JP2003137655A - Boron carbide-aluminum nitride sintered compact, and production method therefor - Google Patents
Boron carbide-aluminum nitride sintered compact, and production method thereforInfo
- Publication number
- JP2003137655A JP2003137655A JP2001327508A JP2001327508A JP2003137655A JP 2003137655 A JP2003137655 A JP 2003137655A JP 2001327508 A JP2001327508 A JP 2001327508A JP 2001327508 A JP2001327508 A JP 2001327508A JP 2003137655 A JP2003137655 A JP 2003137655A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum nitride
- boron carbide
- sintered body
- sintering
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高い密度を有する
炭化硼素(B4C)−窒化アルミニウム(AlN)焼結
体、さらに高い曲げ強度を有する炭化硼素−窒化アルミ
ニウム焼結体、及び低い温度範囲で行うホットプレス
法、低い加圧力で行うホットプレス法、常圧焼結よる炭
化硼素−窒化アルミニウム焼結体の製造方法に関する。TECHNICAL FIELD The present invention relates to a boron carbide (B 4 C) -aluminum nitride (AlN) sintered body having a high density, a boron carbide-aluminum nitride sintered body having a high bending strength, and a low temperature. The present invention relates to a hot pressing method performed in a range, a hot pressing method performed at a low pressure, and a method for producing a boron carbide-aluminum nitride sintered body by pressureless sintering.
【0002】[0002]
【従来の技術】炭化硼素焼結体は、軽量で高い硬度を有
し、耐摩耗性や耐腐食性に優れた材料であり、現状では
サンドブラストノズル、線引きダイス、押し出しダイス
等に使用されている。しかしながら、炭化硼素焼結体は
難焼結性であることから、通常2100℃以上の高い温
度領域、30MPa以上の大きな加圧下にてホットプレ
ス法により作製される。この製造方法は、生産コストが
高いことから炭化硼素焼結体の一般的な応用を妨げてい
る。2. Description of the Related Art Boron carbide sintered bodies are lightweight, have high hardness, and are excellent in wear resistance and corrosion resistance, and are currently used for sandblast nozzles, wire drawing dies, extrusion dies, etc. . However, since the boron carbide sintered body is difficult to sinter, it is usually produced by the hot pressing method under a high temperature range of 2100 ° C. or higher and a large pressure of 30 MPa or higher. This production method hampers the general application of the boron carbide sintered body because of the high production cost.
【0003】これに対して、特開昭59‐184767
号公報では、炭化硼素に焼結助剤としてAl、Al合金
及びAl化合物を添加している。しかしながら、真空ま
たは不活性ガス雰囲気にて常圧焼結を行う間にAl、A
l合金及びAl化合物が分解・蒸発し、炭化硼素焼結体
中にはこれらの焼結助剤は0.2重量%以下しか残存し
ない。この為十分に焼結性が改善できないだけではな
く、焼結助剤の分解・蒸発による重量減少により、95
%以上の相対密度は得られない。On the other hand, JP-A-59-184767
In the publication, Al, Al alloys and Al compounds are added to boron carbide as sintering aids. However, while performing atmospheric pressure sintering in a vacuum or an inert gas atmosphere, Al, A
The 1 alloy and the Al compound are decomposed and evaporated, and these sintering aids remain in the boron carbide sintered body in an amount of 0.2% by weight or less. For this reason, not only the sinterability cannot be improved sufficiently, but also the weight is reduced due to the decomposition and evaporation of the sintering aid.
% Relative densities cannot be obtained.
【0004】上記の様に、炭化硼素焼結体は難焼結性で
あることから、高密度で高強度のものが安価に提供する
ことができず、現状では極めて限定された用途にのみ適
用されているにすぎない。As described above, since the boron carbide sintered body is difficult to sinter, it is not possible to provide a high density and high strength one at a low cost, and at present, it is applied only to extremely limited uses. It is only being done.
【0005】[0005]
【発明が解決しようとする課題】即ち、本発明の目的
は、焼結体相対密度が95%以上の相対密度を有するこ
とを特徴とする炭化硼素−窒化アルミニウム焼結体、さ
らに600MPa以上の四点曲げ強度を有する炭化硼素
−窒化アルミニウム焼結体を安価に提供することにあ
る。That is, an object of the present invention is to provide a boron carbide-aluminum nitride sintered body characterized in that the relative density of the sintered body is 95% or more, and further, it is four MPa of 600 MPa or more. It is to provide a boron carbide-aluminum nitride sintered body having point bending strength at low cost.
【0006】[0006]
【課題を解決するための手段】本発明者は、前記目的を
達成するべくいろいろ検討した結果、炭化硼素粉末に窒
化アルミニウムを添加した混合原料について、前記窒化
アルミニウムが焼結過程において分解・蒸発しないよう
に特定な条件を保ちながら前記混合原料を加熱するとき
に、前記窒化アルミニウムが有する炭化硼素の焼結助剤
としての機能を発揮させることができ、その結果、極め
て良好に焼結することができ、高密度で、高強度の炭化
硼素系焼結体を得ることができるという知見を得て、本
発明に至ったものである。As a result of various studies to achieve the above-mentioned object, the present inventor has found that the aluminum nitride does not decompose or evaporate in the sintering process in a mixed raw material obtained by adding aluminum nitride to boron carbide powder. As described above, when the mixed raw material is heated while maintaining specific conditions, it is possible to exert the function of the boron carbide contained in the aluminum nitride as a sintering aid, and as a result, it is possible to sinter extremely well. The present invention has been accomplished based on the finding that a high-density, high-strength boron carbide-based sintered body can be obtained.
【0007】即ち、本発明は、炭化硼素(B4C)9
9.5〜70mol%と窒化アルミニウム(AlN)を
0.5〜30mol%とからなり、相対密度が95%以
上であることを特徴とする炭化硼素−窒化アルミニウム
焼結体であり、好ましくは、600MPa以上の四点曲
げ強度を有することを特徴とする前記の炭化硼素−窒化
アルミニウム焼結体である。That is, the present invention relates to boron carbide (B 4 C) 9
A boron carbide-aluminum nitride sintered body characterized by comprising 9.5 to 70 mol% and aluminum nitride (AlN) of 0.5 to 30 mol% and having a relative density of 95% or more, preferably, The above-mentioned boron carbide-aluminum nitride sintered body having a four-point bending strength of 600 MPa or more.
【0008】また、本発明は、95%以上の相対密度を
有する炭化硼素−窒化アルミニウム焼結体の製造方法で
あって、炭化硼素粉末に窒化アルミニウム粉末を0.5
〜30mol%添加し、混合した後に、窒化アルミニウ
ムの分解が生じない雰囲気下で焼結することを特徴とす
る炭化硼素−窒化アルミニウム焼結体の製造方法であ
り、好ましくは、1600℃以上、2200℃以下の温
度範囲で、20MPaを超えて60MPa以下の加圧力
にてホットプレス焼結することを特徴とする前記の炭化
硼素−窒化アルミニウム焼結体の製造方法であり、更に
好ましくは、平均粒径(D50)が1μm以下で、最大粒
子径が5μm以下であり、しかも比表面積が15m2/
g以上である炭化硼素粉末を用い、ホットプレス焼結を
行って、600MPa以上の四点曲げ強度を有する焼結
体を作製することを特徴とする前記の炭化硼素−窒化ア
ルミニウム焼結体の製造方法である。Further, the present invention is a method for producing a boron carbide-aluminum nitride sintered body having a relative density of 95% or more, wherein the boron carbide powder is 0.5% aluminum nitride powder.
A method for producing a boron carbide-aluminum nitride sintered body, which comprises adding 30 mol% to 30 mol% and mixing, and then sintering the mixture in an atmosphere in which decomposition of aluminum nitride does not occur, preferably 1600 ° C. or higher, 2200 The method for producing a boron carbide-aluminum nitride sintered body described above, which comprises performing hot press sintering at a pressure of more than 20 MPa and less than 60 MPa in a temperature range of 0 ° C. or less, more preferably an average grain size. The diameter (D 50 ) is 1 μm or less, the maximum particle size is 5 μm or less, and the specific surface area is 15 m 2 /
Production of the above-mentioned boron carbide-aluminum nitride sintered body, characterized in that hot pressing sintering is carried out using a boron carbide powder of g or more to produce a sintered body having a four-point bending strength of 600 MPa or more. Is the way.
【0009】加えて、本発明は、1900℃以上、22
00℃以下の温度範囲で、20MPa以下の加圧力にて
ホットプレス焼結することを特徴とする前記の炭化硼素
−窒化アルミニウム焼結体の製造方法であり、或いは、
1900℃以上、2200℃以下の温度範囲で、常圧焼
結することを特徴とする前記の炭化硼素−窒化アルミニ
ウム焼結体の製造方法である。[0009] In addition, the present invention, 1900 ℃ or more, 22
A method for producing the above-mentioned boron carbide-aluminum nitride sintered body, which comprises performing hot press sintering at a pressure of 20 MPa or less in a temperature range of 00 ° C or less, or
The method for producing a boron carbide-aluminum nitride sintered body is characterized by performing atmospheric pressure sintering in a temperature range of 1900 ° C. or higher and 2200 ° C. or lower.
【0010】[0010]
【発明の実態の形態】以下、本発明を詳細に説明する。DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below.
【0011】本発明は、前述したとおりに、本発明者が
高密度、高強度の炭化硼素質焼結体を得るべくいろいろ
実験的に検討した結果、炭化硼素粉末に窒化アルミニウ
ムを添加した混合原料について、前記窒化アルミニウム
が焼結過程において分解・蒸発しないように特定な条件
を保ちながら前記混合原料を加熱するときに、前記窒化
アルミニウムが有する炭化硼素の焼結助剤としての機能
を発揮させることができ、その結果、極めて良好に焼結
することができ、高密度で、高強度の炭化硼素系焼結体
を得ることができるという新しい知見に基づいたもので
ある。As described above, the present invention has conducted various experiments to obtain a high-density and high-strength boron carbide sintered body, and as a result, the present invention has revealed that a mixed raw material obtained by adding aluminum nitride to boron carbide powder. With respect to the above, when the mixed raw material is heated while maintaining specific conditions so that the aluminum nitride does not decompose or evaporate in the sintering process, the aluminum nitride has a function as a sintering aid of boron carbide. It is based on the new finding that a boron carbide based sintered body having a high density and a high strength can be obtained as a result.
【0012】つまり、炭化硼素粉末に焼結性を改善する
為に焼結助剤として窒化アルミニウム粉末を0.5〜3
0mol%添加し、焼結中に窒化アルミニウムが分解・
蒸発しない雰囲気下で焼結を行うことによって、窒化ア
ルミニウム粉末の表面付近の一部が炭化硼素粉末と反応
して粒界反応相を形成し、焼結中の拡散を活性化するこ
とから焼結を促進させることができる。ところが、従来
公知の技術においては、真空中や不活性雰囲気で焼結を
行っているために、窒化アルミニウムが分解(2AlN
→2Al+N2)して、助剤としての効果が充分に発揮
されないばかりでなく、N2とともにAl分も蒸発して
大きな重量減少が生じ、十分に緻密な焼結体が得られな
い。That is, in order to improve the sinterability of the boron carbide powder, 0.5 to 3 of aluminum nitride powder is added as a sintering aid.
Add 0 mol% to decompose aluminum nitride during sintering.
When sintering is performed in an atmosphere that does not evaporate, a part of the surface of the aluminum nitride powder reacts with the boron carbide powder to form a grain boundary reaction phase, which activates diffusion during sintering, which results in sintering. Can be promoted. However, in the conventionally known technique, aluminum nitride is decomposed (2AlN) because it is sintered in a vacuum or in an inert atmosphere.
→ 2Al + N 2 ), and not only the effect as an auxiliary agent is not sufficiently exhibited, but also the Al content is evaporated together with N 2 to cause a large weight reduction, and a sufficiently dense sintered body cannot be obtained.
【0013】本発明では、焼結温度において、窒化アル
ミニウムの分解N2圧以上になる様に、不活性ガス中に
N2ガスを導入することによって、焼結過程にある原料
粉末中の窒化アルミニウムの分解・蒸発を防ぐことがで
き、その結果として高密度で高強度の炭化硼素系焼結体
が再現性高く、従って安定して提供することができる。In the present invention, the N 2 gas is introduced into the inert gas so that the decomposition temperature of the aluminum nitride becomes equal to or higher than the N 2 pressure at the sintering temperature, so that the aluminum nitride contained in the raw material powder in the sintering process. Can be prevented from decomposing and evaporating, and as a result, a high-density and high-strength boron carbide-based sintered body can be provided with high reproducibility and thus can be stably provided.
【0014】即ち、本発明の焼結体は、炭化硼素(B4
C)99.5〜70mol%と窒化アルミニウム(Al
N)を0.5〜30mol%とからなり、相対密度が9
5%以上であることを特徴とする炭化硼素−窒化アルミ
ニウム焼結体である。ここで、窒化アルミニウム(Al
N)の焼結体中での量を前記範囲と定める理由は、0.
5mol%未満では実用的な焼結スケジュールの中で焼
結助剤としての効果を発揮するには充分でないことがあ
るし、30mol%を超える場合には、得られる焼結体
が、炭化硼素焼結体の特性である軽量、高硬度で、耐摩
耗性や耐腐食性に優れるという特性、特に高弾性である
という特性、が維持し難くなるからである。また、相対
密度が95%未満のものは強度が低く、実用に供するに
際して用途が限定されるためである。That is, the sintered body of the present invention comprises boron carbide (B 4
C) 99.5 to 70 mol% and aluminum nitride (Al
N) in an amount of 0.5 to 30 mol% and a relative density of 9
It is a boron carbide-aluminum nitride sintered body characterized by being 5% or more. Here, aluminum nitride (Al
The reason for defining the amount of N) in the sintered body within the above range is 0.
If it is less than 5 mol%, it may not be sufficient to exert the effect as a sintering aid in a practical sintering schedule, and if it exceeds 30 mol%, the obtained sintered body may have a boron carbide firing property. This is because it is difficult to maintain the properties of the bound body that are light weight, high hardness, excellent in wear resistance and corrosion resistance, and particularly high elasticity. Further, when the relative density is less than 95%, the strength is low, and the application is limited when it is put to practical use.
【0015】更に、本発明の焼結体は、好ましい実施態
様として、600MPa以上の四点曲げ強度を有するの
で、サンドブラストノズル、線引きダイス、押し出しダ
イス等の従来公知の用途に好適であるし、さらに前記用
途以外への用途に適用することができる。Furthermore, since the sintered body of the present invention has a four-point bending strength of 600 MPa or more in a preferred embodiment, it is suitable for conventionally known applications such as sandblast nozzles, wire drawing dies and extrusion dies. It can be applied to applications other than the above applications.
【0016】本発明の焼結体は、後述する本発明の製造
方法によれば再現性高く、安定して得ることができる
が、前記要件を満足するならばならば前記製法に限定さ
れる必要はない。The sintered body of the present invention can be stably obtained with high reproducibility according to the production method of the present invention described below, but if the above requirements are satisfied, the production method is required to be limited to the above production method. There is no.
【0017】本発明の製造方法は、95%以上の相対密
度を有する炭化硼素−窒化アルミニウム焼結体の製造方
法であって、炭化硼素粉末に窒化アルミニウム粉末を
0.5〜30mol%添加し、混合した後に、窒化アル
ミニウムの分解が生じない雰囲気下で焼結することを特
徴としている。ここで、窒化アルミニウム粉末の配合量
に関しては、本発明に焼結体において述べた理由の通り
である。窒化アルミニウムの分解が生じない雰囲気とし
ては、通常は窒素或いはアンモニア等の窒素含有ガスを
用いて、焼結温度において、窒素分圧が窒化アルミニウ
ムの分解圧よりも高くなるようにすれば良いが、過大な
窒素圧を加えた場合に高温下で炉を構成する材料と反応
するなどの弊害が生じることをさけるために、通常は、
アルゴンやヘリウム等の不活性ガスに窒素又はアンモニ
アを添加する方法が利用される。The manufacturing method of the present invention is a method for manufacturing a boron carbide-aluminum nitride sintered body having a relative density of 95% or more, in which 0.5 to 30 mol% of aluminum nitride powder is added to boron carbide powder, It is characterized in that after mixing, sintering is performed in an atmosphere in which decomposition of aluminum nitride does not occur. Here, the compounding amount of the aluminum nitride powder is as described in the present invention regarding the sintered body. As an atmosphere in which decomposition of aluminum nitride does not occur, a nitrogen-containing gas such as nitrogen or ammonia is usually used, and at the sintering temperature, the nitrogen partial pressure may be higher than the decomposition pressure of aluminum nitride, In order to avoid adverse effects such as reaction with the materials that make up the furnace at high temperatures when excessive nitrogen pressure is applied,
A method of adding nitrogen or ammonia to an inert gas such as argon or helium is used.
【0018】本発明に用いる炭化硼素粉末は、レーザー
回折散乱分析計(マイクロトラック)にて測定した平均
粒径(D50):10μm以下のものである。平均粒径
(D50)が10μmより大きいと焼結性が劣り、緻密な
焼結体が得られないことがある。また、比表面積(BE
T)については、2m2/g以上の炭化硼素粉末を用い
ることができる。The boron carbide powder used in the present invention has an average particle diameter (D 50 ) measured by a laser diffraction / scattering analyzer (Microtrac): 10 μm or less. When the average particle diameter (D 50 ) is larger than 10 μm, the sinterability is poor and a dense sintered body may not be obtained. In addition, the specific surface area (BE
Regarding T), it is possible to use a boron carbide powder of 2 m 2 / g or more.
【0019】本発明において、第1の実施態様は、16
00℃以上2200℃以下の温度範囲で20MPaを超
えて60MPa以下の加圧力にてホットプレス焼結する
ことを特徴とし、第2の実施態様は、1900℃以上2
200℃以下の温度範囲で20MPa以下の加圧力にて
ホットプレス焼結することを特徴とし、第3の実施態様
は、1900℃以上2200℃以下の温度範囲で常圧焼
結することを特徴としている。In the present invention, the first embodiment is 16
The second embodiment is characterized in that hot press sintering is performed at a pressure of more than 20 MPa and less than 60 MPa in a temperature range of 00 ° C. or more and 2200 ° C. or less.
The present invention is characterized in that hot press sintering is performed at a pressure of 20 MPa or less in a temperature range of 200 ° C. or lower, and the third embodiment is characterized by performing normal pressure sintering in a temperature range of 1900 ° C. or higher and 2200 ° C. or lower. There is.
【0020】まず、第1の実施態様は、加圧力を高く維
持しながら焼結する方法であり、高密度、高強度の特性
を有する焼結体を安定して得られる特徴がある。更に、
この場合において、原料の炭化硼素粉末として、平均粒
径(D50)が1μm以下で、最大粒子径が5μm以下で
あり、しかも比表面積が15m2/g以上であるものを
選択するとき、四点曲げ強さが600MPa以上の四点
曲げ強さを有する焼結体を安定して得ることができる。First, the first embodiment is a method of sintering while maintaining a high pressing force, and is characterized in that a sintered body having characteristics of high density and high strength can be stably obtained. Furthermore,
In this case, when selecting a raw material boron carbide powder having an average particle diameter (D 50 ) of 1 μm or less, a maximum particle diameter of 5 μm or less, and a specific surface area of 15 m 2 / g or more, A sintered body having a four-point bending strength of 600 MPa or more can be stably obtained.
【0021】第2の実施形態は、加圧力を20MPa以
下の低い加圧力下で焼結させることを特徴としており、
過大な加圧装置を必要とせずに、比較的高密度の焼結体
を得ることができる。又、従来のホットプレス装置を適
用する際に、大きな加圧力を必要とするがために製品形
状が制約されるといった問題が回避でき、従来の装置を
そのまま用いて大きなサイズの製品を得ることができる
特徴がある。The second embodiment is characterized by sintering under a low pressure of 20 MPa or less,
A relatively high density sintered body can be obtained without requiring an excessive pressurizing device. Further, when applying a conventional hot press device, it is possible to avoid the problem that the product shape is restricted because a large pressing force is required, and it is possible to obtain a large size product by using the conventional device as it is. There is a feature that can be done.
【0022】第3の実施態様は、粉末或いは粉末をプレ
ス、押出、射出成形等の従来公知の技術により成形して
得られる成形品を加圧することなく焼結させる方法であ
り、前記第2の実施態様によるよりも一層安価で大量に
焼結体を提供できる特徴がある。更に、焼結過程におい
て加圧することが無いので、予め原料を複雑な製品形状
或いはそれに近い形状としておいてから焼結することの
み、或いは若干の加工等の後処理するのみで複雑形状の
製品をえることができる特徴がある。The third embodiment is a method of sintering a powder or a molded product obtained by molding the powder by a conventionally known technique such as pressing, extrusion and injection molding without pressurizing. There is a feature that a large amount of sintered bodies can be provided at a lower cost than in the embodiment. Further, since no pressure is applied during the sintering process, the raw material is made into a complicated product shape or a shape close to it in advance, and then only the sintering is performed, or a post-treatment such as some processing is performed to obtain a product having a complicated shape. There are features that can be obtained.
【0023】本発明において、焼結温度の範囲として1
600℃以上2200℃以下が選択される。1600℃
未満では充分に焼結が進行せずに緻密な焼結体が得難い
し、2200℃を超える温度では、得られる焼結体中の
炭化硼素が粒成長したり、又窒化アルミニウムの分解が
抑え難くなる等の問題が発生する。In the present invention, the sintering temperature range is 1
600 ° C. or more and 2200 ° C. or less are selected. 1600 ° C
If the temperature is less than the above, it is difficult to obtain a dense sintered body because the sintering does not proceed sufficiently, and if the temperature exceeds 2200 ° C, it is difficult to suppress the grain growth of boron carbide in the obtained sintered body and the decomposition of aluminum nitride. There will be problems such as
【0024】また、本発明において、本発明者は、実験
的検討結果に拠り、焼結方法、焼結温度、並びに原料粒
度により、得られる焼結体物性が影響されることを見出
している。即ち、前記の第1の場合において、前述の通
りに、原料の炭化硼素粉末が平均粒径(D50)が1μm
以下で、最大粒子径が5μm以下であり、しかも比表面
積が15m2/g以上であるものを選択するとき、四点
曲げ強さが600MPa以上の四点曲げ強さを有する焼
結体を安定して得ることができること、そして、前記高
強度の焼結体を得るためには炭化硼素の結晶成長を抑え
るために焼結温度として1600℃以上2000℃以下
が好ましい範囲であること、又、第2、第3の実施態様
の場合、つまり加圧力を20MPa以下に保ちながら焼
結する場合には焼結温度として1900〜2200℃が
好ましい範囲であること等である。Further, in the present invention, the present inventor has found that the physical properties of the obtained sintered body are influenced by the sintering method, the sintering temperature, and the grain size of the raw material, based on the results of the experimental study. That is, in the first case, as described above, the raw material boron carbide powder has an average particle diameter (D 50 ) of 1 μm.
In the following, when selecting a material having a maximum particle size of 5 μm or less and a specific surface area of 15 m 2 / g or more, a sintered body having a four-point bending strength of four-point bending strength of 600 MPa or more is stable. In order to obtain the above-mentioned high-strength sintered body, the sintering temperature is preferably in the range of 1600 ° C. to 2000 ° C. in order to suppress the crystal growth of boron carbide. In the case of the second and third embodiments, that is, when sintering is performed while maintaining the applied pressure at 20 MPa or less, the sintering temperature is preferably 1900 to 2200 ° C.
【0025】[0025]
【実施例】〔実施例1〕[Example] [Example 1]
【0026】表1に示す物性を有する炭化硼素粉末Aに
平均粒径(D50):0.7μmの窒化アルミニウム粉末
を10mol%配合し、メタノール溶媒を用いて、炭化
珪素(SiC)製遊星ボールミルにて回転数:185r
pm、30分の混合を行った後、エボポレーターで乾燥
させ、更に150℃、24時間の乾燥を行った後に、開
き目250μmのふるいにとおして、炭化硼素−窒化ア
ルミニウム混合粉末を調製した。A boron carbide powder A having the physical properties shown in Table 1 was mixed with 10 mol% of an aluminum nitride powder having an average particle diameter (D 50 ) of 0.7 μm, and a methanol solvent was used to make a silicon carbide (SiC) planetary ball mill. Rotation speed: 185r
After mixing pm for 30 minutes, the mixture was dried by an evaporator, further dried at 150 ° C. for 24 hours, and then passed through a sieve having openings of 250 μm to prepare a boron carbide-aluminum nitride mixed powder.
【0027】[0027]
【表1】
黒鉛製ダイス中に炭化硼素−窒化アルミニウム混合粉末
を充填し、7.5MPaで成形した後、焼成炉に取り付
けた。10MPaに加圧した状態にて、拡散ポンプを用
いて2.0×10-1〜2.0×10-2Paの圧力に真空
引きをしながら、40℃/minの昇温速度にて加熱を
行った。1000℃に到達した時に真空引きを終了して
Arガスを流量:2リットル/minで導入した。17
00℃において、窒化アルミニウムの分解圧(N2分
圧)は、6.2×10-6MPaであることから、焼成炉
中のN2分圧が3.1×10-4MPaになる様、N2ガス
を0.006リットル/minの流量にて導入してガス
圧力:0.103MPaの雰囲気とし、1500℃まで
加熱した。1500℃から1700℃までは10℃/m
inの昇温速度にて加熱した。1700℃に到達した
後、加圧力を50MPaに上げて1時間保持し焼結を行
って炭化硼素−窒化アルミニウム焼結体を作製した。[Table 1] A graphite die was filled with a boron carbide-aluminum nitride mixed powder, molded at 7.5 MPa, and then mounted in a firing furnace. While pressurizing to 10 MPa, heating at a temperature rising rate of 40 ° C./min while evacuating to a pressure of 2.0 × 10 −1 to 2.0 × 10 −2 Pa using a diffusion pump. I went. When the temperature reached 1000 ° C., the evacuation was terminated and Ar gas was introduced at a flow rate of 2 liter / min. 17
At 00 ° C., the decomposition pressure (N 2 partial pressure) of aluminum nitride is 6.2 × 10 −6 MPa, so the N 2 partial pressure in the firing furnace should be 3.1 × 10 −4 MPa. , N 2 gas was introduced at a flow rate of 0.006 liter / min to create an atmosphere of gas pressure: 0.103 MPa and heated to 1500 ° C. 10 ℃ / m from 1500 ℃ to 1700 ℃
It heated at the temperature rising rate of in. After reaching 1700 ° C., the applied pressure was raised to 50 MPa and the pressure was maintained for 1 hour for sintering to produce a boron carbide-aluminum nitride sintered body.
【0028】炭化硼素−窒化アルミニウム焼結体の四点
曲げ強度をJIS R1601に基づいて測定した。テ
ストピースの表面は、平面研削盤 400番にて仕上げ
た。また、アルキメデス法にてテストピースの密度を測
定し、相対密度を計算した。テストピースの表面をラッ
ピングし、エッチング処理を行った後にSEM観察を行
い炭化硼素の最大粒子のサイズをもとめた。更にX線回
折法により、焼結体中の結晶相の同定を行った。結果を
表2に示す。The four-point bending strength of the boron carbide-aluminum nitride sintered body was measured according to JIS R1601. The surface of the test piece was finished with a surface grinder No. 400. Moreover, the density of the test piece was measured by the Archimedes method, and the relative density was calculated. After lapping the surface of the test piece and performing etching treatment, SEM observation was performed to find the size of the largest particles of boron carbide. Further, the crystal phase in the sintered body was identified by the X-ray diffraction method. The results are shown in Table 2.
【0029】[0029]
【表2】
評価の結果、作製した炭化硼素−窒化アルミニウム焼結
体は、2.50g/cm3の密度,98.0%の相対密
度を有し、最大粒子サイズは2.7μmであり、615
MPaの四点曲げ強度が得られた。また、結晶相は、炭
化硼素相の他に窒化アルミニウム相を検出した。
〔実施例2〜3〕[Table 2] As a result of the evaluation, the produced boron carbide-aluminum nitride sintered body had a density of 2.50 g / cm 3 , a relative density of 98.0%, and a maximum particle size of 2.7 μm.
A four-point bending strength of MPa was obtained. As the crystal phase, an aluminum nitride phase was detected in addition to the boron carbide phase. [Examples 2 to 3]
【0030】表1に示す物性を有する炭化硼素粉末B及
びCを用い、窒化アルミニウム粉末を7mol%配合し
たこと以外は実施例1と同様な手順にて、炭化硼素−窒
化アルミニウム混合粉末を調製した。実施例1と同様の
手順で1000℃まで加熱を行い、Arガスを導入し
た。2000℃において、窒化アルミニウムの分解圧
(N2分圧)は、0.0013MPaであることから、
焼成炉中のN2分圧が0.0040MPaになる様、N2
ガスを0.08リットル/minの流量にて導入した。
ホットプレス温度:2000℃、焼結中の加圧力:10
MPa以外は実施例1と同様な手順にて焼結を行って、
炭化硼素−窒化アルミニウム焼結体を作製し、実施例1
と同様な手順にて、焼結体密度の測定、結晶相の同定を
行った。評価の結果を表2に示す。何れの実施例も95
%以上の高い密度を有しており、窒化アルミニウム相が
検出された。
〔比較例1〕A boron carbide-aluminum nitride mixed powder was prepared by the same procedure as in Example 1 except that the boron carbide powders B and C having the physical properties shown in Table 1 were used and the aluminum nitride powder was blended in an amount of 7 mol%. . Heating was performed to 1000 ° C. in the same procedure as in Example 1, and Ar gas was introduced. At 2000 ° C., the decomposition pressure (N 2 partial pressure) of aluminum nitride is 0.0013 MPa,
As N 2 partial pressure in the sintering furnace is 0.0040MPa, N 2
Gas was introduced at a flow rate of 0.08 liter / min.
Hot pressing temperature: 2000 ° C., pressing force during sintering: 10
Sintering was performed by the same procedure as in Example 1 except for MPa,
A boron carbide-aluminum nitride sintered body was prepared, and Example 1 was prepared.
The sintered body density was measured and the crystal phase was identified by the same procedure as described above. The evaluation results are shown in Table 2. Both examples are 95
The aluminum nitride phase was detected with a high density of at least%. [Comparative Example 1]
【0031】窒化アルミニウム粉末を添加しなかったこ
と以外は、実施例2と同様な手順にて炭化硼素焼結体を
作製し、評価を行った。その結果を表2に示す。比較例
1の焼結体は77.0%と低い密度となった。
〔実施例4〕A boron carbide sintered body was prepared and evaluated in the same procedure as in Example 2 except that the aluminum nitride powder was not added. The results are shown in Table 2. The sintered body of Comparative Example 1 had a low density of 77.0%. [Example 4]
【0032】実施例1と同様な手順にて、炭化硼素−窒
化アルミニウム混合粉末を調製した。20MPaにて金
型成形した後、200MPaのCIP成形を行って成形
体を作製した。成形体を黒鉛製容器に入れ、加圧力をか
けずに常圧の状態にて、実施例1と同様の手順で100
0℃まで加熱を行い、Arガスを導入した。焼結温度の
2000℃において、窒化アルミニウムの分解圧(N2
分圧)は、0.0013MPaであることから、焼成炉
中のN2分圧が0.0040MPaになる様、N2ガスを
0.08リットル/minの流量にて導入した。実施例
1と同様な手順にて2000℃に温度を上げて、常圧焼
結を行って炭化硼素−窒化アルミニウム焼結体を作製
し、実施例1と同様な手順にて、焼結体密度の測定、結
晶相の同定を行った。評価の結果を表3に示す。実施例
は、95%以上の高い密度を有しており、窒化アルミニ
ウム相が検出された。A boron carbide-aluminum nitride mixed powder was prepared in the same procedure as in Example 1. After mold molding at 20 MPa, CIP molding at 200 MPa was performed to produce a molded body. The molded body was placed in a graphite container and subjected to 100% by the same procedure as in Example 1 under normal pressure without applying pressure.
It heated up to 0 degreeC and introduced Ar gas. At the sintering temperature of 2000 ° C., the decomposition pressure of aluminum nitride (N 2
Since the partial pressure) is 0.0013 MPa, N 2 gas was introduced at a flow rate of 0.08 liter / min so that the N 2 partial pressure in the firing furnace would be 0.0040 MPa. In the same procedure as in Example 1, the temperature was raised to 2000 ° C. and pressureless sintering was performed to produce a boron carbide-aluminum nitride sintered body. In the same procedure as in Example 1, the sintered body density was obtained. Was measured and the crystal phase was identified. Table 3 shows the evaluation results. The example has a high density of 95% or more, and the aluminum nitride phase was detected.
【0033】[0033]
【表3】 〔比較例2〕[Table 3] [Comparative Example 2]
【0034】焼結中にN2ガスの導入を行わなかったこ
と以外は実施例4と同様な手順にて、炭化硼素焼結体を
作製し、評価を行った。その結果を表3に示すが、比較
例2の焼結体は92.9%と低い相対密度であり、窒化
アルミニウム相は検出されなかった。A boron carbide sintered body was prepared and evaluated by the same procedure as in Example 4 except that N 2 gas was not introduced during sintering. The results are shown in Table 3. The relative density of the sintered body of Comparative Example 2 was as low as 92.9%, and the aluminum nitride phase was not detected.
【0035】[0035]
【発明の効果】本発明の炭化硼素−窒化アルミニウム焼
結体は、従来技術に比べて安価なプロセスで作製するこ
とができ、摺動部品,切削工具や新しい耐摩耗性部品
等、いろいろな用途で用いられることができ、産業上有
用である。INDUSTRIAL APPLICABILITY The boron carbide-aluminum nitride sintered body of the present invention can be manufactured by an inexpensive process as compared with the prior art, and has various applications such as sliding parts, cutting tools and new wear resistant parts. And is industrially useful.
フロントページの続き Fターム(参考) 4G001 BA23 BA36 BB23 BB36 BC13 BC42 BC52 BC54 BC55 BC56 BD11 BD12 BD14 Continued front page F-term (reference) 4G001 BA23 BA36 BB23 BB36 BC13 BC42 BC52 BC54 BC55 BC56 BD11 BD12 BD14
Claims (7)
%と窒化アルミニウム(AlN)を0.5〜30mol
%とからなり、相対密度が95%以上であることを特徴
とする炭化硼素−窒化アルミニウム焼結体。1. Boron carbide (B 4 C) 99.5 to 70 mol
% And aluminum nitride (AlN) 0.5 to 30 mol
%, And a relative density of 95% or more, a boron carbide-aluminum nitride sintered body.
ことを特徴とする請求項1記載の炭化硼素−窒化アルミ
ニウム焼結体。2. The boron carbide-aluminum nitride sintered body according to claim 1, which has a four-point bending strength of 600 MPa or more.
窒化アルミニウム焼結体の製造方法であって、炭化硼素
粉末に窒化アルミニウム粉末を0.5〜30mol%添
加し、混合した後に、窒化アルミニウムの分解が生じな
い雰囲気下で焼結することを特徴とする炭化硼素−窒化
アルミニウム焼結体の製造方法。3. Boron carbide having a relative density of 95% or more
A method for producing an aluminum nitride sintered body, which comprises adding 0.5 to 30 mol% of aluminum nitride powder to boron carbide powder, mixing them, and then sintering in an atmosphere in which decomposition of aluminum nitride does not occur. A method of manufacturing a boron carbide-aluminum nitride sintered body.
囲で、20MPaを超えて60MPa以下の加圧力にて
ホットプレス焼結することを特徴とする請求項3記載の
炭化硼素−窒化アルミニウム焼結体の製造方法。4. The boron carbide-aluminum nitride sintering according to claim 3, wherein hot press sintering is performed in a temperature range of 1600 ° C. or higher and 2200 ° C. or lower at a pressure of more than 20 MPa and 60 MPa or less. Body manufacturing method.
子径が5μm以下であり、しかも比表面積が15m2/
g以上である炭化硼素粉末を用い、ホットプレス焼結を
行って、600MPa以上の四点曲げ強度を有する焼結
体を作製することを特徴とする請求項4記載の炭化硼素
−窒化アルミニウム焼結体の製造方法。5. An average particle diameter (D 50 ) of 1 μm or less, a maximum particle diameter of 5 μm or less, and a specific surface area of 15 m 2 /
5. A boron carbide-aluminum nitride sintered body according to claim 4, wherein a boron carbide powder of g or more is used to perform hot press sintering to produce a sintered body having a four-point bending strength of 600 MPa or more. Body manufacturing method.
囲で、20MPa以下の加圧力にてホットプレス焼結す
ることを特徴とする請求項3記載の炭化硼素−窒化アル
ミニウム焼結体の製造方法。6. The method for producing a boron carbide-aluminum nitride sintered body according to claim 3, wherein hot press sintering is performed at a pressure of 20 MPa or less in a temperature range of 1900 ° C. or more and 2200 ° C. or less. .
囲で、常圧焼結することを特徴とする請求項3記載の炭
化硼素−窒化アルミニウム焼結体の製造方法。7. The method for producing a boron carbide-aluminum nitride sintered body according to claim 3, wherein the pressureless sintering is performed in a temperature range of 1900 ° C. or higher and 2200 ° C. or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001327508A JP3992474B2 (en) | 2001-10-25 | 2001-10-25 | Method for producing boron carbide-aluminum nitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001327508A JP3992474B2 (en) | 2001-10-25 | 2001-10-25 | Method for producing boron carbide-aluminum nitride sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003137655A true JP2003137655A (en) | 2003-05-14 |
JP3992474B2 JP3992474B2 (en) | 2007-10-17 |
Family
ID=19143728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001327508A Expired - Fee Related JP3992474B2 (en) | 2001-10-25 | 2001-10-25 | Method for producing boron carbide-aluminum nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3992474B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7557054B2 (en) | 2006-02-27 | 2009-07-07 | Kyocera Corporation | Boron carbide sintered body and protective member |
EP2165990A1 (en) * | 2007-06-15 | 2010-03-24 | Mino Ceramic CO., LTD. | Dense boron carbide ceramic and process for producing the same |
CN105761773A (en) * | 2016-03-07 | 2016-07-13 | 镇江纽科利核能新材料科技有限公司 | Preparation method for neutron absorption material in storage transportation of spent fuel |
CN109608199A (en) * | 2018-10-09 | 2019-04-12 | 江苏新伊菲科技有限公司 | A kind of preparation method of the modified boron carbide composite ceramic of nitride |
-
2001
- 2001-10-25 JP JP2001327508A patent/JP3992474B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7557054B2 (en) | 2006-02-27 | 2009-07-07 | Kyocera Corporation | Boron carbide sintered body and protective member |
EP2165990A1 (en) * | 2007-06-15 | 2010-03-24 | Mino Ceramic CO., LTD. | Dense boron carbide ceramic and process for producing the same |
EP2165990A4 (en) * | 2007-06-15 | 2011-04-20 | Mino Ceramic Co Ltd | Dense boron carbide ceramic and process for producing the same |
US8883069B2 (en) | 2007-06-15 | 2014-11-11 | Mino Ceramic Co., Ltd. | Dense boron carbide ceramic and process for producing the same |
CN105761773A (en) * | 2016-03-07 | 2016-07-13 | 镇江纽科利核能新材料科技有限公司 | Preparation method for neutron absorption material in storage transportation of spent fuel |
CN105761773B (en) * | 2016-03-07 | 2017-09-29 | 镇江纽科利核能新材料科技有限公司 | The preparation method of spentnuclear fuel storing neutron absorber material |
CN109608199A (en) * | 2018-10-09 | 2019-04-12 | 江苏新伊菲科技有限公司 | A kind of preparation method of the modified boron carbide composite ceramic of nitride |
Also Published As
Publication number | Publication date |
---|---|
JP3992474B2 (en) | 2007-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5444384B2 (en) | High thermal conductivity aluminum nitride sintered body | |
JP5528802B2 (en) | Dense boron carbide ceramics and method for producing the same | |
WO1997003031A1 (en) | Aluminum nitride sinter and process for the production thereof | |
WO2003040060A1 (en) | Boron carbide based sintered compact and method for preparation thereof | |
US20030176270A1 (en) | Process for producing ceramic bearing components | |
JP2005281084A (en) | Sintered compact and manufacturing method therefor | |
JP2003137655A (en) | Boron carbide-aluminum nitride sintered compact, and production method therefor | |
JP2000154062A (en) | Boron carbide sintered compact and its production | |
JPH07172921A (en) | Aluminum nitride sintered material and its production | |
JP2006348386A (en) | Method for producing composite material | |
JPS6212663A (en) | Method of sintering b4c base fine body | |
JP4542747B2 (en) | Manufacturing method of high strength hexagonal boron nitride sintered body | |
JPS6332750B2 (en) | ||
JP2000203955A (en) | Production of diamond-silicon carbide composite sintered body | |
JP3132849B2 (en) | High toughness high pressure phase boron nitride sintered body | |
JP3452741B2 (en) | Method for producing aluminum nitride based composite material | |
JPH10338576A (en) | Silicon nitride sintered compact and its production | |
JP2009215091A (en) | Dense boron carbide sintered body and method for producing the same | |
JPH0733528A (en) | Composite sintered ceramic, its production and semiconductor production jig made therefrom | |
JP2002187721A (en) | Multiple ceramic powder and manufacturing method thereof | |
JP2975490B2 (en) | Method for producing high thermal conductivity β-type silicon carbide sintered body | |
JP3194761B2 (en) | Silicon nitride powder and method for producing the same | |
JP2004114163A (en) | Alumina group ceramic tool and production method for the same | |
JPH03215363A (en) | Production of ceramic material based on cubic boron nitride having high toughness | |
JPH0453829B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20031028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060704 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070123 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070306 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070306 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070724 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070724 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110803 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110803 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130803 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |