JP3555964B2 - 信号処理回路およびそれを用いたcmos半導体集積回路 - Google Patents
信号処理回路およびそれを用いたcmos半導体集積回路 Download PDFInfo
- Publication number
- JP3555964B2 JP3555964B2 JP26826292A JP26826292A JP3555964B2 JP 3555964 B2 JP3555964 B2 JP 3555964B2 JP 26826292 A JP26826292 A JP 26826292A JP 26826292 A JP26826292 A JP 26826292A JP 3555964 B2 JP3555964 B2 JP 3555964B2
- Authority
- JP
- Japan
- Prior art keywords
- clock
- circuit
- amplitude
- inverter
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Logic Circuits (AREA)
Description
【産業上の利用分野】
本発明は、回路の動作速度を低下させることなく、消費電力を低減することが可能なディジタル信号処理回路およびCMOS半導体集積回路に関するものである。
【0002】
【従来の技術】
従来より、高速に動作するディジタル信号処理回路においては、パイプライン構成により処理のスル−・プットを向上させる方法が用いられている。パイプライン構成では、論理回路や演算回路を適当なステップに分割し、各々のステップにラッチ回路を設けたものである。例えば、ある値の部分積を演算する回路に、直接それのキャリ−をとる回路が接続されているときには、あるクロック周期で部分積の計算とキャリ−の桁を計算することになる。しかし、それら2つの回路の間にレジスタを挿入して、2つのステップに分割することにより、パイプライン処理で1つ前のキャリ−の桁の計算と並行して次の部分積演算を行うことができるので、処理のスル−・プットが向上する。なお、処理のスル−・プットは、ラッチから次段のラッチまでの遅延時間により決定される。その場合、パイプラインにしても、1つのステップの間の直列に接続されている論理ゲ−ト数が多ければ多いほど処理時間は遅くなるので、1段当りのゲ−ト数をできる限り少なくする。上述の例では、部分積の演算回路はできるだけ少ない数のゲ−トを用いるとともに、キャリ−回路内でもできるだけ少ない数のゲ−トを用いるようにする。
従って、分割するステップ数を増加するとともに、ラッチから次段のラッチまでの論理ゲ−トの段数を少なくするほど、処理のスル−・プットは向上することになる。なお、ディジタル信号処理回路として、CMOSデバイスに関する技術は、例えば『最新CMOSデバイスの動向』1979年7月号電子科学、昭和54年4月24日産報出版発行、pp.13〜67に記載されている。
【0003】
【発明が解決しようとする課題】
前述のように、処理のスルー・プットを向上させるためには、ステップ数を増加し、ラッチから次段のラッチまでの論理ゲートの段数を少なくするほど、ラッチ回路を多く備える必要がある。しかしながら、パイプラインの段数を増やした場合には、各ラッチ回路での消費電力が多くなるため、回路規模の増大以上に電力の消費が増大するという問題があった。
消費電力を低減する効果的な方法として、電源電圧を下げる方法があるが、この方法では、論理ゲートの動作速度が遅くなり、回路の速度性能が低下してしまう。
ところで、消費電力の分析を行うと、ラッチ回路はクロックで直接駆動されるため、その消費電力は他の通常の論理ゲートに比べてかなり多いことがわかった。通常の論理ゲートの状態反転は、クロックに同期した信号を扱うため、クロック周期毎に信号が反転したと仮定しても、クロックの1/2の周波数に過ぎない。
一般に、通常の論理ゲートの状態反転は、クロックの1/4の周波数を最悪値とする場合が多い。従って、クロックで直接駆動されるトランジスタ(クロックの立上りまたは立下りで、データが保持されるハーフ・ラッチ回路)は、通常の論理ゲートを構成するトランジスタの4倍の電力を消費することになる。
一般に、10個のトランジスタで構成されるハーフ・ラッチ回路の場合、クロックの負荷となっているトランジスタは4個である(図1参照)。通常ゲートを構成するトランジスタで消費電力を1とすると、10個のトランジスタで構成される通常ゲートで消費される電力は10であり、10個のトランジスタで構成されるハーフ・ラッチ回路の場合の電力は4×4+6=22となる。従って、ラッチ回路で消費される電力は、通常ゲートの2倍以上になる。
例えば、3段のパイプライン構成を用いたディジタル・フィルタにおいては、通常の演算回路による電力消費は全体の60%、ラッチによる消費は40%である。このように、ラッチ回路による電力消費のうち、16/22はクロックにより直接駆動されるために消費されてしまう。従って、全体の約30%はクロックにより直接駆動される回路で消費されるのである。
本発明の目的は、このような従来の課題を解決し、回路全体の処理速度を殆んど低下させずに、消費電力を低減させることが可能な信号処理回路およびそれを用いたCMOS半導体集積回路を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成するため、本発明の信号処理回路は、(イ)CMOS半導体集積回路で構成される信号処理回路において、第1のPMOSおよびNMOSトランジスタを有する第1のインバータ、ならびに第2のPMOSおよびNMOSトランジスタを有する第2のインバータとで構成され、上記第2のインバータの出力と上記第1のインバータの入力と接続したラッチ回路と、上記第2のインバータへのデータ信号の入力を制御する第3のPMOSおよびNMOSスイッチング用トランジスタと、上記第3のPMOSトランジスタのゲートに第1のクロック信号を供給する第1のクロック駆動回路と、上記第3のNMOSトランジスタのゲートに第2のクロック信号を供給する第2のクロック駆動回路とを備え、上記第1または第2のクロック駆動回路の一方のクロック駆動回路には、電源電圧から該電源電圧の1/2までの振幅を、他方のクロック駆動回路には、該電源電圧の1/2からグランド電圧までの振幅を、それぞれ印加することを特徴としている。また、
(ロ)第1および第2のクロック駆動回路は、電源電圧レベルとグランド電圧レベルの中点で互いに接続されたインバータで構成され、上記各クロック駆動回路の負荷容量の間で電荷の充放電を行うことを特徴としている。さらに、
(ハ)クロック信号の第1のレベルでデータ信号をラッチ回路の入力から出力へスルー状態とし、該クロック信号の第2のレベルで上記スルー入力されたデータ信号をラッチ状態にするCMOS構成のラッチ回路を含むCMOS半導体集積回路において、上記データ信号の振幅変化は、電源電圧レベルとグランド電圧レベルとの間のフル振幅であり、上記スルー状態と上記ラッチ状態とを切換えるクロックドCMOSインバータに印加される上記クロック信号の振幅は、上記フル振幅の1/2の振幅であることを特徴としている。
【0005】
【作用】
本発明においては、クロックの振幅を通常ゲートの信号振幅よりも低くして、ラッチ回路の消費電力を低減させる。具体的には、ラッチ回路のクロックに駆動されるトランジスタのうち、PMOSとNMOSのトランジスタを独立に駆動する低振幅のクロック駆動回路を設ける。
ところで、クロックの振幅を0〜電源電圧のフルスィングで振らせるときには、それに相応した電圧が必要となる。一方、P=(1/2)CV2の関係から明らかなように、振幅を半分にすると、電力は1/4に低減できる。また、T=CRの時定数の式から明らかなように、振幅を下げることにより、抵抗Rは大となるため、時定数は大となって動作速度は遅くなる。従って、ラッチ回路自身の遅延は増大するが、元来、遅延時間全体に占めるラッチ回路自身の遅延は僅かであるため、全体としての遅延はそれほどない。
これにより、ディジタル信号処理回路全体の処理速度を殆んど低下させずに、消費電力を低減することができる。
また、信号処理回路を用いたCMOS半導体集積回路では、データ信号の振幅変化を第1の振幅とし、スルー状態とラッチ状態を切換えるクロックドMOSトランジスタのゲートに加えるクロック信号の振幅は、上記第1の振幅より小さい第2の振幅である。
上記第1の振幅は、電源電圧レベルと接地レベルとの間のフル振幅であり、また上記第2の振幅は、フル振幅の1/2の振幅である。
これにより、スルー状態とラッチ状態を切換えるデータの振幅より、2つの状態を切換えるクロック信号の振幅を小さくすることで、処理速度を殆んど低下させずに消費電力を低減することが可能となる。
【0006】
【実施例】
以下、本発明の実施例を、図面により詳細に説明する。
図1は、本発明の一実施例を示す信号処理回路の構成図である。
図1には、クロックド・インバ−タ2−1,2−2と、インバ−タ3で構成されたハ−フ・ラッチ回路が示されている。クロックで直接駆動されるクロックド・インバ−タ2−1,2−2はそれぞれ4個ずつのPMOSおよびNMOSの合計8個のトランジスタで構成され、通常のトランジスタは最終段のCMOSインバ−タ3を構成する2個のPMOSおよびNMOSトランジスタである。
ここでは、クロックド・インバ−タ2−1,2−2のゲ−ト制御端子にクロック駆動回路4からのクロック信号が入力される。すなわち、クロック信号φpはクロックド・インバ−タ2−1のPMOSトランジスタのゲ−トに、クロック信号/φpは次のクロックド・インバ−タ2−2のPMOSトランジスタのゲ−トに、クロック信号φnクロックド・インバ−タ2−1のNMOSトランジスタのゲ−トに、クロック信号/φnは次のクロックド・インバ−タ2−2のNMOSトランジスタのゲ−トに、それぞれ印加されている。
なお、本実施例では、クロックド・インバ−タ2個とインバ−タ1個で構成したハ−フ・ラッチ回路についてのみ説明しているが、その他のフリップ・フロップ回路等のクロックを入力する全ての回路についても、同じように適用することができる。
【0007】
図2は、図1のハ−フラッチ回路に入力するクロックの波形図である。
図1においては、電源電圧をVDD、接地点をGND、PMOSとNMOSトランジスタの閾電圧をそれぞれVthp,Vthn、PMOSとNMOSトランジスタに印加される電圧をそれぞれVmp,Vmnとし、Vmp>0,Vmn>0とする。
図2に示すように、PMOSトランジスタを駆動するクロック駆動回路4は、VDD−Vthp−VmpとVDDの間で振れる信号を出力する。また、NMOSトランジスタを駆動するクロック駆動回路4は、Vthn+VmnとGNDの間で振れる信号を出力する。さらにクロック駆動回路4を簡略化するためには、PMOSトランジスタを駆動するクロック駆動回路4を、VDD/2とVDD間で振れる信号を出力する回路とし、NMOSトランジスタを駆動するクロック駆動回路4を、VDD/2とGNDの間で振れる信号を出力する回路とする。
【0008】
図3は、図1におけるクロック駆動回路の一実施例を示す構成図である。
4個のクロック駆動回路4とも、PMOSとNMOSトランジスタで構成されるインバ−タ5または6で構成されている。インバ−タ5,6において、一方のインバ−タ5のNMOSトランジスタのソ−スと、他方のインバ−タ6のPMOSトランジスタのソ−スを接続して仮想中点7とし、前者のインバ−タ5のPMOSトランジスタのソ−スをVDDに、後者のインバ−タ6のNMOSトランジスタのソ−スをGNDに接地したものである。図では、正相、逆相のクロックを生成する2基の回路を示している。駆動される側の負荷容量Cp,Cn,/Cp,/Cnを等しくしておくことにより(すなわち、Cp=Cn,/Cp=/Cn)、充放電される電荷量は上段のインバ−タ5と、下段のインバ−タ6で等しくなり、仮想中点7の電位はVDD/2に保持される。
これにより、クロック駆動回路4のための新たな電源端子を設けることなく、低振幅のクロック駆動回路4を実現することができる。
【0009】
図3の矢印で示されるように、クロックド・インバ−タ2−1にクロック信号を供給するクロック駆動回路5,6と、クロックド・インバ−タ2−2にクロック信号を供給するクロック駆動回路5,6とは、その負荷容量Cp,Cnおよび/Cp,/Cnの相互間で電荷の充放電を行って、キャッチボ−ルを行っている。すなわち、左側のクロック駆動回路5,6の矢印は、充電と放電を示しており、右側のクロック駆動回路5,6の矢印は、放電と充電を示している。
このように、本発明では、デ−タは通常のようにフル振幅電圧を印加するが、クロック信号のみは必要なだけの小振幅を印加することにより、消費電力を低減することができる。例えば、電源電圧が5Vの場合、クロック信号電圧を2.5Vにすると必要最低電圧よりも大きくなるが、回路の簡略化のために、図3に示すようなクロック駆動回路で、クロック信号を供給する。図3では、クロック駆動回路5は5V〜2.5Vの振幅で、クロック駆動回路6は0V〜2.5Vの振幅で、それぞれクロック信号電圧を供給している。しかし、さらに小さい振幅、例えば5V〜3Vと、0V〜2Vの振幅のクロック信号を供給することも可能である。また、5V〜2Vと、0V〜3Vの振幅のように、互いに重複させて供給することも可能である。この場合には、図3の回路に基準電源やダイオ−ド等を挿入する必要があり、回路が複雑化する。
【0010】
図4は、図1における信号処理回路の詳細図である。
図4に示すように、2個のクロックド・インバ−タ2−1と2−2は、クロック駆動回路4に並列に接続され、両出力を最終段のインバ−タ3を構成するPMOSとNMOSの各トランジスタのゲ−トに接続している。信号入力はクロックド・インバ−タ2−1の信号入力用PMOSのゲ−トと信号入力用NMOSトランジスタのゲ−トに印加される。またクロック信号φpはクロックド・インバ−タ2−1のスイッチング用PMOSトランジスタのゲ−トに印加され、クロック信号φnはスイッチング用NMOSトランジスタのゲ−トに印加される。さらに、クロック信号/φpはクロックド・インバ−タ2−2のスイッチング用PMOSトランジスタのゲ−トに印加され、クロック信号/φnはスイッチング用NMOSトランジスタのゲ−トに印加される。また、インバ−タ3の出力の帰還線路が、クロックド・インバ−タ2−2の信号入力用PMOSトランジスタとNMOSトランジスタの各ゲ−トに接続されている。
図4の信号処理回路に図3のクロック駆動回路を適用すると、負荷容量Cpは主としてクロックド・インバ−タ2−1のスイッチング用PMOSトランジスタのゲ−ト・基板間容量であり、負荷容量Cnは主としてスイッチング用NMOSトランジスタのゲ−ト・基板間容量である。同じように、負荷容量/Cpと/Cnは、それぞれ主にクロックド・インバ−タ2−2のスイッチング用PMOSトランジスタ、スイッチング用NMOSトランジスタの各ゲ−ト・基板間容量である。つまり、図1の回路に図2のクロック駆動回路を適用するには、これらのスイッチング用PMOSトランジスタ、スイッチング用NMOSトランジスタの各ゲ−ト・基板間容量を互いに等しくする必要がある。
【0011】
図5は、図4における等価回路図である。
図5の▲1▼は図2のクロック波形の前半の時相を示す等価回路、▲2▼は図2のクロック波形の後半の時相を示す等価回路である。
図2のクロックの前半には、低レベルのクロック信号φpがクロックド・インバ−タ2−1のスイッチング用PMOSトランジスタに、高レベルのクロック信号φnがクロックド・インバ−タ2−1のスイッチング用NMOSトランジスタに、それぞれ印加されるため、図5▲1▼に示すように、クロックド・インバ−タ2−1は動作状態になる。一方、高レベルのクロック信号/φpがクロックド・インバ−タ2−2のスイッチング用PMOSトランジスタに、低レベルのクロック信号/φnがクロックド・インバ−タ2−2のスイッチング用NMOSトランジスタに、それぞれ印加されるため、図5▲1▼に示すように、クロックド・インバ−タ2−2は遮断される。従って、クロックの前半では信号処理回路は図5▲1▼の等価回路となり、入力された信号はスル−状態となる。
次に、クロックの後半には、高レベルのクロック信号φpがクロックド・インバ−タ2−1のスイッチング用PMOSトランジスタに、低レベルのクロック信号φnがスイッチング用NMOSトランジスタに、それぞれ印加されるため、図5▲2▼に示すように、クロックド・インバ−タ2−1は遮断状態になる。一方、低レベルのクロック信号/φpがクロックド・インバ−タ2−2のスイッチング用PMOSトランジスタに、高レベルのクロック信号/φnがスイッチング用NMOSトランジスタに、それぞれ印加されるため、図5▲2▼に示すように、クロックド・インバ−タ2−2は動作状態となる。従って、クロックの後半では信号処理回路は、図5▲2▼の等価回路となり、▲1▼から▲2▼に変化する直前の入力信号は回路を通過できず、ラッチ状態となる。
【0012】
本実施例において、回路全体の処理速度はラッチから次段のラッチまでのゲート遅延で決定されるが、このゲート(図4における2−1,2−2,3)は従来通りの電源電圧が印加されているため、遅延の増大はない。すなわち、ラッチ回路自身の遅延は増大するが、元来、遅延時間全体に占めるラッチ回路自身の遅延の大きさは、僅かであるためである。図3のクロック駆動回路を用いた場合、クロックで直接駆動される回路の消費電力は、従来の1/4になる。例えば、3段のパイプライン構成を用いたディジタルフィルタにおいて、全体の30%を占めていたクロックで直接駆動される回路の消費電力が1/4になるので、消費電力は全体で22%減少される(30−8=22)。
【0013】
【発明の効果】
以上説明したように、本発明によれば、スルー状態とラッチ状態とを切換えられるデータの振幅より、この2つの状態を切換えるクロック信号の振幅を小さくすることにより処理速度を殆んど低下させずに消費電力を低減することができる。
【0014】
【図面の簡単な説明】
【図1】本発明の一実施例を示す信号処理回路の構成図である。
【図2】図1のクロック駆動回路から供給されるクロック信号波形図である。
【図3】図1におけるクロック駆動回路の構成図である。
【図4】図1の信号処理回路の詳細構成を示す図である。
【図5】図4における信号処理回路の等価回路を示す図である。
【符号の説明】
2−1,2−2 クロックド・インバ−タ
3 ハ−フラッチ回路を構成するインバ−タ
4 クロック駆動回路
5,6 クロック駆動回路を構成するインバ−タ
7 クロック駆動回路の仮想中点
IN デ−タ入力端子
OUT デ−タ出力端子
VDD 電源電圧
GND クランド電圧
Cp,Cn,/Cp,/Cn 負荷容量
Claims (3)
- CMOS半導体集積回路で構成される信号処理回路において、
第1のPMOSおよびNMOSトランジスタを有する第1のインバータ、ならびに第2のPMOSおよびNMOSトランジスタを有する第2のインバータとで構成され、上記第2のインバータの出力と上記第1のインバータの入力と接続したラッチ回路と、
上記第2のインバータへのデータ信号の入力を制御する第3のPMOSおよびNMOSスイッチング用トランジスタと、
上記第3のPMOSトランジスタのゲートに第1のクロック信号を供給する第1のクロック駆動回路と、
上記第3のNMOSトランジスタのゲートに第2のクロック信号を供給する第2のクロック駆動回路とを備え、
上記第1または第2のクロック駆動回路の一方のクロック駆動回路には、電源電圧から該電源電圧の1/2までの振幅を、他方のクロック駆動回路には、該電源電圧の1/2からグランド電圧までの振幅を、それぞれ印加することを特徴とする信号処理回路。 - 上記第1および第2のクロック駆動回路は、電源電圧レベルとグランド電圧レベルの中点で互いに接続されたインバータで構成され、上記各クロック駆動回路の負荷容量の間で電荷の充放電を行うことを特徴とする請求項1に記載の信号処理回路。
- クロック信号の第1のレベルでデータ信号をラッチ回路の入力から出力へスルー状態とし、該クロック信号の第2のレベルで上記スルー入力されたデータ信号をラッチ状態にするCMOS構成のラッチ回路を含むCMOS半導体集積回路において、
上記データ信号の振幅変化は、電源電圧レベルとグランド電圧レベルとの間のフル振幅であり、
上記スルー状態と上記ラッチ状態とを切換えるクロックドCMOSインバータに印加される上記クロック信号の振幅は、上記フル振幅の1/2の振幅であることを特徴とするCMOS半導体集積回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26826292A JP3555964B2 (ja) | 1992-10-07 | 1992-10-07 | 信号処理回路およびそれを用いたcmos半導体集積回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26826292A JP3555964B2 (ja) | 1992-10-07 | 1992-10-07 | 信号処理回路およびそれを用いたcmos半導体集積回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06120782A JPH06120782A (ja) | 1994-04-28 |
JP3555964B2 true JP3555964B2 (ja) | 2004-08-18 |
Family
ID=17456134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26826292A Expired - Fee Related JP3555964B2 (ja) | 1992-10-07 | 1992-10-07 | 信号処理回路およびそれを用いたcmos半導体集積回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3555964B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3229164B2 (ja) * | 1994-07-28 | 2001-11-12 | インターナショナル・ビジネス・マシーンズ・コーポレーション | ラッチ回路 |
US6888444B1 (en) | 1995-11-08 | 2005-05-03 | Matsushita Electric Industrial Co., Ltd. | Signal transmitting circuit, signal receiving circuit, signal transmitting/receiving circuit, signal transmitting method, signal receiving method, signal transmitting/receiving method, semiconductor integrated circuit, and control method thereof |
KR100466457B1 (ko) * | 1995-11-08 | 2005-06-16 | 마츠시타 덴끼 산교 가부시키가이샤 | 신호전송회로,신호수신회로및신호송수신회로,신호전송방법,신호수신방법및신호송수신방법과반도체집적회로및그제어방법 |
-
1992
- 1992-10-07 JP JP26826292A patent/JP3555964B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06120782A (ja) | 1994-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5850157A (en) | Low voltage swing circuits for low power clock distribution and methods of using the same | |
JPH0964715A (ja) | 半導体集積回路 | |
JPH10126249A (ja) | 論理回路 | |
US5521538A (en) | Adiabatic logic | |
US6617902B2 (en) | Semiconductor memory and holding device | |
JPH10117127A (ja) | 論理記憶回路及び論理回路 | |
EP1776760B1 (en) | Energy recovery boost logic | |
US20050083082A1 (en) | Retention device for a dynamic logic stage | |
JP3555964B2 (ja) | 信号処理回路およびそれを用いたcmos半導体集積回路 | |
EP0055073A1 (en) | Improvements in or relating to electronic clock generators | |
JP3618424B2 (ja) | 低消費電力論理回路 | |
EP0224841B1 (en) | Logic arithmetic circuit | |
US6252449B1 (en) | Clock distribution circuit in an integrated circuit | |
JPH07221631A (ja) | Cmos回路 | |
Willingham et al. | Asynchronous, quasi-adiabatic (Asynchrobatic) logic for low-power very wide data width applications | |
JPH07307663A (ja) | 相補型エネルギ回収論理回路およびその形成方法 | |
KR100299050B1 (ko) | 상보 게이트-소스 클럭구동회로와 이를 적용한 플립플롭 | |
JP3683888B2 (ja) | 断熱充電論理回路 | |
JPH0983317A (ja) | 短パルス除去回路 | |
Yoo et al. | CMOS pass-gate no-race charge-recycling logic (CPNCL) | |
US6703867B1 (en) | Clocked full-rail differential logic with sense amplifier and shut-off | |
JPS59175214A (ja) | 2相同期信号発生回路 | |
Fahim et al. | SC2L: a low-power high-performance dynamic differential logic family | |
JPH06244714A (ja) | ダイナミック回路 | |
US6605972B1 (en) | Integrated circuit with switched capacitor network for recycling power |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040416 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040511 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080521 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080521 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090521 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110521 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110521 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110521 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |