JP3554310B2 - Electronic circuit module - Google Patents

Electronic circuit module Download PDF

Info

Publication number
JP3554310B2
JP3554310B2 JP2002050251A JP2002050251A JP3554310B2 JP 3554310 B2 JP3554310 B2 JP 3554310B2 JP 2002050251 A JP2002050251 A JP 2002050251A JP 2002050251 A JP2002050251 A JP 2002050251A JP 3554310 B2 JP3554310 B2 JP 3554310B2
Authority
JP
Japan
Prior art keywords
conductor
acoustic wave
surface acoustic
electronic circuit
circuit module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002050251A
Other languages
Japanese (ja)
Other versions
JP2002359327A (en
Inventor
貴紀 生田
謙治 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002050251A priority Critical patent/JP3554310B2/en
Publication of JP2002359327A publication Critical patent/JP2002359327A/en
Priority to US10/371,997 priority patent/US6873529B2/en
Priority to DE10308448A priority patent/DE10308448B4/en
Priority to CNB031060897A priority patent/CN1236641C/en
Application granted granted Critical
Publication of JP3554310B2 publication Critical patent/JP3554310B2/en
Priority to US11/059,256 priority patent/US6961245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19106Disposition of discrete passive components in a mirrored arrangement on two different side of a common die mounting substrate

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は携帯型情報端末機、無線LAN、WLL(Wireless Local Loop)等の電子機器・電子装置等に用いられる、高周波電力増幅装置、高周波フィルタ装置および高周波分波器装置を一体構成した小型・高性能かつ低価格な電子回路モジュールに関するものである。
【0002】
【従来技術】
電子回路モジュールにおいて高周波電力増幅装置を構成する高周波電力増幅素子は、現在の移動体通信システムにおける伝送容量の増加や伝送スピードの高速化に伴い大きな高周波電力を取り扱うため、高周波電力増幅素子自身の発熱量が増加している。その放熱対策として、放熱フィンを取り付ける方法や、高周波電力増幅素子が搭載される誘電体基板に熱伝導率が大きな高熱伝導セラミックスである窒化アルミニウム等を用いる方法があり、良好な放熱性を得ることが出来る。さらに特開2000−31331号公報では、高周波電力増幅素子を配線基板の背面に配置し外部電気回路基板に半田付けすることで放熱性を向上する技術が提案されている。
【0003】
また、電子回路モジュールにおいて高周波電力増幅装置の近傍に構成される高周波フィルタ装置等に用いられる弾性表面波素子は、一般的にリチウムタンタレート等の圧電体基板に弾性表面波を伝播させるための櫛形電極が形成されたものであるが、圧電体基板自身の電気的特性が温度変化による影響を大きく受けるため、モジュール内で高周波電力増幅素子等の発熱体から離れた位置に配置することが必要不可欠となっている。このため、従来の高周波電力増幅装置と高周波フィルタ装置等とを一体に形成した電子回路モジュールは、近年の移動体通信用情報端末機等の小型化・軽量化・高密度化・低価格化のための要求に十分に応えることができないという問題点があった。
【0004】
これに対し、例えば特開平7−58586号公報には、高周波電力増幅素子である能動回路素子を、弾性表面波素子である受動回路素子を形成した一個の圧電体基板上に搭載することにより、小型で低価格な高周波回路装置を構成することが提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、特開平7−58586号公報に開示された高周波回路装置では、近年の移動体通信システムにおける伝送容量の増加や伝送スピードの高速化に伴い大きな高周波電力を取り扱う必要がある場合に、高周波電力増幅素子である能動回路素子を弾性表面波素子である受動回路素子を形成した一個の圧電体基板上に搭載すると、高周波電力増幅素子自身が大きく発熱することから、圧電体基板に形成された高周波フィルタにおけるその熱によるフィルタ特性の劣化が問題となり、大きな高周波電力を取り扱う移動体通信システムで使用される小型の情報端末機器には使用できないという問題点があった。
【0006】
本発明は上記従来技術における問題点に鑑みてなされたものであり、その目的は、大電力の高周波用等の電力増幅素子による発熱に影響されることなく、その近傍に配置された弾性表面波素子の高周波フィルタ特性等の電気的特性を維持することができ、かつ小型で高性能であり、しかも低価格な、携帯型情報端末機、無線LAN、WLL等の電子機器・電子装置等に好適な電子回路モジュールを提供することにある。
【0007】
【課題を解決するための手段】
本発明の電子回路モジュールは、複数の誘電体層を積層して成る誘電体基板の一方の主面に電力増幅素子搭載用凹部および弾性表面波素子搭載用凹部が形成され、電力増幅素子および弾性表面波素子が各凹部の底面に形成された導体層に実装されており、少なくとも前記電力増幅素子搭載用凹部には前記電力増幅素子に接触して伝熱性蓋体が取着されるとともに、前記電力増幅素子搭載用凹部と前記弾性表面波素子搭載用凹部との間に、前記電力増幅素子搭載用凹部の前記導体層の延設部から前記誘電体基板の前記一方の主面まで延びた貫通導体が形成されて成り、前記伝熱性蓋体および前記貫通導体をろう材を介して外部電気回路基板の上面の放熱用導体に取着させて実装されることを特徴とするものである。
【0008】
また、本発明の他の電子回路モジュールは、複数の誘電体層を積層して成る誘電体基板の一方の主面に電力増幅素子搭載用凹部が、他方の主面に弾性表面波素子搭載用凹部が形成され、電力増幅素子および弾性表面波素子が各凹部の底面に形成された導体層に実装されており、少なくとも前記電力増幅素子搭載用凹部には前記電力増幅素子に接触して伝熱性蓋体が取着されるとともに、前記電力増幅素子搭載用凹部と前記弾性表面波素子搭載用凹部との間に、前記電力増幅素子搭載用凹部の前記導体層の延設部から前記誘電体基板の前記一方の主面まで延びる貫通導体が形成されて成り、前記伝熱性蓋体および前記貫通導体をろう材を介して外部電気回路基板の上面の放熱用導体に取着させて実装されることを特徴とするものである。
【0009】
本発明の上記構成によれば、電力増幅素子から発生した熱は、電力増幅素子に直接に接合された伝熱性蓋体およびろう材を介して外部電気回路基板の上面の放熱用導体に効率良く熱放散させることが可能となる。また、電力増幅素子からその近傍に配置された弾性表面波素子への熱伝達は、貫通導体によって遮断され、弾性表面波素子への熱伝達を極めて低減させることができる。その結果、弾性表面波素子の高周波フィルタ特性等の電気的特性を劣化させることなく、小型で高性能な電子回路モジュールを提供することができる。
【0010】
しかも、かかる構成によれば、放熱フィン等の放熱用部材を別途設ける必要がない。また、電力増幅素子は、誘電体基板の実装面側に形成された凹部内に搭載されるが、弾性表面波素子は、誘電体基板のどちらでもよいが、同一面に電力増幅素子および弾性表面波素子を搭載することによって、工程数の低減も可能となるので、低価格な電子回路モジュールとなる。
【0011】
また、上記の電子回路モジュールにおいては、電力増幅素子から発生した熱の弾性表面波素子への影響をさらに低減する上で、前記誘電体層の熱伝導率が20W/m・K以下であること、特に、前記電力増幅素子搭載用凹部の周囲の誘電体層を前記弾性表面波素子搭載用凹部の周囲の誘電体層よりも熱伝導率の小さい誘電体層によって形成すること、前記電力増幅素子搭載用凹部と前記弾性表面波素子搭載用凹部とが0.3mm以上離間していること、前記貫通導体の熱伝導率が100W/m・K以上であること、前記貫通導体が前記電力増幅素子搭載用凹部と前記弾性表面波素子搭載用凹部との間に複数本形成されていること、前記電力増幅素子搭載用凹部の底面の導体層と、前記弾性表面波素子搭載用凹部の底面の導体層とが、異なる誘電体層に形成されていること等が挙げられる。
【0012】
これらの改善によって、弾性表面波素子の高周波フィルタ特性、高周波分波器特性等の電気的特性を劣化させることなく、小型で高性能な電子回路モジュールを提供することができる。
【0013】
なお、前記弾性表面波素子搭載用凹部が、蓋体によって封止されているか、または該凹部内に絶縁性樹脂が充填するか、いずれでもよい。
【0014】
【発明の実施の形態】
以下、図面に基づいて本発明の電子回路モジュールを詳細に説明する。
【0015】
図1は、本発明の電子回路モジュールの実施の形態を示す断面図であり、この例において、電子回路モジュール1はマザーボード等の外部電気回路基板7に搭載され実装されている。
【0016】
電子回路モジュール1における誘電体基板2は、複数の誘電体層を積層して成るものであり、誘電体層には、例えばアルミナセラミックス、ムライトセラミックス、ガラスセラミックスなどの低温焼成セラミックスや、有機樹脂材料とセラミック材料との混合材料を用いることができる。とりわけ、導体としてCu、Agを使用し同時焼成にて形成する上では、ガラスセラミックスなどの低温焼成セラミックス、有機樹脂材料とセラミック材料との混合材料が挙げられ、熱的安定性に優れる点で、ガラスセラミックスなどの低温焼成セラミックスが最も望ましい。
【0017】
誘電体基板2を構成する誘電体層の熱伝導率は、用いるセラミック材料とその混合比とにより、熱伝導率を制御することが可能であり、20W/m・K以下、特に10W/m・K以下、さらには5W/m・K以下、さらに望ましくは3W/m・K以下とするのがよい。
【0018】
図1の電子回路モジュールにおいては、誘電体基板2の底面に、電力増幅素子搭載用凹部2aと、弾性表面波素子搭載用凹部2bとが所定の間隔をおいて形成されている。
【0019】
電力増幅素子搭載用凹部2aの底面には、導体層2a1が形成されており、電力増幅素子4が導体バンプ3aを介して電気的に接続し搭載されている。ここで、導体バンプ3aには金や半田、熱硬化型Agペースト等を用いることができ、例えば金を用いる場合には、超音波熱圧着法により電力増幅素子4の電極と電極部とを電気的に接続させることが可能となり、また半田や熱硬化型Agペーストに比べ接続抵抗を低くすることができ導体損を小さくすることが可能である。
【0020】
電力増幅素子4としては、例えばpn接合ゲート型電界効果型トランジスタやショットキー障壁ゲート型電界効果型トランジスタ、ヘテロ接合型電界効果型トランジスタ、pn接合ゲート型へテロ接合型電界効果型トランジスタ等が用いられる
また、電力増幅素子4と導体層2a1との間には、その接続部や素子面を保護する目的で、いわゆるアンダーフィル5が注入される。アンダーフィル5はエポキシ樹脂やシリコーン樹脂等の熱を加えることにより硬化するものを用いることができる。また、アンダーフィル5は、本発明の電子回路モジュール1においては熱伝導率が20W/m・K以下のものを用いることが望ましく、約10W/m・K以下のエポキシ樹脂製のものを用いることが好ましい。これにより、電力増幅素子4による発熱の誘電体基板2自身への伝達を抑制することが可能となる。
【0021】
また、電力増幅素子搭載用凹部2aの開口には、電力増幅素子4の開口側の面に直接あるいは放熱用グリース等の伝熱性化合物を介して接触させて、伝熱性蓋体6が取着される。この伝熱性蓋体6は、電力増幅素子4による発熱を効率良く外部電気回路基板7へ伝えるためのものであり、具体的には金属から成り、例えば銅等の熱伝導率の高いものから成るものを用いるのが好ましい。
【0022】
そして、この伝熱性蓋体6は、ろう材13を介して外部電気回路基板7の上面の放熱用導体15に取着されている。これによって、電力増幅素子4から発生した熱は、伝熱性蓋体6およびろう材13を介して、外部電気回路基板7の表面に形成された放熱用導体15に効率的に伝達され、電力増幅素子4から発生した熱が、モジュール内の弾性表面波素子8に熱的影響が及ぶのを防止することができる。
【0023】
なお、電力増幅素子4の裏面電極ならびに外部電気回路基板7上面の放熱用導体15および接地用電極(図示せず)との良好なろう付け性が得られるように、伝熱性蓋体6の表面にNi、Sn、半田等のめっき処理を施すこおとが望ましい。
【0024】
一方、弾性表面波素子搭載用凹部2bには、弾性表面波素子8が、導体バンプ3bを介して弾性表面波素子搭載用凹部2bの底面に形成された導体層2b1から成る電極部に電気的に接続して搭載されている。導体バンプ3bには、導体バンプ3aと同様に金や半田、熱硬化型Agペースト等を用いることができ、例えば金を用いる場合には、超音波熱圧着法により弾性表面波素子8の電極と電極部とを電気的に接続させることが可能となる。
【0025】
弾性表面波素子8としては、例えば共振器型フィルタ・共振子ラダー型および格子型接続フィルタ・マルチIDT(Inter Digital Transducer)型フィルタ等が用いられる。弾性表面波素子8が例えば共振器型フィルタの場合には、圧電体基板として、36°Yカット−X伝搬のLiTaO結晶、64°Yカット−X伝搬のLiNbO結晶、45°Xカット−Z伝搬のLiB結晶等が、電気機械結合係数が大きくかつ群遅延時間温度係数が小さいことから、好適に使用される。また、弾性表面波素子8には、圧電体基板表面上を弾性表面波を励起させ、伝播・共振させるため、その表面に、互いに噛み合うように形成された少なくとも一対の櫛歯状電極のIDT(Inter Digital Transducer)電極(図示せず)を設ける。このIDT電極は、所望のフィルタ特性を得るために、複数対の櫛歯状電極を直列接続や並列接続等の方式で接続して構成される。このようなIDT電極は、圧電体基板上に蒸着法・スパッタリング法またはCVD法等の薄膜形成法により所望の形状・寸法に形成することができる。
【0026】
図1のモジュールにおいては、弾性表面波素子搭載用凹部2bの開口に、弾性表面波素子8と離間させて蓋体9が取着されている。蓋体9は、弾性表面波素子8の機械的保護およびIDT電極の酸化による劣化を抑制する目的で、振動空間である弾性表面波素子搭載用凹部2bの内部空間内に低湿度の空気等を封入し、エポキシ樹脂やろう材等を用いて取着され、弾性表面波素子搭載用凹部2bを密閉する。なお、空気の代わりに窒素ガスやアルゴンガス等の不活性ガスや空気よりも低熱伝導の不活性ガス等を封入して密閉しても、IDT電極の酸化による劣化を防止することができる。
【0027】
蓋体9に用いられる材質としては、SUS、銅、洋白等の金属や、ガラスエポキシ樹脂等の樹脂を用いることができる。中でも、電力増幅素子4による発熱は伝熱性蓋体6を介して外部電気回路基板7へと伝達されるため、外部電気回路基板7に伝達された熱が再び蓋体9を介して弾性表面波素子8に伝達されないよう、熱伝導率の低いガラスエポキシ樹脂製のものを用いることが好ましい。
【0028】
この蓋体9は弾性表面波素子8と離間させて弾性表面波素子搭載用凹部2bに取着されており、さらに蓋体9と外部電気回路基板7の間にも空隙部10を設けることにより、電力増幅素子4による発熱の伝達をさらに確実に抑制することが可能となる。
【0029】
また、弾性表面波素子搭載用凹部2bの開口は、図1の例では、蓋体9によって封止したが、この凹部2b内に、シリコン樹脂やエポキシ樹脂などの封止樹脂を充填することによって封止することもできる。
【0030】
上記の電力増幅素子搭載用凹部2aと弾性表面波素子搭載用凹部2bとの間には0.3mm以上の間隔を設けることが好ましく、より好ましくは0.5mm以上の間隔を設けることにより、電力増幅素子4による発熱が凹部2a・2b間の誘電体層を介して弾性表面波素子8に伝達されることを十分に低減させることが可能となる。
【0031】
本発明によれば、電力増幅素子搭載用凹部2aの底面に形成された導体層2a1が水平方向に延設されており、上記の電力増幅素子搭載用凹部2aと弾性表面波素子搭載用凹部2bとの間に、上記の延設部から前記誘電体基板の電力増幅素子搭載用凹部2aを形成した面まで延びた貫通導体11が形成されている。そして、この貫通導体11も伝熱性蓋体6と同様に、ろう材13を介して外部電気回路基板7の上面の放熱用導体15に取着されている。
【0032】
このような貫通導体11を形成することによって、電力増幅素子4による発熱のうち凹部2a底面の導体層2a1に伝わった熱および両凹部2a、2b間の誘電体層に伝わってきた熱を貫通導体11で吸収し、ろう材13を介して外部電気回路基板7の表面に形成された放熱用導体15に効率的に伝達することができる。
【0033】
この貫通導体11は、電力増幅素子搭載用凹部2aと弾性表面波素子搭載用凹部2bとの間において、1本のみならず、2本以上設けることにより、さらに上記効果を高めることができる。
【0034】
その具体例を図2〜図4に示す。図2は、図1の電子回路モジュールをA−A’線で切断したときの平面図で示す。図3、図4はさらに他の例を示す平面図である。
【0035】
図2の例によれば、貫通導体11は、平面的にみて斜めに配置された電力増幅素子搭載用凹部2aと弾性表面波素子搭載用凹部2bとの略中間部に2本形成したものである。図3は、貫通導体11が横並びに配置された凹部2aと凹部2bとの略中間部に凹部2a側を囲うように直線的に複数本配置したものである。さらに図4は貫通導体11を横並びに配置された凹部2aと凹部2bとの略中間部にいわゆる千鳥状に複数本配置させた例である。
【0036】
貫通導体11は、その機能から、熱伝導性の優れた金属によって形成することが望ましく、特に、Cu、CuO、Ag、Ag−Pd、Ag−Pt、Auの群から選ばれる少なくとも1種を主成分とする金属を主成分とする導体によって形成することが望ましい。とりわけ、貫通導体11は、電力増幅素子4による発熱が誘電体基板2へ伝達され、さらに弾性表面波素子8へと伝達されにくくする上では、誘電体基板2の熱伝導率よりも5倍以上大きくすることが望ましく、さらには熱伝導率が100W/m・K以上のものを用いることが好ましい。また、この貫通導体11中には、誘電体基板との焼成焼成時の焼成収縮などを整合させるために、金属酸化物やガラスなどの無機物が含まれていてもよい。
【0037】
このような高熱伝導の貫通導体11は、例えばAg粉末を約85質量%、ホウケイ酸鉛ガラスを3質量%、SiOを12質量%の配合比とすることで熱伝導率を約150W/m・Kとすることができる。
【0038】
貫通導体11は、直径(短径)が0.1〜0.5mmであることが望ましく、複数本形成する場合には、貫通導体11の側面間の間隔が0.2〜1.0mmの間隔で配置すればよい。また、この貫通導体11は、必ずしも円形である必要はなく、長円形状、スリット形状であってもよい。
【0039】
また、本発明のモジュールにおいては、図1に示すように、凹部2a、2bをそれぞれ異なる深さで形成し、誘電体基板2に形成された電力増幅素子搭載用凹部2aの底面と弾性表面波素子搭載用凹部2bの底面とに形成された導体層2a1、2b1とを、それぞれ異なる誘電体層に形成することによって、それらが同一の誘電体層上に形成される場合に比べて、電力増幅素子4から誘電体層や導体層を介して弾性表面波素子8に伝わる伝熱量をより効果的に低減させることが可能となり、弾性表面波素子8の熱的な影響による電気的特性の劣化をより確実に防止しすることができる。
【0040】
本発明の電子回路モジュール1においては、電力増幅素子4および弾性表面波素子8を電気的に機能させるため、内部導体配線16および表層導体配線17ならびにビアホール導体18を形成して、誘電体基板2の上面に電子回路を構成するのに抵抗、コンデンサ、インダクタ、半導体素子等の電子部品12を搭載し、所望の電子回路を構成する。また、必要に応じて、誘電体基板2の内部には、導体配線を利用した、コンデンサ、インダクタ等による高周波フィルタ(図示せず)等を内蔵させることにより、さらに高機能で小型の電子回路モジュール1を構成することができる。
【0041】
また、電子回路モジュール1表面に実装された電子部品12や回路を保護する目的で、金属シールドケース14を取着することにより、外部からの機械的応力や雰囲気の影響や電磁ノイズを遮断または抑制させることも可能である。
【0042】
さらに、この電子回路モジュール1は、外部電気回路基板7に対して、信号伝達用として、電子回路モジュール1に形成された電極パッド20をロウ材13を介して外部電気回路基板7表面に形成された信号用配線層21と接続される。
【0043】
図5は、本発明の電子回路モジュールの他の例を示す断面図である。図1の例では、弾性表面波素子搭載用凹部2bは、電力増幅素子搭載用凹部2aが形成された面と同じ面に形成されていたが、この図5では、電力増幅素子搭載用凹部2aが形成された面とは反対側の面、即ち表面側に形成されており、図1と同様に、凹部2b内に形成された導体層2b1に実装されている。また、この例では、凹部2bには、絶縁性の有機樹脂19が充填されて樹脂封止されている。
【0044】
かかる実施例においても、弾性表面波素子搭載用凹部2bと電力増幅素子搭載用凹部2aとの中間に位置する部分には、図1と同様に貫通導体11が形成されている。このとき、貫通導体11の一端は、図1と同様に、モジュール1の下面に露出し、ロウ材13を介して放熱用導体15にロウ付けされているが、他方は、導体層2a1の延設部と接続され、さらに上面側に延設されていてもよい。
【0045】
図6は、本発明の電子回路モジュールのさらに他の例を示す概略断面図である。図1、図5の例では、誘電体基板2は、同一材質によって形成されたものであるが、図6においては、電力増幅素子搭載用凹部2aの周囲を他の部分よりも低熱伝導性の誘電体材料によって形成することによって、この凹部2aの周囲の誘電体材料が断熱材として機能し、電力増幅素子4から発生する熱が周囲に拡散、伝達されるのを防止することができる。
【0046】
図7は、本発明の電子回路モジュールのさらに他の例を示す概略断面図である。図6の例では、同一誘電体層内に、熱伝導率が異なる2種の誘電体材料が存在するものであるが、図5のように、下面側に電力増幅素子搭載用凹部2aを形成し、上面側に弾性表面波素子搭載用凹部2bを設けた場合には、図7のように、モジュール1の下側面をすべて低熱伝導性の材料によって形成すればよい。
【0047】
本発明の上記電子回路モジュールは、従来の周知の方法で作製することができる。ここでは、好適な例として、誘電体基板がガラスセラミック組成物からなる場合について、以下に簡単に説明する。
【0048】
まず、誘電体基板2における各誘電体層を形成するために各誘電体層となるガラスセラミック組成物からなるセラミックグリーンシートを作製する。誘電体層となるセラミックグリーンシートは、ホウ珪酸ガラス、ホウ珪酸亜鉛系ガラス、SiO−Al−アルカリ土類酸化物などの周知のガラス30〜90質量%に、アルミナ、クオーツ、ムライト、AlN、フォルステライトなどの無機フィラーを10〜70質量%の割合で混合した混合物に、アルキルメタクリレート等の有機バインダ、DBP(ジブチルフタレート)等の可塑剤とトルエン等の有機溶剤を混合し、ボールミルで4〜8時間混練してスラリーを作製し、このスラリーを用いてドクターブレード法等によりテープ成形を行ない、これを所定の寸法に切断して作製する。
【0049】
そして、所定のセラミックグリーンシートに、貫通導体11、内部導体配線16と表層導体配線17とを接続するためのビアホール導体18、電力増幅素子搭載用凹部2aおよび弾性表面波素子搭載用凹部2b、貫通導体11用の貫通穴を形成するために、マイクロドリル、パンチングで形成したり、さらには感光性樹脂を含むグリーンシートに露光、現像処理を施すなどの処理によって凹部やそれぞれの様々な円形、楕円形、長孔などの様々な形状の貫通穴を形成することができる。
【0050】
そして、このうち、貫通導体11やビアホール導体18用の貫通穴にCuあるいはAg系導体ペーストを充填する。また、同時に、各グリーンシートに内層導体配線16、表層導体配線17、導体層2a1、2b1となるパターンをCuあるいはAg系導体ペーストを用いてスクリーン印刷法や、グラビア印刷法などによって印刷形成する。
【0051】
ここで、CuあるいはAg系導体ペーストには、例えばCu粉末、CuO粉末、Ag粉末の他、Ag合金であるAg−Pd粉末、Ag−Pt粉末が使用可能であり、必要に応じて例えば所定量のホウケイ酸系の低融点ガラスや、SiO、Al、MgO、CaOなどのアルカリ土類金属酸化物、Bi等の金属酸化物を加え、さらにエチルセルロース等の有機バインダと、例えば2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート等の有機溶剤とを混合して均質混練したものが用いられる。
【0052】
これらの金属粉末と、必要に応じて例えば所定量のホウケイ酸亜鉛系ガラス、ホウケイ酸鉛系ガラスなどのホウケイ酸系の低融点ガラス、Al、MgO,CaO、SiO、Bi等の金属酸化物などの無機物と、エチルセルロース等の有機バインダと、2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート等の有機溶剤とを混合して均質混練したものが用いられ、金属粉末に対する低融点ガラスや金属酸化物の添加量の割合によって熱伝導率が制御可能である。
【0053】
上記のようにして得られたセラミックグリーンシートを例えばビアホール導体18を基準に位置合わせし、積層順序に応じて積層し、熱圧着することにより未焼成の積層体を形成する。
【0054】
次に、この未焼成状態の積層体を例えば酸化雰囲気中で焼成し焼結一体化する。具体的には、酸素雰囲気または大気雰囲気中において800〜1000℃で焼成することにより、焼結基板を作製することができる。
【0055】
その後、凹部2a、2b内に、弾性表面波素子8、電力増幅素子4などを実装し、伝熱性蓋体6、蓋体9をロウ付けしたり、封止用有機樹脂19を充填して封止する。
【0056】
また、かかるモジュールを外部電気回路基板7に実装する場合には、通常のモジュールの信号伝達用の電極パッドをロウ付けすると同時に、伝熱性蓋体6や貫通導体11を外部電気回路基板7の表面に形成された放熱用導体15にロウ付けする。
【0057】
また、図6のように、電力増幅素子搭載用凹部2aの周囲を断熱性を有する誘電体材料によって形成する場合には、通常の誘電体基板材料に感光性樹脂を配合し、現像露光して所定の凹部を形成した後、その凹部内に、断熱性誘電体材料を充填し、さらに、パンチング等によって凹部2a、2bを形成することによって未焼成状態の積層体を作製した後、焼成すればよい。
【0058】
また、図7のように、モジュールにおける誘電体基板2の上面側と下面側とを熱伝導率の異なる誘電体材料によって形成する場合には、それぞれの誘電体材料を用いてグリーンシートを作製し、それぞれ加工を施した後に、それらを積層一体化して未焼成状態の積層体を作製した後、焼成すればよい。
【0059】
【実施例】
誘電体材料として、ホウケイ酸ガラス70質量%、アルミナ30質量%からなれる熱伝導率が2W/m・Kのガラスセラミック系誘電体材料を用い、貫通導体を150W/m・KのAg系導体材料を用い、伝熱性蓋体として銅を用い、電子回路モジュールを上記のようにして作製し、これをガラス織布−エポキシ樹脂複合材料からなる絶縁基板上に、銅からなる放熱用導体や信号用配線層を形成したマザーボード表面に、Cu−Ag系ロウ材を用いて実装した(試料No.6)。
【0060】
これに、電力増幅素子(PA)の電源ON/OFF比(デュティ比)を1/8にした状態で、0dBの入力信号を入れ、33.5dBmの出力が得られるように条件設定し、電力増幅素子4搭載用凹部ならびに弾性表面波素子8搭載用凹部内の定常温度(表1中に凹部2bで示す)を測定した。
【0061】
また熱伝導解析シミュレーションプログラムを用い、各構成材料の熱伝導率を変化させたときのそれらの温度を計算した。
【0062】
【表1】

Figure 0003554310
【0063】
表1の結果より、本発明の構造によれば、伝熱性蓋体および貫通導体を設けることによって、電力増幅素子の熱を効果的放熱し、弾性表面波素子への影響を低減できることがわかった。
【0064】
また、かかる構成においては、貫通導体の本数が多いほど、誘電体基板の熱伝導率が小さいほどその効果に優れることがわかる。また、誘電体基板を2種の誘電体材料によって形成した場合においても同様の結果が得られることがわかった。
【0065】
なお、以上はあくまで本発明の実施の形態の例示であって、本発明はこれらに限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更や改良を加えることは何ら差し支えない。
【0066】
【発明の効果】
以上詳述した通り、本発明によれば、電力増幅素子による発熱は外部電気回路基板の放熱用導体へと効率良く熱放散させることが可能となり、電力増幅素子からその近傍に配置された弾性表面波素子への熱伝達を極めて低減させることができるため、弾性表面波素子の高周波フィルタ特性、高周波分波器特性等の電気的特性を劣化させることなく、小型で高性能な電子回路モジュールを提供することができる。しかも、放熱フィン等の放熱用部材を別途必要とせず、低価格な携帯型情報端末機等の電子機器・電子装置等に好適な電子回路モジュールとなる。
【図面の簡単な説明】
【図1】本発明の電子回路モジュールの実施の形態の一例を示す概略断面図である。
【図2】本発明の電子回路モジュールにおける貫通導体の配置の例を示す、図1のA−A’線における概略平面図である。
【図3】本発明の電子回路モジュールにおける貫通導体の配置の他の例を示す概略平面図である。
【図4】本発明の電子回路モジュールにおける貫通導体の配置のさらに他の例を示す概略平面図である。
【図5】本発明の電子回路モジュールの実施の形態の他の例を示す概略断面図である。
【図6】本発明の電子回路モジュールの実施の形態のさらに他の例を示す概略断面図である。
【図7】本発明の電子回路モジュールの実施の形態のさらに他の例を示す概略断面図である。
【符号の説明】
1・・・・・・・電子回路モジュール
2・・・・・・・誘電体基板
2a・・・・・・電力増幅素子搭載用凹部
2b・・・・・・弾性表面波素子搭載用凹部
3a、3b・・・導体バンプ
4・・・・・・・電力増幅素子
6・・・・・・・伝熱性蓋体
7・・・・・・・外部電気回路基板
8・・・・・・・弾性表面波素子
9・・・・・・・蓋体
11・・・・・・貫通導体
13・・・・・・ろう材
15・・・・・・放熱用導体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a portable information terminal, a wireless LAN, a wireless LAN, and a small-sized integrated high-frequency filter device and a high-frequency demultiplexer device used in electronic devices and electronic devices such as WLL (Wireless Local Loop). The present invention relates to a high-performance and low-cost electronic circuit module.
[0002]
[Prior art]
Since the high-frequency power amplifier that constitutes the high-frequency power amplifier in the electronic circuit module handles a large amount of high-frequency power in accordance with the increase in transmission capacity and transmission speed in current mobile communication systems, the high-frequency power amplifier itself generates heat. The amount is increasing. As a measure for heat dissipation, there are a method of attaching a heat dissipation fin and a method of using aluminum nitride, which is a high thermal conductive ceramic with a large thermal conductivity, on the dielectric substrate on which the high-frequency power amplification element is mounted. Can be done. Further, Japanese Patent Application Laid-Open No. 2000-31331 proposes a technique in which a high-frequency power amplifying element is arranged on the back surface of a wiring board and soldered to an external electric circuit board to improve heat dissipation.
[0003]
In addition, a surface acoustic wave element used in a high-frequency filter device or the like, which is configured in the vicinity of a high-frequency power amplifier in an electronic circuit module, is generally a comb-shaped device for propagating a surface acoustic wave to a piezoelectric substrate such as lithium tantalate. Although electrodes are formed, the electrical characteristics of the piezoelectric substrate itself are greatly affected by temperature changes, so it is essential to place it in a module away from heating elements such as high-frequency power amplifiers. It has become. For this reason, an electronic circuit module in which a conventional high-frequency power amplifying device and a high-frequency filter device and the like are integrally formed has been developed to reduce the size, weight, density, and price of mobile communication information terminals in recent years. However, there is a problem that it is not possible to sufficiently meet the demands for such services.
[0004]
On the other hand, for example, in Japanese Patent Application Laid-Open No. 7-58586, an active circuit element as a high-frequency power amplifier element is mounted on a single piezoelectric substrate on which a passive circuit element as a surface acoustic wave element is formed. It has been proposed to configure a small and low-cost high-frequency circuit device.
[0005]
[Problems to be solved by the invention]
However, in the high-frequency circuit device disclosed in Japanese Patent Application Laid-Open No. 7-58586, when high-frequency power needs to be handled in accordance with a recent increase in transmission capacity and a higher transmission speed in a mobile communication system, a high-frequency power is required. When an active circuit element, which is an amplifying element, is mounted on a single piezoelectric substrate on which a passive circuit element, which is a surface acoustic wave element, is formed, the high-frequency power amplifying element itself generates a large amount of heat. Deterioration of filter characteristics due to the heat in the filter has become a problem, and there has been a problem that it cannot be used for small information terminal equipment used in a mobile communication system handling large high-frequency power.
[0006]
The present invention has been made in view of the above-mentioned problems in the prior art, and has as its object to provide a surface acoustic wave disposed in the vicinity thereof without being affected by heat generated by a power amplifying element such as a high-power high-frequency device. Suitable for electronic equipment and devices such as portable information terminals, wireless LANs, WLLs, etc., which can maintain the electrical characteristics such as high-frequency filter characteristics of the element, and are small, high-performance, and inexpensive. To provide a simple electronic circuit module.
[0007]
[Means for Solving the Problems]
In the electronic circuit module of the present invention, a power amplifying element mounting recess and a surface acoustic wave element mounting recess are formed on one main surface of a dielectric substrate formed by laminating a plurality of dielectric layers. A surface acoustic wave element is mounted on a conductor layer formed on the bottom surface of each recess, and at least the power amplification element mounting recess has a heat conductive lid attached thereto in contact with the power amplification element, A through hole extending from the extended portion of the conductor layer of the power amplifying element mounting recess to the one main surface of the dielectric substrate between the power amplifying element mounting recess and the surface acoustic wave element mounting recess. A conductor is formed, and the heat conductive lid and the penetrating conductor are attached to a heat dissipation conductor on the upper surface of the external electric circuit board via a brazing material, and mounted.
[0008]
According to another electronic circuit module of the present invention, a dielectric substrate for laminating a plurality of dielectric layers has a concave portion for mounting a power amplification element on one main surface and a concave portion for mounting a surface acoustic wave element on the other main surface. A recess is formed, and the power amplification element and the surface acoustic wave element are mounted on the conductor layer formed on the bottom surface of each recess, and at least the power amplification element mounting recess is in contact with the power amplification element and has heat conductivity. A lid is attached, and the dielectric substrate extends from the extended portion of the conductor layer in the power amplifying element mounting recess between the power amplifying element mounting recess and the surface acoustic wave element mounting recess. And a through conductor extending to the one main surface is formed, and the heat conductive lid and the through conductor are attached to a heat dissipation conductor on an upper surface of an external electric circuit board via a brazing material and mounted. It is characterized by the following.
[0009]
According to the above configuration of the present invention, heat generated from the power amplifying element is efficiently transmitted to the heat dissipation conductor on the upper surface of the external electric circuit board via the heat conductive lid and the brazing material directly joined to the power amplifying element. Heat can be dissipated. Further, heat transfer from the power amplifying element to the surface acoustic wave element disposed near the power amplifying element is blocked by the through conductor, so that heat transfer to the surface acoustic wave element can be extremely reduced. As a result, a small and high-performance electronic circuit module can be provided without deteriorating electrical characteristics such as high-frequency filter characteristics of the surface acoustic wave element.
[0010]
Moreover, according to this configuration, it is not necessary to separately provide a heat radiation member such as a heat radiation fin. Further, the power amplifying element is mounted in a concave portion formed on the mounting surface side of the dielectric substrate, and the surface acoustic wave element may be either the dielectric substrate. By mounting the wave element, it is possible to reduce the number of processes, so that a low-cost electronic circuit module is obtained.
[0011]
In the above electronic circuit module, in order to further reduce the influence of heat generated from the power amplifying element on the surface acoustic wave element, the thermal conductivity of the dielectric layer is preferably 20 W / m · K or less. In particular, the dielectric layer around the concave portion for mounting the power amplifying element is formed of a dielectric layer having a lower thermal conductivity than the dielectric layer around the concave portion for mounting the surface acoustic wave device. The mounting recess and the surface acoustic wave device mounting recess are separated by 0.3 mm or more, the thermal conductivity of the through conductor is 100 W / m · K or more, and the power amplifying element is A plurality of recesses formed between the mounting recess and the surface acoustic wave device mounting recess, a conductor layer on the bottom surface of the power amplification device mounting recess, and a conductor on the bottom surface of the surface acoustic wave device mounting recess; Layers and different invitations Such that it is formed in the body layer.
[0012]
These improvements make it possible to provide a small, high-performance electronic circuit module without deteriorating electrical characteristics such as high-frequency filter characteristics and high-frequency demultiplexer characteristics of the surface acoustic wave element.
[0013]
The surface acoustic wave element mounting recess may be sealed with a lid, or the recess may be filled with an insulating resin.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an electronic circuit module of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 is a sectional view showing an embodiment of an electronic circuit module according to the present invention. In this example, the electronic circuit module 1 is mounted on an external electric circuit board 7 such as a motherboard.
[0016]
The dielectric substrate 2 in the electronic circuit module 1 is formed by laminating a plurality of dielectric layers, and the dielectric layers include low-temperature fired ceramics such as alumina ceramics, mullite ceramics, glass ceramics, and organic resin materials. And a ceramic material can be used. In particular, in forming by simultaneous firing using Cu and Ag as conductors, low-temperature fired ceramics such as glass ceramics, and a mixed material of an organic resin material and a ceramic material are mentioned, and in terms of excellent thermal stability, Low temperature fired ceramics such as glass ceramics are most desirable.
[0017]
The thermal conductivity of the dielectric layer constituting the dielectric substrate 2 can be controlled by the ceramic material to be used and the mixing ratio thereof, and is 20 W / m · K or less, particularly 10 W / m · K or less. K or less, more preferably 5 W / m · K or less, and more preferably 3 W / m · K or less.
[0018]
In the electronic circuit module of FIG. 1, a recess 2 a for mounting a power amplification element and a recess 2 b for mounting a surface acoustic wave element are formed on a bottom surface of a dielectric substrate 2 at a predetermined interval.
[0019]
A conductor layer 2a1 is formed on the bottom surface of the power amplifying element mounting recess 2a, and the power amplifying element 4 is electrically connected and mounted via the conductor bump 3a. Here, gold, solder, thermosetting Ag paste, or the like can be used for the conductor bumps 3a. For example, when gold is used, the electrodes of the power amplification element 4 and the electrode portions are electrically connected by ultrasonic thermocompression bonding. In addition, the connection resistance can be reduced, and the conductor loss can be reduced as compared with solder or thermosetting Ag paste.
[0020]
As the power amplifying element 4, for example, a pn junction gate type field effect transistor, a Schottky barrier gate type field effect transistor, a hetero junction type field effect transistor, a pn junction gate type hetero junction type field effect transistor, or the like is used. Be
A so-called underfill 5 is injected between the power amplifying element 4 and the conductor layer 2a1 for the purpose of protecting the connection and the element surface. The underfill 5 may be an epoxy resin, a silicone resin, or the like that is cured by applying heat. Further, as the underfill 5, in the electronic circuit module 1 of the present invention, it is desirable to use one having a thermal conductivity of 20 W / m · K or less, and use an epoxy resin having a thermal conductivity of about 10 W / m · K or less. Is preferred. This makes it possible to suppress the transmission of heat generated by the power amplification element 4 to the dielectric substrate 2 itself.
[0021]
A heat conductive lid 6 is attached to the opening of the power amplifying element mounting recess 2a by directly or in contact with a surface on the opening side of the power amplifying element 4 via a heat conductive compound such as heat radiation grease. You. The heat conductive lid 6 is for efficiently transmitting the heat generated by the power amplifying element 4 to the external electric circuit board 7, and is specifically made of metal, for example, copper or the like having a high thermal conductivity. Preferably, one is used.
[0022]
The heat conductive lid 6 is attached to the heat dissipation conductor 15 on the upper surface of the external electric circuit board 7 via the brazing material 13. Thereby, the heat generated from the power amplifying element 4 is efficiently transmitted to the heat dissipation conductor 15 formed on the surface of the external electric circuit board 7 via the heat conductive lid 6 and the brazing material 13, and the power amplification is performed. It is possible to prevent the heat generated from the element 4 from thermally affecting the surface acoustic wave element 8 in the module.
[0023]
Note that the surface of the heat conductive lid 6 is formed so as to obtain good brazing properties with the back electrode of the power amplifying element 4 and the heat dissipation conductor 15 and the ground electrode (not shown) on the upper surface of the external electric circuit board 7. It is preferable to apply a plating process of Ni, Sn, solder, or the like to the plating.
[0024]
On the other hand, the surface acoustic wave element 8 is electrically connected to the electrode portion formed of the conductor layer 2b1 formed on the bottom surface of the surface acoustic wave element mounting recess 2b via the conductor bump 3b. It is connected to and installed. Gold, solder, thermosetting Ag paste, or the like can be used for the conductor bumps 3b as in the case of the conductor bumps 3a. For example, when gold is used, the electrodes of the surface acoustic wave element 8 are connected to each other by ultrasonic thermocompression bonding. It becomes possible to electrically connect with the electrode part.
[0025]
As the surface acoustic wave element 8, for example, a resonator type filter, a resonator ladder type and a lattice type connection filter, a multi IDT (Inter Digital Transducer) type filter, or the like is used. When the surface acoustic wave element 8 is, for example, a resonator type filter, a 36 ° Y cut-X propagating LiTaO 3 Crystal, 64 ° Y-cut-X propagating LiNbO 3 Crystal, 45 ° X-cut Z-propagation LiB 4 O 7 Crystals and the like are preferably used because they have a large electromechanical coupling coefficient and a small group delay time temperature coefficient. The surface acoustic wave element 8 has at least a pair of IDTs of at least one pair of comb-shaped electrodes formed so as to mesh with each other in order to excite, propagate, and resonate the surface acoustic wave on the surface of the piezoelectric substrate. An Inter Digital Transducer (not shown) is provided. This IDT electrode is configured by connecting a plurality of pairs of comb-shaped electrodes in a series connection, a parallel connection, or the like in order to obtain a desired filter characteristic. Such an IDT electrode can be formed in a desired shape and size on a piezoelectric substrate by a thin film forming method such as an evaporation method, a sputtering method, or a CVD method.
[0026]
In the module of FIG. 1, a lid 9 is attached to the opening of the surface acoustic wave element mounting recess 2b so as to be separated from the surface acoustic wave element 8. The lid 9 is provided with low-humidity air or the like in the internal space of the surface acoustic wave element mounting recess 2b, which is a vibration space, for the purpose of mechanical protection of the surface acoustic wave element 8 and suppression of deterioration of the IDT electrode due to oxidation. It is sealed and attached using an epoxy resin, a brazing material or the like, and seals the surface acoustic wave element mounting concave portion 2b. Even if an inert gas such as a nitrogen gas or an argon gas or an inert gas having a lower thermal conductivity than air is sealed and sealed instead of air, the IDT electrode can be prevented from being deteriorated by oxidation.
[0027]
As a material used for the lid 9, a metal such as SUS, copper, and nickel silver, or a resin such as a glass epoxy resin can be used. Above all, heat generated by the power amplifying element 4 is transmitted to the external electric circuit board 7 via the heat conductive lid 6, so that the heat transmitted to the external electric circuit board 7 is again transmitted to the surface acoustic wave via the lid 9. It is preferable to use a material made of glass epoxy resin having a low thermal conductivity so as not to be transmitted to the element 8.
[0028]
The lid 9 is attached to the surface acoustic wave element mounting concave portion 2b so as to be separated from the surface acoustic wave element 8, and a gap 10 is further provided between the lid 9 and the external electric circuit board 7. In addition, transmission of heat generated by the power amplifying element 4 can be more reliably suppressed.
[0029]
Although the opening of the concave portion 2b for mounting a surface acoustic wave element is sealed with the lid 9 in the example of FIG. 1, the concave portion 2b is filled with a sealing resin such as a silicone resin or an epoxy resin. It can also be sealed.
[0030]
It is preferable to provide an interval of 0.3 mm or more between the power amplification element mounting recess 2a and the surface acoustic wave element mounting recess 2b, and more preferably to provide an interval of 0.5 mm or more. It is possible to sufficiently reduce the heat generated by the amplifying element 4 being transmitted to the surface acoustic wave element 8 via the dielectric layer between the recesses 2a and 2b.
[0031]
According to the present invention, the conductor layer 2a1 formed on the bottom surface of the power amplifier mounting recess 2a extends in the horizontal direction, and the power amplifier mounting recess 2a and the surface acoustic wave device mounting recess 2b described above. A through conductor 11 extending from the extending portion to the surface of the dielectric substrate on which the power amplifier mounting recess 2a is formed is formed. The through conductor 11 is also attached to the heat dissipation conductor 15 on the upper surface of the external electric circuit board 7 via the brazing material 13, similarly to the heat conductive lid 6.
[0032]
By forming such a through conductor 11, the heat transmitted to the conductor layer 2a1 on the bottom surface of the concave portion 2a and the heat transmitted to the dielectric layer between the concave portions 2a and 2b among the heat generated by the power amplifying element 4 are transmitted through the through conductor. 11, and can be efficiently transmitted to the heat dissipation conductor 15 formed on the surface of the external electric circuit board 7 via the brazing material 13.
[0033]
The above effect can be further enhanced by providing not only one through-conductor 11 but also two or more through-conductors 11 between the power amplifying element mounting recess 2a and the surface acoustic wave element mounting recess 2b.
[0034]
Specific examples are shown in FIGS. FIG. 2 is a plan view when the electronic circuit module of FIG. 1 is cut along the line AA ′. 3 and 4 are plan views showing still another example.
[0035]
According to the example of FIG. 2, two through conductors 11 are formed substantially in the middle between the power amplifying element mounting concave portion 2 a and the surface acoustic wave device mounting concave portion 2 b which are arranged obliquely in a plan view. is there. FIG. 3 shows a configuration in which a plurality of through conductors 11 are linearly arranged in a substantially intermediate portion between the concave portions 2a and 2b in which the through conductors 11 are arranged side by side so as to surround the concave portion 2a side. Further, FIG. 4 shows an example in which a plurality of through conductors 11 are arranged in a so-called zigzag manner at a substantially intermediate portion between the concave portions 2a and the concave portions 2b arranged side by side.
[0036]
The through conductor 11 is desirably formed of a metal having excellent thermal conductivity in view of its function. In particular, at least one selected from the group consisting of Cu, CuO, Ag, Ag-Pd, Ag-Pt, and Au is mainly used. It is desirable that the conductor be formed of a conductor containing metal as a main component. In particular, the through conductor 11 is at least five times the thermal conductivity of the dielectric substrate 2 in order to prevent the heat generated by the power amplifying element 4 from being transmitted to the dielectric substrate 2 and further to the surface acoustic wave element 8. It is desirable to increase it, and it is more preferable to use one having a thermal conductivity of 100 W / m · K or more. In addition, the through conductor 11 may include an inorganic substance such as a metal oxide or glass in order to match firing shrinkage during firing firing with the dielectric substrate.
[0037]
The through conductor 11 having such a high thermal conductivity is made of, for example, about 85% by mass of Ag powder, 3% by mass of lead borosilicate glass, 2 Is set to 12% by mass, the thermal conductivity can be set to about 150 W / m · K.
[0038]
The through conductor 11 preferably has a diameter (short diameter) of 0.1 to 0.5 mm. When a plurality of the through conductors 11 are formed, the distance between the side surfaces of the through conductor 11 is 0.2 to 1.0 mm. It should just be arranged in. The through conductor 11 does not necessarily have to be circular, but may be oval or slit.
[0039]
Further, in the module of the present invention, as shown in FIG. 1, the concave portions 2a and 2b are formed at different depths, and the bottom surface of the power amplifying element mounting concave portion 2a formed on the dielectric substrate 2 and the surface acoustic wave. By forming the conductor layers 2a1 and 2b1 formed on the bottom surface of the element mounting recess 2b and the conductor layers 2a1 and 2b1 respectively on different dielectric layers, power amplification can be achieved as compared with the case where they are formed on the same dielectric layer. The amount of heat transferred from the element 4 to the surface acoustic wave element 8 via the dielectric layer or the conductor layer can be reduced more effectively, and the deterioration of the electrical characteristics due to the thermal influence of the surface acoustic wave element 8 can be reduced. This can be prevented more reliably.
[0040]
In the electronic circuit module 1 of the present invention, in order to make the power amplification element 4 and the surface acoustic wave element 8 function electrically, the internal conductor wiring 16, the surface conductor wiring 17, and the via-hole conductor 18 are formed, and the dielectric substrate 2 is formed. Electronic components 12 such as a resistor, a capacitor, an inductor, and a semiconductor element are mounted on the upper surface of the electronic circuit to form a desired electronic circuit. If necessary, a high-performance and small-sized electronic circuit module can be built in the dielectric substrate 2 by incorporating a high-frequency filter (not shown) using a capacitor, an inductor, or the like utilizing conductor wiring. 1 can be configured.
[0041]
Further, by attaching a metal shield case 14 for the purpose of protecting the electronic components 12 and circuits mounted on the surface of the electronic circuit module 1, the influence of external mechanical stress, atmosphere, and electromagnetic noise is cut off or suppressed. It is also possible to make it.
[0042]
Further, in the electronic circuit module 1, electrode pads 20 formed on the electronic circuit module 1 are formed on the surface of the external electric circuit board 7 via the brazing material 13 for signal transmission to the external electric circuit board 7. Connected to the signal wiring layer 21.
[0043]
FIG. 5 is a sectional view showing another example of the electronic circuit module of the present invention. In the example of FIG. 1, the concave portion 2b for mounting the surface acoustic wave element is formed on the same surface as the surface on which the concave portion 2a for mounting the power amplifying element is formed. 1 is formed on the surface opposite to the surface on which is formed, that is, on the surface side, and is mounted on the conductor layer 2b1 formed in the concave portion 2b as in FIG. In this example, the concave portion 2b is filled with an insulating organic resin 19 and is sealed with a resin.
[0044]
Also in this embodiment, a through conductor 11 is formed in a portion located between the concave portion 2b for mounting a surface acoustic wave element and the concave portion 2a for mounting a power amplification element, as in FIG. At this time, one end of the through conductor 11 is exposed to the lower surface of the module 1 and brazed to the heat dissipation conductor 15 via the brazing material 13 as in FIG. 1, while the other end of the conductor layer 2a1 is extended. It may be connected to an installation portion and may further extend on the upper surface side.
[0045]
FIG. 6 is a schematic sectional view showing still another example of the electronic circuit module of the present invention. In the examples of FIGS. 1 and 5, the dielectric substrate 2 is formed of the same material, but in FIG. 6, the periphery of the power amplifying element mounting concave portion 2a has a lower thermal conductivity than other portions. By being formed of a dielectric material, the dielectric material around the concave portion 2a functions as a heat insulating material, so that heat generated from the power amplification element 4 can be prevented from being diffused and transmitted to the surroundings.
[0046]
FIG. 7 is a schematic sectional view showing still another example of the electronic circuit module of the present invention. In the example of FIG. 6, two kinds of dielectric materials having different thermal conductivity exist in the same dielectric layer. However, as shown in FIG. When the surface acoustic wave element mounting concave portion 2b is provided on the upper surface side, the lower surface of the module 1 may be formed entirely of a material having low thermal conductivity as shown in FIG.
[0047]
The above-described electronic circuit module of the present invention can be manufactured by a conventionally known method. Here, a case where the dielectric substrate is made of a glass ceramic composition will be briefly described as a preferred example.
[0048]
First, in order to form each dielectric layer on the dielectric substrate 2, a ceramic green sheet made of a glass ceramic composition to be each dielectric layer is prepared. The ceramic green sheet serving as the dielectric layer is made of borosilicate glass, zinc borosilicate glass, SiO 2 2 -Al 2 O 3 A mixture of 30 to 90% by mass of a known glass such as an alkaline earth oxide and 10 to 70% by mass of an inorganic filler such as alumina, quartz, mullite, AlN, and forsterite; An organic binder, a plasticizer such as DBP (dibutyl phthalate) and an organic solvent such as toluene are mixed and kneaded with a ball mill for 4 to 8 hours to prepare a slurry, and a tape is formed using the slurry by a doctor blade method or the like. , Which are cut to predetermined dimensions.
[0049]
Then, a through conductor 11, a via hole conductor 18 for connecting the internal conductor wiring 16 and the surface conductor wiring 17 to a predetermined ceramic green sheet, a concave portion 2a for mounting a power amplification element and a concave portion 2b for mounting a surface acoustic wave element, In order to form a through hole for the conductor 11, a concave portion or various circular or elliptical portions are formed by micro drilling or punching, or by exposing and developing a green sheet containing a photosensitive resin. Through holes having various shapes such as a shape and a long hole can be formed.
[0050]
Then, Cu or Ag-based conductor paste is filled into the through holes for the through conductor 11 and the via hole conductor 18. At the same time, a pattern to be the inner conductor wiring 16, the surface conductor wiring 17, and the conductor layers 2a1 and 2b1 is printed and formed on each green sheet by a screen printing method or a gravure printing method using a Cu or Ag-based conductor paste.
[0051]
Here, as the Cu or Ag-based conductor paste, for example, Ag powder, Ag-Pd powder, or Ag-Pt powder other than Cu powder, CuO powder, and Ag powder can be used. Borosilicate low melting point glass, SiO 2 , Al 2 O 3 Alkaline earth metal oxides such as, MgO, CaO, Bi 2 O 3 A metal oxide such as ethyl cellulose and an organic solvent such as 2,4-trimethyl-1,3-pentanediol monoisobutyrate are mixed and homogeneously kneaded.
[0052]
These metal powders and, if necessary, for example, a predetermined amount of a zinc borosilicate-based glass, a borosilicate-based low-melting glass such as a lead borosilicate-based glass, Al 2 O 3 , MgO, CaO, SiO 2 , Bi 2 O 3 An inorganic substance such as a metal oxide, an organic binder such as ethyl cellulose, and an organic solvent such as 2,4-trimethyl-1,3-pentanediol monoisobutyrate are mixed and kneaded, and used. The thermal conductivity can be controlled by the ratio of the amount of the low-melting glass or the metal oxide to the metal powder.
[0053]
The ceramic green sheets obtained as described above are aligned, for example, with the via-hole conductor 18 as a reference, laminated according to the lamination order, and thermocompression-bonded to form an unfired laminate.
[0054]
Next, the unfired laminate is fired, for example, in an oxidizing atmosphere to be sintered and integrated. Specifically, by sintering at 800 to 1000 ° C. in an oxygen atmosphere or an air atmosphere, a sintered substrate can be manufactured.
[0055]
Thereafter, the surface acoustic wave element 8, the power amplifying element 4 and the like are mounted in the recesses 2a and 2b, and the heat conductive lid 6 and the lid 9 are brazed, or the sealing organic resin 19 is filled and sealed. Stop.
[0056]
When such a module is mounted on the external electric circuit board 7, the electrode pad for signal transmission of a normal module is soldered, and at the same time, the heat conductive lid 6 and the through conductor 11 are attached to the surface of the external electric circuit board 7. Is brazed to the heat-radiating conductor 15 formed in the step (a).
[0057]
Further, as shown in FIG. 6, when the periphery of the power amplifying element mounting concave portion 2a is formed of a dielectric material having a heat insulating property, a photosensitive resin is blended with a normal dielectric substrate material, and is developed and exposed. After forming a predetermined concave portion, the concave portion is filled with a heat-insulating dielectric material, and further, the concave portions 2a and 2b are formed by punching or the like to form an unfired laminate, which is then fired. Good.
[0058]
In addition, as shown in FIG. 7, when the upper surface and the lower surface of the dielectric substrate 2 in the module are formed of dielectric materials having different thermal conductivities, a green sheet is formed using each dielectric material. After performing the respective processes, they may be laminated and integrated to produce an unfired laminate, and then fired.
[0059]
【Example】
As the dielectric material, a glass-ceramic dielectric material having a thermal conductivity of 2 W / m · K composed of 70% by mass of borosilicate glass and 30% by mass of alumina was used, and the through conductor was made of an Ag-based conductor material of 150 W / m · K. Using copper as a heat conductive lid, an electronic circuit module is manufactured as described above, and this is placed on an insulating substrate made of a glass woven fabric-epoxy resin composite material, and a heat dissipation conductor made of copper and a signal It was mounted on the surface of the motherboard on which the wiring layer was formed, using a Cu-Ag-based brazing material (Sample No. 6).
[0060]
With the power ON / OFF ratio (duty ratio) of the power amplifying element (PA) set to 1/8, an input signal of 0 dB is input, and conditions are set so that an output of 33.5 dBm is obtained. The steady temperature (indicated by the recess 2b in Table 1) in the recess for mounting the amplifying element 4 and the recess for mounting the surface acoustic wave element 8 was measured.
[0061]
In addition, using a heat conduction analysis simulation program, the temperature of each constituent material when the thermal conductivity was changed was calculated.
[0062]
[Table 1]
Figure 0003554310
[0063]
From the results in Table 1, it was found that, according to the structure of the present invention, by providing the heat conductive lid and the through conductor, the heat of the power amplifying element can be effectively radiated, and the influence on the surface acoustic wave element can be reduced. .
[0064]
In addition, in such a configuration, it can be seen that the effect is more excellent as the number of through conductors is larger and the thermal conductivity of the dielectric substrate is smaller. It was also found that similar results were obtained when the dielectric substrate was formed of two types of dielectric materials.
[0065]
It should be noted that the above is only an example of the embodiment of the present invention, and the present invention is not limited thereto, and various changes and improvements may be added without departing from the gist of the present invention. .
[0066]
【The invention's effect】
As described in detail above, according to the present invention, heat generated by the power amplifying element can be efficiently dissipated to the heat dissipation conductor of the external electric circuit board, and the elastic surface disposed near the power amplifying element in the vicinity thereof A small, high-performance electronic circuit module without deteriorating electrical characteristics such as high-frequency filter characteristics and high-frequency demultiplexer characteristics of the surface acoustic wave element because heat transfer to the wave element can be extremely reduced. can do. In addition, a heat-radiating member such as a heat-radiating fin is not separately required, and the electronic circuit module is suitable for low-cost electronic devices and electronic devices such as portable information terminals.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of an embodiment of an electronic circuit module of the present invention.
FIG. 2 is a schematic plan view taken along line AA ′ of FIG. 1, showing an example of the arrangement of through conductors in the electronic circuit module of the present invention.
FIG. 3 is a schematic plan view showing another example of the arrangement of the through conductors in the electronic circuit module of the present invention.
FIG. 4 is a schematic plan view showing still another example of the arrangement of the through conductors in the electronic circuit module of the present invention.
FIG. 5 is a schematic sectional view showing another example of the embodiment of the electronic circuit module of the present invention.
FIG. 6 is a schematic sectional view showing still another example of the embodiment of the electronic circuit module of the present invention.
FIG. 7 is a schematic sectional view showing still another example of the embodiment of the electronic circuit module of the present invention.
[Explanation of symbols]
1 ... Electronic circuit module
2 ... Dielectric substrate
2a: recess for mounting the power amplifying element
2b: recess for mounting the surface acoustic wave element
3a, 3b ... conductor bump
4 ... Power amplifying element
6 ····· Heat conductive lid
7. External circuit board
8 ····· Surface acoustic wave element
9 Lid
11 ... Through conductor
13. Brazing filler metal
15 Conductor for heat dissipation

Claims (9)

複数の誘電体層を積層して成る誘電体基板の一方の主面に電力増幅素子搭載用凹部および弾性表面波素子搭載用凹部が形成され、電力増幅素子および弾性表面波素子が各凹部の底面に形成された導体層に実装されており、少なくとも前記電力増幅素子搭載用凹部には前記電力増幅素子に接触して伝熱性蓋体が取着されるとともに、前記電力増幅素子搭載用凹部と前記弾性表面波素子搭載用凹部との間に、前記電力増幅素子搭載用凹部の前記導体層の延設部から前記誘電体基板の前記一方の主面まで延びた貫通導体が形成されて成り、前記伝熱性蓋体および前記貫通導体をろう材を介して外部電気回路基板の上面の放熱用導体に取着させて実装されることを特徴とする電子回路モジュール。A recess for mounting a power amplification element and a recess for mounting a surface acoustic wave element are formed on one main surface of a dielectric substrate formed by laminating a plurality of dielectric layers, and the power amplification element and the surface acoustic wave element are mounted on the bottom surface of each recess. A heat conductive lid is attached to at least the power amplifying element mounting recess in contact with the power amplifying element, and the power amplifying element mounting recess and the A through conductor extending from the extended portion of the conductor layer of the power amplifying element mounting recess to the one main surface of the dielectric substrate is formed between the surface acoustic wave element mounting recess and the power amplification element mounting recess. An electronic circuit module, wherein the heat conductive lid and the through conductor are attached to a heat dissipation conductor on an upper surface of an external electric circuit board via a brazing material and mounted. 複数の誘電体層を積層して成る誘電体基板の一方の主面に電力増幅素子搭載用凹部が、他方の主面に弾性表面波素子搭載用凹部が形成され、電力増幅素子および弾性表面波素子が各凹部の底面に形成された導体層に実装されており、少なくとも前記電力増幅素子搭載用凹部には前記電力増幅素子に接触して伝熱性蓋体が取着されるとともに、前記電力増幅素子搭載用凹部と前記弾性表面波素子搭載用凹部との間に、前記電力増幅素子搭載用凹部の前記導体層の延設部から前記誘電体基板の前記一方の主面まで延びる貫通導体が形成されて成り、前記伝熱性蓋体および前記貫通導体をろう材を介して外部電気回路基板の上面の放熱用導体に取着させて実装されることを特徴とする電子回路モジュール。A concave portion for mounting a power amplification element is formed on one main surface of a dielectric substrate formed by laminating a plurality of dielectric layers, and a concave portion for mounting a surface acoustic wave element is formed on the other main surface. The element is mounted on a conductor layer formed on the bottom surface of each concave portion. At least the power amplifying device mounting concave portion is in contact with the power amplifying device and a heat conductive lid is attached thereto, and the power amplifying device is mounted. A through conductor extending from the extended portion of the conductor layer of the power amplifying element mounting recess to the one main surface of the dielectric substrate is formed between the element mounting recess and the surface acoustic wave element mounting recess. An electronic circuit module, wherein the heat conductive lid and the through conductor are attached to a heat dissipation conductor on an upper surface of an external electric circuit board via a brazing material and mounted. 前記誘電体層の熱伝導率が20W/m・K以下であることを特徴とする請求項1または請求項2記載の電子回路モジュール。The electronic circuit module according to claim 1, wherein the thermal conductivity of the dielectric layer is 20 W / m · K or less. 前記電力増幅素子搭載用凹部の周囲の誘電体層が、前記弾性表面波素子搭載用凹部の周囲の誘電体層よりも熱伝導率の小さい誘電体層によって形成されていることを特徴とする請求項1乃至請求項3のいずれか記載の電子回路モジュール。The dielectric layer around the power amplifying element mounting recess is formed of a dielectric layer having a lower thermal conductivity than the dielectric layer around the surface acoustic wave element mounting recess. An electronic circuit module according to any one of claims 1 to 3. 前記電力増幅素子搭載用凹部と前記弾性表面波素子搭載用凹部とが0.3mm以上離間していることを特徴とする請求項1乃至請求項4のいずれかに記載の電子回路モジュール。5. The electronic circuit module according to claim 1, wherein the power amplifying element mounting recess and the surface acoustic wave element mounting recess are separated by 0.3 mm or more. 6. 前記貫通導体の熱伝導率が100W/m・K以上であることを特徴とする請求項1乃至請求項5のいずれか記載の電子回路モジュール。The electronic circuit module according to any one of claims 1 to 5, wherein the through conductor has a thermal conductivity of 100 W / m · K or more. 前記貫通導体が前記電力増幅素子搭載用凹部と前記弾性表面波素子搭載用凹部との間に複数本形成されていることを特徴とする請求項1乃至請求項6のいずれか記載の電子回路モジュール。7. The electronic circuit module according to claim 1, wherein a plurality of the through conductors are formed between the concave portion for mounting the power amplification element and the concave portion for mounting the surface acoustic wave element. 8. . 前記電力増幅素子搭載用凹部の底面の導体層と、前記弾性表面波素子搭載用凹部の底面の導体層とが、異なる誘電体層に形成されていることを特徴とする請求項1乃至請求項7のいずれか記載の電子回路モジュール。The conductor layer on the bottom surface of the recess for mounting the power amplification element and the conductor layer on the bottom surface of the recess for mounting the surface acoustic wave element are formed in different dielectric layers. 8. The electronic circuit module according to any one of items 7 to 7. 前記前記弾性表面波素子搭載用凹部が、蓋体によって封止されているか、または該凹部内に絶縁性樹脂が充填されていることを特徴とする請求項1乃至請求項8記載の電子回路モジュール。9. The electronic circuit module according to claim 1, wherein the concave portion for mounting the surface acoustic wave element is sealed with a lid, or the concave portion is filled with an insulating resin. .
JP2002050251A 2001-03-28 2002-02-26 Electronic circuit module Expired - Fee Related JP3554310B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002050251A JP3554310B2 (en) 2001-03-28 2002-02-26 Electronic circuit module
US10/371,997 US6873529B2 (en) 2002-02-26 2003-02-21 High frequency module
DE10308448A DE10308448B4 (en) 2002-02-26 2003-02-24 RF module
CNB031060897A CN1236641C (en) 2002-02-26 2003-02-24 High frequency module
US11/059,256 US6961245B2 (en) 2002-02-26 2005-02-15 High frequency module

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-93759 2001-03-28
JP2001093759 2001-03-28
JP2002050251A JP3554310B2 (en) 2001-03-28 2002-02-26 Electronic circuit module

Publications (2)

Publication Number Publication Date
JP2002359327A JP2002359327A (en) 2002-12-13
JP3554310B2 true JP3554310B2 (en) 2004-08-18

Family

ID=26612417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002050251A Expired - Fee Related JP3554310B2 (en) 2001-03-28 2002-02-26 Electronic circuit module

Country Status (1)

Country Link
JP (1) JP3554310B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553627B2 (en) 2004-04-30 2010-09-29 太陽誘電株式会社 High frequency circuit module and wireless communication device
JP2007123524A (en) * 2005-10-27 2007-05-17 Shinko Electric Ind Co Ltd Substrate with built-in electronic part
US8283570B2 (en) 2007-12-26 2012-10-09 Panasonic Corporation Semiconductor assembly and multilayer wiring board
JP4680277B2 (en) * 2008-04-03 2011-05-11 太陽誘電株式会社 High frequency circuit module
JP2013055198A (en) * 2011-09-02 2013-03-21 Mitsubishi Electric Corp Electric power conversion apparatus
JP5873311B2 (en) * 2011-11-29 2016-03-01 太陽誘電株式会社 Elastic wave device and multilayer substrate
JP5241910B2 (en) 2011-12-22 2013-07-17 太陽誘電株式会社 Circuit board
JP5241909B2 (en) 2011-12-22 2013-07-17 太陽誘電株式会社 Circuit board
JP5945326B2 (en) * 2012-07-30 2016-07-05 パナソニック株式会社 Semiconductor device with heat dissipation structure
JP5122018B1 (en) * 2012-08-10 2013-01-16 太陽誘電株式会社 Electronic component built-in board
JP5261624B1 (en) * 2012-11-05 2013-08-14 太陽誘電株式会社 Circuit module
JP5888786B2 (en) * 2013-04-02 2016-03-22 太陽誘電株式会社 Circuit board
KR102037763B1 (en) * 2015-08-17 2019-10-30 한국전자통신연구원 Transmitting and receiving package
WO2017138299A1 (en) 2016-02-08 2017-08-17 株式会社村田製作所 High frequency module and method for producing same
DE102018102144A1 (en) * 2018-01-31 2019-08-01 Tdk Electronics Ag Electronic component
JP7406314B2 (en) * 2019-06-24 2023-12-27 キヤノン株式会社 electronic modules and equipment
CN116490976A (en) * 2020-11-25 2023-07-25 株式会社村田制作所 High frequency module
CN116490968A (en) * 2020-11-25 2023-07-25 株式会社村田制作所 High frequency module and communication device
CN116711210A (en) * 2021-01-14 2023-09-05 株式会社村田制作所 High frequency module and communication device
WO2022209741A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 High frequency module and communication device
CN117063395A (en) * 2021-03-31 2023-11-14 株式会社村田制作所 High frequency module and communication device
WO2022209755A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 High-frequency module
CN117121373A (en) * 2021-03-31 2023-11-24 株式会社村田制作所 High frequency module and communication device
WO2022209730A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 High-frequency module
WO2023022075A1 (en) * 2021-08-20 2023-02-23 株式会社村田製作所 High-frequency module and communication device

Also Published As

Publication number Publication date
JP2002359327A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
JP3554310B2 (en) Electronic circuit module
US6961245B2 (en) High frequency module
KR100463092B1 (en) Multilayer ceramic device
JP4758197B2 (en) Surface acoustic wave device and communication device
JP4443325B2 (en) Surface acoustic wave device
JP3796192B2 (en) High frequency module
JP2006237238A (en) High frequency module
JP2005101366A (en) High-frequency module
JP4822900B2 (en) Electronic component module
JP2002299775A (en) Electronic component device
US11139795B2 (en) Electronic component and module including the same
JP2005277939A (en) High frequency module and radio communication equipment
JP2005217670A (en) Surface acoustic wave device and communication device
JP2851732B2 (en) Electronic component storage package
JP2003229521A (en) Semiconductor module and manufacturing method therefor
JP2003197810A (en) Electronic component
JP4157449B2 (en) High frequency module
JP2007266898A (en) High-frequency module and manufacturing method therefor
KR100893028B1 (en) Semiconductor device package and method for manufacturing semiconductor device packaging
JP2003283148A (en) Wiring board
JP4000093B2 (en) Input / output terminal, manufacturing method of input / output terminal, package for storing semiconductor element using input / output terminal, and semiconductor device
JP3638528B2 (en) Package for storing semiconductor elements
JP3582975B2 (en) Wiring board
JP3628254B2 (en) Package for storing semiconductor elements
JP2003258597A (en) Package for surface acoustic wave filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040506

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees