JP3557286B2 - Mr画像生成方法及びmri装置 - Google Patents

Mr画像生成方法及びmri装置 Download PDF

Info

Publication number
JP3557286B2
JP3557286B2 JP17242595A JP17242595A JP3557286B2 JP 3557286 B2 JP3557286 B2 JP 3557286B2 JP 17242595 A JP17242595 A JP 17242595A JP 17242595 A JP17242595 A JP 17242595A JP 3557286 B2 JP3557286 B2 JP 3557286B2
Authority
JP
Japan
Prior art keywords
data
image
frames
pixel
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17242595A
Other languages
English (en)
Other versions
JPH0919416A (ja
Inventor
徳典 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17242595A priority Critical patent/JP3557286B2/ja
Publication of JPH0919416A publication Critical patent/JPH0919416A/ja
Application granted granted Critical
Publication of JP3557286B2 publication Critical patent/JP3557286B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【0001】
【産業上の利用分野】
本発明は磁気共鳴イメージング(MRI)におけるMR画像生成方法及びMRI装置に係り、とくにS/N比向上を意図してMR信号の加算平均処理を行うようにしたMR画像生成方法及びMRI装置に関する。
【0002】
【従来の技術】
磁気共鳴イメージングでは、同一スキャン条件で収集した複数枚分の画像データを加算(又は加算平均)処理して1枚分の画像データを作成することが頻繁に行われており、これによりS/N比の改善を図っている。これは、n個のMRデータを加算平均すると、S/N比がn1/2 倍改善されることに基づいている。
【0003】
従来、この加算(平均)を行う場合、画像再構成前のk空間上の複素数であるMR画像データの実数成分Vreal(n)と虚数成分Vimag(n)(n=1,2,…,N:Nは平均回数)の各で加算平均を行い、フーリエ変換などの画像再構成処理を行って実数成分、虚数成分毎の再構成画像データVreal,Vimagを得た後、絶対値処理を行って絶対値データVabs を作成している。この一連の処理は、実数成分、虚数成分各々について複数枚分ずつ画像再構成し、各成分の画像毎に加算(平均)した後、絶対値画像を求めるという処理(図9参照)と等価である。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した図9に示すように、実数成分および虚数成分の各々の画像データについて加算(平均)した後に絶対値画像データを求める手法にあっては、被検体の動きや磁場変動が生じると、加算される双方の画像データ同士の位相変化が異なることがあり、そのような場合、加算後の画像データの絶対値は被加算画像データ同士のベクトル和となることから、その大きさは位相変化が無い場合に比べて小さくなってしまうので、S/N比向上の割合が低く、再構成された画像にゴーストや空間的濃度むらが残ることが頻発していた。
【0005】
ところで、近年ではMRIスキャンを高速化させるために、“シングルショット法”によるイメージングも行われている。“シングルショット法”とは、1個の励起用RFパルス(refocusing RF pulse は除く)で1画像を作成するためのk空間上のデータを一度に収集してしまうことである。このシングルショット法を使う場合、エンコーディング方向の収集時間は短かい(数sec 以下)ため、元来、被検体の動きや磁場変動による位相誤差(変動)は生じ難く、ショット数の多いEPI法、高速SE法、SE法に比べてエンコード方向のゴーストは生じ難い。
【0006】
しかしながら、シングルショット法であっても、S/N比改善のために同一スキャン条件の画像データを加算又は加算平均する複数枚の画像を収集する場合、各ショット間での画像データの位相変動(誤差)が問題となり、被加算(平均)画像間の繰返し時間TRは比較的長くなり(TR=1〜10sec 程度)、前述したように、被検体の動きや磁場変動に因る位相誤差が問題となり、上述した不都合に帰着する。
【0007】
本発明は上述した従来の画像処理の不都合に鑑みてなされたもので、複数枚の画像間で加算又は加算処理してMR画像を生成する際、被加算画像間の位相誤差に因って加算(平均)処理のメリットであるS/N比向上の実を十分に発揮できないという事態を排除し、位相誤差があっても加算処理又は加算平均処理によってS/N比を十分に向上させることができ、再構成されたMR画像からゴーストや濃度むらを排除することを、その目的とする。
【0008】
【課題を解決するための手段】
上述目的を達成するため、本発明のMR画像生成方法は、同一スキャン条件の元で所定パルスシーケンスを使って収集された、複素数として取り扱われる被検体の複数フレームのMRデータを用いてMR画像を得る方法であり、前記複数フレーム夫々の画素毎のMRデータを絶対値化し、前記複数フレームのMRデータ相互間で対応する画素毎にMRデータを加算又は加算平均して1フレームの前記MR画像の画像データを形成する。
【0009】
例えば、前記パルスシーケンスは、シングルショットのイメージング法、複数ショットのイメージング法の内の何れかである。
【0010】
また本発明のMRI装置は、同一スキャン条件の元で所定パルスシーケンスを使って収集された、複素数として取り扱われる被検体の複数フレームのMRデータを用いてMR画像を得る装置であり、前記複数フレーム夫々の画素毎のMRデータを絶対値化する手段と、前記複数フレームのMRデータ像相互間で対応する画素毎にMRデータを加算又は加算平均して1フレームの前記MR画像の画像データを形成する手段とを備える。
【0011】
【作用】
本発明のMR画像生成方法及びMRI装置によれば、同一スキャン条件の元で所定パルスシーケンスを使って、複素数として取り扱われる被検体の複数フレームのMRデータが収集される。複数フレーム夫々の画素毎のMRデータが絶対値化され、複数フレームのMRデータ相互間で対応する画素毎にMRデータが加算又は加算平均して1フレームのMR画像の画像データが形成される。
【0012】
【実施例】
以下、本発明の一実施例を図面を参照しながら説明する。
【0013】
この実施例に係る磁気共鳴イメージング(MRI)装置の概略構成を図1に示す。この磁気共鳴イメージング装置は、静磁場発生用の磁石部と、静磁場に位置情報を付加するための傾斜磁場部と、選択励起用及びMR信号受信用の送受信部と、システムコントロール及び画像再構成を担う制御・演算部とを備えている。
【0014】
磁石部は、例えば超電導方式の磁石1と、この磁石1に電流を供給する静磁場電源2とを備え、被検体Pが挿入される円筒状の診断空間のZ軸方向に静磁場Hを発生させる。
【0015】
傾斜磁場部は、磁石1に組み込まれたX,Y,Z軸方向の3組の傾斜磁場コイル3x〜3zと、この傾斜磁場コイル3x〜3zに電流を供給する傾斜磁場電源4と、この電源4を制御する傾斜磁場シーケンサ5とを備える。このシーケンサ5はコンピュータを備え、装置全体のコントローラ6(コンピュータを搭載)から例えばシングルショットのFE法を用いたEPI(Echo Planar Imaging )の収集パルスシーケンス(図3参照)を指令する信号を受ける。これにより、傾斜磁場シーケンサ5は、指令されたシーケンスにしたがってX,Y,Z軸方向の各傾斜磁場の印加及びその強度を制御し、それらの傾斜磁場が静磁場Hに重畳可能になっている。この実施例では、互いに直交する3軸の内のZ軸方向の傾斜磁場をスライス用傾斜磁場Gとし、X軸方向のそれを読出し用傾斜磁場Gとし、さらにY軸方向のそれを位相エンコード用傾斜磁場Gとする。
【0016】
送受信部は、磁石1内の撮影空間にて被検体Pの近傍に配設される高周波コイル7と、このコイル7に接続された送信機8T及び受信機8Rと、この送信機8T及び受信機8Rの動作タイミングを制御するRFシーケンサ9(コンピュータを搭載)とを備える。この送信機8T及び受信機8Rは、RFシーケンサ9の制御のもと、核磁気共鳴(NMR)を励起させるためのラーモア周波数のRF電流パルスを高周波コイル7に供給する一方、高周波コイル7が受信したMR信号(高周波信号)に各種の信号処理を施してデジタル信号の画像データを形成するようになっており、その詳細は図2に示す。
【0017】
さらに、制御・演算部は、上述したコントローラ6のほか、受信機8Rで形成された画像データを入力し、画像データの再構成を行う演算ユニット10と、再構成演算した画像データを保管する記憶ユニット11と、画像を表示する表示器12と、オペレータが操作する入力器13とを備えている。演算ユニット10はCPU及びメモリを内蔵し、具体的には、メモリ空間である2次元フーリエ空間への実測データの配置、画像再構成のためのフーリエ変換、S/N比向上のための加算(加算平均)などの処理を行う。コントローラ6は傾斜磁場シーケンサ5及びRFシーケンサ9の同期をとりながら、両者の動作内容及び動作タイミングを制御する。
【0018】
上記送信機8T及び受信機8Rは、具体的には図2に示すように形成されている。この内、送信機8Tは、発振周波数がf0 及びΔfの発振部20及び21を有し、その発振部20の出力側に順次配設された位相選択部22、周波数変換部23、振幅変調部24、高周波電力増幅部25、及び変調波発生部26とを備えている。
【0019】
変調波発生部26は、所定のスライス厚に対応した例えばSINC関数の変調波F(t)をRFシーケンサ9から制御信号が到来したときに発生させるようになっている。変調波F(t)は振幅変調部24に供給される。
【0020】
周波数がf0 である発振部20の発振信号を受けた位相選択部22は、その信号の位相をφに選択して後段の周波数変換部23に送る。周波数変換部23には、もう一方の発振部21から周波数Δfの発振信号が入力している。そこで、周波数変換部23は2つの入力信号を用いて、周波数がf0 ±Δfの高周波信号を形成し、この内、一方の周波数f0 +Δfの高周波信号を振幅変調部24に供する。
【0021】
上記振幅変調部24は、キャリアである周波数f0 +Δfの信号(位相φ)を変調波F(t)で変調し、パワー増幅用の高周波電力増幅器25を介して、磁石1内の高周波コイル7に供給する。
【0022】
一方、受信機8Rは、高周波コイル7に接続された前置増幅器40と、その前置増幅器40の出力側に順次接続された中間周波変換部41、位相検波部42、低周波増幅器43、ローパスフィルタ44、及びA−D変換器45を有する。前置増幅器40で増幅されたNMRの高周波信号は、中間周波変換部41により中間周波数に変換されて位相検波部42に供給される。位相検波部42は、複素数信号として取扱い得る、90度位相がずれた2つのMR信号を入力信号から検波するものである。この2つの検波信号は、2チャンネルの低周波数増幅部43及びローパスフィルタ44を介して2チャンネルのA−D変換部45に送られる。A−D変換部45でデジタル信号に変換されたMR信号が演算ユニット10に読み込まれる。
【0023】
続いて、この実施例の作用効果を説明する。
【0024】
まず、傾斜磁場シーケンサ5及びRFシーケンサ9は、コントローラ6からシングルショットのEPI撮影に係るFE法の収集パルスシーケンスが加算(平均)処理のために複数ショット指令されると、各ショット毎に図3に示すように、そのシーケンスに沿って被検体Pへの傾斜磁場の印加及び高周波信号の送受信を制御する。
【0025】
最初に、スライス用傾斜磁場Gのパルスが傾斜磁場電源4から傾斜磁場コイル3、3を介して印加され、この傾斜磁場Gが立上がった時点で送信機8T及び高周波コイル7を介して、90゜RFパルス(選択励起パルス)が1回だけ印加される。これにより、被検体の所定スライス幅の撮像領域が選択励起されるとともに、その面内の原子核スピンがy′軸(回転座標)までフリップする。
次いで所定タイミングに達すると、読出し用傾斜磁場Gのパルスが傾斜磁場コイル3x,3yを介して印加開始される。この読出し用傾斜磁場Gの極性はその後、一定周期毎に反転される。
【0026】
このとき読出し用傾斜磁場Gの極性反転毎に、位相エンコード用傾斜磁場
のパルスが傾斜磁場電源4から傾斜磁場コイル3x,3yを介して印加される。
【0027】
これにより、読出し用傾斜磁場Gイルの極性反転によってエコー信号が集められ、収集される。このエコー信号の収集は、予め定められた読出し用傾斜磁場Gの反転回数分繰り返され、1回の90°RFパルスの印加だけで1フレーム分のエコー信号が収集される。
【0028】
本実施例ではエコーデータ加算(平均)処理を実施する複数フレームの画像データを得るため、コントローラ6から上述した図3のパルスシーケンスによるデータ収集がフレーム数分繰り返される。
【0029】
図3の収集パルスシーケンスにより受信されたエコー信号S、S、…S、は順次受信機8Rに送られ、そこで増幅、中間周波変換、位相検波、低周波増幅の処理を受けた後、前述の如く、複素数のデジタル信号に変換されて、演算ユニット10に出力される。演算ユニット10ではエコー信号が、図4に示す如く、k空間に位相エンコード量に応じて配置される。
【0030】
演算ユニット10は予め搭載されているCPUのソフトウエア機能によって図5に示す処理を行う。
【0031】
すなわち、演算ユニット10は最初に、収集し記憶している1フレーム分のエコーデータをワークメモリに読み出す(ステップ101)。このエコーデータは複素数として扱われる周波数空間上のデータ群であり、空間位置の各々のデータSは、S=Sreal+i・Simag;Srealは実部データ、Simagは虚部データ、iは虚数単位として表わされる。
【0032】
次いで演算ユニットのCPUは読み出した1フレーム分の周波数空間上のデータに高速フーリエ変換(FFT)を施す(ステップ102)。これにより、1フレーム分の実空間上の複素数のエコーデータが得られる。この実空間上のエコーデータ群の各画素データVも、V=Vreal+iVimag;Vrealは実部データ、Vimagは虚部データ、iは虚数単位である。
【0033】
この実空間上のエコーデータは一時的に内部メモリに格納される(ステップ103)。そして、収集した複数フレーム数分のフーリエ変換が行われたか否かが判断され(ステップ104),NOの判断の場合、ステップ101〜ステップ103の処理が繰り返される。
【0034】
このステップ104の判断でYESの場合、次いで回数カウント用変数n=1、絶対値画像の画素値変数Vabs =0に初期設定する(ステップ105)。次いでフレーム中の最初の画素位置が予め定められた手順で指定され(ステップ106)、この指定画素に対する最初のフレーム(n=1)の複素数画像データV(n)が内部メモリからワーキングエリアに読み出される。この複素数画像データV(n)は、
【数1】
V(n)=Vreal(n)+iVimag(n)
と表わされる。
【0035】
次いで、演算ユニット10のCPUにより、複素数画像データV(n)の絶対値|V(n)|=Vabs (n)が、
【数2】
Figure 0003557286
の式に沿って演算される(ステップ108)。さらに、この絶対値Vabs (n)が、
【数3】
Vabs =Vabs +Vabs (n)
の加算(平均)演算が行われる(ステップ109)。これにより、画素値変数Vabs の値が更新されていく。
【0036】
次いで、回数カウント用変数nがインクリメント(n=n+1)される(ステップ110)。この変数nは次いで被加算(平均)データの個数N(n=1,2,…N)に対して、n≦Nか否かの判断が実施される(ステップ111)。このステップ111の判断がYESであり、ある画素に対して未だ加算(平均)処理の対象データが残っていると認識したときは、ステップ108の処理に戻り、ステップ108〜110の処理が繰り返される。この結果、ある画素に対してN個の画素データが加算(平均)される。加算した画素値をN個で割って加算平均を算出してもよい。
【0037】
ステップ111の判断でNOとなるときは、その時点の画素値変数Vabs の値を、いま加算(平均)の対象となっている画素に対する加算(平均)値Vabs と認識し、その値Vabs を内部フレームメモリの対応するアドレス位置に格納する(ステップ112)。
【0038】
次いで演算ユニット10のCPUは、1フレームの全ての画素に対して上述の絶対値演算およびび加算(平均)演算が完了したか否か判断される(ステップ113)。この判断でNOとなるときは、前述したステップ105の処理まで戻り、ステップ105〜112の処理が繰り返される。このステップ113でYESの判断が下されたときは、所定の複数枚の実空間の絶対値画像が画素毎に加算(平均)され、1枚の加算(平均)処理された実空間上のエコー画像データがフレームメモリに格納されている。
【0039】
このように加算(平均)されたエコーデータは必要に応じて表示器12に表示される。この表示画像は、同一スキャン条件の元で収集した複数枚の画像を加算(平均)処理したものであるので、S/N比は改善される。
【0040】
これに加えて、図6に模式的に示す毎く、加算(平均)処理の前に絶対値Vabs を画素毎に演算し、この絶対値を加算(平均)している。従来では、例えば図7(a)に示すように、複素数であるエコーデータV(1),V(2)をベクトル的に加算してから絶対値|V(1)+V(2)|を演算している。これに対し、本実施例では、例えば図7(b)に示すことができるように、エコーデータV(1),V(2)の絶対値|V(1)|,|V(2)|を各々演算してから、それらの絶対値データを加算し、|V(1)|+|V(2)|が演算される(図5ステップ105〜110参照)。
【0041】
この結果、図7(a),(b)からも分かるように、従来法(同図(a))に係る加算(平均)値に比べて、個々のデータの絶対値を演算してから加算(平均)する本発明に係る加算(平均)値の方が最終的な画素値が大きくなる。
【0042】
このため、被検体の動き(モーション)や磁場変動などに起因して被加算(平均)画像V(n)の位相が空間分布を持ち、且つそれがn毎(時間毎,ショット毎)に異なっていても、従来法よりも格段に精度良くキャンセルされ、位相の空間分布やそのn毎の相違が無い場合と同等の画像が得られる。つまり、再構成された画像からエコーデータの上記位相誤差のばらつきに因るゴーストや空間的濃度むらがより確実に除去された高品質の画像が得られる。これにより、シングルショットEPIを複数回(ショット)繰り返して得た画像データを加算処理又は加算平均処理するときに問題となっていた各ショット間でのデータの位相変動に因る不都合も、確実に抑制される。
【0043】
なお、上述した実施例では本発明に係る絶対値演算後の加算(平均)処理の手法をシングルショットのEPI法(FE法)による撮影に適用した場合を説明したが、この手法はMRIにおいて複数枚の画像の画素データを加算又は加算平均する画像処理全てに適用できる。例えば、シングルショットのSE法のEPIやFastSE(RARE)法による撮影であってもよい。
【0044】
また、本発明に係る「絶対値演算後の加算(平均)処理」の手法を適用するMRIスキャンは、k空間を複数個に分割したセグメント毎にエコー信号を配置し且つ複数枚の画像を一度に得るマルチショットEPI法又はマルチショット高速SE法によるスキャンであってもよく、複数枚の画像夫々の各セグメント毎に絶対値画像を演算し、複数枚の画像の各セグメント毎に対応する画素の画像データを加算又は加算平均するようにしてもよい。
【0045】
さらに、本発明を実施したシングルショットEPI法やシングルショット高速SE法は、被検体の動きに因る位相誤差に起因したアーチファクトや測定誤差に敏感なディフュージョン(diffusion )イメージング、susceptibility effectsを応用したT パーフュージョン(perfusion )イメージング、酸素の代謝を血液の磁性の変化でとらえるBOLD(Blood Oxyganation Level Dependent )法による機能的イメージングに有効であり、それらのイメージング測定精度を向上させることができる。
【0046】
なお、加算(平均)する画像間の位相誤差を除去する手法の変形例としては、図8にその概略を示す手法もある。実空間上での加算(平均)される画像データをV(n)=Vreal(n)+iVimag(n)(n=1,2,3,…,N,N=平均回数)とすると、この画像データV(n)に対して空間的な位相補正処理を行う(図8ステップ201)。この位相補正後の画像データV(n)に対して実部、虚部毎に加算(平均)処理を行い(ステップ202)、その平均値Vreal,Vimagを求める。この平均値Vreal,Vimagはさらに絶対値Vabs に変換される(ステップ203)。これにより、空間的に0次,1次を中心とする低次の位相誤差は少なくとも補正され、S/N比改善に有効となる。
【0047】
【発明の効果】
以上説明したように、本発明によれば、複数フレーム夫々の画素毎のMRデータを絶対値化し、複数フレームのMRデータ相互間で対応する画素毎にMRデータを加算又は加算平均して1フレームのMR画像の画像データを形成するので、被加算画像の画像データ間に被検体の動きや磁場不均一性に起因した位相誤差が在っても、画像データの絶対値を大きくとることができ、加算又は加算平均の処理によってS/N比を十分に上げることができる。したがって、再構成されたMR画像から被検体の動きや磁場不均一性に因るゴーストや空間的濃度むらを排除して画質を向上させることができる。これらの利点はシングルショット撮影に加算(平均)処理を適用するときにも、良好に享受できる。
【図面の簡単な説明】
【図1】本発明の一実施例に係るMRI装置のブロック図。
【図2】同実施例の送信機及び受信機のブロック図。
【図3】イメージングのためのFE法を使ったシングルショットEPI法の一例を示すパルスシーケンスの図。
【図4】シングルショットEPI法によるk空間上のデータ配置の様子を示す説明図。
【図5】演算ユニットのCPUによる画像データの処理を示すフローチャート。
【図6】本発明の画像処理手順の概要を示す模式説明図。
【図7】(a),(b)は絶対演算及び加算演算をベクトル的に説明する図で、(a)は従来法を示し、(b)は本発明を示す。
【図8】変形例に係る画像データ処理の概略フローチャート。
【図9】従来の画像処理手順の概要を示す模式説明図。
【符号の説明】
1 磁石
2 静磁場電源
3x,3y,3z 傾斜磁場コイル
4 傾斜磁場電源
5 傾斜磁場シーケンサ
6 コントローラ
7 高周波コイル
8T 送信機
8R 受信機
10 演算ユニット

Claims (6)

  1. 同一スキャン条件の元で所定パルスシーケンスを使って収集された、複素数として取り扱われる被検体の複数フレームのMRデータを用いてMR画像を得るMR画像生成方法において、
    前記複数フレーム夫々の画素毎のMRデータを絶対値化し、前記複数フレームのMRデータ相互間で対応する画素毎にMRデータを加算又は加算平均して1フレームの前記MR画像の画像データを形成することを特徴としたMR画像生成方法。
  2. 前記パルスシーケンスは、シングルショットのイメージング法、複数ショットのイメージング法の内の何れかである請求項1記載のMR画像生成方法。
  3. 前記イメージング法はディフュージョンイメージング、
    パーフュージョンイメージング、BOLD法によるイメージングの内の何れかであるMR画像生成方法。
  4. 前記パルスシーケンスは、k空間を複数個のセグメントに分割した各セグメント毎に収集データを配置する、マルチショット法によるシーケンスであり、前記絶対値化及び加算又は加算平均の処理は前記各セグメント毎に行うようにした請求項1記載のMR画像生成方法。
  5. 同一スキャン条件の元で所定パルスシーケンスを使って収集された、複素数として取り扱われる被検体の複数フレームのMRデータを用いてMR画像を得るMR画像生成方法において、
    前記複数フレームの夫々について各画素のMRデータの位相補正を行い、前記複数フレームのMRデータ相互間で対応する画素毎の実部、虚部別にMRデータを加算又は加算平均し、この加算又は加算平均されたMRデータを画素毎に絶対値化して1フレームの前記MR画像の画像データを形成することを特徴としたMR画像生成方法。
  6. 同一スキャン条件の元で所定パルスシーケンスを使って収集された、複素数として取り扱われる被検体の複数フレームのMRデータを用いてMR画像を得るMRI装置において、
    前記複数フレーム夫々の画素毎のMRデータを絶対値化する手段と、前記複数フレームのMRデータ相互間で対応する画素毎にMRデータを加算又は加算平均して1フレームの前記MR画像の画像データを形成する手段とを備えることを特徴としたMRI装置。
JP17242595A 1995-07-07 1995-07-07 Mr画像生成方法及びmri装置 Expired - Fee Related JP3557286B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17242595A JP3557286B2 (ja) 1995-07-07 1995-07-07 Mr画像生成方法及びmri装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17242595A JP3557286B2 (ja) 1995-07-07 1995-07-07 Mr画像生成方法及びmri装置

Publications (2)

Publication Number Publication Date
JPH0919416A JPH0919416A (ja) 1997-01-21
JP3557286B2 true JP3557286B2 (ja) 2004-08-25

Family

ID=15941739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17242595A Expired - Fee Related JP3557286B2 (ja) 1995-07-07 1995-07-07 Mr画像生成方法及びmri装置

Country Status (1)

Country Link
JP (1) JP3557286B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639136B2 (ja) * 2005-10-19 2011-02-23 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴イメージング装置
JP5259177B2 (ja) * 2007-12-28 2013-08-07 株式会社東芝 磁気共鳴イメージング装置

Also Published As

Publication number Publication date
JPH0919416A (ja) 1997-01-21

Similar Documents

Publication Publication Date Title
JP4229487B2 (ja) マクスウェル項誤差を補正する方法
US6515476B1 (en) Magnetic field inhomogeneity measurement method and apparatus, phase correction method and apparatus, and magnetic resonance imaging apparatus
JP3153574B2 (ja) 磁気共鳴映像装置
JPH0763455B2 (ja) 磁気共鳴映像装置
JP4121174B2 (ja) 核磁気共鳴システムにより発生されるマクスウェル項誤差を補正する方法
JP2002543952A (ja) 磁気共鳴エラストグラフィ
JP4049649B2 (ja) 磁気共鳴撮影装置
US4949042A (en) Magnetic resonance imaging system
EP1199578A2 (en) Phase error measuring method and apparatus, phase error correcting method and apparatus, recording medium and magnetic resonance imaging apparatus
JP2013509904A (ja) ナビゲータを使用するmrイメージング
JP2011156412A (ja) 磁気共鳴エラストグラフィ
US4999581A (en) Magnetic resonance imaging system
JP3884227B2 (ja) 磁気共鳴撮影装置
JP5068606B2 (ja) 磁気共鳴イメージング装置,プログラム
JP3557286B2 (ja) Mr画像生成方法及びmri装置
JP4912802B2 (ja) 磁気共鳴イメージング装置,送信感度分布計測装置および送信感度分布計測方法
JP3576069B2 (ja) Mri装置
US20220057467A1 (en) Epi mr imaging with distortion correction
JPH10277010A (ja) Mri装置
JP3548630B2 (ja) Mr画像生成方法及びmri装置
JP3907944B2 (ja) 磁気共鳴イメージング方法及び装置
JP2002052005A (ja) 磁気共鳴イメージング方法
JP2000175882A (ja) Mrイメージング装置
JP2001340316A (ja) 磁気共鳴イメージング装置
JP3615614B2 (ja) Mri装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040517

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees