品形状が制約されるといった問題が回避され、従来の装置をそのまま用いて大きなサイズの製品を製造することができる。
【0010】
常圧焼結は、混合粉末をプレス、押出、射出成形等の成形法で得られた成形体を加圧することなく焼結させる方法であり、ホットプレス焼結によるよりも一層安価で大量に焼結体を製造することができる。さらには、焼結過程において加圧することがないので、予め原料を複雑な製品形状ないしはそれに近い形状にしておいてから焼結するのみで、或いは若干の加工等の後処理するのみで、複雑形状の焼結体を製造することができる。
0011
本発明に用いる炭化硼素粉末は、レーザー回折散乱分析計(マイクロトラック)にて測定した平均粒径(D50)が10μm以下のものである。平均粒径(D50)が10μmより大きいと焼結性が劣り、緻密な焼結体が得られない。また、比表面積(BET)は2m/g以上であることが好ましい。
【0012】
【実施例】
参考例1
本例は、炭化硼素粉末と窒化アルミニウム粉末とからなる混合粉末の成形体を真空雰囲下で昇温を開始し、1000℃に到達した時点でアルゴンガスと窒素ガスを導入して、N 分圧が窒化アルミニウムの分解N 圧以上に保たれたアルゴンガスと窒素ガスの混合雰囲気とし、更に昇温をし、1700℃、加圧力50MPaホットプレス焼結をしたものである。
【0013】
表1に示す炭化硼素粉末Aに平均粒径(D500.7μmの窒化アルミニウム粉末を10mol%配合し、メタノール溶媒を用いて、炭化珪素(SiC)製遊星ボールミルにて回転185rpm、30分の混合を行った後、エボポレーターで乾燥させ、更に150℃、24時間の乾燥を行った後に、開き目250μmのふるいにとおして、炭化硼素−窒化アルミニウム混合粉末を調製した。
【0014】
【表1】
0015
黒鉛製ダイス中に炭化硼素−窒化アルミニウム混合粉末を充填し、7.5MPaで成形した後、焼成炉に取り付けた。10MPaに加圧した状態にて、拡散ポンプを用いて2.0×10−1〜2.0×10−2Paの圧力に真空引きをしながら、40℃/minの昇温速度にて加熱を行った。1000℃に到達した時に真空引きを終了してArガス2リットル/minガスを0.006リットル/minとを導入した。これによってガス圧力0.103MPaの雰囲気となった。上記N ガスの流量は、焼結温度1700℃における窒化アルミニウムの分解圧(N分圧)6.2×10−6MPaであるので、焼成炉中のN分圧3.1×10−4MPaとするための流量である。この雰囲気下で1500℃まで加熱した。1500℃から1700℃までは10℃/minの昇温速度にて加熱した。1700℃に到達した後、加圧力を50MPaに上げて1時間保持しホットプレス焼結を行って炭化硼素−窒化アルミニウム焼結体を製造した。
0016
炭化硼素−窒化アルミニウム焼結体の四点曲げ強度をJIS R1601に基づいて測定した。テストピースの表面は、平面研削盤400番にて仕上げた。また、アルキメデス法にてテストピースの密度を測定し、相対密度を計算した。テストピースの表面をラッピングし、エッチング処理を行った後にSEM観察を行い炭化硼素の最大粒子のサイズをもとめた。更にX線回折法により、焼結体中の結晶相の同定を行った。その結果、炭化硼素−窒化アルミニウム焼結体は、2.50g/cmの密度、98.0%の相対密度を有し、最大粒子サイズは2.7μmであり、四点曲げ強度は615MPaであった。また、結晶相は、炭化硼素相の他に窒化アルミニウム相を検出した。
【0017】
実施例1、2
本例では、炭化硼素粉末の種類と窒化アルミニウム粉末の添加量を変えたこと、2000℃、加圧力10MPaでホットプレス焼結をしたこと以外は、参考例1と同様にして行った。
【0018】
表1に示す炭化硼素粉末B及びCを用いたこと、窒化アルミニウム粉末を7mol%配合したこと、2000℃まで昇温したこと、 ガスの流量を、2000℃における窒化アルミニウムの分解圧(N分圧)0.0013MPaであるので、焼成炉中のN分圧0.0040MPaとするため、0.08リットル/minとしたこと、ホットプレス温度2000℃加圧力10MPaとしたこと以外は、参考例1と同様にして炭化硼素−窒化アルミニウム焼結体を製造した。それらの結果を表2に示す。何れの実施例も95%以上の高い密度を有しており、窒化アルミニウム相が検出された。
【0019】
【表2】
【0020】
比較例1
窒化アルミニウム粉末を添加しなかったこと以外は、実施例1と同様にして炭化硼素焼結体を製造した。その結果を表2に示す。比較例1の焼結体は77.0%と低い密度となった。
【0021】
実施例3
本例では、1700℃、加圧力50MPaのホットプレス焼結をする変わりに、2000℃の常圧焼結をしたこと以外は、参考例1と同様にして行った。
【0022】
参考例1と同様にして炭化硼素−窒化アルミニウム混合粉末を調製した。これを20MPaにて金型成形した後、200MPaのCIP成形を行って成形体を作製した。この成形体を黒鉛製容器に入れ、加圧力をかけずに常圧の状態にて参考例1と同様の手順で1000℃まで加熱を行い、ArガスとN ガスを導入した。その際のN ガスの流量は、焼結温度2000℃における窒化アルミニウムの分解圧(N分圧)0.0013MPaであるので、焼成炉中のN分圧0.0040MPaとするため、0.08リットル/minとした。参考例1と同様な手順にて2000℃に温度を上げ、常圧焼結を行って炭化硼素−窒化アルミニウム焼結体を製造した。その結果を表3に示す。
【0023】
【表3】
【0024】
比較例2
ガスの導入を行わなかったこと以外は、実施例3と同様にして炭化硼素焼結体を製造した。その結果を表3に示す。比較例2の焼結体は92.9%と低い相対密度であり、窒化アルミニウム相は検出されなかった。
【0025】
【発明の効果】
本発明によれば、炭化硼素(B4C)が99.5〜70mol%、窒化アルミニウム(AlN)が0.5〜30mol%、相対密度が95%以上である炭化硼素−窒化アルミニウム焼結体を、従来技術に比べて安価なプロセスで製造することができる。本発明で製造された焼結体は、摺動部品、切削工具や新しい耐摩耗性部品等の用途に用いることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a boron carbide (B 4 C) -aluminum nitride (AlN) sintered body having a high relative density.
[0002]
[Prior art]
Since the boron carbide sintered body is a material that is lightweight and has high hardness and excellent wear resistance and corrosion resistance, it is used for sandblast nozzles, wire drawing dies, extrusion dies, and the like. Since the boron carbide sintered body is difficult to sinter, it is usually manufactured by a hot press method in a high temperature range of 2100 ° C. or higher and a large pressure of 30 MPa or higher. The application is hindered.
[0003]
On the other hand, in Japanese Patent Laid-Open No. 59-184767, Al, an Al alloy, and an Al compound are added to boron carbide as a sintering aid. However, Al, Al alloy and Al compound decompose and evaporate during normal pressure sintering in vacuum or inert gas atmosphere, so not only the sinterability is improved but also the weight is reduced to 95% or more. The relative density of is not obtained.
[0004]
[Problems to be solved by the invention]
As described above, since the boron carbide sintered body is difficult to sinter, a high-density and high-strength material cannot be provided at a low cost, and the use is restricted. An object of the present invention is to provide a boron carbide-aluminum nitride sintered body having a relative density of 95% or more at a low cost. The object of the present invention can be achieved by hot-press sintering or normal-pressure sintering of a compact of a mixed powder composed of boron carbide powder and aluminum nitride powder under specific conditions.
[0005]
[Means for Solving the Problems]
The present invention raises the temperature of a mixed powder formed of a boron carbide powder having an average particle diameter (D 50 ) measured by a laser diffraction scattering analyzer of 10 μm or less and an aluminum nitride powder, In hot press sintering or normal pressure sintering in a temperature range of 2200 ° C. or lower, an atmosphere of 1000 ° C. or higher is a mixed atmosphere of argon gas and nitrogen gas, and the N 2 partial pressure is higher than the decomposition N 2 pressure of aluminum nitride. Boron carbide-aluminum nitride sintered with boron carbide (B 4 C) of 99.5 to 70 mol%, aluminum nitride (AlN) of 0.5 to 30 mol%, and a relative density of 95% or more. It is a manufacturing method of a body. In the present invention, it is preferable to perform hot press sintering at a pressure of 20 MPa or less.
[0006]
[Form of the present invention]
The boron carbide-aluminum nitride sintered body produced in the present invention has a boron carbide (B 4 C) content of 99.5 to 70 mol%, aluminum nitride (AlN) content of 0.5 to 30 mol%, and a relative density of 95% or more. is there. If the aluminum nitride (AlN) is less than 0.5 mol%, the effect as a sintering aid is not sufficiently exhibited in a practical sintering schedule, and if it exceeds 30 mol%, the light weight of the boron carbide sintered body is reduced. It is difficult to maintain characteristics such as high hardness, excellent wear resistance and corrosion resistance, particularly high elasticity. Also, those having a relative density of less than 95% have low strength, and their use is limited when they are put to practical use. A sintered body having a four-point bending strength of 600 MPa or more is suitable for applications such as a sandblast nozzle, a drawing die, and an extrusion die.
[0007]
In the present invention, in order to improve the sinterability of boron carbide powder, Ru is added 0.5~30Mol% aluminum nitride powder to boron carbide powder as a sintering aid. The molded body of the mixed powder of this Upon be heated sintering, because the aluminum nitride to decompose and evaporate an odd, heating and sintering the above 1000 ° C. is a mixed atmosphere of argon gas and nitrogen gas In addition, it is performed in an atmosphere in which the N 2 partial pressure is maintained at or above the decomposition N 2 pressure of aluminum nitride . As a result, a part of the surface of the aluminum nitride powder reacts with the boron carbide powder to form a grain boundary reaction phase, and the diffusion during the sintering is activated to promote the sintering. On the other hand, in the conventional technique, since sintering is performed in a vacuum or in an inert atmosphere, aluminum nitride is decomposed (2AlN → 2Al + N 2 ) and the effect as a sintering aid is not sufficiently exhibited. large weight loss by evaporation even Al content with N 2 occurs, the sintered body is sufficiently densified obtained such an off. Moreover, the reason why the temperature rise and sintering at 1000 ° C. or higher is made to be a mixed atmosphere of argon gas and nitrogen gas is that when excessive nitrogen pressure is applied, adverse effects such as reaction with the materials constituting the furnace occur at high temperatures. This is to avoid this.
[ 0008 ]
The sintering temperature is selected in the range of 1900 ° C. or higher and 2200 ° C. or lower. If the temperature is lower than 1900 ° C., sintering does not proceed sufficiently. If the temperature exceeds 2200 ° C., boron carbide in the sintered body grows, and it becomes difficult to suppress decomposition of aluminum nitride.
[0009]
The pressure applied during hot press sintering is preferably 20 MPa or less. As a result, a relatively high density sintered body can be obtained without requiring an excessive pressurizing apparatus. In addition, when applying a conventional hot press apparatus, the problem that the shape of the product is restricted due to the need for a large pressing force is avoided, and a large size product is manufactured using the conventional apparatus as it is. Can do.
[0010]
Atmospheric pressure sintering is a method in which a mixed powder is sintered without pressing a compact obtained by a molding method such as pressing, extrusion, or injection molding. It is much cheaper and more massive than hot press sintering. A knot can be produced. Furthermore, since no pressure is applied in the sintering process, the raw material is made into a complex product shape or a shape close to it in advance and then sintered, or only after post-processing such as some processing, the complicated shape. The sintered body can be manufactured.
[ 0011 ]
The boron carbide powder used in the present invention has an average particle size (D 50 ) of 10 μm or less measured with a laser diffraction / scattering analyzer (Microtrack). When the average particle diameter (D 50 ) is larger than 10 μm, the sinterability is inferior and a dense sintered body cannot be obtained. Moreover, it is preferable that a specific surface area (BET) is 2 m < 2 > / g or more.
[0012]
【Example】
Reference example 1
In this example, the temperature of a compact of a mixed powder composed of boron carbide powder and aluminum nitride powder is started in a vacuum atmosphere, and when reaching 1000 ° C. , argon gas and nitrogen gas are introduced, and N 2 partial pressure is a mixed atmosphere of argon gas and nitrogen gas was maintained on the decomposition N 2 pressure of aluminum nitride, and further the heating was 1700 ° C., the hot press sintering under a pressure 50 MPa.
[0013]
Boron carbide powder A shown in Table 1 is mixed with 10 mol% of aluminum nitride powder having an average particle diameter (D 50 ) of 0.7 μm, and using a methanol solvent, the number of revolutions is 185 rpm in a planetary ball mill made of silicon carbide (SiC). After mixing for 30 minutes, the mixture was dried by an evaporator, further dried at 150 ° C. for 24 hours, and then passed through a sieve having an opening of 250 μm to prepare a boron carbide-aluminum nitride mixed powder.
[0014]
[Table 1]
[ 0015 ]
A graphite die was filled with boron carbide-aluminum nitride mixed powder, molded at 7.5 MPa, and then attached to a firing furnace. Heated at a rate of temperature increase of 40 ° C./min while evacuating to a pressure of 2.0 × 10 −1 to 2.0 × 10 −2 Pa using a diffusion pump in a state pressurized to 10 MPa. Went. 2 l / min and N 2 gas Ar gas to exit vacuum when it reaches the 1000 ° C. were introduced into 0.006 l / min. This resulted in an atmosphere with a gas pressure of 0.103 MPa . The flow rate of the N 2 gas is such that the decomposition pressure (N 2 partial pressure) of aluminum nitride at a sintering temperature of 1700 ° C. is 6.2 × 10 −6 MPa, so the N 2 partial pressure in the firing furnace is 3.1. × is the flow rate for the 10 -4 MPa. The mixture was heated to 1500 ° C. under this atmosphere . Heating was performed from 1500 ° C. to 1700 ° C. at a temperature rising rate of 10 ° C./min. After reaching 1700 ° C., the applied pressure was increased to 50 MPa and held for 1 hour to perform hot press sintering to produce a boron carbide-aluminum nitride sintered body.
[ 0016 ]
The four-point bending strength of the boron carbide-aluminum nitride sintered body was measured based on JIS R1601. The surface of the test piece was finished with a surface grinder # 400. Moreover, the density of the test piece was measured by the Archimedes method, and the relative density was calculated. The surface of the test piece was lapped, etched, and then observed by SEM to determine the maximum particle size of boron carbide. Furthermore, the crystal phase in the sintered body was identified by the X-ray diffraction method . As a result, boron carbide - aluminum nitride sintered body, a density of 2.50 g / cm 3, having a 98.0% relative density, the maximum particle size is 2.7 .mu.m, four-point bending strength 615MPa Met. As the crystal phase, an aluminum nitride phase was detected in addition to the boron carbide phase.
[0017]
Examples 1 and 2
In this example, the same procedure as in Reference Example 1 was performed, except that the type of boron carbide powder and the amount of aluminum nitride powder added were changed, and hot press sintering was performed at 2000 ° C. and a pressure of 10 MPa .
[0018]
Table 1 shows that using a boron carbide powder B and C, and this was the aluminum nitride powder by blending 7 mol%, the temperature was raised to 2000 ° C., the flow rate of N 2 gas, the decomposition pressure of nitride aluminum definitive to 2000 ° C. Since (N 2 partial pressure) is 0.0013 MPa, in order to set the N 2 partial pressure in the firing furnace to 0.0040 MPa, it was set to 0.08 liter / min , the hot press temperature was 2000 ° C. , and the applied pressure was A boron carbide-aluminum nitride sintered body was produced in the same manner as in Reference Example 1 except that the pressure was 10 MPa. The results are shown in Table 2. All examples had a high density of 95% or more, and an aluminum nitride phase was detected.
[0019]
[Table 2]
[0020]
Comparative Example 1
A boron carbide sintered body was produced in the same manner as in Example 1 except that the aluminum nitride powder was not added. The results are shown in Table 2. The sintered body of Comparative Example 1 had a low density of 77.0%.
[0021]
Example 3
In this example, instead of performing hot press sintering at 1700 ° C. and a pressing force of 50 MPa, it was performed in the same manner as Reference Example 1 except that normal pressure sintering at 2000 ° C. was performed.
[0022]
In the same manner as in Reference Example 1, a boron carbide-aluminum nitride mixed powder was prepared. This was die-molded at 20 MPa, and then 200 MPa CIP molding was performed to produce a molded body. This molded body was put into a graphite container, heated to 1000 ° C. in the same manner as in Reference Example 1 under normal pressure without applying pressure, and Ar gas and N 2 gas were introduced. N 2 gas flow rate at that time, since the decomposition pressure of nitride aluminum definitive sintered temperature 2 000 ° C. (N 2 partial pressure) is 0.0013MPa, 0.0040MPa the N 2 partial pressure in the firing furnace to the, it was 0.08 l / min. In the same procedure as in Reference Example 1, the temperature was increased to 2000 ° C. and normal pressure sintering was performed to produce a boron carbide-aluminum nitride sintered body. The results are shown in Table 3.
[0023]
[Table 3]
[0024]
Comparative Example 2
A boron carbide sintered body was produced in the same manner as in Example 3 except that N 2 gas was not introduced. The results are shown in Table 3. The sintered body of Comparative Example 2 had a relative density as low as 92.9%, and no aluminum nitride phase was detected.
[0025]
【The invention's effect】
According to the present invention, a boron carbide-aluminum nitride sintered body having boron carbide (B 4 C) of 99.5 to 70 mol%, aluminum nitride (AlN) of 0.5 to 30 mol%, and a relative density of 95% or more. Can be manufactured by an inexpensive process compared to the prior art. The sintered body produced by the present invention can be used for applications such as sliding parts, cutting tools, and new wear-resistant parts.

Claims (2)

レーザー回折散乱分析計にて測定された平均粒径(D50)が10μm以下の炭化硼素粉末と、窒化アルミニウム粉末とからなる混合粉末の成形体を昇温し、1900℃以上、2200℃以下の温度範囲でホットプレス焼結又は常圧焼結するにあたり、1000℃以上の雰囲気をアルゴンガスと窒素ガスの混合雰囲気とし、しかもN 分圧を窒化アルミニウムの分解N 圧以上とすることを特徴とする、炭化硼素(B4C)が99.5〜70mol%、窒化アルミニウム(AlN)が0.5〜30mol%、相対密度が95%以上である炭化硼素−窒化アルミニウム焼結体の製造方法。The temperature of a compact of a mixed powder composed of boron carbide powder having an average particle diameter (D 50 ) of 10 μm or less and an aluminum nitride powder measured with a laser diffraction / scattering analyzer is raised to 1900 ° C. or higher and 2200 ° C. or lower. In hot press sintering or normal pressure sintering in a temperature range, an atmosphere of 1000 ° C. or higher is a mixed atmosphere of argon gas and nitrogen gas, and an N 2 partial pressure is set to a decomposition N 2 pressure of aluminum nitride or higher. A method for producing a boron carbide-aluminum nitride sintered body in which boron carbide (B 4 C) is 99.5 to 70 mol%, aluminum nitride (AlN) is 0.5 to 30 mol%, and the relative density is 95% or more. . ホットプレス焼結を20MPa以下の加圧力にて行う請求項1に記載の製造方法。The manufacturing method of Claim 1 which performs hot press sintering by the applied pressure of 20 Mpa or less.
JP2001327508A 2001-10-25 2001-10-25 Method for producing boron carbide-aluminum nitride sintered body Expired - Fee Related JP3992474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001327508A JP3992474B2 (en) 2001-10-25 2001-10-25 Method for producing boron carbide-aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001327508A JP3992474B2 (en) 2001-10-25 2001-10-25 Method for producing boron carbide-aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JP2003137655A JP2003137655A (en) 2003-05-14
JP3992474B2 true JP3992474B2 (en) 2007-10-17

Family

ID=19143728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001327508A Expired - Fee Related JP3992474B2 (en) 2001-10-25 2001-10-25 Method for producing boron carbide-aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JP3992474B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7557054B2 (en) 2006-02-27 2009-07-07 Kyocera Corporation Boron carbide sintered body and protective member
JP5528802B2 (en) * 2007-06-15 2014-06-25 美濃窯業株式会社 Dense boron carbide ceramics and method for producing the same
CN105761773B (en) * 2016-03-07 2017-09-29 镇江纽科利核能新材料科技有限公司 The preparation method of spentnuclear fuel storing neutron absorber material
CN109608199A (en) * 2018-10-09 2019-04-12 江苏新伊菲科技有限公司 A kind of preparation method of the modified boron carbide composite ceramic of nitride

Also Published As

Publication number Publication date
JP2003137655A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
US7442661B2 (en) Boron carbide based sintered compact and method for preparation thereof
JP5732037B2 (en) Wear-resistant member and method for manufacturing the same
JP5051168B2 (en) Nitride-dispersed Ti-Al target and method for producing the same
JP5692845B2 (en) Highly rigid ceramic material and manufacturing method thereof
JP5002155B2 (en) Wear-resistant member made of silicon nitride and method of manufacturing the same
JP3992474B2 (en) Method for producing boron carbide-aluminum nitride sintered body
JP2005281084A (en) Sintered compact and manufacturing method therefor
JP3686029B2 (en) Boron carbide-titanium diboride sintered body and manufacturing method thereof
WO2020202878A1 (en) Zirconium boride/boron carbide composite and method for manufacturing same
JP5093433B2 (en) Method for producing a bulk body of Al-added TiN
JP7319205B2 (en) Dense composite material, manufacturing method thereof, bonded body and member for semiconductor manufacturing equipment
JPH07172921A (en) Aluminum nitride sintered material and its production
WO1990012768A1 (en) Method of producing aluminum nitride sinter
JP3926760B2 (en) Boron carbide-chromium diboride sintered body and method for producing the same
JP2001247366A (en) Boron carbide sintered compact and method for producing the same
JPH01215761A (en) Production of silicon nitride sintered form
JP2007326745A (en) Wear resistant member, wear resistant equipment and method of manufacturing wear resistant member
JP3561476B2 (en) Boron carbide-chromium diboride sintered body and method for producing the same
JP2000143351A (en) High-toughness silicon nitride-based sintered compact
JPH06116045A (en) Silicon nitride sintered compact and its production
JP2004114163A (en) Alumina group ceramic tool and production method for the same
JP3452741B2 (en) Method for producing aluminum nitride based composite material
JP3981510B2 (en) Method for producing silicon nitride sintered body
JPH07277835A (en) Production of combined sintered compact
JP3194761B2 (en) Silicon nitride powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees