JPH06279119A - Highly heat conductive sic ceramics and its production - Google Patents

Highly heat conductive sic ceramics and its production

Info

Publication number
JPH06279119A
JPH06279119A JP5067919A JP6791993A JPH06279119A JP H06279119 A JPH06279119 A JP H06279119A JP 5067919 A JP5067919 A JP 5067919A JP 6791993 A JP6791993 A JP 6791993A JP H06279119 A JPH06279119 A JP H06279119A
Authority
JP
Japan
Prior art keywords
sic
less
powder
sintered body
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5067919A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Yasutomi
義幸 安富
Shigeru Kikuchi
菊池  茂
Yukio Saito
幸雄 斉藤
Jiro Kondo
次郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Steel Corp
Original Assignee
Hitachi Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Steel Corp filed Critical Hitachi Ltd
Priority to JP5067919A priority Critical patent/JPH06279119A/en
Publication of JPH06279119A publication Critical patent/JPH06279119A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PURPOSE:To enhance heat conductivity and toughness by compacting a powdery mixture of specified beta-SiC powder with a binder for compacting and heating the resulting compact without applying pressure. CONSTITUTION:A powdery mixture of beta-SiC powder having <=5wt.% B content, <=5wt.% C content and <=0.5mum particle diameter with a binder for compacting is compacted and the resulting compact is heated at 2,100-2,500 deg.C for 5-60min in inert gas or in an inert gas-gaseous H2 mixture to obtain the objective highly heat conductive SiC ceramics having <=5% porosity. In this SiC ceramics, >=50% of the SiC component is beta-SiC and beta-SiC particles having >=20 aspect ratio have been dispersed by >=20vol.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,常圧焼結で得られる高
熱伝導・高靭性のSiCセラミックスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SiC ceramic having high thermal conductivity and high toughness obtained by pressureless sintering.

【0002】[0002]

【従来の技術】最近、高温ガスタービン用部品、核融合
炉第一壁、MHD発電用チャンネル壁等の材料として高
熱伝導性の耐熱材料が要求されている。
2. Description of the Related Art Recently, heat-resistant materials having high thermal conductivity have been required as materials for parts for high temperature gas turbines, first wall of fusion reactor, channel walls for MHD power generation and the like.

【0003】一般に、エンジンやタービンなどの構造材
料に適するエンジニアリングセラミックスとしては、耐
熱性に優れたSiCやSi34などが知られている。S
iCは化学的安定性、熱伝導性に優れた材料の一つで、
高温における強度が大きく耐酸化性が優れている。特
に、高熱伝導性材料としては、市販のSiC粉末にBe
Oを添加し、ホットプレス焼結することにより、室温に
おける熱伝導率が267W/mKと金属アルミニウムよ
りも大きいものが開発されている。
In general, as engineering ceramics suitable for structural materials such as engines and turbines, SiC and Si 3 N 4 having excellent heat resistance are known. S
iC is one of the materials with excellent chemical stability and thermal conductivity.
High strength at high temperature and excellent oxidation resistance. In particular, commercially available SiC powder and Be can be used as high thermal conductivity materials.
A material having a thermal conductivity of 267 W / mK at room temperature, which is larger than that of metallic aluminum, has been developed by adding O and performing hot press sintering.

【0004】[0004]

【発明が解決しようとする課題】前記ホットプレス焼結
は、型材が必要なために長尺物や複雑形状品の成形には
適していない。また、SiCは、共有結合性の強い化合
物であるため単独では焼結が困難である。SiC焼結体
を無加圧焼結法で得るためには、SiC粉末にB,C等
の焼結助剤を多量に添加する必要がある。しかし、これ
らの添加物は不純物となってフォノンの伝導を妨げるた
めに高熱伝導材を得ることができなかった。
The hot press sintering is not suitable for forming long products or products having complicated shapes because a mold material is required. Further, since SiC is a compound having a strong covalent bond, it is difficult to sinter by itself. In order to obtain the SiC sintered body by the pressureless sintering method, it is necessary to add a large amount of a sintering aid such as B or C to the SiC powder. However, since these additives become impurities and impede the conduction of phonons, a high thermal conductive material cannot be obtained.

【0005】前記の理由から、無加圧焼結法によるSi
C焼結体の製造技術の開発が望まれている。
For the above reason, Si produced by pressureless sintering is used.
Development of manufacturing technology of C sintered body is desired.

【0006】本発明の目的は、無加圧焼結法によって高
熱伝導・高靭性のSiCセラミックスを提供することに
ある。
An object of the present invention is to provide SiC ceramics having high thermal conductivity and high toughness by a pressureless sintering method.

【0007】[0007]

【課題を解決するための手段】前記課題を解決する本発
明の要旨は下記のとおりである。
Means for Solving the Problems The gist of the present invention for solving the above problems is as follows.

【0008】(1) アスペクト比20以上のβ−Si
C粒子が20vol%以上分散している焼結体からなる
ことを特徴とする高熱伝導SiCセラミックス。
(1) β-Si having an aspect ratio of 20 or more
A high thermal conductive SiC ceramics, characterized by comprising a sintered body in which C particles are dispersed in an amount of 20 vol% or more.

【0009】(2) SiC焼結体中のSiC成分の5
0%以上がβ−SiCで、該β−SiCがアスペクト比
20以上のβ−SiC粒子が20vol%以上分散して
いることを特徴とす高熱伝導SiCセラミックス。
(2) 5 of the SiC component in the SiC sintered body
High thermal conductivity SiC ceramics characterized in that 0% or more is β-SiC, and β-SiC particles having an aspect ratio of 20 or more are dispersed in 20 vol% or more.

【0010】(3) 焼結体の表面から50μm〜5m
mの層が、アスペクト比20以上のβ−SiC粒子が2
0vol%以上分散したSiC焼結体で形成されている
ことを特徴とする高熱伝導SiCセラミックス。
(3) 50 μm to 5 m from the surface of the sintered body
The m layer has 2 β-SiC particles with an aspect ratio of 20 or more.
A high thermal conductive SiC ceramics, which is formed of a SiC sintered body in which 0 vol% or more is dispersed.

【0011】(4) 前記焼結体の気孔率が5%以下で
ある高熱伝導SiCセラミックス。
(4) High thermal conductivity SiC ceramics in which the porosity of the sintered body is 5% or less.

【0012】(5) B含有量5wt%以下、C含有量
5wt%以下の粒径0.5μm以下のβ−SiC粉末
と、成形用バインダとの混合粉末で成形体を形成し、該
成形体を無加圧で不活性ガスまたは不活性ガス+水素中
で2100〜2500℃で5〜300分加熱することを
特徴とする高熱伝導SiCセラミックスの製造法。
(5) A molded body is formed by mixing powder of β-SiC powder having a B content of 5 wt% or less and a C content of 5 wt% or less and a particle size of 0.5 μm or less, and a molding binder, and molding the molded body. Is heated in an inert gas or an inert gas + hydrogen at 2100 to 2500 ° C. for 5 to 300 minutes without pressurization.

【0013】(6) (A)粒径5μm以下のSiC粉
末100重量部と焼結助剤としてB、C、B4C、B
N、Al23、BeOの少なくとも一種を1〜5重量部
と、成形バインダとを混合した混合粉末で成形体を作製
する工程と、(B)前記成形体の表面にB含有量5wt
%以下、C含有量5wt%以下の粒径0.5μm以下の
β−SiC粉末と成形用バインダとの混合粉末からなる
層を形成し、不活性ガスまたは不活性ガス+水素中で2
100〜2500℃で5〜300分一体加熱する工程を
含むことを特徴とする高熱伝導SiCセラミックスの製
造法。
(6) (A) 100 parts by weight of SiC powder having a particle size of 5 μm or less and B, C, B 4 C, B as a sintering aid.
A step of producing a molded body from a mixed powder in which 1 to 5 parts by weight of at least one of N, Al 2 O 3 and BeO is mixed with a molding binder; and (B) a B content of 5 wt% on the surface of the molded body.
% Or less, C content 5 wt% or less and a particle size of 0.5 μm or less β-SiC powder and a layer made of a mixed powder of a molding binder, and formed in an inert gas or an inert gas + hydrogen 2
A method for producing a high thermal conductive SiC ceramics, which comprises a step of integrally heating at 100 to 2500 ° C. for 5 to 300 minutes.

【0014】(7) (A)粒径5μm以下のSiC粉
末100重量部と焼結助剤としてB、C、B4C、B
N、Al23、BeOの少なくとも一種を1〜5重量部
と、成形バインダとを混合した混合粉末で成形体を作製
し、該成形体を不活性ガスまたは不活性ガス+水素中で
2100〜2500℃で5〜300分加熱して一次焼結
体を作製する工程と、(B)前記一次焼結体の表面にプ
ラズマ溶射によりB含有量5wt%以下、C含有量5w
t%以下の粒径0.5μm以下のβ−SiCからなる層
を形成し、不活性ガスまたは不活性ガス+水素中で21
00〜2500℃で5〜60分二次加熱する工程を含む
ことを特徴とする高熱伝導SiCセラミックスの製造
法。
(7) (A) 100 parts by weight of SiC powder having a particle size of 5 μm or less and B, C, B 4 C, B as a sintering aid.
A molded body is prepared from a mixed powder in which 1 to 5 parts by weight of at least one of N, Al 2 O 3 and BeO is mixed with a molding binder, and the molded body is subjected to 2100 in an inert gas or an inert gas + hydrogen. A step of producing a primary sintered body by heating at 2,500 ° C. for 5 to 300 minutes, and (B) a B content of 5 wt% or less and a C content of 5 w by plasma spraying on the surface of the primary sintered body.
A layer made of β-SiC having a particle size of t% or less and a particle size of 0.5 μm or less is formed.
A method for producing a highly heat-conductive SiC ceramic, comprising a step of secondary heating at 00 to 2500 ° C. for 5 to 60 minutes.

【0015】本発明の高熱伝導SiCセラミックスは、
SiC原料粉末に、B含有量5wt%以下、C含有量5
wt%以下で粒径0.5μm以下の高純度のβ−SiC
粉末を含む成形体を、不活性ガスまたは不活性ガス+水
素中で2100〜2500℃で5〜300分加熱し、焼
結体中にアスペクト比20以上のβ−SiC粒子を20
vol%以上生成,分散させることにより熱伝導率13
0W/m・K以上、気孔率5vol%以下の高熱伝導S
iCセラミックスを得ることができる。
The high thermal conductive SiC ceramics of the present invention are
SiC raw material powder, B content 5 wt% or less, C content 5
High-purity β-SiC having a particle size of 0.5 μm or less at wt% or less
A compact containing the powder is heated in an inert gas or an inert gas + hydrogen at 2100 to 2500 ° C. for 5 to 300 minutes to obtain 20 β-SiC particles having an aspect ratio of 20 or more in the sintered body.
Thermal conductivity of 13% by generating and dispersing more than vol%
High thermal conductivity S of 0 W / mK or more and porosity of 5 vol% or less
iC ceramics can be obtained.

【0016】ここで、焼結雰囲気は不活性ガスあるいは
不活性ガス+水素が好ましい。なお、真空中ではB含有
β−SiC粉末中のBが分解し、焼結を阻害するため好
ましくない。
The sintering atmosphere is preferably an inert gas or an inert gas + hydrogen. In a vacuum, B in the B-containing β-SiC powder decomposes and hinders sintering, which is not preferable.

【0017】本発明の高純度B含有β−SiC粉末は、
プラズマ処理、ゾルゲル処理などにより作製できる。
The high-purity B-containing β-SiC powder of the present invention is
It can be produced by plasma treatment, sol-gel treatment, or the like.

【0018】従来は、高強度化を目的にSiC粒子の粒
成長を抑えるための焼結条件が検討されてきた。本発明
では、逆にアスペクト比の大きいβ−SiC粒子の成長
を促進させることにより、高熱伝導性および高靭性のS
iC焼結体を得ることが可能となった。
Conventionally, the sintering conditions for suppressing the grain growth of SiC particles have been studied for the purpose of increasing the strength. In the present invention, conversely, by promoting the growth of β-SiC particles having a large aspect ratio, S of high thermal conductivity and high toughness is obtained.
It has become possible to obtain an iC sintered body.

【0019】無加圧焼結法で緻密な高熱伝導SiC焼結
体を得るためには、プラズマ合成した0.5μm以下の
β−SiC粉末が必要である。特に、高熱伝導化のため
には、SiC粉末中に遊離ケイ素をはじめFe、Alな
どの不純物や焼結助剤の少ないものが望ましい。
In order to obtain a dense high thermal conductivity SiC sintered body by the pressureless sintering method, plasma-synthesized β-SiC powder of 0.5 μm or less is required. In particular, in order to obtain high thermal conductivity, it is desirable that the SiC powder contains a small amount of impurities such as free silicon, Fe and Al, and a sintering aid.

【0020】高熱伝導化のためには、金属不純物の総量
は1500ppm以下、好ましくは100ppm以下に
することが必要である。また、非晶質相をほとんど含ま
ないことが好ましい。非晶質相は焼結過程で酸素と結合
し易く、それによる微量の酸化物が不純物となって存在
し、熱伝導率を低下させる要因となるためである。
For high thermal conductivity, the total amount of metal impurities must be 1500 ppm or less, preferably 100 ppm or less. Further, it is preferable that the amorphous phase is hardly contained. This is because the amorphous phase is likely to combine with oxygen during the sintering process, and a small amount of oxide resulting therefrom is present as an impurity, which causes a decrease in thermal conductivity.

【0021】次に、プラズマ処理で本発明の結晶化β−
SiC粉末を合成する方法を以下に述べる。
Next, crystallization β-of the present invention is performed by plasma treatment.
The method of synthesizing SiC powder is described below.

【0022】 SiH4、B26およびCH4ガスをプ
ラズマ中で反応させることにより硼素(B)が0.5μ
m以下のβ−SiC粉末が得られる。
By reacting SiH 4 , B 2 H 6 and CH 4 gas in plasma, boron (B) is reduced to 0.5 μm.
A β-SiC powder of m or less is obtained.

【0023】 SiH4およびCH4ガスをプラズマ中
で反応させることにより0.5μm以下のβ−SiC粉
末が得られる。
By reacting SiH 4 gas and CH 4 gas in plasma, β-SiC powder of 0.5 μm or less can be obtained.

【0024】 金属不純物量1wt%を超える市販の
SiC粉末をプラズマ中に投下し、一旦、SiとCに分
解し、CH4ガスと反応させて過剰Cのβ−SiC粉末
を合成し、水素中で過剰Cを除去することにより0.5
μm以下の高純度β−SiC粉末が得られる。
Commercially available SiC powder having a metal impurity content of more than 1 wt% is dropped into plasma, and once decomposed into Si and C and reacted with CH 4 gas to synthesize excess C β-SiC powder, and then in hydrogen. 0.5 by removing excess C at
A high-purity β-SiC powder having a particle size of μm or less is obtained.

【0025】 金属不純物量1500ppmを超える
市販のSiC粉末と、B粉末をプラズマ中に投下し、一
旦、Si、C、Bに分解し、C含有CH4ガスと反応さ
せ、過剰C,Bを含有するβ−SiC粉末を合成し、水
素中で加熱処理して過剰Cを除去することにより0.5
μm以下のB含有高純度β−SiC粉末が得られる。
Commercially available SiC powder having a metal impurity amount of more than 1500 ppm and B powder are dropped into plasma, and once decomposed into Si, C and B, and reacted with C-containing CH 4 gas to contain excess C and B. 0.5 was obtained by synthesizing β-SiC powder to be treated and heat-treating in hydrogen to remove excess C.
A B-containing high-purity β-SiC powder having a particle size of μm or less is obtained.

【0026】 金属不純物量1500ppmを超える
市販のSiC粉末をプラズマ中に投下し、一旦、Si、
Cに分解し、B26およびCH4ガスと反応させて過剰
C,Bを含有するβ−SiC粉末を合成し、水素中で加
熱処理して過剰Cを除去することにより0.5μm以下
のB含有高純度β−SiC粉末が得られる。
Commercially available SiC powder having a metal impurity content of more than 1500 ppm was dropped into plasma to temporarily remove Si,
0.5 μm or less by decomposing into C, reacting with B 2 H 6 and CH 4 gas to synthesize β-SiC powder containing excess C and B, and removing excess C by heat treatment in hydrogen. A B-containing high-purity β-SiC powder is obtained.

【0027】 溶融SiにBをドープし、BドープS
i塊を作製し、これを粉砕してプラズマ中に投下し、S
iをCH4ガスと反応させてB含有高純度β−SiC粉
末が得られる。
Molten Si is doped with B, B-doped S
i lump is made, crushed and dropped into plasma, S
i is reacted with CH 4 gas to obtain B-containing high-purity β-SiC powder.

【0028】上記のうち、,,およびの方法で
得られるB含有β−SiC粉末が、特に、無加圧で高熱
伝導SiCセラミックスを得るのに適している。
Among the above, the B-containing β-SiC powder obtained by the methods of ,, and is particularly suitable for obtaining a high thermal conductive SiC ceramics without pressure.

【0029】また、用途によってはバルク全体を本発明
の高熱伝導セラミックスにする必要がない場合がある。
その場合には、以下の方法により表面層のみを高熱伝導
化することがコスト低減の上から有効である。
Depending on the application, it may not be necessary to use the high thermal conductive ceramics of the present invention in the entire bulk.
In that case, it is effective to increase the thermal conductivity of only the surface layer by the following method from the viewpoint of cost reduction.

【0030】 (A)粒径5μm以下のSiC粉末1
00重量部と焼結助剤としてB、C、B4C、BN、A
23、BeOの少なくとも一種を1〜5重量部と、成
形バインダとの混合粉末を用いて成形体を作製する工
程、(B)上記の成形体の表面を、プラズマ中で合成し
たB含有量5wt%以下、C含有量5wt%以で粒径
0.5μm以下のβ−SiC粉末と、成形に必要なバイ
ンダとの混合物で覆い、不活性ガス中において2100
〜2500℃で5〜300分加熱して一体化する工程、
によりSiC焼結体の表面層の50μm〜5mmが、ア
スペクト比20以上のβ−SiC粒子が20vol%以
上分散し、該表層部の熱伝導率が130W/m・K以上
の無加圧焼結高熱伝導SiCセラミックスとする方法。
(A) SiC powder 1 having a particle size of 5 μm or less
00 parts by weight and B, C, B 4 C, BN, A as a sintering aid
1 to 5 parts by weight of at least one of l 2 O 3 and BeO, and a step of producing a molded body using a mixed powder of a molding binder, (B) the surface of the above-mentioned molded body is synthesized in plasma B Covered with a mixture of β-SiC powder having a content of 5 wt% or less and a C content of 5 wt% or less and a particle size of 0.5 μm or less, and a binder necessary for molding, and then 2100 in an inert gas.
A step of heating at 2,500 ° C. for 5 to 300 minutes to integrate them,
As a result, 20 μ% or more of β-SiC particles having an aspect ratio of 20 or more are dispersed in 50 μm to 5 mm of the surface layer of the SiC sintered body, and the surface layer portion has a thermal conductivity of 130 W / m · K or more and pressureless sintering. Method for producing high thermal conductive SiC ceramics.

【0031】 (A)粒径5μm以下のSiC粉末1
00重量部と焼結助剤としてB、C、B4C、BN、A
23、BeOの少なくとも一種を1〜5重量部と、成
形バインダとの混合粉末を用いて成形体を作製し、該成
形体を不活性ガス中で2100〜2500℃で5〜30
0分加熱して一次焼結体を作製する工程、(B)上記の
焼結体の表面を、プラズマ中で合成したB含有量5wt
%以下、C含有量5wt%以下で粒径0.5μm以下の
β−SiC粉末と成形に必要なバインダとの混合物で覆
い、不活性ガス中において2100〜2500℃で5〜
60分二次焼結する工程により、SiC焼結体の表面か
ら50μm〜5mmの層が、アスペクト比20以上のβ
−SiC粒子が20vol%以上分散し、該表層部の熱
伝導率が130W/m・K以上の無加圧焼結高熱伝導S
iCセラミックスとする方法。
(A) SiC powder 1 having a particle size of 5 μm or less
00 parts by weight and B, C, B 4 C, BN, A as a sintering aid
1 to 5 parts by weight of at least one of l 2 O 3 and BeO and a molding binder are used to prepare a molded body, and the molded body is stored in an inert gas at 2100 to 2500 ° C. for 5 to 30 parts.
Step of producing a primary sintered body by heating for 0 minutes, (B) B content of 5 wt% synthesized on the surface of the above sintered body in plasma
%, A C content of 5 wt% or less and a particle size of 0.5 μm or less of β-SiC powder and a binder necessary for molding, and the mixture is covered with a mixture of 5 to 5 ° C. at 2100 to 2500 ° C. in an inert gas.
By the step of performing secondary sintering for 60 minutes, a layer of 50 μm to 5 mm from the surface of the SiC sintered body is β having an aspect ratio of 20 or more.
-SiC particles are dispersed in an amount of 20 vol% or more, and the thermal conductivity of the surface layer portion is 130 W / mK or more.
Method of making iC ceramics.

【0032】上記またはの方法によって、耐熱衝撃
性に優れた部材を得ることがでる。なお、本発明の無加
圧焼結高熱伝導SiCセラミックスはガスタービン部
品、核融合炉第1壁等の超高温領域下で使用される部品
に適用可能である。
By the above method or method, a member having excellent thermal shock resistance can be obtained. The pressureless sintered high thermal conductive SiC ceramics of the present invention can be applied to parts used in an ultrahigh temperature region such as gas turbine parts and the first wall of a fusion reactor.

【0033】また、本発明の焼結体は、無加圧で焼結可
能なため、その成形方法は、射出成形、プレス成形、鋳
込み成形、ラバープレス成形、押出し成形、金型粉末成
形など形状と要求特性に応じて各種の成形法が選択で
き、複雑形状の高熱伝導・高靭性セラミックスを得るの
に極めて好都合である。
Further, since the sintered body of the present invention can be sintered without pressure, its molding method is injection molding, press molding, cast molding, rubber press molding, extrusion molding, die powder molding, or the like. Various molding methods can be selected according to the required characteristics, and it is extremely convenient for obtaining highly heat-conductive and high-toughness ceramics with complicated shapes.

【0034】また、該高熱伝導SiCセラミックス中
に、他のセラミック粒子あるいは短繊維や長繊維を分散
させることにより、さらに高靭性の複合材を得ることも
可能である。
It is also possible to obtain a composite material having higher toughness by dispersing other ceramic particles or short fibers or long fibers in the high thermal conductive SiC ceramics.

【0035】[0035]

【作用】本発明の高熱伝導SiCセラミックスの機械的
特性を低下させないためには、得られた焼結体中のSi
C組成の50%以上がβ−SiCからなるようにするこ
とが重要である。アスペクト比20以上のβ−SiC粒
子を20vol%以上分散させることにより、高熱伝導
かつ高靭性のSiC焼結体が得られる。これは、分散さ
せたアスペクト比20以上のβ−SiC粒子により、ク
ラッックが折れ曲がりクラック進展の駆動力を減少させ
るためである。
In order to prevent deterioration of the mechanical properties of the high thermal conductive SiC ceramics of the present invention, Si in the obtained sintered body is
It is important that 50% or more of the C composition is composed of β-SiC. By dispersing 20 vol% or more of β-SiC particles having an aspect ratio of 20 or more, a SiC sintered body having high thermal conductivity and high toughness can be obtained. This is because the dispersed β-SiC particles having an aspect ratio of 20 or more reduce the driving force for cracking and crack development.

【0036】但し、焼結中にβ−SiCがα−SiCに
50%以上変化すると、アスペクト比の小さな粒子の粒
成長が多量に起こり、破壊靭性値の低下を招く。
However, if β-SiC changes to α-SiC by 50% or more during sintering, a large amount of grain growth of particles having a small aspect ratio occurs, resulting in a decrease in fracture toughness value.

【0037】[0037]

【実施例】本発明を実施例に基づき具体的に説明する。EXAMPLES The present invention will be specifically described based on examples.

【0038】〔実施例 1〕まず、プラズマ処理β−S
iC粉末の合成法を説明する。
Example 1 First, plasma treatment β-S
A method for synthesizing iC powder will be described.

【0039】ガス導入管からアルゴンガスを20リット
ル/分導入し、陰極と陽極の間で30V,700Aの条
件で放電させ、プラズマを発生させた。そして、シラン
(SiH4)、ジボラン(B24)を導入し、第1反応
域で硼素を含む融体Si粒子を生成させ、さらに第2反
応域でメタン(CH4)と反応させて炭化させ、粒径0.
3μm以下のβ−SiC粉末を合成した。
Argon gas was introduced at a rate of 20 liters / minute from a gas introduction tube and discharged between the cathode and the anode under the conditions of 30 V and 700 A to generate plasma. Then, silane (SiH 4 ) and diborane (B 2 H 4 ) were introduced to produce molten Si particles containing boron in the first reaction zone, and further reacted with methane (CH 4 ) in the second reaction zone. Carbonized to a particle size of 0.
A β-SiC powder of 3 μm or less was synthesized.

【0040】次に、上記のβ−SiC粉末を空気中に取
り出し各種分析を行った。X線回折分析によれば非晶質
分は検出されなかった。また、硼素の含有量は0.3w
t%、遊離炭素量は1.5wt%、酸素量は0.3wt%
であった。金属不純物総量は、30ppm以下であっ
た。
Next, the above β-SiC powder was taken out into the air and various analyzes were conducted. No amorphous component was detected by X-ray diffraction analysis. The boron content is 0.3w
t%, free carbon amount is 1.5 wt%, oxygen amount is 0.3 wt%
Met. The total amount of metal impurities was 30 ppm or less.

【0041】上記のβ−SiC粉末にプレス成形用バイ
ンダを有機溶剤と一緒に2wt%混合し、乾燥後、成形
原料とした。プレス成形により、直径50mm×厚さ1
0mmの成形体を作製した。得られた成形体をアルゴン
中で2200℃まで加熱し、1時間保持し、気孔率3%
の焼結体を作製した。X線回折分析より、焼結体の組成
は95%がβ−SiCからなり、画像処理およびマイク
ロX線回折分析より、アスペクト比20以上のβ−Si
Cが25vol%存在していることが分かった。
A press forming binder was mixed with the above β-SiC powder in an amount of 2 wt% together with an organic solvent, dried and used as a forming raw material. By press molding, diameter 50 mm x thickness 1
A 0 mm molded body was produced. The obtained molded body was heated to 2200 ° C. in argon and kept for 1 hour to have a porosity of 3%.
The sintered body of was produced. According to X-ray diffraction analysis, 95% of the composition of the sintered body was β-SiC. From image processing and micro X-ray diffraction analysis, β-Si having an aspect ratio of 20 or more was obtained.
It was found that 25 vol% of C was present.

【0042】得られた焼結体の室温における熱伝導率
は、レーザーフラッシュ法により測定した結果、170
W/m・Kを有することが分かった。破壊靭性値はIM
法により測定した結果、平均4.5MPa√mであっ
た。
The thermal conductivity of the obtained sintered body at room temperature was 170 as a result of measurement by the laser flash method.
It was found to have W / m · K. Fracture toughness value is IM
As a result of measurement by the method, the average was 4.5 MPa√m.

【0043】ここで、β−SiC粉末のB含有量を0.
3から5wt%、またCの含有量を0から5wt%まで
変え、同様に、成形、焼結を行ったが、いずれも130
W/m・K以上の高熱伝導、3.5MPa√m以上の破
壊靭性値を有するSiCセラミックスが得られた。
Here, the B content of the β-SiC powder is set to 0.
3 to 5 wt% and the content of C were changed from 0 to 5 wt%, and molding and sintering were performed in the same manner.
SiC ceramics having a high thermal conductivity of W / m · K or more and a fracture toughness value of 3.5 MPa√m or more were obtained.

【0044】ここで、C含有量が5wt%より多い場合
には、不活性ガスに水素ガスを混合してCを除去するこ
とにより、130W/m・K以上の高熱伝導を有するS
iCセラミックスが得られる。また、同様にB含有量が
多い場合には、真空中で予備加熱処理することにより、
Bを分解して低減することができる。
Here, when the C content is more than 5 wt%, the S gas having a high heat conductivity of 130 W / m · K or more is obtained by mixing the inert gas with hydrogen gas to remove the C.
An iC ceramic is obtained. Similarly, when the B content is high, by preheating in vacuum,
B can be decomposed and reduced.

【0045】〔比較例 1〕市販のβ−SiC粉末に焼
結助剤としてB4C粉末を3wt%添加し実施例1と同
様に成形、2200℃で1時間焼結を行った。市販のβ
−SiC粉末には、金属不純物としてFeが0.1wt
%,Alが0.02wt%、酸化物が0.52wt%が含
まれていた。得られた焼結体の熱伝導率は105W/m
・K、破壊靭性値は2.7MPa√mであった。X線回
折分析より、焼結体の組成は99%がβ−SiCからな
り、画像処理およびマイクロX線回折分析より、アスペ
クト比20以上のβ−SiCが5vol%存在している
ことが分かった。
Comparative Example 1 3 wt% of B 4 C powder was added as a sintering aid to a commercially available β-SiC powder, and molding was performed in the same manner as in Example 1 and sintering was performed at 2200 ° C. for 1 hour. Commercial β
-SiC powder contains 0.1 wt% Fe as a metal impurity.
%, Al was 0.02 wt%, and oxide was 0.52 wt%. The thermal conductivity of the obtained sintered body is 105 W / m.
-K, the fracture toughness value was 2.7 MPa√m. From the X-ray diffraction analysis, it was found that 99% of the composition of the sintered body was β-SiC, and from image processing and micro X-ray diffraction analysis, 5 vol% β-SiC having an aspect ratio of 20 or more was present. .

【0046】さらに市販のβ−SiC粉末に焼結助剤と
してB4C粉末を3wt%添加し実施例1と同様に成形
し、2200℃で5時間焼結を行い、粒成長を促進させ
た。X線回折分析より、焼結体の組成は70%がβ−S
iCからなり、画像処理およびマイクロX線回折分析よ
り、アスペクト比20以上のβ−SiCが37vol%
存在していることが分かった。しかし、得られた焼結体
の熱伝導率は105W/m・Kであった。従って、単に
従来の不純物の多い市販の微粒β−SiC粉末を使用し
ただけでは、本発明の目的の高熱伝導性・高靭性を兼ね
備えたSiCセラミックスは得られないことが分かっ
た。
Further, 3 wt% of B 4 C powder was added to a commercially available β-SiC powder as a sintering aid, the mixture was molded in the same manner as in Example 1, and sintered at 2200 ° C. for 5 hours to promote grain growth. . From the X-ray diffraction analysis, 70% of the composition of the sintered body is β-S
37% by volume of β-SiC composed of iC and having an aspect ratio of 20 or more by image processing and micro X-ray diffraction analysis.
It turns out that it exists. However, the thermal conductivity of the obtained sintered body was 105 W / m · K. Therefore, it was found that the SiC ceramics having both high thermal conductivity and high toughness, which is the object of the present invention, cannot be obtained simply by using the conventional commercially available fine β-SiC powder containing many impurities.

【0047】〔実施例 2〕実施例1のプラズマ合成に
おいて、金属不純物総量(Fe,Al,Tiなど)を2
0ppmから3000ppmまで変えた0.5wt%B
含有β−SiC粉末を作製した。そして、実施例1と同
様に、成形、焼結を行った。X線回折分析より、いずれ
の焼結体の組成も95%がβ−SiCからなり、画像処
理およびマイクロX線回折分析より、アスペクト比20
以上のβ−SiCが20vol%以上存在していること
が分かった。
[Embodiment 2] In the plasma synthesis of Embodiment 1, the total amount of metal impurities (Fe, Al, Ti, etc.) is set to 2
0.5wt% B changed from 0ppm to 3000ppm
A contained β-SiC powder was produced. Then, molding and sintering were performed in the same manner as in Example 1. From the X-ray diffraction analysis, 95% of the composition of all the sintered bodies was β-SiC, and from the image processing and the micro X-ray diffraction analysis, the aspect ratio was 20.
It was found that the above β-SiC was present in an amount of 20 vol% or more.

【0048】図1に金属不純物量と焼結体の室温におけ
る熱伝導率との関係を示す。図から分かるように、焼結
体の室温における熱伝導率は、金属不純物量が1500
ppm以下で熱伝導率が130W/m・K以上であるこ
とが分かった。従って、金属不純物量は1500ppm
以下にすることが好ましい。
FIG. 1 shows the relationship between the amount of metal impurities and the thermal conductivity of the sintered body at room temperature. As can be seen from the figure, the thermal conductivity of the sintered body at room temperature is 1500 when the amount of metal impurities is 1500.
It was found that the thermal conductivity was 130 W / m · K or more at ppm or less. Therefore, the amount of metal impurities is 1500ppm
The following is preferable.

【0049】また、金属不純物量の多いSiC粉末の場
合、焼結時の焼結温度を2300℃から2500℃の範
囲と高くすることにより、SiCの分解時に一部の不純
物を除去することが可能である。但し、この際βからα
への変化により粒子が粗大化する恐れがあるので、温度
制御に注意を要する。
Further, in the case of SiC powder having a large amount of metal impurities, it is possible to remove some impurities when the SiC is decomposed by raising the sintering temperature during sintering to a range of 2300 ° C. to 2500 ° C. Is. However, at this time, β to α
Since there is a risk that the particles will become coarse due to the change to, the temperature control must be careful.

【0050】〔実施例 3〕実施例1のプラズマ合成法
により、1.2wt%B含有β−SiC粉末を作製し、
実施例1と同様に、成形、焼結を行った。
Example 3 A 1.2 wt% B-containing β-SiC powder was prepared by the plasma synthesis method of Example 1,
Molding and sintering were performed in the same manner as in Example 1.

【0051】ここで、焼結温度を1900℃から220
0℃の範囲でコントロールして気孔率の異なる焼結体を
作製した。図2に焼結体気孔率と破壊靱性値との関係を
示す。
Here, the sintering temperature is changed from 1900 ° C. to 220
Sintered bodies having different porosities were prepared by controlling in the range of 0 ° C. FIG. 2 shows the relationship between the sintered body porosity and the fracture toughness value.

【0052】気孔率が5%を超えると破壊靭性値が低下
し3MPa√m以下になることが分かった。従って、焼
結体の気孔率は5%以下にすることが好ましい。
It has been found that when the porosity exceeds 5%, the fracture toughness value decreases to 3 MPa√m or less. Therefore, the porosity of the sintered body is preferably 5% or less.

【0053】〔実施例 4〕実施例1のプラズマ合成法
により、0.3wt%B含有β−SiC粉末を作製し、
実施例1と同様に、成形、焼結を行った。
Example 4 A β-SiC powder containing 0.3 wt% B was prepared by the plasma synthesis method of Example 1,
Molding and sintering were performed in the same manner as in Example 1.

【0054】ここで、焼結温度を2100℃から250
0℃の範囲で温度及び時間をコントロールし、焼結体中
のアスペクト比20以上のβ−SiC粒子の含有量の異
なる焼結体を作製した。
Here, the sintering temperature is changed from 2100 ° C. to 250
The temperature and time were controlled in the range of 0 ° C. to prepare sintered bodies having different contents of β-SiC particles having an aspect ratio of 20 or more in the sintered bodies.

【0055】図3に焼結体中のアスペクト比20以上の
β−SiC粒子の含有量と、熱伝導率及び破壊靭性値と
の関係を示す。
FIG. 3 shows the relationship between the content of β-SiC particles having an aspect ratio of 20 or more in the sintered body and the thermal conductivity and the fracture toughness value.

【0056】アスペクト比20以上のβ−SiC粒子が
20vol%以上で、熱伝導率130W/m・K以上有
し、かつ、破壊靭性値が3.5MPa√m以上有する焼
結体が得られることが分かった。
A β-SiC particle having an aspect ratio of 20 or more is 20 vol% or more, has a thermal conductivity of 130 W / mK or more, and has a fracture toughness value of 3.5 MPa√m or more. I understood.

【0057】〔実施例 5〕ガス導入管からアルゴンガ
スを20リットル/分導入し、陰極と陽極の間で40
V,700Aの条件で放電させ、プラズマを発生させ
た。そして、シラン(SiH4)とメタン(CH4)とを
反応させて炭化し、粒径0.2μm以下のβ−SiC粉
末を合成した。該β−SiC粉末を空気中に取り出し各
種分析を行った。
Example 5 Argon gas was introduced at a rate of 20 liters / minute from the gas introduction tube, and the amount of the argon gas between the cathode and the anode was 40%.
Discharge was performed under the conditions of V and 700 A to generate plasma. Then, silane (SiH 4 ) and methane (CH 4 ) were reacted and carbonized to synthesize β-SiC powder having a particle size of 0.2 μm or less. The β-SiC powder was taken out in air and various analyzes were performed.

【0058】X線回折分析では非晶質は検出されなかっ
た。遊離炭素量は1.5wt%以下、酸素量は0.3wt
%であった。また、金属不純物量は100ppm以下で
あった。
No amorphous substance was detected by X-ray diffraction analysis. Free carbon amount is less than 1.5wt%, oxygen amount is 0.3wt%
%Met. The amount of metal impurities was 100 ppm or less.

【0059】上記のβ−SiC粉末に焼結助剤としてB
4C粉末を1wt%添加し、射出成形用の熱可塑性バイ
ンダを12wt%混練し成形原料とした。これを射出成
形して50mm角×厚さ10mmの成形体を作製した。
得られた成形体をアルゴン中で脱脂後、アルゴン中,2
200℃まで加熱し、1時間保持して気孔率4%の焼結
体を作製した。焼結体の組成は95%がβ−SiCから
なり、アスペクト比20以上のβ−SiCが30vol
%存在していることが分かった。
B was added to the above β-SiC powder as a sintering aid.
1 wt% of 4 C powder was added, and 12 wt% of a thermoplastic binder for injection molding was kneaded to obtain a molding raw material. This was injection-molded to prepare a 50 mm square × 10 mm thick molded body.
After degreasing the obtained compact in argon,
It was heated to 200 ° C. and kept for 1 hour to produce a sintered body having a porosity of 4%. The composition of the sintered body is composed of β-SiC 95%, and β-SiC with an aspect ratio of 20 or more is 30 vol.
It turns out that it exists.

【0060】得られた焼結体の室温における熱伝導率は
140W/m・K、破壊靭性値は平均4.1MPa√m
であった。
The obtained sintered body had a thermal conductivity at room temperature of 140 W / m · K and a fracture toughness value of 4.1 MPa√m on average.
Met.

【0061】本実施例において、β−SiC粉末の焼結
助剤は、B,C,Al23,BNなどが使用可能であ
る。
In the present embodiment, B, C, Al 2 O 3 , BN or the like can be used as the β-SiC powder sintering aid.

【0062】〔実施例 6〕ガス導入管からアルゴンガ
スを20リットル/分導入し、陰極と陽極の間で30
V,700Aの条件で放電させ、プラズマを発生させ
た。そして、市販のSiC粉末を導入し、プラズマ中で
Si,Cに分解し、メタン(CH4)と反応させて炭化
し、粒径0.2μm以下のβ−SiC粉末を合成した。
Example 6 Argon gas was introduced at a rate of 20 liters / minute from a gas introduction tube, and the amount of the argon gas was 30% between the cathode and the anode.
Discharge was performed under the conditions of V and 700 A to generate plasma. Then, a commercially available SiC powder was introduced, decomposed into Si and C in plasma, reacted with methane (CH 4 ) and carbonized to synthesize β-SiC powder having a particle size of 0.2 μm or less.

【0063】上記β−SiC粉末は、X線回折分析では
非晶質分は検出されなかった。遊離炭素量は4.5wt
%、酸素量は0.3wt%であった。金属不純物量は5
00ppm以下であった。このβ−SiC粉末を水素気
流中で1500℃で処理して過剰Cを除去した。この除
去処理は、赤外吸収法で過剰Cが除去されているか確認
しながら行った。これにより、遊離炭素量を0.5wt
%以下まで減少させた。
No amorphous component was detected in the β-SiC powder by X-ray diffraction analysis. Free carbon amount is 4.5wt
%, And the amount of oxygen was 0.3 wt%. The amount of metal impurities is 5
It was below 00 ppm. This β-SiC powder was treated in a hydrogen stream at 1500 ° C. to remove excess C. This removal treatment was performed while confirming whether excess C was removed by the infrared absorption method. This will reduce the amount of free carbon to 0.5 wt.
% Or less.

【0064】上記のβ−SiC粉末に焼結助剤としてB
4C粉末を1wt%添加し、射出成形用の熱可塑性バイ
ンダを12wt%混練し、成形原料とした。これを射出
成形により、50mm角×厚さ10mmの成形体を作製
した。得られた成形体をアルゴン中で脱脂後、アルゴン
+水素5%中で2300℃まで加熱し、1時間保持し、
気孔率2%の焼結体を作製した。該焼結体の組成は50
%がβ−SiCからなり、アスペクト比20以上のβ−
SiCが35vol%存在していることが分かった。ま
た、室温における熱伝導率は140W/m・K、破壊靭
性値は平均4.7MPa√mであった。
B was added to the above β-SiC powder as a sintering aid.
1 wt% of 4 C powder was added, and 12 wt% of a thermoplastic binder for injection molding was kneaded to obtain a molding raw material. A 50 mm square × 10 mm thick molded body was produced by injection molding this. After degreasing the obtained molded body in argon, it is heated to 2300 ° C. in argon + 5% hydrogen and kept for 1 hour,
A sintered body having a porosity of 2% was produced. The composition of the sintered body is 50
% Consists of β-SiC and has an aspect ratio of 20 or more β-
It was found that SiC was present in an amount of 35 vol%. The thermal conductivity at room temperature was 140 W / m · K, and the fracture toughness value was 4.7 MPa√m on average.

【0065】本実施例において、β−SiC粉末の焼結
助剤は、B,C,Al23,BNなどが使用可能であ
る。
In this embodiment, B, C, Al 2 O 3 , BN or the like can be used as the β-SiC powder sintering aid.

【0066】〔実施例 7〕実施例1のプラズマ合成法
により、1.2wt%B含有β−SiC粉末を作製し、
該SiC粉末にBeO粉末を1wt%添加し、実施例1
と同様に成形し、アルゴン雰囲気中、2100℃で2時
間焼結を行った。
Example 7 A 1.2 wt% B-containing β-SiC powder was prepared by the plasma synthesis method of Example 1,
Example 1 was prepared by adding 1 wt% of BeO powder to the SiC powder.
Molded in the same manner as above, and sintered in an argon atmosphere at 2100 ° C. for 2 hours.

【0067】得られた焼結体の室温における熱伝導率は
230W/m・K、破壊靭性値は平均4.6MPa√m
であった。BeO粉末を焼結助剤として用いるとさらに
熱伝導率が向上することが分かった。
The obtained sintered body had a thermal conductivity of 230 W / mK at room temperature and an average fracture toughness value of 4.6 MPa√m.
Met. It was found that the thermal conductivity was further improved when BeO powder was used as a sintering aid.

【0068】〔実施例 8〕ガス導入管からアルゴンガ
スを20リットル/分導入し、陰極と陽極の間で30
V,700Aの条件で放電させ、プラズマを発生させ
た。そして、市販のSiC粉末を導入し、プラズマ中で
Si,Cに分解し、ジボラン(B24)と反応させてS
i中にBを固溶させ、次にメタン(CH4)と反応させ
て炭化させ、粒径0.3μm以下のB含有量0.2wt%
のβ−SiC粉末を合成した。
[Embodiment 8] Argon gas was introduced at a rate of 20 liters / minute from the gas introduction tube, and the amount of the argon gas was 30% between the cathode and the anode.
Discharge was performed under the conditions of V and 700 A to generate plasma. Then, a commercially available SiC powder is introduced, decomposed into Si and C in plasma, and reacted with diborane (B 2 H 4 ) to obtain S.
B is solid-dissolved in i and then reacted with methane (CH 4 ) to be carbonized, and the B content of 0.3 μm or less is 0.2 wt%
Of β-SiC powder was synthesized.

【0069】該β−SiC粉末を空気中に取り出し各種
分析を行った。X線回折分析では非晶質分は検出されな
かった。遊離炭素量は3.5wt%、酸素量は0.3wt
%であった。金属不純物量は500ppm以下であっ
た。このβ−SiC粉末を水素気流中で1500℃で処
理し、粉末中の過剰Cを除去した。この除去処理は、赤
外吸収法で過剰Cが除去されているか確認しながら行っ
た。これにより、遊離炭素量を0.1wt%以下まで減
少させた。
The β-SiC powder was taken out into the air and various analyzes were conducted. No amorphous component was detected by X-ray diffraction analysis. Free carbon amount is 3.5wt%, oxygen amount is 0.3wt
%Met. The amount of metal impurities was 500 ppm or less. This β-SiC powder was treated at 1500 ° C. in a hydrogen stream to remove excess C in the powder. This removal treatment was performed while confirming whether excess C was removed by the infrared absorption method. As a result, the amount of free carbon was reduced to 0.1 wt% or less.

【0070】該β−SiC粉末にスリップキャスティン
グ用分散剤を0.5wt%添加しスラリーとした。該ス
ラリーをスリップキャスティング成形して直径50mm
×厚さ20mmの成形体を作製した。得られた成形体を
窒素中で2100℃まで加熱し、1時間保持して気孔率
4%の焼結体を作製した。
A 0.5 wt% dispersant for slip casting was added to the β-SiC powder to form a slurry. The slurry is slip-cast to a diameter of 50 mm
A molded body having a thickness of 20 mm was produced. The obtained molded body was heated to 2100 ° C. in nitrogen and held for 1 hour to produce a sintered body having a porosity of 4%.

【0071】上記焼結体の組成は98%がβ−SiCか
らなり、アスペクト比20以上のβ−SiCが22vo
l%存在していることが分かった。
98% of the composition of the above sintered body is β-SiC, and 22 vo of β-SiC having an aspect ratio of 20 or more is used.
It was found that 1% was present.

【0072】得られた焼結体の室温における熱伝導率は
150W/m・K、破壊靭性値は平均3.9MPa√m
であった。
The obtained sintered body had a thermal conductivity at room temperature of 150 W / m · K and a fracture toughness value of 3.9 MPa√m on average.
Met.

【0073】〔実施例 9〕市販の粒径0.5μmのβ
−SiC粉末に焼結助剤としてAl23粉末を3wt%
添加し、プレス成形用バインダを混合して成形原料とし
た。これをプレス成形により直径50mm×厚さ20m
mの成形体を作製した。次に、実施例1と同じように作
製したプラズマ合成2.3wt%B含有β−SiC粉末
を用いて、プレス成形用バインダと混合して成形原料と
した。これをプレス成形により直径50mm×厚さ5m
mの成形体を作製した。
Example 9 Commercially available β having a particle size of 0.5 μm
3% by weight of Al 2 O 3 powder as a sintering aid to SiC powder
The mixture was added and a press molding binder was mixed to obtain a molding raw material. This is press-formed with a diameter of 50 mm and a thickness of 20 m.
A molded body of m was produced. Next, the plasma-synthesized 2.3 wt% B-containing β-SiC powder prepared in the same manner as in Example 1 was mixed with a press molding binder to obtain a molding raw material. This is press-molded to have a diameter of 50 mm and a thickness of 5 m.
A molded body of m was produced.

【0074】上記二つの成形体を積層し一体成形した。
そして、得られた一体成形体をアルゴン中で2200℃
まで加熱し、1時間保持して焼結体を作製した。これに
より、熱伝導率100W/m・KのSiC母材表面に高
熱伝導率150W/m・KのSiCを有する焼結体を作
製することができる。
The above two molded bodies were laminated and integrally molded.
Then, the obtained integrally molded body is placed at 2200 ° C. in argon.
And heated for 1 hour to prepare a sintered body. This makes it possible to produce a sintered body having SiC having a high thermal conductivity of 150 W / m · K on the surface of the SiC base material having a thermal conductivity of 100 W / m · K.

【0075】本実施例において、スリップキャスティン
グ法やスラリーのコーティング法などにより、母材表面
全体を高熱伝導材で包むことが可能である。
In the present embodiment, it is possible to wrap the entire surface of the base material with the high thermal conductive material by the slip casting method or the slurry coating method.

【0076】また、上記と同様にして、低熱伝導材・高
熱伝導材・低熱伝導材・高熱伝導材…と複数層積層され
た構造体や傾斜構造体を得ることが可能である。
Further, in the same manner as described above, it is possible to obtain a structure or a slanted structure in which a plurality of layers of a low thermal conductive material, a high thermal conductive material, a low thermal conductive material, a high thermal conductive material, etc. are laminated.

【0077】〔実施例 10〕市販の粒径0.5μmの
α−SiC粉末に焼結助剤としてB4C粉末を4wt%
添加し、プレス成形用バインダと混合し成形原料とし
た。これをプレス成形により直径50mm×厚さ20m
mの成形体を作製し、アルゴン中で2200℃まで加熱
し、1時間保持して焼結体を作製した。
Example 10 A commercially available α-SiC powder having a particle size of 0.5 μm was added with 4 wt% of B 4 C powder as a sintering aid.
It was added and mixed with a press molding binder to obtain a molding raw material. This is press-formed with a diameter of 50 mm and a thickness of 20 m.
A molded body of m was prepared, heated to 2200 ° C. in argon and held for 1 hour to prepare a sintered body.

【0078】次に、上記の母材焼結体の表面にプラズマ
溶射により1.3wt%B含有β−SiCからなる層を
形成し、アルゴン中で2200℃まで加熱し、1時間保
持して焼結体表面層の緻密化を行った。これにより、熱
伝導率100W/m・KのSiC母材表面に高熱伝導率
150W/m・KのSiC膜を作製することができる。
Next, a layer made of β-SiC containing 1.3 wt% B was formed on the surface of the above-mentioned base material sintered body by plasma spraying, heated to 2200 ° C. in argon, and held for 1 hour for firing. The bonded surface layer was densified. Thus, a SiC film having a high thermal conductivity of 150 W / m · K can be formed on the surface of the SiC base material having a thermal conductivity of 100 W / m · K.

【0079】なお、上記の母材焼結体としては、無加圧
焼結材はもちろんのこと、ホットプレス材、反応焼結
材、HIP材等を使用することができ、材料もSiCマ
トリックスのみに限定されない。
As the above-mentioned base material sintered body, not only a pressureless sintered material but also a hot pressed material, a reaction sintered material, a HIP material and the like can be used, and the material is only a SiC matrix. Not limited to.

【0080】熱膨張係数が近く、焼結助剤が無い反応焼
結窒化珪素や反応焼結窒化珪素結合材なども母材として
使用できることが実験の結果分かった。
As a result of an experiment, it was found that a reaction sintered silicon nitride or a reaction sintered silicon nitride binder having a similar thermal expansion coefficient and no sintering aid can be used as the base material.

【0081】本発明において、不純物の少ないSiC膜
を形成させることにより、高熱伝導・高靭性以外に耐酸
化性をも向上させることが可能となる。
In the present invention, by forming a SiC film containing few impurities, it becomes possible to improve not only high thermal conductivity and high toughness but also oxidation resistance.

【0082】〔実施例 11〕原子力プラントの核融合
炉第1壁部材について検討を行った。
[Embodiment 11] The first wall member of the fusion reactor of the nuclear power plant was examined.

【0083】実施例1で得られた焼結体を図4に示す炉
壁1の部材として適用した。その結果、中性子照射によ
る急激な温度変化に対して十分耐え得る耐熱衝撃性を有
していることが分かった。
The sintered body obtained in Example 1 was applied as a member of the furnace wall 1 shown in FIG. As a result, it was found that it has sufficient thermal shock resistance to withstand a sudden temperature change due to neutron irradiation.

【0084】また、炭素繊維と複合化することも容易に
でき、該複合SiCを用いることにより中性子の吸収特
性を改善することができる。
Further, it can be easily compounded with carbon fiber, and the neutron absorption characteristic can be improved by using the compound SiC.

【0085】本発明の高熱伝導・高靭性SiCセラミッ
クスは、無加圧焼結で作製できるため、原子力プラント
の核融合炉第1壁部品をはじめ、ガスタービン用動翼部
材、静翼部材、燃焼器部材、シュラウド部材の素材とし
て適用可能である。
Since the high-heat-conductivity / high-toughness SiC ceramics of the present invention can be produced by pressureless sintering, the fusion reactor first wall parts of a nuclear power plant, gas turbine moving blade members, stationary blade members, combustion It can be applied as a material for a vessel member and a shroud member.

【0086】〔実施例 12〕半導体用拡散炉のライナ
ーチューブ、反応管、ウェハーボートに実施例1で得ら
れた高熱伝導セラミックスを適用した。その結果、従来
の低熱伝導SiC品に比較して熱衝撃性、均熱性が優れ
るため、ウェハーの大きさを15インチまで大口径化が
可能になった。
Example 12 The high thermal conductive ceramics obtained in Example 1 was applied to a liner tube, a reaction tube and a wafer boat of a semiconductor diffusion furnace. As a result, since the thermal shock resistance and the thermal uniformity are excellent as compared with the conventional low thermal conductivity SiC product, the size of the wafer can be increased to 15 inches.

【0087】[0087]

【発明の効果】本発明は、複雑形状品に対応できる高熱
伝導,高靭性のSiCセラミックスに係るものであり、
高純度のβ−SiC粉末からなる成形体をアスペクト比
20以上のβ−SiC粒子が20vol%以上分散し、
気孔率5vol%以下の焼結体となるように無加圧で焼
結することにより、熱伝導率130W/m・K以上の高
熱伝導SiCセラミックスが得られる。
Industrial Applicability The present invention relates to SiC ceramics having high heat conduction and high toughness which can be applied to products having complicated shapes.
A green compact made of high-purity β-SiC powder is dispersed with 20 vol% or more of β-SiC particles having an aspect ratio of 20 or more,
High-thermal-conductivity SiC ceramics having a thermal conductivity of 130 W / m · K or more can be obtained by performing pressureless sintering to obtain a sintered body having a porosity of 5 vol% or less.

【0088】以上のように、本発明では、高純度のβ−
SiC粉末を用いて焼結体の組織を制御することによ
り、無加圧焼結法で高熱伝導かつ高靭性のSiCセラミ
ックスが得られる。
As described above, in the present invention, highly pure β-
By controlling the structure of the sintered body using the SiC powder, it is possible to obtain SiC ceramics having high heat conductivity and high toughness by the pressureless sintering method.

【0089】本発明の高熱伝導・高靭性SiCセラミッ
クスは、無加圧焼結で作製できるため、複雑形状品に対
応でき、原子力プラントの核融合炉第1壁部材や、ガス
タービン用動翼部材、静翼部材、燃焼器部材、シュラウ
ド部材、半導体ウエハーの製造装置等の、耐熱性や耐熱
衝撃性を要求される部材として有効である。
Since the high thermal conductivity and high toughness SiC ceramics of the present invention can be produced by pressureless sintering, it can be applied to complex shaped products, and the fusion reactor first wall member of a nuclear power plant and the gas turbine rotor blade member. , A vane member, a combustor member, a shroud member, a semiconductor wafer manufacturing apparatus, and the like, which are effective as members required to have heat resistance and thermal shock resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】β−SiC粉末中の金属不純物総量と得られた
焼結体の熱伝導率との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the total amount of metal impurities in β-SiC powder and the thermal conductivity of the obtained sintered body.

【図2】焼結体の気孔率と破壊靭性値との関係を示すグ
ラフである。
FIG. 2 is a graph showing a relationship between a porosity of a sintered body and a fracture toughness value.

【図3】焼結体中のアスペクト比20以上のβ−SiC
粒子の含有量と、熱伝導率及び破壊靭性値との関係を示
すグラフである。
FIG. 3 β-SiC with an aspect ratio of 20 or more in a sintered body
It is a graph which shows the relationship between content of particles, thermal conductivity, and fracture toughness value.

【図4】原子力プラントの核融合炉第1壁部材の部分模
式斜視図である。
FIG. 4 is a partial schematic perspective view of a fusion reactor first wall member of a nuclear power plant.

【符号の説明】[Explanation of symbols]

1…炉壁、2…冷却媒質流炉、3…中間材、4…金属被
覆層、5…溝。
1 ... Furnace wall, 2 ... Cooling medium flow furnace, 3 ... Intermediate material, 4 ... Metal coating layer, 5 ... Groove.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 幸雄 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 近藤 次郎 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukio Saito 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Jiro Kondo 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Corporation Advanced Technology Research Center

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 アスペクト比20以上のβ−SiC粒子
が20vol%以上分散している焼結体からなることを
特徴とする高熱伝導SiCセラミックス。
1. A high thermal conductive SiC ceramics comprising a sintered body in which 20 vol% or more of β-SiC particles having an aspect ratio of 20 or more are dispersed.
【請求項2】 SiC焼結体中のSiC成分の50%以
上がβ−SiCで、該β−SiCがアスペクト比20以
上のβ−SiC粒子が20vol%以上分散しているこ
とを特徴とす高熱伝導SiCセラミックス。
2. 50% or more of the SiC component in the SiC sintered body is β-SiC, and β-SiC particles having an aspect ratio of 20 or more are dispersed in an amount of 20% by volume or more. High thermal conductivity SiC ceramics.
【請求項3】 焼結体の表面から50μm〜5mmの層
が、アスペクト比20以上のβ−SiC粒子が20vo
l%以上分散したSiC焼結体で形成されていることを
特徴とする高熱伝導SiCセラミックス。
3. A layer of 50 μm to 5 mm from the surface of the sintered body, and 20 vo of β-SiC particles having an aspect ratio of 20 or more.
A high thermal conductive SiC ceramics, which is formed of a SiC sintered body having 1% or more dispersed therein.
【請求項4】 前記焼結体の気孔率が5%以下である請
求項1,2または3に記載の高熱伝導SiCセラミック
ス。
4. The high thermal conductive SiC ceramics according to claim 1, wherein the porosity of the sintered body is 5% or less.
【請求項5】 B含有量5wt%以下、C含有量5wt
%以下の粒径0.5μm以下のβ−SiC粉末と、成形
用バインダとの混合粉末で成形体を形成し、該成形体を
無加圧で不活性ガスまたは不活性ガス+水素中で210
0〜2500℃で5〜300分加熱することを特徴とす
る高熱伝導SiCセラミックスの製造法。
5. A B content of 5 wt% or less and a C content of 5 wt%
% Or less of a β-SiC powder having a particle size of 0.5 μm or less and a molding binder to form a molded body, and the molded body is subjected to no pressure in an inert gas or an inert gas + hydrogen in 210
A method for producing a highly heat-conductive SiC ceramic, which comprises heating at 0 to 2500 ° C. for 5 to 300 minutes.
【請求項6】 前記β−SiC粉末は、プラズマ中で合
成した原料粉末である請求項5に記載の高熱伝導SiC
セラミックスの製造法。
6. The high thermal conductive SiC according to claim 5, wherein the β-SiC powder is a raw material powder synthesized in plasma.
Ceramics manufacturing method.
【請求項7】 (A)粒径5μm以下のSiC粉末10
0重量部と焼結助剤としてB、C、B4C、BN、Al2
3、BeOの少なくとも一種を1〜5重量部と、成形
バインダとを混合した混合粉末で成形体を作製する工程
と、(B)前記成形体の表面にB含有量5wt%以下、
C含有量5wt%以下の粒径0.5μm以下のβ−Si
C粉末と成形用バインダとの混合粉末からなる層を形成
し、不活性ガスまたは不活性ガス+水素中で2100〜
2500℃で5〜300分一体加熱する工程を含むこと
を特徴とする高熱伝導SiCセラミックスの製造法。
7. (A) SiC powder 10 having a particle size of 5 μm or less
0 parts by weight and B, C, B 4 C, BN, Al 2 as a sintering aid
A step of producing a molded body from a mixed powder in which 1 to 5 parts by weight of at least one of O 3 and BeO and a molding binder are mixed, and (B) a B content of 5 wt% or less on the surface of the molded body,
Β-Si with a C content of 5 wt% or less and a particle size of 0.5 μm or less
A layer composed of a mixed powder of C powder and a binder for forming is formed, and 2100 to 2100 in an inert gas or an inert gas + hydrogen.
A method for producing a highly heat-conductive SiC ceramic, comprising a step of integrally heating at 2500 ° C. for 5 to 300 minutes.
【請求項8】 (A)粒径5μm以下のSiC粉末10
0重量部と焼結助剤としてB、C、B4C、BN、Al2
3、BeOの少なくとも一種を1〜5重量部と、成形
バインダとを混合した混合粉末で成形体を作製し、該成
形体を不活性ガスまたは不活性ガス+水素中で2100
〜2500℃で5〜300分加熱して一次焼結体を作製
する工程と、(B)前記一次焼結体の表面にプラズマ溶
射によりB含有量5wt%以下、C含有量5wt%以下
の粒径0.5μm以下のβ−SiCからなる層を形成
し、不活性ガスまたは不活性ガス+水素中で2100〜
2500℃で5〜60分二次加熱する工程を含むことを
特徴とする高熱伝導SiCセラミックスの製造法。
8. (A) SiC powder 10 having a particle size of 5 μm or less
0 parts by weight and B, C, B 4 C, BN, Al 2 as a sintering aid
A molded body is prepared from a mixed powder in which 1 to 5 parts by weight of at least one of O 3 and BeO and a molding binder are mixed, and the molded body is subjected to 2100 in an inert gas or an inert gas + hydrogen.
A step of producing a primary sintered body by heating at 2,500 ° C. for 5 to 300 minutes, and (B) particles having a B content of 5 wt% or less and a C content of 5 wt% or less by plasma spraying on the surface of the primary sintered body. A layer made of β-SiC having a diameter of 0.5 μm or less is formed and 2100 to 2100 in an inert gas or an inert gas + hydrogen.
A method for producing a high thermal conductive SiC ceramic, comprising a step of secondary heating at 2500 ° C. for 5 to 60 minutes.
JP5067919A 1993-03-26 1993-03-26 Highly heat conductive sic ceramics and its production Withdrawn JPH06279119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5067919A JPH06279119A (en) 1993-03-26 1993-03-26 Highly heat conductive sic ceramics and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5067919A JPH06279119A (en) 1993-03-26 1993-03-26 Highly heat conductive sic ceramics and its production

Publications (1)

Publication Number Publication Date
JPH06279119A true JPH06279119A (en) 1994-10-04

Family

ID=13358806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5067919A Withdrawn JPH06279119A (en) 1993-03-26 1993-03-26 Highly heat conductive sic ceramics and its production

Country Status (1)

Country Link
JP (1) JPH06279119A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899358A3 (en) * 1997-09-01 1999-03-17 Tokai Carbon Company, Ltd. Silicon carbide fabrication
JP2001316638A (en) * 2000-05-01 2001-11-16 Asahi Kagaku Kogyo Co Ltd High thermal conductivity inorganic adhesive composition and adhesion method
WO2019149386A1 (en) * 2018-01-31 2019-08-08 Westinghouse Electric Sweden Ab A tubular ceramic component suitable for being used in a nuclear reactor
US11034624B2 (en) 2017-03-17 2021-06-15 Ngk Insulators, Ltd. Manufacturing method of silicon carbide-based honeycomb structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899358A3 (en) * 1997-09-01 1999-03-17 Tokai Carbon Company, Ltd. Silicon carbide fabrication
JP2001316638A (en) * 2000-05-01 2001-11-16 Asahi Kagaku Kogyo Co Ltd High thermal conductivity inorganic adhesive composition and adhesion method
US11034624B2 (en) 2017-03-17 2021-06-15 Ngk Insulators, Ltd. Manufacturing method of silicon carbide-based honeycomb structure
WO2019149386A1 (en) * 2018-01-31 2019-08-08 Westinghouse Electric Sweden Ab A tubular ceramic component suitable for being used in a nuclear reactor

Similar Documents

Publication Publication Date Title
US20090011266A1 (en) Intermetallic Composite Formation and Fabrication from Nitride-Metal Reactions
EP0175041B1 (en) Silicon nitride sintered bodies and a method for their production
KR20190048811A (en) Method for manufacturing silicon carbide dense bodies having excellent thermal conductivity and thermal durability
JPH06279119A (en) Highly heat conductive sic ceramics and its production
JP2004043241A (en) High purity silicon carbide sintered compact and its forming method
JPH0812434A (en) Production of sintered b4c material and sintered b4c compact
JP3951643B2 (en) Method for manufacturing titanium silicon carbide sintered body
JP2726693B2 (en) High thermal conductive silicon carbide sintered body and method for producing the same
JPS632913B2 (en)
JPS6212663A (en) Method of sintering b4c base fine body
JP4451873B2 (en) Method for manufacturing titanium silicon carbide sintered body
JP3023435B2 (en) High purity silicon carbide sintered body and method for producing the same
JPH1087370A (en) Silicon nitride-base composite ceramics and production thereof
JP2000247748A (en) High-toughness silicon nitride-based sintered compact
JP3472802B2 (en) Manufacturing method of Sialon sintered body
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
JP2881189B2 (en) Method for producing silicon nitride-silicon carbide composite ceramics
JPS60255672A (en) Manufacture of silicon carbide sintered body
JPH08245264A (en) Silicon nitride-titanium nitride composite ceramics and its production
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP2883074B1 (en) Manufacturing method of silicon carbide ceramic powder and ceramic sintered body
JP2004149328A (en) Process for manufacturing silicon nitride sintered compact
JPH0748105A (en) Production of boron nitride-containing inorganic material
JPH06293566A (en) Production of sintered silicon nitride compact
JPH08157262A (en) Aluminum nitride sintered compact and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530