JP3560695B2 - 等化器を有する受信装置 - Google Patents

等化器を有する受信装置 Download PDF

Info

Publication number
JP3560695B2
JP3560695B2 JP17064795A JP17064795A JP3560695B2 JP 3560695 B2 JP3560695 B2 JP 3560695B2 JP 17064795 A JP17064795 A JP 17064795A JP 17064795 A JP17064795 A JP 17064795A JP 3560695 B2 JP3560695 B2 JP 3560695B2
Authority
JP
Japan
Prior art keywords
branch
wave
received
equalizer
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17064795A
Other languages
English (en)
Other versions
JPH0923175A (ja
Inventor
良一 箕輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17064795A priority Critical patent/JP3560695B2/ja
Publication of JPH0923175A publication Critical patent/JPH0923175A/ja
Application granted granted Critical
Publication of JP3560695B2 publication Critical patent/JP3560695B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は伝搬遅延の無視できないようなビットレートの高い高速ディジタル移動通信において、ビットレートが高いために生じる遅延波による符号間干渉を除去するための等化器を有する受信装置に関する。
【0002】
近年の移動通信端末機の加入者の増加に伴い、大容量を持つ無線システムが要求されている。このため8PSK、16値QAM方式といった多重度の高い変調方式で、なおかつシンボルレートの高い伝送を行う必要が生じている。
【0003】
しかし、高速な伝送を行おうとすると、図11に示すように受信装置(RX)1は送信装置(TX)2からの直接波である先行波3と遅延波4を同時に受信することになり、その受信波が歪んでしまう。
【0004】
また移動通信においては先行波3及び遅延波4共に独立にレイリーフェージング、ライスフェージングに代表されるレベル変動及び位相変動を受けることになる。
【0005】
従って、高速移動通信を実現するためには受信波から直接波(先行波)3及び遅延波4のそれぞれのフェージングによる歪みを等化し、更に遅延波4の影響を等化する遅延等化器が必要となる。
【0006】
一般に移動通信に使用される等化器は、非線形等化器である判定帰還型等化器(DFE型等化器)と最尤系列推定型等化器(MLSE等化器:MLSE;Maximum Likelihood Sequense Estimation)であるが、その等化特性はMLSEの方が優れている。
【0007】
【従来の技術】
図12に従来の等化器を有する受信装置のブロック構成図を示し、その説明を行う。
【0008】
図12において、符号6は受信部(RX部)、7は復調部、8は等化器、9は受信信号処理部である。
RX部6によって受信された信号は、復調部7において準同期検波された後、A/Dコンバータでシンボル間隔もしくは分数間隔でサンプリングされる。
【0009】
等化器8の内部には、伝搬路上で生じているフェージングによる歪みと等価な歪みを発生させることのできる適応型フィルタがあり、このフィルタをトレーニングとよばれる期間で更新して行き伝搬路の歪みに近づけていく。
【0010】
トレーニングが終了した後は、等化器8が適応型フィルタの特性をもとに実際の等化動作に入る。以下にトレーニング時、等化時にわけて等化処理の流れを説明する。
【0011】
まず、トレーニング時の説明を行う。
図12に示した等化器8のブロック構成図を図13に示す。図13において、符号11,12は遅延部、13,14,15はミキサ、16は加算器、17は減算器、18は受信バッファ、19は係数更新部、20はMLSE演算部である。遅延部11,12が1シンボル時間に相当する場合、この等化器8は2シンボル遅延対応のものとなる。
【0012】
等化器8の適応型フィルタの伝達関数を伝搬路のそれに近づけるための手段としては、LMSアルゴリズム、RLSアルゴリズムが使用される。
いずれのアルゴリズムの場合も受信信号と、等化器8の内部で作成したレプリカ信号との誤差信号を基にその誤差を収束させるように動作する。また、等化器8を使用するTDMAアクセス方式のフレームフォーマットの例を図14に示す。図14の上段が送受信信号であり、下段が送受信信号の1スロット(Slot)の構成を示すものである。
【0013】
図14に示すトレーニングビットTRを、等化器8は図13に示す既知系列データとして認識しており、図12に示す受信信号処理部9からトレーニング動作開始の信号を受け取った等化部8は、その内部にある図示せぬメモリ部より図13に示す既知系列データを読みだす。
【0014】
この読みだされた既知系列データは適応フィルタの遅延部11及びミキサ13からそれ以降へ入力され、伝搬路推定結果であるタップ係数(CIR)と掛け合わされて、受信波のレプリカが生成される。
【0015】
レプリカ信号と実際の受信信号は減算器17で差を取られた後、係数更新部19で2乗される。この誤差の2乗の信号をブランチメトリックと呼ぶ。トレーニング期間中そのブランチメトリックが最小になるように適応フィルタのタップ係数を係数更新部19で更新する。
【0016】
次に、等化時の説明を行う。
等化時は、トレーニングによって十分収束されたCIRをもとにMLSE演算部20の処理によってMLSEを行う。トレーニング時には受信されるデータの系列は既知であったが、等化時は受信データ系列は未知である。
【0017】
そこで、受信され得る全てのデータ候補(図13に示す候補データ)を等化器8の内部で発生し、それを適応フィルタの遅延部11及びミキサ13から入力して各候補データのブランチメトリックをMLSE演算部20で計算する。
【0018】
この内、尤度の高いブランチを生き残らせ生き残った系列候補の持つブランチメトリックを候補ごとに積算した結果をパスメトリックと呼ぶ。このパスメトリックが最も小さい値を示した候補系列が最終的に受信系列として判定される。以上がMLSE等化器8の基本動作である。
【0019】
マルチパス・フェージング伝搬路においては、受信波を構成する直接波、遅延波はそれぞれ独立に変動するため、直接波のレベルが低下し、遅延波の成分が支配的になる場合がある。また、逆に直接波が支配的になる場合もある。そして、遅延波の遅延時間も受信点によって異なる。
【0020】
従って、フラット・フェージングを想定した低ビットレートの通信や送信出力の微弱なシステム等と比較すると受信状態はかなり悪く、等化器8を用いずにデータを再生する場合、8相PSK変調方式を例にとると、平均ビット誤り率は着信レベルによらず0.3にまで劣化する。
【0021】
これは等化器8を使用することによって改善され、データ通信も可能な程度のビット誤り率特性を得ることが可能になるが、これはあくまでも遅延波の遅延時間が等化器8に最適な条件で、平均的なビット誤り率を測定した場合である。
【0022】
短時間で観測した場合にはバースト的な誤りが見られ、再送制御が必要となる場合がある。特に、遅延波の遅延時間が等化器8の最適点からずれた場合の特性の劣化は大きく、等化器8を使用してもやはり遅延波が存在していない受信状態が好ましい。
【0023】
従って、何らかの形で伝搬状態を検出し、スペースダイバーシチ受信、送信ダイバーシチ、送信電力制御等の技術を適用することが有効である。フラット・フェージングの場合、受信電界強度を測定することにより伝搬状態の推定が可能となり、実用化されているシステムにおいてはこれを受信機の制御に対して有効に使用している。
【0024】
【発明が解決しようとする課題】
しかしながら、マルチパス・フェージング環境下においては、受信電界強度が高い場合でも、遅延歪みを強く受けている可能性があるため、単純に電界強度で伝搬状態を評価することが出来ない。
【0025】
従って、上述した従来の受信装置においては、MLSE型等化器8を備えていても、フィールド上の様々な伝搬状態に対応した動作が不完全であり、適正な復調動作が行えないという問題があった。
【0026】
また、マイクロセル/ピコセル方式が移動通信に導入されてきているが、セル間の移動が頻繁に発生することから、高速移動するユーザーに対しては同一アクセス方式で、マクロセルを提供するシステムも考案されている。
【0027】
この場合必然的に送信電力が大きくなり、遅延歪みが問題となるために遅延等化器が必要となる。
しかし、遅延等化器には適応型フィルタの等化動作を終了させるために必要なビットであるターミネーションビットと呼ばれる既知系列データが受信スロット内のデータの後に必要となるため、ターミネーションビットを含まない既存のフレームフォーマットで等化器を動作させた場合に、直接波のレベルが落ち込んだ時にはデータ系列の最終シンボルが誤るという問題が生じる。
【0028】
本発明は、このような点に鑑みてなされたものであり、マルチパス・フェージング下における復調動作の特性改善を行うことができる等化器を有する受信装置を提供することを目的としている。
【0029】
【課題を解決するための手段】
図1に本発明の等化器を有する受信装置の原理図を示す。この図1に示す等化器29を有する受信装置は、先行波に対する遅延波による符号間干渉を最尤系列推定による等化処理によって除去するためのスペースダイバーシチ構成を有するものである。
【0030】
図中、36,37は第1及び第2伝搬路推定手段であり、適応フィルタの伝達関数を伝搬路の伝達関数に近づけるため適応フィルタで既知信号及びタップ係数を基に生成されるレプリカ信号と受信信号との誤差E1又はE2の収束時に得られる先行波のベクトル値に対応する先行レプリカベクトル値及び、遅延波のベクトル値に対応する遅延レプリカベクトル値の各々と閾値とを比較し、先行及び遅延レプリカベクトル値が閾値よりも大きい場合に先行波及び遅延波が強く受信されていると判定するものである。
【0031】
40,41は第1及び第2ブランチメトリック算出手段であり、第1及び第2伝搬路推定手段36,37で得られる誤差E1,E2を2乗したブランチメトリックを出力するものである。
【0032】
39は優先ブランチ選択制御手段であり、第1及び第2伝搬路推定手段36,37の判定結果J1,J2が共に、先行波が強く受信されていることを示す場合に、第1及び第2ブランチの受信レベルR1,R2の高い方を選択するものである。
【0033】
42,43は第1及び第2重み付け手段であり、優先ブランチ選択制御手段39で選択された受信レベル(例えばR1)のブランチ側のブランチメトリックに、選択受信レベルR1で重み付けを行うものである。
【0034】
44は合成手段であり、第1及び第2重み付け手段42,43で重み付けが行われたブランチメトリックの合成を行うものである。
45は系列推定手段であり、合成手段44で合成されたブランチメトリックから適正な受信信号系列を推定することにより等化信号を出力するものである。
【0035】
また、前記した第1及び第2伝搬路推定手段36,37の判定結果が共に先行波が強く受信されていることを示す場合に、優先ブランチ選択制御手段39が第1及び第2ブランチの受信信号レベルR1,R2の高いほうのアンテナ22,23を送信アンテナとして選択するように機能させるのが好ましい。
【0036】
【作用】
上述した本発明によれば、第1及び第2伝搬路推定手段36,37の適応フィルタにおける第1及び第2ブランチの各々の受信信号とレプリカ信号との誤差E1,E2の収束時に、各ブランチで受信された先行波又は遅延波のレベルが強いか弱いかが判定される。
【0037】
収束した誤差E1,E2が、第1及び第2ブランチメトリック算出手段40,41で2乗されることによって各ブランチのブランチメトリックが得られる。
また、優先ブランチ選択制御手段39が、第1及び第2伝搬路推定手段36,37の判定結果J1,J2が共に、先行波が強く受信されていることを示す場合に、各ブランチの受信レベルR1,R2の高い方が選択され、この選択受信レベル(例えばR1)のブランチ側の第1重み付け手段42において、ブランチメトリックに、選択受信レベルR1で重み付けが行われる。
【0038】
この後、合成手段44によって、第1重み付け手段42で重み付けが行われたブランチメトリックと、第2重み付け手段43を介したブランチメトリックとが合成され、この合成ブランチメトリックから系列推定手段45が適正な受信信号系列を推定することにより等化信号が出力される。
【0039】
この場合、優先ブランチ選択制御手段39が受信信号レベルR1が高い第1ブランチのアンテナ22を送信アンテナとして選択するように制御する。
【0040】
【実施例】
以下、図面を参照して本発明の一実施例について説明する。図2は本発明の一実施例による等化器を有する受信装置のブロック構成図である。
【0041】
この図において、符号22はダイバーシチ構成における第1ブランチのアンテナ、23は第2ブランチのアンテナ、24はアンテナ選択部、25は第1RX部(受信部)、26は第2RX部、27は第1復調部、28は第2復調部、29は等化器、30は信号処理部、31は制御部、32は変調器、33はTX部(送信部)である。
【0042】
アンテナ選択部24は、制御部31から出力される選択制御信号C1に応じて第1ブランチのアンテナ22又は第2ブランチのアンテナ23を選択する。
第1RX部25は、第1ブランチのアンテナ22で受信された信号のレベル(第1着信レベル)R1を第1復調部27及び等化器29へ出力すると共に、受信信号を第1復調部27へ出力する。
【0043】
第2RX部26は、第2ブランチのアンテナ23で受信された信号のレベル(第2着信レベル)R2を第2復調部28及び等化器29へ出力すると共に、受信信号を第2復調部28へ出力する。
【0044】
第1復調部27は、AFC(Automatic Frequency Control) 回路及びフレームタイミング検出回路を有しており、第1RX部25から出力される受信信号の周波数をAFC回路で所定周波数に自動調整した後、データに変換し、この受信データのフレームをフレームタイミング検出回路で所定タイミングとし、このタイミングで受信データD1を等化器29へ出力する。
【0045】
第2復調部28は、第2RX部26から出力される受信信号の周波数をAFC回路で所定周波数に自動調整した後、データに変換し、この受信データのフレームをフレームタイミング検出回路で所定タイミングとし、このタイミングで受信データD2を等化器29へ出力する。
【0046】
等化器29は、MLSE等化器であり、後述で説明する図3に示す構成となっており、第1及び第2受信データD1及びD2を後述するMLSE等化処理を行うことによって得られる送信アンテナ選択情報S1を制御部31へ出力し、等化データD3を後述する信号処理部30へ出力すると共に、信号処理部30から出力される後述の等化処理制御信号S2に応じた等化処理を行う。
【0047】
制御部31は、第1及び第2復調部27,28、変調器32、及び等化器29の動作制御を行うと共に、送信アンテナ選択情報S1に応じた選択制御信号C1をアンテナ選択部24へ出力する。
【0048】
変調器32は送信信号の変調を行い、TX部33はその変調された送信信号S3の送信をアンテナ選択部24で選択されたアンテナ22又は23から送信する動作を行う。
【0049】
次に、図3を参照して等化器29の説明を行う。
等化器29は、第1及び第2伝搬路推定部36,37及び参照信号発生器38を有するメトリック発生器35と、優先ブランチ選択制御部39と、第1及び第2BM(ブランチメトリック)算出部40,41と、メトリック合成部44と、系列推定部45とを具備して構成されている。
【0050】
第1及び第2伝搬路推定部36,37は何れも同構成であり、図4に示すように、遅延部47と、ミキサ48,49と、加算器50と、減算器51と、受信バッファ52と、CIR更新部53と、CIRメモリ部54と、ベクトル量算出部56、判定部57及び閾値設定部58を有する伝搬状態判定部55とを具備して構成されている。但し、この構成は1シンボル遅延対応の例である。
【0051】
遅延部47は、図3に示す参照信号発生器38から出力される符号T(n) で示す既知系列データ(又は候補データ)を1シンボル遅延させる。この1シンボル遅延したデータを符号T(n−1) で示す。
【0052】
ミキサ48は、既知系列データ(又は候補データ)T(n) と、CIR更新部53から出力される更新タップ係数C0とを混合することにより先行ブランチ(先行波供給ブランチ)の先行レプリカベクトルPVを得て、加算器50及びベクトル量算出部56へ出力する。
【0053】
ミキサ49は、遅延部47で遅延した既知系列データ(又は候補データ)T(n−1) と、更新タップ係数C1とを混合することにより遅延ブランチ(遅延波供給ブランチ)の遅延レプリカベクトルDVを得て、加算器50及びベクトル量算出部56へ出力する。
【0054】
加算器50は、レプリカベクトルPV及びDVを加算することにより、レプリカRPを加算器51へ出力する。
減算器51は、受信バッファ52を介した図2に示す第1復調部27から出力される第1受信データD1からレプリカRPを減算し、この減算結果である第1誤差E1をCIR更新部53及び図3に示す第1BM算出部40へ出力すると共に、第2受信データD2からレプリカRPを減算し、この減算結果である第2誤差E2をCIR更新部53及び第2BM算出部41へ出力する。
【0055】
CIR更新部53は、CIRメモリ部54から1シンボル前のタップ係数Cを読み出し、このタップ係数Cに対応したパラメータ(更新ステップサイズ係数)を求め、このパラメータによって第1又は第2誤差E1及びE2を減少させるための更新タップ係数C0及びタップ係数C1をミキサ48,49へ出力する。
【0056】
即ち、上述したミキサ48,49、加算器50、減算器51、及びCIR更新部53のループによるトレーニング系列に渡って第1又は第2誤差E1,E2が減少するように更新制御されたタップ係数C0,C1が、等化動作に必要な伝搬路歪みの複製となる。
【0057】
MLSEは、主に位相変調方式に適用されるが、この時の受信信号ベクトルとタップ係数の関係を図5に示す。この図において、縦軸Qを位相変調信号のQチャネル(Qch)、横軸IをIチャネル(Ich)とする。
【0058】
図5に示す各ベクトルにおいて、T(n) ′を先行波の送信データ、T(n−1) ′を遅延波の送信データとし、送信データT(n) ′が伝搬路歪を受け先行波ベクトルV1となり、送信データT(n−1) ′が伝搬路歪を受け遅延波ベクトルV2となり、先行波ベクトルV1と遅延波ベクトルV2とが加算されることにより受信データベクトルV3が観測される。
【0059】
また、図4において説明した受信データレプリカRPとタップ係数C0′の関係を図6に示す。
図6に示す各ベクトルにおいて、既知データT(n) が推定CIR(更新タップ係数)COとミキサ48で混合されることにより先行ブランチのレプリカPVが得られ、遅延部47で1シンボル遅延した既知データT(n−1) が推定CIR(更新タップ係数)C1とミキサ49で混合されることにより遅延ブランチのレプリカDVが得られ、先行レプリカPVと遅延レプリカDVとが加算器50で加算されることにより受信データレプリカRPが得られる。
【0060】
更に、図7のベクトル図に受信信号における遅延波のレベルが落ち込んだ場合の受信データレプリカRPとタップ係数C0の関係を示す。
図5〜図7から分かるように、タップ係数C0,C1がトレーニングで収束した段階で先行ブランチ、遅延ブランチそれぞれのレプリカべクトルPV,DVの大きさを算出することで現在の伝搬状況を判断することができる。これは図4に示す伝搬状態判定部55で行う。
【0061】
伝搬状態判定部55のベクトル量算出部56が、レプリカべクトルPV,DVの大きさを算出することにより、先行レプリカベクトル値PVA及び遅延レプリカベクトル値DVAを求めて判定部57へ出力する。
【0062】
ここで、適応型フィルタは受信データD1又はD2との誤差E1又はE2をもとに収束させる。その際にタップ係数更新に用いるサンプル数、収束アルゴリズムによっても異なるが収束誤差が生じる。この誤差を図6及び図7に○で示す。
【0063】
その誤差が判定に影響を与えないように、先行ブランチ又は遅延ブランチが十分小さい時のみ、伝搬状況の判定に使用する。この判定の閾値(ベクトル値)THが図4に示す閾値設定部58に設けてある。
【0064】
判定部57は、各ベクトル値PVA,DVAが閾値THよりも大きいか否かを判定し、この判定結果を示す判定データJ1又はJ2を図3に示す優先ブランチ選択制御部39へ出力する。
【0065】
即ち、先行及び遅延レプリカベクトル値PVA,DVAが閾値THよりも大きい場合は、受信された先行波及び遅延波が強く受信されていることが判定できる。また、遅延波が閾値THよりも小さい場合は伝搬路歪みの影響が少ないことが判定できる。
【0066】
ここで、図4に示した伝搬状態判定部55の2つの構成例を図8及び図9を参照して説明する。但し、図8及び図9には第1ブランチにおける内部構成のみを示した。
【0067】
図8の第1ダイバーシチブランチ側において、ベクトル量算出部56がI+Q算出部60,61で構成され、判定部57が比較器62,63で構成されており、以下の動作を行う。
【0068】
+Q算出部60が、第1ブランチの先行レプリカベクトルPV1のIch及びQchのベクトルを各々2乗し、これを加算することによって第1ブランチの先行レプリカベクトル値PVA1を求め、I+Q算出部61が、第1ブランチの遅延レプリカベクトルDV1のIch及びQchのベクトルを各々2乗し、これを加算することによって第1ブランチの遅延レプリカベクトル値DVA1を求める。
【0069】
次に、比較器62が、ベクトル値PVA1が閾値THよりも大きいか否かを判定し、大きい場合に、第1ブランチで受信された先行波レベルが高いことを示す判定データJ1Pを優先ブランチ選択制御部39へ出力し、小さい場合に先行波レベルが低いことを示す判定データJ1Pを出力する。
【0070】
また、比較器63が、ベクトル値DVA1が閾値THよりも大きいか否かを判定し、大きい場合に、第1ブランチで受信された遅延波レベルが高いことを示す判定データJ1Dを出力し、小さい場合に遅延波レベルが低いことを示す判定データJ1Dを出力する。
【0071】
このような構成を現実にハードウェア上で実現する際には、DSPによるソフト処理または、複素乗算器による演算回路となる。いずれにしても従来の等化器が持つ機能を流用することになるため、判定部の追加によるハード規模の増加を防ぐことができる。
【0072】
次に、図9に示す伝搬状態判定部55の説明を行う。図9の第1ダイバーシチブランチ側において、伝搬状態判定部55が、Ich絶対値比較部65及び67、Qch絶対値比較部66及び68、判定部69及び判定部70とを具備し、判定をIch及びQch別々に行うように構成されており、以下の動作を行う。
【0073】
Ich絶対値比較部65が、第1ブランチの先行レプリカベクトルPV1のIchのベクトル値と閾値THとを比較し、この比較結果PI1を判定部69へ出力し、また、Qch絶対値比較部66が、Qchのベクトル値と閾値THとを比較し、この比較結果PQ1を判定部69へ出力し、判定部69が比較結果PI1,PQ1より、Ich及びQchのベクトル値が閾値THよりも大きい場合に、第1ブランチで受信された先行波レベルが高いことを示す判定データJ1Pを優先ブランチ選択制御部39へ出力し、小さい場合に先行波レベルが低いことを示す判定データJ1Pを出力する。
【0074】
また、Ich絶対値比較部67が、第1ブランチの遅延レプリカベクトルDV1のIchのベクトル値と閾値THとを比較し、この比較結果DI1を判定部70へ出力し、また、Qch絶対値比較部68が、Qchのベクトル値と閾値THとを比較し、この比較結果DQ1を判定部70へ出力し、判定部70が比較結果DI1,DQ1より、Ich及びQchのベクトル値が閾値THよりも大きい場合に、第1ブランチで受信された遅延波レベルが高いことを示す判定データJ1Dを優先ブランチ選択制御部39へ出力し、小さい場合に遅延波レベルが低いことを示す判定データJ1Dを出力する。
【0075】
MLSE等化器29は、ベクトル量を扱う都合上演算量が多いので、高ビットレートのシステムでは、処理時間の短縮のために図9の構成をとるほうが有利な場合もある。
【0076】
次に、図3に示す優先ブランチ選択制御部39は、第1及び第2ブランチの判定データJ1,J2から次に説明する第1〜第3ケースの制御を行う。
第1ケースは、第1及び第2ブランチの判定データJ1,J2が共に、閾値THよりも先行レプリカベクトル値PVAが大きいことを示す場合、即ち第1及び第2ブランチ共に先行波が強く受信されていることを示す場合、第1及び第2着信レベルR1,R2の高い方のブランチのアンテナを次の送信アンテナとして選択する送信アンテナ選択情報S1を出力する。
【0077】
この場合、BM算出部40又は41が、受信データD1又はD2とレプリカRPとの差である誤差E1又はE2を2乗し、この2乗信号であるブランチメトリックをウエイト部42又は43へ出力し、ウエイト部42,43が、そのブランチメトリックに高いほうの着信レベルR1又はR2で重み付けしてメトリック合成部44へ出力する。
【0078】
第2ケースは、第1及び第2ブランチの判定データJ1,J2の何れかが、閾値THよりも先行レプリカベクトル値PVAが大きいことを示す場合、即ち第1及び第2ブランチの何れかに先行波が強く受信されていることを示す場合、第1及び第2着信レベルR1,R2は用いず、先行波が強く受信されているブランチのアンテナを次の送信アンテナとして選択する送信アンテナ選択情報S1を出力する。
【0079】
この場合、ウエイト部42又は43が、先行波が強く受信されているブランチのブランチメトリックにシステム的に定められている固定値で重み付けしてメトリック合成部44へ出力する。
【0080】
但し、先行波が強く受信されているブランチを単純に選択すると、そのブランチの着信レベルが低い場合に問題が生じるため、着信レベルが十分高いことを優先ブランチ選択制御部39で認識した場合に、重み付けを行うように制御する。
【0081】
第3ケースは、第1及び第2ブランチの判定データJ1,J2が共に、閾値THよりも先行及び遅延レプリカベクトル値PVA,DVAが大きいことを示す場合、即ち第1及び第2ブランチ共に先行波及び遅延波が強く遅延歪みを強く受けていることを示す場合、第1及び第2着信レベルR1,R2の高い方のブランチのアンテナを次の送信アンテナとして選択する送信アンテナ選択情報S1を出力する。この場合、ブランチメトリックに対する重み付けは行わない。
【0082】
このようにウエイト部42及び43から出力されるブランチメトリックは、メトリック合成部44で合成された後、系列推定部45へ出力される。
系列推定部45は、合成ブランチメトリックから、本来適正に受信されるべき系列データを推定し、これを適正な受信データである等化データD3として図2に示す信号処理部30へ出力する。
【0083】
この系列推定時に必要なデータ列を図10に示し、その説明を行う。図10に示す上段が直接波(先行波)データ列、下段が1シンボル遅延波データ列であり、受信データはその直接波と遅延波を加算したものとなる。
【0084】
系列推定の最終処理は、既知ターミネーションビットTermからのトレースバック、これは最もパスメトリックの小さい推定系列をターミネーションビットTermの位置からD(0)の方向に辿るものであるが、同図に示すようにデータ系列の最後のブランチメトリックは D(N)+Termの合成された信号から求めることになる。
【0085】
従って、ターミネーションビットTermを持たないシステムでMLSE等化器29を動作させた場合、直接波のレベルが低い時、データの最終ビットD(N)の情報が得られず推定不能となる。
【0086】
そこで、第1及び第2伝搬路判定部36,37の判定結果が両ブランチ共、遅延波のレベルが高いと判定した場合は、1シンボル分余計に等化処理を行い、D(N)の情報を獲得する。
【0087】
即ち、図2に示す信号処理部30が、第1及び第2伝搬路推定部36,37において、第1及び第2ブランチ共、遅延波が強く受信されたと判定された場合、等化処理制御信号S2によって等化器29に1シンボル分余計に等化処理をさせる制御を行う。
【0088】
このように制御されることによって、信号処理部30から適正な受信データである等化データD4が出力される。
【0089】
【発明の効果】
以上説明したように、本発明によれば、マルチパス・フェージング下における復調動作の特性改善を行うことができる効果があるので、特に遅延時間が等化器の設計値とずれた場合における受信特性の向上に効果がある。
【図面の簡単な説明】
【図1】本発明の原理図である。
【図2】本発明の一実施例による等化器を有する受信装置のブロック構成図である。
【図3】図2に示す等化器のブロック構成図である。
【図4】図3に示す第1又は第2伝搬路推定部のブロック構成図である。
【図5】受信データベクトル図である。
【図6】受信データレプリカベクトル図である。
【図7】遅延波レベルが低い場合の受信データレプリカベクトル図である。
【図8】図4に示す伝搬状態判定部のブロック構成図である。
【図9】図4に示す伝搬状態判定部の他のブロック構成図である。
【図10】図3に示す系列推定部45が行う系列推定時に必要なデータ列を示す図である。
【図11】送受信装置間の伝搬の様子を示す図である。
【図12】従来の等化器を有する受信装置のブロック構成図である。
【図13】図12に示す等化器のブロック構成図である。
【図14】図12に示す等化器を使用するTDMA方式のフレームフォーマットの例を示す図である。
【符号の説明】
22 第1ブランチのアンテナ
23 第2ブランチのアンテナ
29 等化器
36 第1伝搬路推定手段
37 第2伝搬路推定手段
39 優先ブランチ選択制御手段
40 第1ブランチメトリック算出手段
41 第2ブランチメトリック算出手段
42 第1重み付け手段
43 第2重み付け手段
44 合成手段
45 系列推定手段
E1,E2 誤差
J1,J2 判定結果
D3 等化信号
R1 第1ブランチの受信信号レベル
R2 第2ブランチの受信信号レベル

Claims (7)

  1. 先行波に対する遅延波による符号間干渉を最尤系列推定による等化処理によって除去するためのスペースダイバーシチ構成の等化器を有する受信装置において、
    適応フィルタの伝達関数を伝搬路の伝達関数に近づけるため該適応フィルタで既知信号及びタップ係数を基に生成されるレプリカ信号と受信信号との誤差の収束時に得られる前記先行波のベクトル値に対応する先行レプリカベクトル値及び、前記遅延波のベクトル値に対応する遅延レプリカベクトル値の各々と閾値とを比較し、該先行及び遅延レプリカベクトル値が該閾値よりも大きい場合に該先行波及び該遅延波が強く受信されていると判定する第1及び第2伝搬路推定手段と、
    該第1及び第2伝搬路推定手段で得られる該誤差を2乗したブランチメトリックを出力する第1及び第2ブランチメトリック算出手段と、
    該第1及び第2伝搬路推定手段の判定結果が共に該先行波が強く受信されていることを示す場合に、第1及び第2ブランチの受信レベルの高い方を選択する優先ブランチ選択制御手段と、
    該優先ブランチ選択制御手段での選択受信レベルのブランチ側の該ブランチメトリックに、該選択受信レベルで重み付けを行う第1及び第2重み付け手段と、
    該第1及び第2重み付け手段で重み付けが行われたブランチメトリックの合成を行う合成手段と、
    該合成されたブランチメトリックから適正な受信信号系列を推定することにより等化信号を出力する系列推定手段とを具備して前記等化器を構成したことを特徴とする等化器を有する受信装置。
  2. 前記第1及び第2伝搬路推定手段の判定結果が共に前記先行波が強く受信されていることを示す場合に、前記優先ブランチ選択制御手段が第1及び第2ブランチの受信信号レベルの高いほうのアンテナを送信アンテナとして選択することを特徴とする請求項1記載の等化器を有する受信装置。
  3. 前記第1及び第2伝搬路推定手段の判定結果の何れかが前記前記先行波が強く受信されていることを示す場合に、該先行波が強く受信されているブランチのアンテナを送信アンテナとして選択することを特徴とする請求項1記載の等化器を有する受信装置。
  4. 前記第1及び第2伝搬路推定手段の判定結果の何れかが前記前記先行波が強く受信されていることを示す場合に、該先行波が強く受信されているブランチの前記ブランチメトリックに、前記第1又は第2重み付け手段がシステム的に定められた固定値で重み付けを行うことを特徴とする請求項1記載の等化器を有する受信装置。
  5. 前記第1及び第2伝搬路推定手段の判定結果が共に前記先行波及び前記遅延波の双方が強く受信されていることを示す場合に、前記優先ブランチ選択制御手段が第1及び第2ブランチの受信信号レベルの高いほうのアンテナを送信アンテナとして選択することを特徴とする請求項1記載の等化器を有する受信装置。
  6. 前記第1及び第2伝搬路推定手段の判定結果が共に前記先行波及び前記遅延波の双方が強く受信されていることを示す場合に、前記第1及び第2重み付け手段が重み付けを行わないことを特徴とする請求項1記載の等化器を有する受信装置。
  7. 前記第1及び第2伝搬路推定手段の判定結果が共に前記遅延波が強く受信されていることを示す場合に、前記等化処理を前記受信信号の1シンボル分余計に処理させる制御を行う信号処理手段を設けたことを特徴とする請求項1記載の等化器を有する受信装置。
JP17064795A 1995-07-06 1995-07-06 等化器を有する受信装置 Expired - Fee Related JP3560695B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17064795A JP3560695B2 (ja) 1995-07-06 1995-07-06 等化器を有する受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17064795A JP3560695B2 (ja) 1995-07-06 1995-07-06 等化器を有する受信装置

Publications (2)

Publication Number Publication Date
JPH0923175A JPH0923175A (ja) 1997-01-21
JP3560695B2 true JP3560695B2 (ja) 2004-09-02

Family

ID=15908759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17064795A Expired - Fee Related JP3560695B2 (ja) 1995-07-06 1995-07-06 等化器を有する受信装置

Country Status (1)

Country Link
JP (1) JP3560695B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752533B2 (en) * 2006-03-28 2010-07-06 Sony Corporation Systems and methods for improving radio frequency signal reception

Also Published As

Publication number Publication date
JPH0923175A (ja) 1997-01-21

Similar Documents

Publication Publication Date Title
JP2770626B2 (ja) 適応受信機
US5809086A (en) Intelligent timing recovery for a broadband adaptive equalizer
JP4579472B2 (ja) Dcオフセット補償を伴う等化
EP0755141B1 (en) Adaptive decision feedback equalization for communication systems
US7535980B2 (en) Selectively disabling interference cancellation based on channel dispersion estimation
US6246732B1 (en) Demodulator including adaptive equalizer and demodulating method in digital communications
US6952570B2 (en) Wireless communication receiver that determines frequency offset
US6898239B2 (en) Method of detecting a sequence of information symbols, and a mobile station adapted to performing the method
EP1427155A2 (en) Channel estimation
CN100429875C (zh) 高度时变移动无线信道的信号强度补偿
MXPA05002029A (es) Receptor de comunicaciones con ecualizador paralelo virtual.
JP3145295B2 (ja) データ受信装置
WO1995001035A1 (fr) Equipement de radiocommunications numeriques
JP3560695B2 (ja) 等化器を有する受信装置
US20020167999A1 (en) Equalizer, receiver, and equalization method and reception method
WO2000005847A1 (en) Channel impulse response estimation using received signal variance
JP3908474B2 (ja) 適応等化器、受信装置およびタップ係数算出方法
JP3424723B2 (ja) 適応等化器
JP2868012B1 (ja) 受信方法および受信装置
JP2862082B1 (ja) 受信方法および受信装置
JP2000068910A (ja) ダイバーシチ受信装置
JP3617928B2 (ja) 等化器及び等化方法
JP2862083B1 (ja) 受信方法および受信装置
JP3424724B2 (ja) 干渉キャンセラ
JP2591241B2 (ja) 適応型ダイバーシティ受信装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees