JP2005217670A - Surface acoustic wave device and communication device - Google Patents

Surface acoustic wave device and communication device Download PDF

Info

Publication number
JP2005217670A
JP2005217670A JP2004020558A JP2004020558A JP2005217670A JP 2005217670 A JP2005217670 A JP 2005217670A JP 2004020558 A JP2004020558 A JP 2004020558A JP 2004020558 A JP2004020558 A JP 2004020558A JP 2005217670 A JP2005217670 A JP 2005217670A
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
acoustic wave
surface acoustic
electrode
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004020558A
Other languages
Japanese (ja)
Inventor
Miki Ito
幹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004020558A priority Critical patent/JP2005217670A/en
Publication of JP2005217670A publication Critical patent/JP2005217670A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide highly reliable surface acoustic wave device and communication device, e.g. a frequency band filter or a demultiplexer employing a surface acoustic wave element being incorporated in a mobile wireless apparatus such as a portable telephone, in which heat dissipation is enhanced while sustaining airtightness of the device. <P>SOLUTION: On the upper surface of a supporting substrate 2, a surface acoustic wave element 1 provided with an excitation electrode on one major surface of a piezoelectric substrate is mounted while facing the one major surface of a piezoelectric substrate, and the other major surface of the piezoelectric substrate is covered with a protective member 4. One or more through hole 5 is made to penetrate between the one and the other major surfaces of the piezoelectric substrate, and at least one opening of the through hole 5 is covered with a good heat conductor 6 having thermal conductivity higher than that of the piezoelectric substrate. Since no outer air intrudes from the through hole 5, the excitation electrode does not corrode and sufficient heat dissipation is attained by the good heat conductor 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、携帯電話および車載用センサーなどの移動体無線機器等に内蔵される周波数帯域フィルタや分波器などに適用できる弾性表面波装置および通信装置に関する。   The present invention relates to a surface acoustic wave device and a communication device that can be applied to a frequency band filter, a duplexer, and the like built in a mobile wireless device such as a mobile phone and a vehicle-mounted sensor.

近年、携帯電話等の移動体通信機器に使用される電子部品には、半導体素子からなる能動部品,チップコンデンサ,チップ抵抗,チップインダクタ,弾性表面波(Surface Acoustic Wave、以下、SAWと略記する)フィルタ等を使用したフィルタ,分波器などがある。   In recent years, electronic components used in mobile communication devices such as mobile phones include active components made of semiconductor elements, chip capacitors, chip resistors, chip inductors, and surface acoustic waves (hereinafter abbreviated as SAW). There are filters and duplexers that use filters.

図12にSAWフィルタを構成するSAW共振子の基本構成を示す。同図において、11はLiTaO単結晶等からなる圧電基板上に、スパッタ等の方法で形成された励振電極のIDT(Inter Digital Transducer)電極であり、図中、12はSAWをIDT電極11側へ反射し効率良く共振させる反射器である。なお、同図においてIDT電極11および反射器12の電極指は、実際には数10〜数100本にも及ぶため簡略化して示し、他の図面においても同様とする。 FIG. 12 shows a basic configuration of the SAW resonator constituting the SAW filter. In the figure, 11 is an IDT (Inter Digital Transducer) electrode of an excitation electrode formed by a method such as sputtering on a piezoelectric substrate made of LiTaO 3 single crystal or the like, and in the figure, 12 is a SAW on the IDT electrode 11 side. It is a reflector that resonates and resonates efficiently. In the figure, the electrode fingers of the IDT electrode 11 and the reflector 12 are actually simplified because they are several tens to several hundreds, and the same applies to other drawings.

図10および図11に従来のSAWフィルタを示す。図11におけるB−B’線断面図を図10に示す。LiTaO単結晶等の圧電基板上に少なくとも1対のIDT電極および反射器等が形成されてなるSAW素子101と、それを気密封止し実装する基体102よりなる。SAW素子101は、金バンプ103などを介して基体102上面に電極形成面を基体側に対向させて接着固定され、SAW素子101と基体102上面の電極とを導通接続した後、保護部材104により気密に封止している。 10 and 11 show a conventional SAW filter. FIG. 10 is a sectional view taken along line BB ′ in FIG. It comprises a SAW element 101 in which at least a pair of IDT electrodes, a reflector and the like are formed on a piezoelectric substrate such as a LiTaO 3 single crystal, and a base 102 on which it is hermetically sealed and mounted. The SAW element 101 is bonded and fixed to the upper surface of the base 102 with the electrode formation surface facing the base side via a gold bump 103 and the like. After the SAW element 101 and the electrode on the upper surface of the base 102 are electrically connected, the protective member 104 Airtightly sealed.

移動体通信機器の小型化,薄型化に対応して、前記能動部品,チップコンデンサ,チップ抵抗は小型化,低背化されてきているが、SAWフィルタまたはSAWフィルタを使用した分波器(以下、SAW分波器)やパワーアンプが移動体通信機器の体積の大部分を占めており、これらの小型化,低背化に対する要望が増えている。そのため、近年のSAWフィルタまたはSAW分波器は、圧電基板の電極が形成された側の面を基体に対向するように実装する、いわゆるフリップチップ実装が一般的に使用されている。このフリップチップ実装を行なったSAWフィルタまたはSAW分波器は、信頼性を向上させるために、樹脂を塗布,硬化させることにより、電極が形成された面の気密性を保っている。   The active components, chip capacitors, and chip resistors have been reduced in size and height in response to downsizing and thinning of mobile communication devices. However, a duplexer using a SAW filter or SAW filter (hereinafter referred to as a duplexer). , SAW duplexers) and power amplifiers occupy most of the volume of mobile communication devices, and there is an increasing demand for miniaturization and low profile. Therefore, so-called flip-chip mounting is generally used for recent SAW filters or SAW duplexers in which the surface of the piezoelectric substrate on which the electrodes are formed is mounted so as to face the substrate. The SAW filter or SAW duplexer on which the flip chip mounting is performed maintains the airtightness of the surface on which the electrodes are formed by applying and curing a resin in order to improve reliability.

ここで、図13に携帯電話の高周波回路のブロック回路図を示す。送信される高周波信号は、SAWフィルタ20によりその不要信号が除去され、パワーアンプ21で増幅された後に、アイソレータ22とSAW分波器14を通り、アンテナ13から放射される。また、アンテナ13で受信された高周波信号は、SAW分波器14を通りローノイズアンプ15で増幅され、SAWフィルタ16でその不要信号を除去された後、アンプ17で再増幅されてミキサ18で低周波信号に変換される。   Here, FIG. 13 shows a block circuit diagram of a high-frequency circuit of a cellular phone. The high-frequency signal to be transmitted is removed from the unnecessary signal by the SAW filter 20, amplified by the power amplifier 21, and then radiated from the antenna 13 through the isolator 22 and the SAW duplexer 14. The high frequency signal received by the antenna 13 passes through the SAW branching filter 14 and is amplified by the low noise amplifier 15. After the unnecessary signal is removed by the SAW filter 16, the signal is re-amplified by the amplifier 17 and reduced by the mixer 18. Converted to a frequency signal.

また、携帯電話を小型化にするために部品の間隔も小さくする必要があり、SAWフィルタまたはSAW分波器とパワーアンプの間隔も非常に小さくなっている。パワーアンプ自身は発熱する部品であり、周辺のSAWフィルタまたはSAW分波器もパワーアンプからの熱、または入力信号による発熱により電極が高温になる。このため、SAWフィルタまたはSAW分波器は特性劣化が加速されてしまい、短時間で携帯電話の故障が発生するので信頼性に問題があった。そのため、図11に示すように、圧電基板に貫通孔105を形成し、電極に発生する熱を放熱させるという対策を講じていた(特許文献1を参照)。
特開2003-87093号公報
In addition, in order to reduce the size of the mobile phone, it is necessary to reduce the interval between components, and the interval between the SAW filter or SAW duplexer and the power amplifier is also very small. The power amplifier itself is a component that generates heat, and the surrounding SAW filter or SAW duplexer also becomes hot due to heat from the power amplifier or heat generated by the input signal. For this reason, the SAW filter or the SAW duplexer is accelerated in its characteristic deterioration, and a mobile phone failure occurs in a short time, so there is a problem in reliability. Therefore, as shown in FIG. 11, a countermeasure has been taken in which through holes 105 are formed in the piezoelectric substrate to dissipate heat generated in the electrodes (see Patent Document 1).
JP 2003-87093 A

しかしながら、上記従来のSAWフィルタまたはSAW分波器は、貫通孔がSAW共振子の周辺に形成されているが、圧電基板のIDT電極が形成されている面、およびIDT電極が形成されていない面の貫通孔の上部には電極は形成されていない。この場合、貫通孔を通して外気(特に、湿気)がIDT電極が形成された空間に入り、IDT電極を腐食させ、故障を発生させることがある。また、上述したように貫通孔上部に電極が形成されていないため放熱性に乏しい。   However, in the conventional SAW filter or SAW duplexer, the through hole is formed around the SAW resonator, but the surface on which the IDT electrode of the piezoelectric substrate is formed and the surface on which the IDT electrode is not formed. No electrode is formed on the upper part of the through hole. In this case, outside air (especially moisture) may enter the space where the IDT electrode is formed through the through hole, and the IDT electrode may be corroded to cause a failure. Moreover, since the electrode is not formed in the upper part of the through hole as described above, heat dissipation is poor.

そこで、本発明は上記事情に鑑みて提案されたものであり、その目的はSAWフィルタまたはSAW分波器の気密性を保ちながら、放熱性が良好で信頼性の高い品質に優れた弾性表面波装置および通信装置を提供することにある。   Therefore, the present invention has been proposed in view of the above circumstances, and its purpose is to achieve a surface acoustic wave that has excellent heat dissipation and high reliability while maintaining the airtightness of the SAW filter or SAW duplexer. It is to provide a device and a communication device.

本発明の弾性表面波装置は、1)支持基体の上面に、圧電基板の一方主面に励振電極を設けた弾性表面波素子を、前記圧電基板の前記一方主面を対面させて載置するとともに、前記圧電基板の他方主面を保護部材で覆ってなる弾性表面波装置であって、前記圧電基板の前記一方主面と前記他方主面との間を貫通する1つ以上の貫通孔を設け、該貫通孔の少なくとも一方の開口部を前記圧電基板より熱伝導率の大きい良熱伝導体で覆ったことを特徴とする。   In the surface acoustic wave device of the present invention, 1) a surface acoustic wave element in which an excitation electrode is provided on one main surface of a piezoelectric substrate is placed on the upper surface of a support base so that the one main surface of the piezoelectric substrate faces. And a surface acoustic wave device in which the other main surface of the piezoelectric substrate is covered with a protective member, and includes one or more through holes penetrating between the one main surface and the other main surface of the piezoelectric substrate. And at least one opening of the through hole is covered with a good thermal conductor having a higher thermal conductivity than the piezoelectric substrate.

また、2)上記1)の弾性表面波装置において、前記良熱伝導体が前記圧電基板の前記他方主面を全面にわたって覆っていることを特徴とする。   2) In the surface acoustic wave device according to 1), the good thermal conductor covers the other main surface of the piezoelectric substrate over the entire surface.

また、3)上記1)または2)の弾性表面波装置において、前記良熱伝導体が前記圧電基板の側面を覆っていることを特徴とする。   3) In the surface acoustic wave device according to 1) or 2), the good thermal conductor covers a side surface of the piezoelectric substrate.

また、4)上記1)〜3)のいずれかの弾性表面波装置において、前記貫通孔の内側に前記圧電基板より熱伝導率の大きい良熱伝導体を設けたことを特徴とする。   4) In the surface acoustic wave device according to any one of 1) to 3), a good thermal conductor having a thermal conductivity higher than that of the piezoelectric substrate is provided inside the through hole.

また、本発明の通信装置は、5)上記1)〜4)のいずれかの弾性表面波装置を、フィルタ手段として用いたことを特徴とする。   The communication device of the present invention is characterized in that 5) the surface acoustic wave device according to any one of 1) to 4) is used as a filter means.

本発明の弾性表面波装置によれば、支持基体の上面に、圧電基板の一方主面に励振電極を設けた弾性表面波素子を、前記圧電基板の前記一方主面を対面させて載置するとともに、前記圧電基板の他方主面を保護部材で覆ってなる弾性表面波装置において、前記圧電基板の前記一方主面と前記他方主面との間を貫通する1つ以上の貫通孔を設け、該貫通孔の少なくとも一方の開口部を前記圧電基板より熱伝導率の大きい良熱伝導体で覆ったので、この良熱伝導体により、外気の入り込みを極力防止することができるので気密性が良好となる。また、前記良熱伝導体および前記貫通孔により放熱され、前記支持基体へも熱の伝達が可能になるので十分な放熱性が得られる。   According to the surface acoustic wave device of the present invention, the surface acoustic wave element in which the excitation electrode is provided on one main surface of the piezoelectric substrate is placed on the upper surface of the support base so that the one main surface of the piezoelectric substrate faces the surface. In addition, in the surface acoustic wave device in which the other main surface of the piezoelectric substrate is covered with a protective member, one or more through-holes penetrating between the one main surface and the other main surface of the piezoelectric substrate are provided, Since at least one opening of the through-hole is covered with a good heat conductor having a thermal conductivity higher than that of the piezoelectric substrate, the good heat conductor can prevent entry of outside air as much as possible, so that airtightness is good. It becomes. Further, heat is dissipated by the good heat conductor and the through hole, and heat can be transmitted to the support base, so that sufficient heat dissipation is obtained.

また、前記良熱伝導体が前記圧電基板の前記他方主面の全面にわたって覆っていることにより、外気が入りにくくなり、これにより気密性が向上する。また、前記良熱伝導体および前記貫通孔により効率よく放熱され、前記支持基体へも熱の伝達が可能になるので十分な放熱性が得られる。   Further, since the good heat conductor covers the entire surface of the other main surface of the piezoelectric substrate, it becomes difficult for outside air to enter, thereby improving airtightness. In addition, heat can be efficiently radiated by the good heat conductor and the through hole, and heat can be transferred to the support base, so that sufficient heat dissipation can be obtained.

また、前記良熱伝導体が前記圧電基板の側面を覆っているので、熱伝導の面積がより広くなるので、さらに十分な放熱性が得られる。   In addition, since the good heat conductor covers the side surface of the piezoelectric substrate, the area of heat conduction becomes wider, so that more sufficient heat dissipation can be obtained.

また、前記貫通孔の内側に前記圧電基板より熱伝導率の大きい良熱伝導体を設けたことにより、さらに十分な放熱性や気密性を得ることができる。   Further, by providing a good thermal conductor having a thermal conductivity larger than that of the piezoelectric substrate inside the through hole, it is possible to obtain further sufficient heat dissipation and airtightness.

さらに、本発明の通信装置は上記弾性表面波装置をフィルタ手段として用いるので、高品質の通信装置を提供できる。   Furthermore, since the communication device of the present invention uses the surface acoustic wave device as a filter means, a high-quality communication device can be provided.

本発明の弾性表面波装置の実施の形態について模式的に示した図面を参照しつつ詳細に説明する。図1および図2は、本発明の基本的なSAWフィルタの構成を示した断面図である。図2は図1に示すSAWフィルタの上面図であり、図1は図2中の破線で示したA−A’線断面図である。   An embodiment of a surface acoustic wave device of the present invention will be described in detail with reference to the drawings schematically shown. 1 and 2 are cross-sectional views showing the configuration of a basic SAW filter of the present invention. 2 is a top view of the SAW filter shown in FIG. 1, and FIG. 1 is a cross-sectional view taken along the line A-A 'shown in FIG.

本発明のSAWフィルタはSAW素子1と、SAW素子1を実装する支持基体2、SAW素子1と支持基体2とに形成した電極端子を接続する金バンプまたははんだバンプであるバンプ(接続用導体)3と、気密封止するためのエポキシ樹脂などからなる保護部材4とから主に構成される。すなわち、支持基体2の上面に、圧電基板の一方主面にIDT電極を設けた弾性表面波素子1を、前記圧電基板の前記一方主面を対面させて載置するとともに、前記圧電基板の他方主面を保護部材で覆った構成において、前記圧電基板の前記一方主面と前記他方主面との間を貫通する1つ以上の貫通孔5を設け、貫通孔5の少なくとも一方の開口部を前記圧電基板より熱伝導率の大きい良熱伝導体6で覆っている。   The SAW filter of the present invention includes a SAW element 1, a support base 2 on which the SAW element 1 is mounted, and a bump (connecting conductor) that is a gold bump or a solder bump that connects electrode terminals formed on the SAW element 1 and the support base 2. 3 and a protective member 4 made of an epoxy resin or the like for hermetically sealing. That is, the surface acoustic wave element 1 provided with an IDT electrode on one main surface of the piezoelectric substrate is placed on the upper surface of the support base 2 with the one main surface of the piezoelectric substrate facing the other surface of the piezoelectric substrate. In the configuration in which the main surface is covered with a protective member, one or more through holes 5 penetrating between the one main surface and the other main surface of the piezoelectric substrate are provided, and at least one opening of the through hole 5 is provided. It is covered with a good thermal conductor 6 having a higher thermal conductivity than the piezoelectric substrate.

上記SAW素子1は、タンタル酸リチウム(LiTaO)単結晶,ニオブ酸リチウム(LiNbO)単結晶などの圧電基板上に、励振電極であるIDT電極,反射器,入出力電極,接地電極等が形成されている。また、支持基体2はアルミナ、低温同時焼成セラミックス、BTレジン(ビスマレイミド・トリアジン)などの樹脂などより構成されている。高周波信号入出力電極および接地電極が、厚膜印刷法により形成されている。また、上記気密封止する保護部材4は樹脂を塗布し、硬化させることにより気密封止している。また、図中7は信号を取り出す端子電極であり、支持基体2の下面に形成されている。 The SAW element 1 has an IDT electrode, a reflector, an input / output electrode, a ground electrode, and the like as excitation electrodes on a piezoelectric substrate such as a lithium tantalate (LiTaO 3 ) single crystal or lithium niobate (LiNbO 3 ) single crystal. Is formed. The support base 2 is made of alumina, a low-temperature co-fired ceramic, a resin such as BT resin (bismaleimide / triazine), or the like. The high-frequency signal input / output electrode and the ground electrode are formed by a thick film printing method. The protective member 4 for hermetically sealing is hermetically sealed by applying and curing a resin. Reference numeral 7 in the figure denotes a terminal electrode for taking out a signal, which is formed on the lower surface of the support base 2.

本発明の特徴は、圧電基板1上に貫通孔5が形成され、電極が形成された面の貫通孔の少なくとも一方の開口部を、導体パターンからなる良熱伝導体6が形成されていることである。ここで、良熱伝導体6は圧電基板より熱伝導率の大きい材料で構成されていればよく、例えば金属材料,セラミックス,金属材料とセラミックスとの複合材料などを用いることが可能であるが、熱伝導率の高さと圧電基板への作製が容易であるなどの点から金属材料が好ましい。例えば、圧電基板がタンタル酸リチウム単結晶やニオブ酸リチウム単結晶(熱伝導率:数W/m・K)からなるものであれば、これら単結晶に容易に作製が可能で熱伝導率が圧電基板より十分に高い、後記するIDT電極材料が好適である。   A feature of the present invention is that a through-hole 5 is formed on the piezoelectric substrate 1 and a good thermal conductor 6 made of a conductor pattern is formed in at least one opening of the through-hole on the surface on which the electrode is formed. It is. Here, the good heat conductor 6 only needs to be made of a material having a higher thermal conductivity than the piezoelectric substrate. For example, a metal material, ceramics, a composite material of a metal material and ceramics, or the like can be used. A metal material is preferred from the viewpoints of high thermal conductivity and easy fabrication on a piezoelectric substrate. For example, if the piezoelectric substrate is made of a lithium tantalate single crystal or a lithium niobate single crystal (thermal conductivity: several W / m · K), the single crystal can be easily manufactured and the thermal conductivity is piezoelectric. An IDT electrode material described later, which is sufficiently higher than the substrate, is preferable.

このように、圧電基板に形成された貫通孔5を被覆する良熱伝導体6が形成されているため、SAW共振子から発生した熱は、良熱伝導体6から貫通孔5や支持基体2へ伝達され放熱される。また、貫通孔5の開口部が被覆されているため、貫通孔5からIDT電極が形成されている空間25内へ外気が入る隙間が無く、その結果、気密性に優れIDT電極の腐食が極力防止される。   Thus, since the good heat conductor 6 which covers the through hole 5 formed in the piezoelectric substrate is formed, the heat generated from the SAW resonator is transferred from the good heat conductor 6 to the through hole 5 and the support base 2. It is transmitted to and dissipated. Further, since the opening of the through hole 5 is covered, there is no gap for the outside air to enter from the through hole 5 into the space 25 where the IDT electrode is formed. As a result, the airtightness is excellent and the IDT electrode is corroded as much as possible. Is prevented.

また、図3に示すように、圧電基板のIDT電極が形成されていない側の面の貫通孔5の開口部を良熱伝導体6で覆う構成としてもよい。なお、他の構成は図1と同様であるので説明を省略する。このような構成によっても、SAW共振子から発生した熱は貫通孔5および良熱伝導体6へ伝達されて、十分な放熱性が得られる。同様にして、図4に示すように、貫通孔5の圧電基板の両主面側の開口部を良熱伝導体6で覆う構成としてもよい。なお、他の構成は図1と同様であるので説明を省略する。このような構成によっても、熱の伝達が促進されて、特に、圧電基板のIDT電極が形成されている側に設けられた(図示下側の)良熱伝導体6→貫通孔5→圧電基板のIDT電極が形成されていない側(圧電基板の背面)に設けられた(図示上側の)良熱伝導体6へと順次熱が伝達されることにより、いっそう放熱効果を高めることができる。さらに、貫通孔6を両側から覆蓋することにより気密性をも高めることができる。   Moreover, as shown in FIG. 3, it is good also as a structure which covers the opening part of the through-hole 5 of the surface by which the IDT electrode of the piezoelectric substrate is not formed with the good heat conductor 6. FIG. Other configurations are the same as those in FIG. Even with such a configuration, the heat generated from the SAW resonator is transmitted to the through hole 5 and the good thermal conductor 6, and sufficient heat dissipation is obtained. Similarly, as shown in FIG. 4, the openings on both main surface sides of the piezoelectric substrate of the through hole 5 may be covered with the good heat conductor 6. Other configurations are the same as those in FIG. Even with such a configuration, heat transfer is promoted, and in particular, the good thermal conductor 6 (on the lower side in the figure) provided on the side where the IDT electrode of the piezoelectric substrate is formed → the through hole 5 → the piezoelectric substrate. By sequentially transferring heat to the good thermal conductor 6 (upper side in the drawing) provided on the side where the IDT electrode is not formed (the back side of the piezoelectric substrate), the heat radiation effect can be further enhanced. Furthermore, airtightness can be improved by covering the through-hole 6 from both sides.

また、図5に示す弾性表面波装置では、圧電基板のIDT電極が形成されていない圧電基板の背面(裏面)の面全体にわたって良熱伝導体6で覆っている。なお、他の構成は図1と同様であるので説明を省略する。このような構成によれば、放熱に利用できる良熱伝導体6の面積をさらに大きくすることができ、その結果、いっそう良好な放熱性が得られる。さらに、図4の弾性表面波装置の場合と同様な理由により、気密性も高めることができる。   In the surface acoustic wave device shown in FIG. 5, the entire surface of the back surface (back surface) of the piezoelectric substrate on which the IDT electrodes of the piezoelectric substrate are not formed is covered with the good thermal conductor 6. Other configurations are the same as those in FIG. According to such a configuration, the area of the good heat conductor 6 that can be used for heat dissipation can be further increased, and as a result, even better heat dissipation can be obtained. Further, for the same reason as in the case of the surface acoustic wave device shown in FIG.

また、図6に示すように、圧電基板の側面や支持基体2にも良熱伝導体6が延在させてもよい。なお、他の構成は図1と同様であるので説明を省略する。このような構成によれば、放熱に利用できる良熱伝導体6の形成面積をさらに大きくすることができ、その結果、よりいっそう良好な放熱性が得られる。さらに、図4および図5の弾性表面波装置の場合と同様な理由により気密性をも高めることができる。   In addition, as shown in FIG. 6, the good thermal conductor 6 may be extended to the side surface of the piezoelectric substrate or the support base 2. Other configurations are the same as those in FIG. According to such a configuration, the formation area of the good heat conductor 6 that can be used for heat dissipation can be further increased, and as a result, even better heat dissipation can be obtained. Further, the airtightness can be improved for the same reason as in the surface acoustic wave device of FIGS.

また、図7に示すように、圧電基板のIDT電極が形成された面の貫通孔6上に設けた良熱伝導体6と支持基体2との間に、金またははんだからなる接続導体であるバンプ3が形成されている。このバンプ3の存在により外気の入り込みがさらに困難となり、さらに気密性が向上する。なお、他の構成は図5と同様であるので説明を省略する。   Further, as shown in FIG. 7, a connection conductor made of gold or solder is provided between the good thermal conductor 6 provided on the through hole 6 on the surface of the piezoelectric substrate on which the IDT electrode is formed and the support base 2. Bumps 3 are formed. The presence of the bumps 3 makes it more difficult for outside air to enter and further improves airtightness. Other configurations are the same as those in FIG.

また、図8に示すように、貫通孔5の内側に良熱伝導体を構成する導電ペースト8が充填されている。この構成によっても熱の伝導率が向上するため、さらに良好な放熱性が得られる。なお、他の構成は図7と同様であるので説明を省略する。なお、この導電ペースト8は良熱伝導体6と同一の材料でも異なる材料であってもよい。   Moreover, as shown in FIG. 8, the inside of the through-hole 5 is filled with the electrically conductive paste 8 which comprises a good heat conductor. This configuration also improves the heat conductivity, so that even better heat dissipation can be obtained. Since other configurations are the same as those in FIG. The conductive paste 8 may be the same material as the good heat conductor 6 or a different material.

また、図9に示すように、貫通孔5の内側(内壁面)に良熱伝導体を構成する導電性薄膜9が形成されている。この構成によっても熱の伝導率が向上するため、良好な放熱性が得られる。なお、他の構成は図8と同様であるので説明を省略する。   Moreover, as shown in FIG. 9, the electroconductive thin film 9 which comprises a good heat conductor is formed inside the through-hole 5 (inner wall surface). This configuration also improves the heat conductivity, so that good heat dissipation is obtained. Other configurations are the same as those in FIG.

また、既に説明した図13に示すような携帯電話などの通信装置のフィルタ手段として上記の弾性表面波装置を用いることにより、すなわち、図13におけるSAWフィルタ20,SAW分波器14,SAWフィルタ16などに用いることにより、品質的に優れた通信装置を提供できる。   Further, by using the above-described surface acoustic wave device as the filter means of the communication device such as the cellular phone as shown in FIG. 13, the SAW filter 20, the SAW duplexer 14, and the SAW filter 16 in FIG. For example, a communication device with excellent quality can be provided.

本発明の弾性表面波装置のSAW共振子は、IDT電極がAlまたはAl−Cu系,Al−Ti系,Al−Mg系,Al−Cu−Mg系等のAl合金、または下層/上層でAl−Cu系合金/Cu/Al−Cu系合金、Ti/Al−Cu系合金、Ti/Al−Cu系合金/Ti、Ti/Al−Cu−Mg系合金/Ti、Ti/Al−Cu−Mg系合金/Ti/Al−Cu−Mg系合金などの積層膜からなるものとすると良い。また、IDT電極は蒸着法、スパッタリング法またはCVD法等の薄膜形成法により形成する。そして、IDT電極の電極指の対数は50〜300程度、電極指の線幅は0.1〜10.0μm程度、電極指の間隔は0.1〜10.0μm程度、電極指の開口幅(交差幅)は10〜200μm程度、IDT電極の厚みは0.1〜0.5μm程度とすることが、SAW共振子あるいはSAWフィルタとしての所期の特性を得る上で好適である。圧電基板としては、36°±10°Yカット−X伝搬のLiTaO単結晶、64°±10°Yカット−X伝搬のLiNbO単結晶、45°±10°Xカット−Z伝搬のLi単結晶等が、電気機械結合係数が大きく且つ群遅延時間温度係数が小さいため好ましく、特に電気機械結合係数の大きな36°±10°Yカット−X伝搬のLiTaO単結晶が良い。また、結晶Y軸方向におけるカット角は36°±10°の範囲内であれば良く、その場合、十分な圧電特性が得られる。圧電基板の厚みは0.1〜0.5mm程度がよい。なぜなら、0.1mm未満の厚みでは圧電基板が脆くなり、0.5mmを超える厚みでは材料コストが大きくなるからである。また、圧電基板の焦電効果による電極破壊を防ぐために、還元処理を施した圧電基板を使用しても何ら問題無い。圧電基板の焦電効果による電極破壊を防ぐために、Fe元素が添加された圧電基板を使用しても何ら問題無い。また、SAW分波器の場合、受信用のSAW素子および送信用のSAW素子は、1つの圧電基板の主面上に形成されていてもよいし、それぞれ別々の圧電基板に作製したものでも、さらに、個々にそれぞれの基体に実装されていてもよい。 In the SAW resonator of the surface acoustic wave device of the present invention, the IDT electrode is Al or an Al alloy such as Al—Cu, Al—Ti, Al—Mg, or Al—Cu—Mg, or Al in the lower layer / upper layer. -Cu alloy / Cu / Al-Cu alloy, Ti / Al-Cu alloy, Ti / Al-Cu alloy / Ti, Ti / Al-Cu-Mg alloy / Ti, Ti / Al-Cu-Mg It is preferable to be made of a laminated film such as a titanium alloy / Ti / Al—Cu—Mg alloy. The IDT electrode is formed by a thin film forming method such as an evaporation method, a sputtering method, or a CVD method. The number of electrode fingers of the IDT electrode is about 50 to 300, the line width of the electrode fingers is about 0.1 to 10.0 μm, the distance between the electrode fingers is about 0.1 to 10.0 μm, and the opening width (intersection width) of the electrode fingers is 10 to About 200 μm and the IDT electrode thickness of about 0.1 to 0.5 μm are suitable for obtaining desired characteristics as a SAW resonator or SAW filter. As the piezoelectric substrate, 36 ° ± 10 ° Y cut-X propagation LiTaO 3 single crystal, 64 ° ± 10 ° Y cut-X propagation LiNbO 3 single crystal, 45 ° ± 10 ° X cut-Z propagation Li 2 A B 4 O 7 single crystal or the like is preferable because it has a large electromechanical coupling coefficient and a small group delay time temperature coefficient, and a 36 ° ± 10 ° Y cut-X propagation LiTaO 3 single crystal having a large electromechanical coupling coefficient is particularly preferable. . Further, the cut angle in the crystal Y-axis direction may be in the range of 36 ° ± 10 °, and in that case, sufficient piezoelectric characteristics can be obtained. The thickness of the piezoelectric substrate is preferably about 0.1 to 0.5 mm. This is because the piezoelectric substrate becomes brittle when the thickness is less than 0.1 mm, and the material cost increases when the thickness exceeds 0.5 mm. Further, there is no problem even if a piezoelectric substrate subjected to reduction treatment is used in order to prevent electrode destruction due to the pyroelectric effect of the piezoelectric substrate. In order to prevent electrode destruction due to the pyroelectric effect of the piezoelectric substrate, there is no problem even if a piezoelectric substrate added with Fe element is used. In the case of the SAW duplexer, the reception SAW element and the transmission SAW element may be formed on the main surface of one piezoelectric substrate, or may be formed on separate piezoelectric substrates, Furthermore, it may be individually mounted on each substrate.

以上説明したように、本発明の弾性表面波装置によれば、支持基体2の上面に、圧電基板の一方主面にIDT電極を設けた弾性表面波素子1を、前記圧電基板の前記一方主面を対面させて載置するとともに、前記圧電基板の他方主面を保護部材で覆った構成において、前記圧電基板の前記一方主面と前記他方主面との間を貫通する1つ以上の貫通孔5を設け、貫通孔5の少なくとも一方の開口部を前記圧電基板より熱伝導率の大きい良熱伝導体6で覆ったので、この良熱伝導体6により、外気の入り込みを極力防止することができ気密性が良好となる。また、貫通孔6により熱が支持基体2へも伝導することができるので十分な放熱性が得られる。   As described above, according to the surface acoustic wave device of the present invention, the surface acoustic wave device 1 in which the IDT electrode is provided on the one main surface of the piezoelectric substrate on the upper surface of the support base 2 is used. One or more penetrations that pass between the one main surface and the other main surface of the piezoelectric substrate in a configuration in which the surfaces are placed facing each other and the other main surface of the piezoelectric substrate is covered with a protective member Since the hole 5 is provided and at least one opening of the through-hole 5 is covered with the good heat conductor 6 having a higher thermal conductivity than the piezoelectric substrate, the good heat conductor 6 prevents the entry of outside air as much as possible. And airtightness is improved. Further, since heat can be conducted to the support base 2 by the through holes 6, sufficient heat dissipation can be obtained.

また、良熱伝導体6が圧電基板の他方主面を全面にわたって覆うことにより、外気が入りにくくなり、これにより気密性が向上する。また、良熱伝導体6および貫通孔5により放熱され、支持基体2へもより良好に熱伝導することになるため、十分な放熱性が得られる。   Moreover, since the good heat conductor 6 covers the other main surface of the piezoelectric substrate over the entire surface, it becomes difficult for outside air to enter, thereby improving airtightness. Further, heat is dissipated by the good heat conductor 6 and the through-hole 5, and the heat conduction to the support base 2 is better, so that sufficient heat dissipation is obtained.

また、良熱伝導体6が圧電基板の側面をも覆っているので、熱伝導の面積が広くなるので、さらに十分な放熱性が得られる。   In addition, since the good heat conductor 6 also covers the side surface of the piezoelectric substrate, the area of heat conduction is widened, so that further sufficient heat dissipation can be obtained.

また、貫通孔5の内側にも圧電基板より熱伝導率の大きい良熱伝導体を設けることにより、十分な放熱性や気密性を得ることができる。   Further, by providing a good heat conductor having a higher thermal conductivity than the piezoelectric substrate also inside the through hole 5, sufficient heat dissipation and airtightness can be obtained.

さらに、本発明の通信装置は上記弾性表面波装置をフィルタ手段として用いることができるので、これにより高品質の通信装置を提供できる。   Furthermore, since the surface acoustic wave device can be used as a filter means in the communication device of the present invention, it is possible to provide a high-quality communication device.

尚、本発明は上記の実施形態に限定されるものでは無く、本発明の要旨を逸脱しない範囲内で種々の変更は何ら差し支えない。   In addition, this invention is not limited to said embodiment, A various change does not interfere in the range which does not deviate from the summary of this invention.

以下に本発明をより具体化した実施例について説明する。   Examples in which the present invention is further embodied will be described below.

<例1>
図1に示す弾性表面波装置を以下のようにして作製した。本例ではパッケージとしてLTCC:Low Temperature Co-fired Ceramics(低温同時焼成セラミックス)を使用した場合を説明する。まず、支持基体2について説明する。セラミックスの親基板から多数個取りするようにし、このセラミックスの親基板上に電極パターンを印刷し焼成した後に個別に切断し、基体の入出力電極および接地電極を印刷法により形成した。
<Example 1>
The surface acoustic wave device shown in FIG. 1 was produced as follows. In this example, a case where LTCC: Low Temperature Co-fired Ceramics (low temperature co-fired ceramics) is used as a package will be described. First, the support base 2 will be described. A large number were taken from the ceramic parent substrate, and an electrode pattern was printed on the ceramic parent substrate, fired, and then individually cut to form an input / output electrode and a ground electrode of the substrate by a printing method.

次に、SAW素子1について説明する。38.7°YカットのLiTaO単結晶の圧電基板上に、図2に示すような下地電極にTi、下地電極上にAl(99質量%)−Cu(1質量%)−Mg(1質量%)合金による微細電極パターンを形成した。このときSAWフィルタは2.5段T型ラダーとした。このときのSAWフィルタの電極周期は約2.2〜2.3μmとした。パターン作製には、スパッタリング装置、縮小投影露光機(ステッパー)、およびRIE(Reactive Ion Etching)装置によりフォトリソグラフィを行なった。 Next, the SAW element 1 will be described. On a 38.7 ° Y-cut LiTaO 3 single crystal piezoelectric substrate, the base electrode is Ti as shown in FIG. 2, and the base electrode is Al (99 mass%)-Cu (1 mass%)-Mg (1 mass%). A fine electrode pattern made of an alloy was formed. At this time, the SAW filter was a 2.5-stage T-type ladder. The electrode period of the SAW filter at this time was about 2.2 to 2.3 μm. For pattern production, photolithography was performed using a sputtering apparatus, a reduction projection exposure machine (stepper), and an RIE (Reactive Ion Etching) apparatus.

まず、圧電基板にスクラブ洗浄を施して不純物を除去した。次に、下地電極Tiの成膜を行なった。下地電極Tiの成膜にはスパッタリング装置を使用し、このときの下地電極膜厚は約0.09μmとした。次に、微細電極であるAl−Cu−Mgの成膜を行なった。電極の成膜にはスパッタリング装置を使用し、このときの下地電極膜厚は約0.34μmとした。   First, the piezoelectric substrate was scrubbed to remove impurities. Next, the base electrode Ti was formed. A sputtering apparatus was used to form the base electrode Ti, and the base electrode film thickness at this time was about 0.09 μm. Next, Al—Cu—Mg, which is a fine electrode, was formed. A sputtering apparatus was used for film formation of the electrode, and the film thickness of the base electrode at this time was about 0.34 μm.

次に、フォトレジストを約0.5μmの厚みにスピンコートし、縮小投影露光装置(ステッパー)により、所望形状にパターニングを行ない、現像装置にて不要部分のフォトレジストをアルカリ現像液で溶解させ、所望パターンを表出した後、RIE装置により電極膜のエッチングを行ない、パターンニングを終了し、梯子型弾性表面波フィルタを構成する弾性表面波共振器の電極パターンを形成した。   Next, a photoresist is spin-coated to a thickness of about 0.5 μm, patterned into a desired shape by a reduction projection exposure apparatus (stepper), and an unnecessary portion of the photoresist is dissolved with an alkaline developer by a developing device. After the pattern was exposed, the electrode film was etched by the RIE apparatus, the patterning was finished, and the electrode pattern of the surface acoustic wave resonator constituting the ladder type surface acoustic wave filter was formed.

次に、電極パターンの所定領域上に保護膜を作製した。すなわち、CVD(Chemical Vapor Deposition)装置により、電極パターンおよび圧電基板上にSiOを約0.02μmの厚みに形成した。その後、フォトリソグラフィによってフォトレジストのパターニングを行ない、RIE装置等でフリップチップ用窓開け部のエッチングを行なった。その後、スパッタリング装置を使用し、Cr,Ni,Auよりなる積層電極を成膜した。このときの電極膜厚は約1.0μmとした。その後、フォトレジストおよび不要箇所の積層電極をリフトオフ法により同時に除去し、フリップチップ用バンプを接続するパッドを完成した。 Next, a protective film was formed on a predetermined region of the electrode pattern. That is, SiO 2 was formed to a thickness of about 0.02 μm on the electrode pattern and the piezoelectric substrate by a CVD (Chemical Vapor Deposition) apparatus. Thereafter, the photoresist was patterned by photolithography, and the flip-chip window opening was etched by an RIE apparatus or the like. Thereafter, using a sputtering apparatus, a laminated electrode made of Cr, Ni, Au was formed. The electrode film thickness at this time was about 1.0 μm. Thereafter, the photoresist and the laminated electrode at unnecessary portions were simultaneously removed by a lift-off method to complete a pad for connecting a flip chip bump.

次に、圧電基板のIDT電極に対向する面から、レーザー加工装置により圧電基板の加工を行ない、所望形状に貫通孔を形成した。   Next, the piezoelectric substrate was processed by a laser processing apparatus from the surface facing the IDT electrode of the piezoelectric substrate to form through holes in a desired shape.

次に、圧電基板をダイシング線に沿ってダイシング加工を施し、チップごとに分割した。   Next, the piezoelectric substrate was diced along dicing lines and divided into chips.

次に、セラミックスの親基板上に、はんだよりなる電極パターンを印刷した。その後、各チップをフリップチップ実装装置にて電極形成面を下面にしてセラミックスの親基板上に仮接着した。その後、N雰囲気中でベークを行ない、はんだを溶融することによりチップとセラミックスの親基板とを接着した。 Next, an electrode pattern made of solder was printed on the ceramic parent substrate. Thereafter, each chip was temporarily bonded on a ceramic parent substrate with a flip chip mounting apparatus with the electrode formation surface on the bottom surface. Thereafter, baking was performed in an N 2 atmosphere to melt the solder, thereby bonding the chip and the ceramic parent substrate.

次に、チップが接着されたセラミックスの親基板に樹脂を塗布し、N雰囲気中でベークを行ない、チップを封止した。 Next, a resin was applied to the ceramic parent substrate to which the chip was bonded, and baked in an N 2 atmosphere to seal the chip.

次に、セラミックスの親基板をダイシング線に沿ってダイシング加工を施し、個辺に分割しSAWフィルタを完成した。基体は2.0×1.6mmの積層構造のものを用いた。   Next, the ceramic parent substrate was diced along dicing lines and divided into individual sides to complete a SAW filter. A substrate having a laminated structure of 2.0 × 1.6 mm was used.

<例2>
まず、圧電基板をスクラブ洗浄し、不純物を落とした。次に、下地電極Tiの成膜を行なった。下地電極Tiの成膜にはスパッタリング装置を使用し、このときの下地電極膜厚は約0.09ミクロンとした。次に、微細電極である例1と同様なAl−Cu−Mgの成膜を行なった。電極の成膜にはスパッタリング装置を使用し、このときの下地電極膜厚は約0.34μmとした。
<Example 2>
First, the piezoelectric substrate was scrubbed to remove impurities. Next, the base electrode Ti was formed. A sputtering apparatus was used to form the base electrode Ti, and the base electrode film thickness at this time was about 0.09 microns. Next, the same Al—Cu—Mg film as in Example 1 which is a fine electrode was formed. A sputtering apparatus was used for film formation of the electrode, and the film thickness of the base electrode at this time was about 0.34 μm.

次に、フォトレジストを約0.5μmの厚みにスピンコートし、縮小投影露光装置(ステッパー)により、所望形状にパターニングを行ない、現像装置にて不要部分のフォトレジストをアルカリ現像液で溶解させ、所望パターンを表出した後、RIE装置により電極膜のエッチングを行ない、パターンニングを終了し、梯子型弾性表面波フィルタを構成する弾性表面波共振器の電極パターンを形成した。   Next, a photoresist is spin-coated to a thickness of about 0.5 μm, patterned into a desired shape by a reduction projection exposure apparatus (stepper), and an unnecessary portion of the photoresist is dissolved with an alkaline developer by a developing device. After the pattern was exposed, the electrode film was etched by the RIE apparatus, the patterning was finished, and the electrode pattern of the surface acoustic wave resonator constituting the ladder type surface acoustic wave filter was formed.

次に、電極パターンの所定領域上に保護膜を作製した。すなわち、CVD装置により、電極パターンおよび圧電基板上にSiOを約0.02μmの厚みに形成した。その後、フォトリソグラフィによってフォトレジストのパターニングを行ない、RIE装置等でフリップチップ用窓開け部のエッチングを行なった。その後、スパッタリング装置を使用し、Cr,Ni,Auよりなる積層電極を成膜した。このときの電極膜厚は約1.0ミクロンとした。その後、フォトレジストおよび不要箇所の積層電極をリフトオフ法により同時に除去し、フリップチップ用バンプを接続するパッドを完成した。 Next, a protective film was formed on a predetermined region of the electrode pattern. That is, SiO 2 was formed to a thickness of about 0.02 μm on the electrode pattern and the piezoelectric substrate by a CVD apparatus. Thereafter, the photoresist was patterned by photolithography, and the flip-chip window opening was etched by an RIE apparatus or the like. Thereafter, using a sputtering apparatus, a laminated electrode made of Cr, Ni, Au was formed. The electrode film thickness at this time was about 1.0 micron. Thereafter, the photoresist and the laminated electrode at unnecessary portions were simultaneously removed by a lift-off method to complete a pad for connecting a flip chip bump.

次に、圧電基板のIDT電極に対向する面から、レーザー加工装置により圧電基板の加工を行ない、所望形状に貫通孔を形成した。   Next, the piezoelectric substrate was processed by a laser processing apparatus from the surface facing the IDT electrode of the piezoelectric substrate to form through holes in a desired shape.

次に、IDT電極と対向する面に電極Al−Cuの成膜を行なった。電極Al−Cuの成膜にはスパッタリング装置を使用し、このときの電極膜厚は約0.6μmとした。次に、ダイシング加工を行なったが、以降の内容は上記例1と同様であるので省略する。   Next, an electrode Al—Cu was formed on the surface facing the IDT electrode. A sputtering apparatus was used to form the electrode Al—Cu, and the electrode film thickness at this time was about 0.6 μm. Next, dicing was performed, but the subsequent contents are the same as in Example 1 above, and will be omitted.

<例3>
圧電基板をダイシング加工し、チップごとに分割するまでは、例1,2と同様であるので省略する。
<Example 3>
Since the process until the piezoelectric substrate is diced and divided for each chip is the same as in Examples 1 and 2, description thereof is omitted.

セラミックスの親基板上に、はんだよりなる電極パターンを印刷した。その後、各チップをフリップチップ実装装置にて電極形成面を下面にしてセラミックスの親基板上に仮接着した。その後、N雰囲気中でベークを行ない、はんだを溶融することによりチップとセラミックスの親基板を接着した。 An electrode pattern made of solder was printed on a ceramic parent substrate. Thereafter, each chip was temporarily bonded on a ceramic parent substrate with a flip chip mounting apparatus with the electrode formation surface on the bottom surface. Thereafter, baking was performed in an N 2 atmosphere to melt the solder, thereby bonding the chip and the ceramic parent substrate.

次に、チップとセラミックスの親基板のそれぞれに電極Al−Cuの成膜を行なった。電極Al−Cuの成膜にはスパッタリング装置を使用し、このときの下地電極の膜厚は約1.0μmとした。次に、樹脂を塗布するが、以降の内容は例1と同様であるので省略する。   Next, an electrode Al—Cu was formed on each of the chip and the ceramic parent substrate. A sputtering apparatus was used to form the electrode Al—Cu, and the film thickness of the base electrode at this time was about 1.0 μm. Next, a resin is applied, but the subsequent contents are the same as in Example 1 and will be omitted.

<例4>
上記各例において、貫通孔を形成した後に、導電性ペーストを印刷する工程を追加した。その他の内容は例1〜3と同様であるので省略する。
<Example 4>
In each of the above examples, after forming the through hole, a process of printing the conductive paste was added. Since other contents are the same as those in Examples 1 to 3, they are omitted.

<例5>
上記各例において、貫通孔を形成した後に、貫通孔内に導電性薄膜を成膜する工程を追加した。その他の内容は例1〜3と同様であるので省略する。
<Example 5>
In each of the above examples, after forming the through hole, a process of forming a conductive thin film in the through hole was added. Since other contents are the same as those in Examples 1 to 3, they are omitted.

<例6>
各例で作製された弾性表面波装置を携帯電話内のプリント配線基板に実装したことにより行なった。
<Example 6>
The surface acoustic wave device produced in each example was mounted on a printed wiring board in a mobile phone.

<比較例>
また、比較用サンプルとして、図10および図11に示す従来の弾性表面波装置についても上記した各例と同様な工程で作製を行なった。
<Comparative example>
Further, as a comparative sample, the conventional surface acoustic wave device shown in FIGS. 10 and 11 was also manufactured in the same process as in the above examples.

<評価>
上述した例1〜6および比較例について、2Wの電力の印加時間が180時間で、110℃の温度の下で耐電力性の試験を行なったところ、比較例では数時間程度で損失が0.5dB以上となり、特性劣化が激しかったのに対して、例1〜6では、いずれも損失は0.5dB未満であり特性劣化を認めることができなかった。
<Evaluation>
With respect to Examples 1 to 6 and the comparative example described above, when a power durability test was performed at a temperature of 110 ° C. with an application time of 2 W of power of 180 hours, the loss was 0.5 dB in about several hours in the comparative example. Although the characteristic deterioration was severe as described above, in Examples 1 to 6, the loss was less than 0.5 dB, and no characteristic deterioration could be recognized.

また、放熱性を評価する目的で、弾性表面波装置に信号電力が入ったときの温度上昇を有限要素法による熱解析から求めた。モデルaは例1をモデル化した。すなわち、圧電基板に貫通孔を形成し、この貫通孔の開口部を被覆する電極パターンを形成した。モデルbは例2の弾性表面波装置をモデル化した。すなわち、モデルaに加えてIDT電極と対向する面の全面に電極が形成されているモデルである。モデルcは例3の弾性表面波装置をモデル化した。すなわち、モデルbに加えて圧電基板の側面に電極が形成されたものである。さらに、比較するための貫通孔および貫通孔上に良熱伝導体の電極パターンの無い、従来のモデルdも解析した。解析条件として、各材料の熱伝導率(W/m・k)は、LiTaO単結晶基板が4.1、支持基体であるLTCC基板が3.9、半田接続材が61、エポキシ樹脂が0.5、貫通孔への充填材料であるAgが150、空気が2.6×10−2を用いた。解析方法としては、弾性表面波装置に0.4Wの信号電力を入力し、弾性表面波共振子近傍で発生した熱が、弾性表面波装置の内部を伝導し、弾性表面波装置の表面から25℃の雰囲気へ伝達する過程の発熱部における温度を解析した。 In addition, for the purpose of evaluating heat dissipation, the temperature rise when signal power enters the surface acoustic wave device was obtained from thermal analysis by the finite element method. Model a models Example 1. That is, a through hole was formed in the piezoelectric substrate, and an electrode pattern covering the opening of the through hole was formed. Model b models the surface acoustic wave device of Example 2. In other words, in addition to the model a, the electrode is formed on the entire surface facing the IDT electrode. Model c models the surface acoustic wave device of Example 3. That is, in addition to the model b, an electrode is formed on the side surface of the piezoelectric substrate. Furthermore, a conventional model d having no electrode pattern of a good thermal conductor on the through hole and the through hole for comparison was also analyzed. As analysis conditions, the thermal conductivity (W / m · k) of each material is 4.1 for LiTaO 3 single crystal substrate, 3.9 for LTCC substrate as a support base, 61 for solder connection material, 0.5 for epoxy resin, and through hole As a filling material, Ag of 150 and air of 2.6 × 10 −2 were used. As an analysis method, a signal power of 0.4 W is input to the surface acoustic wave device, and heat generated in the vicinity of the surface acoustic wave resonator is conducted inside the surface acoustic wave device, and is 25 ° C. from the surface of the surface acoustic wave device. The temperature in the heat generating part during the process of transferring to the atmosphere was analyzed.

弾性表面波共振子近傍の発熱部における最大温度は、本発明と同様な構造のモデルaが81℃、モデルbが74℃、モデルcが67℃であった。これに対して、従来のモデルdでは、86℃であった。以上の結果より、発熱は従来のモデルと比較してそれぞれ−5℃、−12℃、−19℃であり、温度の著しい低下が認められ放熱性の向上が確認された。   The maximum temperature in the heat generating part in the vicinity of the surface acoustic wave resonator was 81 ° C. for model a, 74 ° C. for model b, and 67 ° C. for model c having the same structure as the present invention. On the other hand, in the conventional model d, it was 86 ° C. From the above results, the heat generation was −5 ° C., −12 ° C., and −19 ° C., respectively, as compared with the conventional model, and a significant decrease in temperature was observed, confirming improvement in heat dissipation.

本発明の弾性表面波装置の一例を示す断面図である。It is sectional drawing which shows an example of the surface acoustic wave apparatus of this invention. 本発明の弾性表面波装置の一例を示す上面図である。It is a top view which shows an example of the surface acoustic wave apparatus of this invention. 本発明の弾性表面波装置の他の例を示す断面図である。It is sectional drawing which shows the other example of the surface acoustic wave apparatus of this invention. 本発明の弾性表面波装置の他の例を示す断面図である。It is sectional drawing which shows the other example of the surface acoustic wave apparatus of this invention. 本発明の弾性表面波装置の他の例を示す断面図である。It is sectional drawing which shows the other example of the surface acoustic wave apparatus of this invention. 本発明の弾性表面波装置の他の例を示す断面図である。It is sectional drawing which shows the other example of the surface acoustic wave apparatus of this invention. 本発明の弾性表面波装置の他の例を示す断面図である。It is sectional drawing which shows the other example of the surface acoustic wave apparatus of this invention. 本発明の弾性表面波装置の他の例を示す断面図である。It is sectional drawing which shows the other example of the surface acoustic wave apparatus of this invention. 本発明の弾性表面波装置の他の例を示す断面図である。It is sectional drawing which shows the other example of the surface acoustic wave apparatus of this invention. 従来の弾性表面波装置の断面図である。It is sectional drawing of the conventional surface acoustic wave apparatus. 従来の弾性表面波装置の断面図である。It is sectional drawing of the conventional surface acoustic wave apparatus. SAW共振子の電極構造の一例を示す平面図である。It is a top view which shows an example of the electrode structure of a SAW resonator. 携帯電話の構成を示すブロック図である。It is a block diagram which shows the structure of a mobile telephone.

符号の説明Explanation of symbols

1,101:弾性表面波素子
2,102:支持基体
3,103:バンプ(接続用導体)
4,104:保護部材
5,105:貫通孔
6 :良熱伝導体
7,107:端子電極
8 :導電ペースト
9 :導電薄膜
DESCRIPTION OF SYMBOLS 1,101: Surface acoustic wave element 2,102: Support base | substrate 3,103: Bump (connection conductor)
4, 104: Protective member 5, 105: Through hole 6: Heat conductor 7, 107: Terminal electrode 8: Conductive paste 9: Conductive thin film

Claims (5)

支持基体の上面に、圧電基板の一方主面に励振電極を設けた弾性表面波素子を、前記圧電基板の前記一方主面を対面させて載置するとともに、前記圧電基板の他方主面を保護部材で覆ってなる弾性表面波装置であって、前記圧電基板の前記一方主面と前記他方主面との間を貫通する1つ以上の貫通孔を設け、該貫通孔の少なくとも一方の開口部を前記圧電基板より熱伝導率の大きい良熱伝導体で覆ったことを特徴とする弾性表面波装置。 A surface acoustic wave element having an excitation electrode provided on one main surface of the piezoelectric substrate is placed on the upper surface of the support base so that the one main surface of the piezoelectric substrate faces the other, and the other main surface of the piezoelectric substrate is protected. A surface acoustic wave device covered with a member, wherein one or more through holes penetrating between the one main surface and the other main surface of the piezoelectric substrate are provided, and at least one opening of the through hole The surface acoustic wave device is characterized in that it is covered with a good thermal conductor having a thermal conductivity higher than that of the piezoelectric substrate. 前記良熱伝導体が前記圧電基板の前記他方主面を全面にわたって覆っていることを特徴とする請求項1に記載の弾性表面波装置。 The surface acoustic wave device according to claim 1, wherein the good heat conductor covers the other main surface of the piezoelectric substrate over the entire surface. 前記良熱伝導体が前記圧電基板の側面を覆っていることを特徴とする請求項1または2に記載の弾性表面波装置。 3. The surface acoustic wave device according to claim 1, wherein the good heat conductor covers a side surface of the piezoelectric substrate. 前記貫通孔の内側に前記圧電基板より熱伝導率の大きい良熱伝導体を設けたことを特徴とする請求項1乃至3のいずれかに記載の弾性表面波装置。 4. The surface acoustic wave device according to claim 1, wherein a good thermal conductor having a thermal conductivity larger than that of the piezoelectric substrate is provided inside the through hole. 請求項1乃至4のいずれかに記載の弾性表面波装置をフィルタ手段として用いたことを特徴とする通信装置。 5. A communication apparatus using the surface acoustic wave device according to claim 1 as filter means.
JP2004020558A 2004-01-28 2004-01-28 Surface acoustic wave device and communication device Pending JP2005217670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020558A JP2005217670A (en) 2004-01-28 2004-01-28 Surface acoustic wave device and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020558A JP2005217670A (en) 2004-01-28 2004-01-28 Surface acoustic wave device and communication device

Publications (1)

Publication Number Publication Date
JP2005217670A true JP2005217670A (en) 2005-08-11

Family

ID=34904437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020558A Pending JP2005217670A (en) 2004-01-28 2004-01-28 Surface acoustic wave device and communication device

Country Status (1)

Country Link
JP (1) JP2005217670A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088830A1 (en) * 2014-12-04 2016-06-09 株式会社村田製作所 Elastic wave device manufacturing method and elastic wave device
WO2016208287A1 (en) * 2015-06-24 2016-12-29 株式会社村田製作所 Elastic-wave filter device
WO2018003819A1 (en) * 2016-06-29 2018-01-04 株式会社村田製作所 Elastic wave device
JP2018522483A (en) * 2015-07-13 2018-08-09 スナップトラック・インコーポレーテッド Components with improved heat dissipation
US10973132B2 (en) 2018-01-25 2021-04-06 Murata Manufacturing Co., Ltd. Radio-frequency module and communication apparatus
WO2022137892A1 (en) * 2020-12-24 2022-06-30 株式会社村田製作所 High-frequency module and communication device
KR102667425B1 (en) * 2015-07-13 2024-05-17 스냅트랙, 인코포레이티드 Components with improved heat dissipation

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170237406A1 (en) * 2014-12-04 2017-08-17 Murata Manufacturing Co., Ltd. Method for manufacturing elastic wave device and elastic wave device
US10601389B2 (en) * 2014-12-04 2020-03-24 Murata Manufacturing Co., Ltd. Elastic wave device
WO2016088830A1 (en) * 2014-12-04 2016-06-09 株式会社村田製作所 Elastic wave device manufacturing method and elastic wave device
KR102058279B1 (en) * 2015-06-24 2019-12-20 가부시키가이샤 무라타 세이사쿠쇼 Seismic filter device
JPWO2016208287A1 (en) * 2015-06-24 2017-06-29 株式会社村田製作所 Elastic wave filter device
US20180013404A1 (en) * 2015-06-24 2018-01-11 Murata Manufacturing Co., Ltd. Elastic wave filter apparatus
CN107615660B (en) * 2015-06-24 2020-12-22 株式会社村田制作所 Elastic wave filter device
WO2016208287A1 (en) * 2015-06-24 2016-12-29 株式会社村田製作所 Elastic-wave filter device
US10601399B2 (en) 2015-06-24 2020-03-24 Murata Manufacturing Co., Ltd. Elastic wave filter apparatus
JP7000308B2 (en) 2015-07-13 2022-01-19 スナップトラック・インコーポレーテッド Components with improved heat dissipation
JP2018522483A (en) * 2015-07-13 2018-08-09 スナップトラック・インコーポレーテッド Components with improved heat dissipation
US11303263B2 (en) 2015-07-13 2022-04-12 Qualcomm Incorporated Component with improved heat dissipation
KR102667425B1 (en) * 2015-07-13 2024-05-17 스냅트랙, 인코포레이티드 Components with improved heat dissipation
US20190140615A1 (en) * 2016-06-29 2019-05-09 Murata Manufacturing Co., Ltd. Elastic wave device
JPWO2018003819A1 (en) * 2016-06-29 2019-03-14 株式会社村田製作所 Elastic wave device
CN109417375A (en) * 2016-06-29 2019-03-01 株式会社村田制作所 Acoustic wave device
US10862450B2 (en) 2016-06-29 2020-12-08 Murata Manufacturing Co., Ltd. Elastic wave device
WO2018003819A1 (en) * 2016-06-29 2018-01-04 株式会社村田製作所 Elastic wave device
US10973132B2 (en) 2018-01-25 2021-04-06 Murata Manufacturing Co., Ltd. Radio-frequency module and communication apparatus
WO2022137892A1 (en) * 2020-12-24 2022-06-30 株式会社村田製作所 High-frequency module and communication device

Similar Documents

Publication Publication Date Title
JP6290850B2 (en) Elastic wave device and elastic wave module
US7042056B2 (en) Chip-size package piezoelectric component
US7378922B2 (en) Piezoelectric filter
JP4460612B2 (en) Surface acoustic wave device and manufacturing method thereof
JP4587732B2 (en) Surface acoustic wave device
US7332986B2 (en) Surface acoustic wave apparatus and communications equipment
JP4758197B2 (en) Surface acoustic wave device and communication device
JP4443325B2 (en) Surface acoustic wave device
JP4518870B2 (en) Surface acoustic wave device and communication device
JPWO2015098793A1 (en) Electronic component module
JP2008135971A (en) Elastic wave device
JP2004129224A (en) Piezoelectric component and manufacturing method thereof
JP2007081555A (en) Surface acoustic wave device
JP2007266865A (en) Surface acoustic wave device
JP2005130341A (en) Piezoelectric component and its manufacturing method, communications equipment
JP2005217670A (en) Surface acoustic wave device and communication device
JP2004153580A (en) Surface acoustic wave device
JP2018201083A (en) Electronic component
JP2000196400A (en) Mounting structure for surface acoustic wave device
JP5038452B2 (en) Surface acoustic wave device and communication device
JP2009183008A (en) Method of manufacturing piezoelectric component
JP2003283289A (en) Surface acoustic wave device
JP4986540B2 (en) Surface acoustic wave device and manufacturing method thereof
JP2007312201A (en) Board mounting type surface acoustic wave device and manufacturing method therefor, and communication equipment
JP2000223989A (en) Surface acoustic wave device