JP2000154062A - Boron carbide sintered compact and its production - Google Patents

Boron carbide sintered compact and its production

Info

Publication number
JP2000154062A
JP2000154062A JP10327221A JP32722198A JP2000154062A JP 2000154062 A JP2000154062 A JP 2000154062A JP 10327221 A JP10327221 A JP 10327221A JP 32722198 A JP32722198 A JP 32722198A JP 2000154062 A JP2000154062 A JP 2000154062A
Authority
JP
Japan
Prior art keywords
less
boron carbide
powder
average particle
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10327221A
Other languages
Japanese (ja)
Other versions
JP3667121B2 (en
Inventor
Hitoshi Matsunosako
等 松之迫
Hidemi Matsumoto
秀美 松本
Masahito Nakanishi
政仁 中西
Shoji Kosaka
祥二 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32722198A priority Critical patent/JP3667121B2/en
Publication of JP2000154062A publication Critical patent/JP2000154062A/en
Application granted granted Critical
Publication of JP3667121B2 publication Critical patent/JP3667121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a graphite phase in a sintered compact and to produce a dense high strength boron carbide sintered compact. SOLUTION: Boron carbide powder having <=5 μm average particle diameter is mixed with 4-12 wt.% metallic boron powder having <=3 μm average particle diameter, 0.5-5 wt.% (expressed in terms of silicon carbide) metallic silicon powder or powdery metallic silicon-silicon carbide mixture having <=5 μm average particle diameter and 0.5-5 wt.% carbon source such as carbon powder. The resultant mixture is compacted and subjected to purification treatment in vacuum at 1,600-2,100 deg.C until the total amount of alkali metals, alkaline earth metals and transition metals is reduced to <=300 ppm. The purified compact is fired at 1,900-2,250 deg.C to obtain the objective boron carbide sintered compact having >=96% relative density. In X-ray diffraction measurement, the ratio (Ib/Ia) of the peak intensity Ib of the (002) plane of graphite to the peak intensity Ia of the (021) plane of boron carbide in the sintered compact is <=0.01.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造装置用
治具、特にハロゲンプラズマ中で使用させる治具などの
精密加工製品などに使用される高純度高強度の炭化ホウ
素焼結体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-purity and high-strength boron carbide sintered body used for a jig for a semiconductor manufacturing apparatus, in particular, a precision processing product such as a jig used in a halogen plasma, and its production. About the method.

【0002】[0002]

【従来の技術】従来より、炭化ホウ素焼結体は、その優
れた耐プラズマ特性から、ドライエッチング装置用多孔
質電極に使用することが提案されている(特開平01−
59818)。この炭化ホウ素焼結体は、純度が99.
5%、平均粒径100μmの炭化ホウ素粉末を黒鉛ダイ
スに充填したのち、ホットプレス焼成にて作製するもの
である。
2. Description of the Related Art Hitherto, it has been proposed that a boron carbide sintered body be used for a porous electrode for a dry etching apparatus because of its excellent plasma resistance (Japanese Patent Application Laid-Open No. 01-2001).
59818). This boron carbide sintered body has a purity of 99.
It is prepared by filling a graphite die with 5% boron carbide powder having an average particle diameter of 100 μm and then sintering by hot pressing.

【0003】一方、緻密な焼結体を作製する手法として
は、1μm以下の粒度分布をもつ粉末状炭化ホウ素に遊
離炭素を0.5〜10%混合した理論密度の90%以上
の密度を有する焼結体が提案されている(特公昭58−
30263号公報参照)。
On the other hand, as a technique for producing a dense sintered body, a powdered boron carbide having a particle size distribution of 1 μm or less has a density of 90% or more of the theoretical density obtained by mixing 0.5 to 10% of free carbon. A sintered body has been proposed (Japanese Patent Publication No. 58-
No. 30263).

【0004】また、本発明者らは、高純度で緻密な焼結
体を作製する手法として、ケイ素化合物特に炭化ケイ素
を0.05〜5重量%および、熱分解で炭素に変化し得
る有機化合物を炭素換算で0.5〜5重量%添加し純化
処理後に焼成させる方法を提案している。
The inventors of the present invention have proposed a technique for producing a high-density sintered compact of a silicon compound, particularly 0.05 to 5% by weight of a silicon carbide and an organic compound which can be converted to carbon by thermal decomposition. Is added in an amount of 0.5 to 5% by weight in terms of carbon, followed by baking after the purification treatment.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、添加物
を用いない上記炭化ホウ素焼結体が開気孔率が20%以
上あり焼結体自体の強度が充分でない。また、助剤とし
て遊離炭素を添加した焼結体は、アルカリ金属、アルカ
リ土類金属、遷移金属を多く含んでおり、それらが製品
を汚すため半導体製造装置用として使用するには問題が
あった。
However, the above-mentioned boron carbide sintered body containing no additive has an open porosity of 20% or more and the strength of the sintered body itself is not sufficient. Further, the sintered body to which free carbon is added as an auxiliary agent contains a large amount of alkali metals, alkaline earth metals, and transition metals, and these have a problem in using them for semiconductor manufacturing equipment because they stain products. .

【0006】また、炭化ホウ素の一次原料中には不純物
としてグラファイト相が含まれているが、このグラファ
イト相が焼結過程で偏析するため、焼結体組織に異相組
織を形成する傾向にある。しかもこのグラファイト相は
ハロゲンガスのプラズマに対する耐食性が低いため、グ
ラファイト相を多量に含有する焼結体を腐食性の高いな
どのハロゲンプラズマ中で使用すると、グラファイト相
の腐食を初期的腐食とするエッチングが促進され、エッ
チングレートが著しく増大するなど、半導体製造装置用
耐プラズマ部材の材料として使用するには問題があっ
た。
The primary material of boron carbide contains a graphite phase as an impurity, and since the graphite phase segregates during the sintering process, it tends to form a heterogeneous structure in the structure of the sintered body. In addition, since the graphite phase has low corrosion resistance to halogen gas plasma, if a sintered body containing a large amount of the graphite phase is used in a halogen plasma such as a highly corrosive one, the etching of the graphite phase as an initial corrosion is performed. And the etching rate is remarkably increased. Therefore, there is a problem in using it as a material for a plasma-resistant member for a semiconductor manufacturing apparatus.

【0007】従って、本発明は、焼結体中のグラファイ
ト相を低減し、且つ緻密で高強度の炭化ホウ素焼結体と
その製造方法を提供することを目的とするものである。
[0007] Accordingly, an object of the present invention is to provide a dense and high-strength boron carbide sintered body which reduces the graphite phase in the sintered body and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
に対して検討を重ねた結果、炭化ホウ素に対して、金属
ホウ素を所定量含有せしめるか、または金属シリコンを
添加することにより、金属ホウ素または金属シリコンが
余剰の炭素と反応して、炭化ホウ素または炭化ケイ素に
変換することにより、グラファイト相を低減できること
を見いだした。また、その場合、アルカリ金属、アルカ
リ土類金属および遷移金属を低減し、且つグラファイト
相をX線回折測定によるピーク強度において特定の関係
を満足する場合、優れた強度とハロゲンプラズマに対す
る耐久性が得られることを見いだし、本発明に至った。
Means for Solving the Problems As a result of repeated studies on the above objects, the present inventors have found that by adding a predetermined amount of metallic boron to boron carbide or adding metallic silicon, It has been found that the graphite phase can be reduced by reacting metallic boron or metallic silicon with excess carbon and converting it to boron carbide or silicon carbide. In this case, when the alkali metal, the alkaline earth metal and the transition metal are reduced and the graphite phase satisfies a specific relationship in peak intensity by X-ray diffraction measurement, excellent strength and durability to halogen plasma are obtained. Have been found, and the present invention has been achieved.

【0009】即ち、本発明の炭化ホウ素焼結体は、炭化
ホウ素を主成分とし、X線回折測定において、炭化ホウ
素の(021)面に帰属する回折ピークのピーク強度を
Ia、グラファイトの(002)面に帰属する回折ピー
クのピーク強度をIbとした時、Ib/Iaで表される
ピーク強度比が0.01以下、アルカリ金属、アルカリ
土類金属および遷移金属元素が総量で300ppm以下
であり、且つ相対密度が96%以上であることを特徴と
するものである。
More specifically, the boron carbide sintered body of the present invention contains boron carbide as a main component, and in X-ray diffraction measurement, the peak intensity of a diffraction peak belonging to the (021) plane of boron carbide is Ia, and the peak intensity of graphite is (002). ) When the peak intensity of the diffraction peak attributed to the plane is Ib, the peak intensity ratio represented by Ib / Ia is 0.01 or less, and the total amount of alkali metals, alkaline earth metals and transition metal elements is 300 ppm or less. And a relative density of 96% or more.

【0010】また、本発明の他の炭化ホウ素焼結体は、
炭化ホウ素を主成分とし、炭化珪素を0.5〜5重量%
含有し、X線回折測定において、炭化ホウ素に(02
1)面に帰属する回折ピークのピーク強度をIa、グラ
ファイトの(002)面に帰属する回折ピークのピーク
強度をIbとした時、Ib/Iaで表されるピーク強度
比が0.01以下、アルカリ金属、アルカリ土類金属お
よび遷移金属元素が総量で300ppm以下であり、且
つ相対密度が96%以上であることを特徴とするもので
ある。
Further, another boron carbide sintered body of the present invention comprises:
The main component is boron carbide, and silicon carbide is 0.5 to 5% by weight.
Contained in boron carbide in X-ray diffraction measurement.
1) When the peak intensity of the diffraction peak attributed to the plane is Ia and the peak intensity of the diffraction peak attributed to the (002) plane of graphite is Ib, the peak intensity ratio represented by Ib / Ia is 0.01 or less; The total amount of the alkali metal, alkaline earth metal and transition metal element is 300 ppm or less, and the relative density is 96% or more.

【0011】また、本発明によれば、上記の焼結体を製
造するにあたって、平均粒径が5μm以下の炭化ホウ素
粉末に、平均粒径が3μm以下の金属ホウ素粉末を4〜
12重量%、炭素粉末あるいは熱分解によって炭素に変
化し得る有機化合物を炭素換算で0.5〜5重量%の割
合で混合する工程と、該混合物を所定形状に成形する工
程と、該成形体を1600℃〜2100℃の真空中で熱
処理して、アルカリ金属、アルカリ土類金属および遷移
金属元素を総量で300ppm以下となるまで純化する
工程と、純化処理後に1900〜2250℃の温度で焼
成して、相対密度96%以上に緻密化する工程とを具備
することを特徴とするものである。
Further, according to the present invention, in producing the above-described sintered body, a metal boron powder having an average particle diameter of 3 μm or less is added to a boron carbide powder having an average particle diameter of 5 μm or less by 4 to 4 μm.
Mixing 12% by weight of carbon powder or an organic compound which can be converted to carbon by pyrolysis at a ratio of 0.5 to 5% by weight in terms of carbon; forming the mixture into a predetermined shape; Heat treatment in a vacuum of 1600 ° C. to 2100 ° C. to purify the alkali metal, alkaline earth metal and transition metal element to a total amount of 300 ppm or less, and baking at a temperature of 1900 to 2250 ° C. after the purification treatment. Densification to a relative density of 96% or more.

【0012】さらに、他の製造方法としては、平均粒径
が5μm以下の炭化ホウ素粉末に、平均粒径が5μm以
下の金属シリコン粉末、あるいは前記金属シリコンと平
均粒径が1μm以下の炭化ケイ素粉末あるいは熱分解に
よって炭化ケイ素に変換し得る有機化合物との混合物を
炭化ケイ素換算で0.5〜5重量%、炭素粉末あるいは
熱分解によって炭素に変化し得る有機化合物を炭素換算
で0.5〜5重量%の割合で混合し、その混合物を所定
形状に成形した後、1600℃〜2100℃の真空中で
熱処理して、アルカリ金属、アルカリ土類金属および遷
移金属元素を総量で300ppm以下となるまで純化
し、さらに1900〜2250℃の温度で焼成すること
により、相対密度96%以上に緻密化できることを見い
だした。
Further, as another production method, a boron carbide powder having an average particle diameter of 5 μm or less, a metal silicon powder having an average particle diameter of 5 μm or less, or a silicon carbide powder having an average particle diameter of 1 μm or less with the metal silicon Alternatively, a mixture with an organic compound that can be converted to silicon carbide by thermal decomposition is 0.5 to 5% by weight in terms of silicon carbide, and a carbon powder or an organic compound that can be converted to carbon by thermal decomposition is 0.5 to 5% by weight. And then heat-treating in a vacuum at 1600 ° C. to 2100 ° C. until the total amount of alkali metals, alkaline earth metals and transition metal elements becomes 300 ppm or less. It has been found that by purifying and further firing at a temperature of 1900 to 2250 ° C., it is possible to densify to a relative density of 96% or more.

【0013】[0013]

【発明の実施の形態】本発明の炭化ホウ素焼結体は、ま
ず、第1に、Li,Na、Kなどのアルカリ金属、M
g、Ca、Baなどのアルカリ土類金属、およびY、希
土類元素、Ti、V、Ta、Mo、W、Mn、Cr、C
o、Fe、Niなどの遷移金属元素が総量で300pp
m以下、特に150ppm以下、さらには50ppm以
下、また言い換えると、アルカリ金属、アルカリ土類金
属、遷移金属が各々100ppm以下、特に50ppm
以下、さらには10ppm以下であることが重要であ
る。これは、上記の元素量が300ppmよりも多い
と、半導体製造装置に使用した場合に、半導体製造時に
半導体製品を汚染して、半導体の特性を劣化させてしま
うためである。
BEST MODE FOR CARRYING OUT THE INVENTION First of all, a boron carbide sintered body of the present invention comprises an alkali metal such as Li, Na or K, M
g, alkaline earth metals such as Ca and Ba, and Y, rare earth elements, Ti, V, Ta, Mo, W, Mn, Cr, C
Transition metal elements such as o, Fe, and Ni are 300 pp in total.
m or less, especially 150 ppm or less, furthermore 50 ppm or less, in other words, alkali metal, alkaline earth metal, and transition metal are each 100 ppm or less, particularly 50 ppm or less.
It is important that the content be 10 ppm or less. This is because if the amount of the element is more than 300 ppm, when used in a semiconductor manufacturing apparatus, the semiconductor product is contaminated during semiconductor manufacturing, and the characteristics of the semiconductor are deteriorated.

【0014】また、本発明の炭化ホウ素焼結体は相対密
度96%以上であり、好ましくは98%以上の緻密体か
らなることが重要である。前記相対密度が96%よりも
小さいと強度が低下してしまい、目的の強度が得られな
いためである。ここで、前記相対密度は理論密度に対す
る百分率で表したものである。
It is important that the boron carbide sintered body of the present invention is a dense body having a relative density of 96% or more, preferably 98% or more. If the relative density is less than 96%, the strength decreases, and the desired strength cannot be obtained. Here, the relative density is expressed as a percentage with respect to the theoretical density.

【0015】さらに、本発明の炭化ホウ素焼結体は、炭
化ホウ素の(021)面に帰属する回折ピークのピーク
強度をIa、グラファイトの(002)面に帰属する回
折ピークのピーク強度をIbとした時、Ib/Iaで表
されるピーク強度比が0.01以下、特に0.002以
下であることが重要である。
Further, in the boron carbide sintered body of the present invention, the peak intensity of the diffraction peak belonging to the (021) plane of boron carbide is Ia, and the peak intensity of the diffraction peak belonging to the (002) plane of graphite is Ib. It is important that the peak intensity ratio represented by Ib / Ia is 0.01 or less, particularly 0.002 or less.

【0016】これは、上記ピーク強度比が0.01より
も高いと、焼結体粒界中に存在するグラファイト相が偏
析して異相組織を形成し、ここを起点としてプラズマに
よる腐食が進行するため著しく耐プラズマ性が劣化する
ためである。
If the peak intensity ratio is higher than 0.01, the graphite phase present in the grain boundaries of the sintered body segregates to form a heterogeneous structure, and the corrosion by plasma proceeds from this point as a starting point. This is because the plasma resistance is significantly deteriorated.

【0017】なお、本発明によれば、半導体製造時に悪
影響を及ぼすことがなく、しかも真空中から高温まで安
定な炭化ケイ素を0.5〜5重量%の割合で含有するこ
ともできる。この炭化ケイ素は焼結助剤として作用し、
この量が0.5重量%よりも少ないと焼結助剤的な効果
が期待できず、5重量%を越えると炭化ホウ素が粒成長
を来たし、焼結体の強度を低下させてしまう。
According to the present invention, it is possible to contain silicon carbide in a ratio of 0.5 to 5% by weight which has no adverse effect on the production of a semiconductor and is stable from a vacuum to a high temperature. This silicon carbide acts as a sintering aid,
If the amount is less than 0.5% by weight, the effect as a sintering aid cannot be expected, and if it exceeds 5% by weight, boron carbide will grow and the strength of the sintered body will be reduced.

【0018】かかる高純度で高強度な炭化ホウ素焼結体
を作製する方法は、少なくとも以下の(1)〜(4)の
工程から構成される。
A method for producing such a high-purity and high-strength sintered boron carbide body includes at least the following steps (1) to (4).

【0019】(1)まず、出発原料として、a)炭化ホ
ウ素粉末、b)平均粒径が3μm以下の金属ホウ素粉
末、c)平均粒径が5μm以下の金属シリコン粉末、あ
るいは前記金属シリコンと平均粒径が1μm以下の炭化
ケイ素粉末あるいは熱分解によって炭化ケイ素に変換し
得る有機化合物との混合物とからなる炭化ケイ素成分、
d)炭素粉末あるいは熱分解によって炭素に変化し得る
有機化合物等の炭素源を用いて、a)およびc)に対し
て、b)及び/又はc)を添加混合する。
(1) First, as starting materials, a) boron carbide powder, b) metal boron powder having an average particle size of 3 μm or less, c) metal silicon powder having an average particle size of 5 μm or less, or A silicon carbide component having a particle size of 1 μm or less and a mixture with a silicon carbide powder or an organic compound that can be converted to silicon carbide by thermal decomposition;
d) b) and / or c) are added and mixed to a) and c) using a carbon source such as carbon powder or an organic compound which can be converted to carbon by thermal decomposition.

【0020】この場合、主成分となるa)炭化ホウ素粉
末の平均粒径は5μm以下、好ましくは2μm以下、よ
り好ましくは1μm以下であることが必要であり、平均
粒径が5μmを超えると、緻密化不足を招いて、強度低
下を引き起こしてしまう。
In this case, the average particle size of the main component a) boron carbide powder needs to be 5 μm or less, preferably 2 μm or less, more preferably 1 μm or less. If the average particle size exceeds 5 μm, Insufficient densification causes a reduction in strength.

【0021】また、上記b)の金属ホウ素は4〜12重
量%、特に7〜9重量%の割合で添加することが望まし
く、この量が4重量%よりも少ないと、グラファイト相
が残存し、12重量%よりも多いと過剰なホウ素が緻密
化を阻害する。
It is desirable that the metallic boron of the above b) is added in a ratio of 4 to 12% by weight, particularly 7 to 9% by weight. If the amount is less than 4% by weight, a graphite phase remains, If it is more than 12% by weight, excess boron inhibits densification.

【0022】さらに、上記c)炭化ケイ素成分は、炭化
ケイ素に換算して総量で0.5〜5重量%、好ましくは
1〜4重量%、より好ましくは2〜3重量%である。こ
の量が0.5重量%より小さいと緻密化が難しく、5重
量%を超えると炭化ホウ素が粒子成長を起こし、強度を
低下させてしまうためである。
The silicon carbide component (c) is 0.5 to 5% by weight, preferably 1 to 4% by weight, more preferably 2 to 3% by weight in terms of silicon carbide. If the amount is less than 0.5% by weight, densification is difficult, and if it exceeds 5% by weight, boron carbide causes grain growth and lowers the strength.

【0023】また、本発明によれば、平均粒径が5μm
以下の金属シリコンを必須成分として含有し、特に炭化
ケイ素換算で0.05重量%以上、好ましくは1重量%
以上の割合で添加する。この金属シリコンは、後述する
純化処理中に、炭化ホウ素の一次原料中に存在するグラ
ファイト相と反応して炭化ケイ素を生成し、焼結体中に
炭素源がグラファイト相として残存するのを抑制するこ
とができるためである。なお、上記金属シリコンの平均
粒径が5μmよりも大きいと、グラファイト相との反応
性が低下し、未反応のグラファイト相が残存しやすくな
る。好ましくは2μm以下がよい。
According to the present invention, the average particle size is 5 μm.
The following metal silicon is contained as an essential component, and particularly 0.05% by weight or more, preferably 1% by weight in terms of silicon carbide.
Add at the above ratio. This metal silicon reacts with the graphite phase present in the primary material of boron carbide during the purification process described later to generate silicon carbide, and suppresses the carbon source from remaining in the sintered body as the graphite phase. This is because you can do it. If the average particle size of the metal silicon is larger than 5 μm, the reactivity with the graphite phase is reduced, and the unreacted graphite phase tends to remain. Preferably it is 2 μm or less.

【0024】なお、熱分解によって炭化ケイ素を生成し
得る有機化合物としては、ポリカルボシランなどが挙げ
られる。
The organic compound capable of forming silicon carbide by thermal decomposition includes polycarbosilane and the like.

【0025】また上記d)炭素源は、炭素換算で0.5
〜5重量%、好ましくは1〜4重量%の割合で混合す
る。この炭素源は、焼結中に炭化ホウ素主原料等に含ま
れるB2 3 と反応して酸素分を除去する作用をなす。
2 3 は焼結性を阻害するためにB2 3 が還元分解
されることにより焼結性が促進される。従って、この炭
素量が0.5重量%よりも少ないとB2 3 の還元が充
分に行われず緻密化が難しく、5重量%を超えると逆に
炭化ホウ素の粒子成長を抑制し、緻密化を阻害してしま
うためである。なお、熱分解によって炭素に変化し得る
有機化合物としては、コールタールピッチ、フルフリル
アルコール、コーンスターチ、糖類、フェノール樹脂等
が挙げられる。
The d) carbon source is 0.5% in terms of carbon.
55% by weight, preferably 1-4% by weight. This carbon source reacts with B 2 O 3 contained in the boron carbide main raw material or the like during sintering to remove oxygen.
Since B 2 O 3 impairs sinterability, B 2 O 3 is reductively decomposed to promote sinterability. Therefore, if the carbon content is less than 0.5% by weight, B 2 O 3 is not sufficiently reduced and densification is difficult, and if it exceeds 5% by weight, on the contrary, boron carbide particle growth is suppressed and densification is performed. This is because it hinders. Note that examples of the organic compound that can be converted to carbon by thermal decomposition include coal tar pitch, furfuryl alcohol, corn starch, sugars, phenol resins, and the like.

【0026】(2)次に、これらの混合物を、公知の所
望の成形手段、例えば、金型プレス、冷間静水圧プレ
ス、射出成形、押出し成形等により任意の形状に成形す
る。
(2) Next, the mixture is formed into an arbitrary shape by a known desired forming means, for example, a die press, a cold isostatic press, an injection molding, an extrusion molding or the like.

【0027】(3)そして、上記成形体を、まず、16
00℃〜2100℃の真空中で熱処理することにより、
成形体中のアルカリ金属、アルカリ土類金属および遷移
金属元素が総量で300ppm以下となるように純化処
理を施す。また、この時の真空圧力は、10Pa以下で
あることが望ましく、10Paを超えると上記元素を効
率的に除去することが難しくなるためである。
(3) Then, the molded body is first
By performing heat treatment in a vacuum of 00 ° C to 2100 ° C,
Purification is performed so that the total amount of alkali metals, alkaline earth metals, and transition metal elements in the molded body is 300 ppm or less. Further, the vacuum pressure at this time is desirably 10 Pa or less, and if it exceeds 10 Pa, it becomes difficult to efficiently remove the above elements.

【0028】この純化処理の温度は1600℃〜210
0℃であるが、好ましくは1800℃〜2000℃であ
り、1600℃よりも低いと純化処理できず、2100
℃を超えると添加した炭化ケイ素が飛散し緻密化を阻害
し強度低下を引き起こすためである。
The temperature of this purification treatment is from 1600 ° C. to 210
The temperature is 0 ° C., preferably 1800 ° C. to 2000 ° C. If the temperature is lower than 1600 ° C., purification treatment cannot be performed and 2100 ° C.
If the temperature exceeds ℃, the added silicon carbide is scattered to inhibit densification and cause a decrease in strength.

【0029】(4)上記純化処理後、1900〜225
0℃の温度で焼成して、相対密度96%以上に緻密化す
る。前記焼成温度は、好ましくは1900℃〜2100
℃であり、真空中あるいは不活性雰囲気、特にアルゴン
ガス中で焼成するのが望ましい。この焼成温度が225
0℃を超えると炭化ホウ素が粒子成長し、強度低下を招
き、1900℃よりも低いと相対密度96%以上に緻密
化することが難しい。
(4) After the above purification treatment, 1900 to 225
It is fired at a temperature of 0 ° C. to densify to a relative density of 96% or more. The firing temperature is preferably 1900 ° C. to 2100
C. and preferably fired in a vacuum or in an inert atmosphere, particularly in argon gas. This firing temperature is 225
If the temperature exceeds 0 ° C., boron carbide grows and the strength is reduced. If the temperature is lower than 1900 ° C., it is difficult to make the relative density 96% or more.

【0030】なお、焼成方法としては、常圧焼成(普通
焼成)の他、ホットプレス焼成によって200kg/c
2 の機械的圧力を付与しながら焼成することもでき
る。上記ホットプレス法においては、(1)の粉末をホ
ットプレス型内に充填して、上記の(3)純化処理を施
した後、500kg/cm2 以上の機械的圧力を付与し
ながら(4)の条件で焼成することにより、(2)成形
工程を(4)焼成工程と同時を行うことができるととも
に、短時間で緻密化できる点で有利である。
The firing method includes normal pressure firing (normal firing) and hot press firing at 200 kg / c.
Firing can also be performed while applying a mechanical pressure of m 2 . In the hot press method, after the powder of (1) is filled in a hot press mold and subjected to the above-mentioned (3) purification treatment, while applying a mechanical pressure of 500 kg / cm 2 or more, (4) Firing under the above conditions is advantageous in that the (2) forming step can be performed simultaneously with the (4) firing step, and the densification can be performed in a short time.

【0031】かくして得られる焼結体は、高純度で緻密
化された高強度でかつ高い耐ハロゲンプラズマ性を有す
る炭化ホウ素焼結体であり、半導体製造装置用の治具や
サセプターに使用した場合においても、アルカリ金属、
アルカリ土類金属及び遷移金属による半導体の汚染がほ
とんど無いという作用効果を有する。
The sintered body thus obtained is a boron carbide sintered body having a high purity and a high density and a high strength and a high halogen plasma resistance, and is used for a jig or a susceptor for a semiconductor manufacturing apparatus. Also in alkali metals,
This has the effect that the semiconductor is hardly contaminated by the alkaline earth metal and the transition metal.

【0032】しかも、本発明の炭化ホウ素焼結体は、導
電性を有する高強度の材料であり、ドライエッチングプ
ロセスやハロゲンプラズマ等のプラズマ雰囲気中での成
膜プロセスで使用される電極、サセプターなどの治具な
どの半導体製造装置用部品、半導体製造装置用チャンバ
ー(壁体)、産業機械用の各種治工具、各種耐磨耗部
品、精密加工用部品として好適に使用できる。
Moreover, the boron carbide sintered body of the present invention is a high-strength material having conductivity, and is used for electrodes, susceptors, etc. used in a dry etching process or a film forming process in a plasma atmosphere such as a halogen plasma. Jigs and other parts for semiconductor manufacturing equipment, chambers (walls) for semiconductor manufacturing equipment, various jigs and tools for industrial machinery, various wear-resistant parts, and parts for precision machining.

【0033】[0033]

【実施例】炭化ホウ素粉末として、Na、Ca、Feが
それぞれ840ppm、120ppm、300ppm
で、平均粒径が0.8μmの粉末(試料No.1〜32)
と、平均粒径が20μmの粉末(試料No.33)を用い
た。
EXAMPLES As boron carbide powder, Na, Ca, and Fe were 840 ppm, 120 ppm, and 300 ppm, respectively.
And powder having an average particle size of 0.8 μm (Sample Nos. 1 to 32)
And a powder having an average particle diameter of 20 μm (Sample No. 33).

【0034】また、金属ホウ素粉末として平均粒径が1
μmのものを使用した。金属Si粉末には平均粒径4μ
mのものを用いた。炭化ケイ素粉末としては、平均粒子
径0.6μmのα−炭化ケイ素粉末を用いた。また、炭
素源としては炭化率が20%のフェノール樹脂を有機溶
媒に溶解させて用いた。
The metal boron powder has an average particle size of 1
μm was used. Average particle size 4μ for metal Si powder
m. As the silicon carbide powder, α-silicon carbide powder having an average particle diameter of 0.6 μm was used. As a carbon source, a phenol resin having a carbonization ratio of 20% was used by being dissolved in an organic solvent.

【0035】そして、上記炭化ホウ素粉末、金属ホウ素
あるいは炭化ケイ素源、炭素源を表1〜3に示す組み合
わせおよび配合量で秤量し、プラスチックボールを用い
て有機溶媒中で混合し、エバポレーターを用いて乾燥粉
末を得た。
Then, the above-mentioned boron carbide powder, metallic boron or silicon carbide source, and carbon source are weighed in combinations and amounts shown in Tables 1 to 3, mixed in an organic solvent using a plastic ball, and then mixed with an evaporator. A dry powder was obtained.

【0036】焼成は、ホットプレス焼成装置(HP)と
普通焼成(PLS)装置を用いた。ホットプレス焼成の
場合は、混合粉末をカーボン型に入れ、表1〜3に示す
温度で5Paの真空中で2時間純化処理をし、その後3
00kg/cm2 の圧力下で表に示す焼成温度でアルゴ
ン中2時間保持し、焼成した。普通焼成の場合は、この
粉末を3t/cm2 の圧力で静水圧処理をして成形体を
作製し、表1〜3に示す温度で、5Paの真空中で2時
間純化処理し、その後、表1〜3に示す焼成温度でアル
ゴンガス中で3時間保持し焼成した。
For firing, a hot press firing device (HP) and a normal firing (PLS) device were used. In the case of hot press firing, the mixed powder is put into a carbon mold and subjected to a purification treatment at a temperature shown in Tables 1 to 3 in a vacuum of 5 Pa for 2 hours.
Under the pressure of 00 kg / cm 2 and the firing temperature shown in the table, it was kept in argon for 2 hours and fired. In the case of normal firing, this powder is subjected to hydrostatic pressure treatment at a pressure of 3 t / cm 2 to produce a molded body, and purified at a temperature shown in Tables 1 to 3 in a vacuum of 5 Pa for 2 hours. At the firing temperature shown in Tables 1 to 3, it was held and fired in an argon gas for 3 hours.

【0037】また、比較のために、炭素粉末を真空雰囲
気中で2500℃で5時間焼成したグラファイト焼結体
を作製した(試料No.34)。
For comparison, a graphite sintered body was prepared by firing carbon powder at 2500 ° C. for 5 hours in a vacuum atmosphere (Sample No. 34).

【0038】得られた焼結体から試験片を切り出し、研
磨加工した。そして比重をJISR2205に基づいて
求め相対密度を求めた。強度値はJISR1601に基
づく4点曲げ試験より室温強度を求めた。また、試料を
粉砕し、X線回折測定を行いB4 C相の(021)面に
帰属する回折ピークのピーク強度Ia、およびグラファ
イト相の(002)面に帰属する回折ピークのピーク強
度Ibより、Ib/Iaのピーク強度比を求めた。な
お、表中、試料No.3(本発明品)および試料No.1
(比較品)のX線回折測定結果を図1および図2に示し
た。さらに、粉砕した粉末をICP発光分光分析を行
い、アルカリ金属、アルカリ土類金属、その他遷移金属
量を測定した。
A test piece was cut out from the obtained sintered body and polished. Then, the specific gravity was determined based on JISR2205, and the relative density was determined. As the strength value, a room temperature strength was obtained from a four-point bending test based on JISR1601. Further, the sample was pulverized and subjected to X-ray diffraction measurement to determine the peak intensity Ia of the diffraction peak belonging to the (021) plane of the B 4 C phase and the peak intensity Ib of the diffraction peak belonging to the (002) plane of the graphite phase. , Ib / Ia were determined. In the table, sample No. 3 (product of the present invention) and sample No. 1
The X-ray diffraction measurement results of the (comparative product) are shown in FIGS. Furthermore, the pulverized powder was subjected to ICP emission spectroscopy to measure the amounts of alkali metals, alkaline earth metals, and other transition metals.

【0039】また、この試料をリアクティブイオンエッ
チング装置内に設置して、この装置内に塩素ガスを導入
して装置内圧力を7〜10Paに保持した。そして、1
3.56MHz、1kWの高周波を導入してプラズマを
発生させ、試料をプラズマに接触させた。なお試料温度
は室温(25℃)に設定した。上記の条件下で3時間エ
ッチング処理を行った後、試料の重量減少からエッチン
グ速度を算出した。
The sample was set in a reactive ion etching apparatus, and chlorine gas was introduced into the apparatus to maintain the pressure in the apparatus at 7 to 10 Pa. And 1
Plasma was generated by introducing a high frequency of 3.56 MHz and 1 kW, and the sample was brought into contact with the plasma. The sample temperature was set at room temperature (25 ° C.). After performing the etching treatment under the above conditions for 3 hours, the etching rate was calculated from the weight loss of the sample.

【0040】また、得られた焼結体から、炭化ケイ素量
を算出した。炭化ケイ素量は、焼結体中に金属シリコン
が検出されていないことから、焼結体中の総シリコン量
から炭化ケイ素換算して求めた。
The amount of silicon carbide was calculated from the obtained sintered body. The amount of silicon carbide was determined in terms of silicon carbide from the total amount of silicon in the sintered body, since no metallic silicon was detected in the sintered body.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】表1〜3によると本発明の範囲内の試料
は、いずれも高純度であり、200MPa以上の高強度
を有し、エッチング速度が40Å/min以下の優れた
耐プラズマ性を有するものであり、特に焼結体中に炭化
ケイ素を含む場合、強度の向上が見られた。
According to Tables 1 to 3, all the samples within the scope of the present invention have high purity, high strength of 200 MPa or more, and excellent plasma resistance at an etching rate of 40 ° / min or less. In particular, when silicon carbide was contained in the sintered body, improvement in strength was observed.

【0045】これに対して、グラファイト焼結体は、エ
ッチング速度が著しく高く、耐プラズマ性は低い。一
方、金属ホウ素または金属シリコンを添加しない試料N
o.1、19では、ピーク強度比が0.01より高く、一
次原料中のグラファイト相が偏析する異相組織を形成し
ており耐プラズマ性も低いものであった。
On the other hand, the graphite sintered body has a remarkably high etching rate and low plasma resistance. On the other hand, the sample N without addition of metallic boron or metallic silicon
In O. 1 and 19, the peak intensity ratio was higher than 0.01, a heterophase structure in which the graphite phase in the primary raw material segregated was formed, and the plasma resistance was low.

【0046】また、平均粒径が5μmを越える粉末を用
いた試料No.35では、緻密化不足となり、強度が低下
した。
Sample No. 35 using a powder having an average particle size exceeding 5 μm was insufficient in densification, resulting in a decrease in strength.

【0047】[0047]

【発明の効果】上述の如く、本発明の炭化ホウ素焼結体
は、優れた抗折強度と高純度を有するとともに、優れた
耐プラズマ性を有することから、半導体製造装置用治
具、特にハロゲンプラズマ中で使用される治具などの精
密加工製品に使用できる。
As described above, the boron carbide sintered body of the present invention has excellent bending strength and high purity and excellent plasma resistance. It can be used for precision processing products such as jigs used in plasma.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の炭化ホウ素焼結体(試料No.3)のX
線回折チャートを示す図である。
FIG. 1 shows the X of the boron carbide sintered body of the present invention (sample No. 3).
It is a figure showing a line diffraction chart.

【図2】従来の炭化ホウ素焼結体(試料No.1)のX線
回折チャートを示す図である。
FIG. 2 is a view showing an X-ray diffraction chart of a conventional boron carbide sintered body (sample No. 1).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高坂 祥二 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 Fターム(参考) 4G001 BA22 BA23 BA60 BA62 BA71 BA78 BB22 BB23 BB60 BB71 BC12 BC13 BC31 BC46 BC47 BC52 BD14 BD37 BD38 BE11 BE33  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shoji Takasaka 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima F-term in Kyocera Research Institute (reference) 4G001 BA22 BA23 BA60 BA62 BA71 BA78 BB22 BB23 BB60 BB71 BC12 BC13 BC31 BC46 BC47 BC52 BD14 BD37 BD38 BE11 BE33

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】炭化ホウ素を主成分とし、X線回折測定に
おいて、炭化ホウ素の(021)面に帰属する回折ピー
クのピーク強度をIa、グラファイトの(002)面に
帰属する回折ピークのピーク強度をIbとした時、Ib
/Iaで表されるピーク強度比が0.01以下、アルカ
リ金属、アルカリ土類金属および遷移金属元素が総量で
300ppm以下であり、且つ相対密度が96%以上で
あることを特徴とする炭化ホウ素焼結体。
1. An X-ray diffraction measurement comprising boron carbide as a main component, wherein the peak intensity of a diffraction peak belonging to the (021) plane of boron carbide is Ia, and the peak intensity of a diffraction peak belonging to the (002) plane of graphite. Is Ib, Ib
/ Ia, wherein the peak intensity ratio is 0.01 or less, the total amount of alkali metals, alkaline earth metals and transition metal elements is 300 ppm or less, and the relative density is 96% or more. Sintered body.
【請求項2】炭化ホウ素を主成分とし、炭化珪素を0.
5〜5重量%含有し、X線回折測定において、炭化ホウ
素の(021)面に帰属する回折ピークのピーク強度を
Ia、グラファイトの(002)面に帰属する回折ピー
クのピーク強度をIbとした時、Ib/Iaで表される
ピーク強度比が0.01以下、アルカリ金属、アルカリ
土類金属および遷移金属元素が総量で300ppm以下
であり、且つ相対密度が96%以上であることを特徴と
する炭化ホウ素焼結体。
2. The method according to claim 1, wherein the main component is boron carbide, and the silicon carbide is 0.1%.
In X-ray diffraction measurement, the peak intensity of the diffraction peak attributed to the (021) plane of boron carbide was Ia, and the peak intensity of the diffraction peak attributed to the (002) plane of graphite was Ib. In this case, the peak intensity ratio represented by Ib / Ia is 0.01 or less, the total amount of alkali metals, alkaline earth metals, and transition metal elements is 300 ppm or less, and the relative density is 96% or more. Boron carbide sintered body.
【請求項3】平均粒径が5μm以下の炭化ホウ素粉末
に、平均粒径が3μm以下の金属ホウ素粉末を4〜12
重量%、炭素粉末あるいは熱分解によって炭素に変化し
得る有機化合物を炭素換算で0.5〜5重量%の割合で
混合する工程と、 該混合物を所定形状に成形する工程と、 該成形体を1600℃〜2100℃の真空中で熱処理し
て、アルカリ金属、アルカリ土類金属および遷移金属元
素を総量で300ppm以下となるまで純化する工程
と、 純化処理後に1900〜2250℃の温度で焼成して、
相対密度96%以上に緻密化する工程とを具備すること
を特徴とする炭化ホウ素焼結体の製造方法。
3. A boron carbide powder having an average particle diameter of 5 μm or less, and a metal boron powder having an average particle diameter of 3 μm or less being 4 to 12 μm.
% By weight, a step of mixing 0.5 to 5% by weight of carbon powder or an organic compound which can be converted to carbon by thermal decomposition, a step of forming the mixture into a predetermined shape, Heat-treating in a vacuum of 1600 ° C. to 2100 ° C. to purify the alkali metal, alkaline earth metal and transition metal element to a total amount of 300 ppm or less; and firing at a temperature of 1900 to 2250 ° C. after the purifying treatment. ,
Densifying to a relative density of 96% or more.
【請求項4】平均粒径が5μm以下の炭化ホウ素粉末
に、平均粒径が5μm以下の金属シリコン粉末、あるい
は前記金属シリコンと平均粒径が1μm以下の炭化ケイ
素粉末あるいは熱分解によって炭化ケイ素に変換し得る
有機化合物との混合物を炭化ケイ素換算で0.5〜5重
量%、炭素粉末あるいは熱分解によって炭素に変化し得
る有機化合物を炭素換算で0.5〜5重量%の割合で混
合する工程と、 該混合物を所定形状に成形する工程と、 該成形体を1600℃〜2100℃の真空中で熱処理し
て、アルカリ金属、アルカリ土類金属および遷移金属元
素を総量で300ppm以下となるまで純化する工程
と、 純化処理後に1900〜2250℃の温度で焼成して、
相対密度96%以上に緻密化する工程とを具備すること
を特徴とする炭化ホウ素焼結体の製造方法。
4. A boron carbide powder having an average particle size of 5 μm or less, a metal silicon powder having an average particle size of 5 μm or less, a silicon carbide powder having an average particle size of 1 μm or less, or silicon carbide by thermal decomposition. A mixture with an organic compound that can be converted is mixed at a ratio of 0.5 to 5% by weight in terms of silicon carbide, and a carbon powder or an organic compound that can be converted to carbon by pyrolysis is mixed at a ratio of 0.5 to 5% by weight in terms of carbon. A step of forming the mixture into a predetermined shape; and heat-treating the formed body in a vacuum at 1600 ° C. to 2100 ° C. until the total amount of alkali metals, alkaline earth metals and transition metal elements becomes 300 ppm or less. Purifying, after the purification treatment, firing at a temperature of 1900 to 2250 ° C.,
Densifying to a relative density of 96% or more.
JP32722198A 1998-11-17 1998-11-17 Boron carbide sintered body and manufacturing method thereof Expired - Fee Related JP3667121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32722198A JP3667121B2 (en) 1998-11-17 1998-11-17 Boron carbide sintered body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32722198A JP3667121B2 (en) 1998-11-17 1998-11-17 Boron carbide sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000154062A true JP2000154062A (en) 2000-06-06
JP3667121B2 JP3667121B2 (en) 2005-07-06

Family

ID=18196676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32722198A Expired - Fee Related JP3667121B2 (en) 1998-11-17 1998-11-17 Boron carbide sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3667121B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322010A (en) * 2006-05-30 2007-12-13 Kyocera Corp Protective member
US7592279B1 (en) * 2003-06-12 2009-09-22 Georgia Tech Research Corporation Boron carbide and boron carbide components
US7854190B2 (en) 2005-04-11 2010-12-21 Georgia Tech Research Corporation Boron carbide component and methods for the manufacture thereof
WO2012060442A1 (en) 2010-11-04 2012-05-10 黒崎播磨株式会社 High rigidity ceramic material and method for producing same
US8377369B2 (en) 2004-12-20 2013-02-19 Georgia Tech Research Corporation Density and hardness pressureless sintered and post-HIPed B4C
CN103613389A (en) * 2013-11-29 2014-03-05 宁波伏尔肯机械密封件制造有限公司 Sintering preparation method of boron carbide ceramic
KR102262340B1 (en) * 2020-07-02 2021-06-09 주식회사 티씨케이 Boron carbide material
KR20220114929A (en) * 2021-02-09 2022-08-17 주식회사 티씨케이 Semiconductor manufacturing parts including boron carbide resistant plasma members
CN115210197A (en) * 2020-02-12 2022-10-18 Skc索密思株式会社 Ceramic member and plasma etching apparatus including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110204337B (en) * 2019-06-04 2021-04-30 中南大学 Preparation method of boron carbide ceramic material for aerospace gyroscope bearing and boron carbide ceramic material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592279B1 (en) * 2003-06-12 2009-09-22 Georgia Tech Research Corporation Boron carbide and boron carbide components
US8377369B2 (en) 2004-12-20 2013-02-19 Georgia Tech Research Corporation Density and hardness pressureless sintered and post-HIPed B4C
US7854190B2 (en) 2005-04-11 2010-12-21 Georgia Tech Research Corporation Boron carbide component and methods for the manufacture thereof
JP2007322010A (en) * 2006-05-30 2007-12-13 Kyocera Corp Protective member
WO2012060442A1 (en) 2010-11-04 2012-05-10 黒崎播磨株式会社 High rigidity ceramic material and method for producing same
US8937029B2 (en) 2010-11-04 2015-01-20 Krosakiharima Corporation High-rigidity ceramic material and production method therefor
CN103613389A (en) * 2013-11-29 2014-03-05 宁波伏尔肯机械密封件制造有限公司 Sintering preparation method of boron carbide ceramic
CN115210197A (en) * 2020-02-12 2022-10-18 Skc索密思株式会社 Ceramic member and plasma etching apparatus including the same
KR102262340B1 (en) * 2020-07-02 2021-06-09 주식회사 티씨케이 Boron carbide material
KR20220114929A (en) * 2021-02-09 2022-08-17 주식회사 티씨케이 Semiconductor manufacturing parts including boron carbide resistant plasma members
KR102513077B1 (en) 2021-02-09 2023-03-24 주식회사 티씨케이 Semiconductor manufacturing parts including boron carbide resistant plasma members

Also Published As

Publication number Publication date
JP3667121B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
US4230497A (en) Dense sintered shaped articles of polycrystalline α-silicon carbide and process for their manufacture
US4195066A (en) Process for the production of dense sintered shaped articles of polycrystalline boron carbide by pressureless sintering
US20090105062A1 (en) Sintered Wear-Resistant Boride Material, Sinterable Powder Mixture, for Producing Said Material, Method for Producing the Material and Use Thereof
JP3667062B2 (en) Method for producing sintered boron carbide
JP3667121B2 (en) Boron carbide sintered body and manufacturing method thereof
KR20190048811A (en) Method for manufacturing silicon carbide dense bodies having excellent thermal conductivity and thermal durability
JPS6138149B2 (en)
JPH0432030B2 (en)
EP0178753B1 (en) Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure
EP2716617A1 (en) Method for producing silicon carbide-carbon composite
JPS632913B2 (en)
JPS6212663A (en) Method of sintering b4c base fine body
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
JP3297740B2 (en) Low temperature sintering method of silicon carbide powder.
JPH1179848A (en) Silicon carbide sintered compact
JPH1179839A (en) Tungsten carbide-based cemented carbide material and its production
JP2004256339A (en) Manufacturing method of silicon nitride sintered compact
JPH07315937A (en) Normal pressure sintered compact of boron nitride and its production
JPH0733528A (en) Composite sintered ceramic, its production and semiconductor production jig made therefrom
JP3132849B2 (en) High toughness high pressure phase boron nitride sintered body
JPH0463030B2 (en)
JPH06279119A (en) Highly heat conductive sic ceramics and its production
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JP3492648B2 (en) TiN-Al2O3-based sintered body
JP2004149328A (en) Process for manufacturing silicon nitride sintered compact

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees