JP3553512B2 - 熱処理装置及び熱処理方法 - Google Patents

熱処理装置及び熱処理方法 Download PDF

Info

Publication number
JP3553512B2
JP3553512B2 JP2001039172A JP2001039172A JP3553512B2 JP 3553512 B2 JP3553512 B2 JP 3553512B2 JP 2001039172 A JP2001039172 A JP 2001039172A JP 2001039172 A JP2001039172 A JP 2001039172A JP 3553512 B2 JP3553512 B2 JP 3553512B2
Authority
JP
Japan
Prior art keywords
planar
heat treatment
semiconductor wafer
heating elements
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001039172A
Other languages
English (en)
Other versions
JP2001291711A (ja
Inventor
亘 大加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2001039172A priority Critical patent/JP3553512B2/ja
Publication of JP2001291711A publication Critical patent/JP2001291711A/ja
Application granted granted Critical
Publication of JP3553512B2 publication Critical patent/JP3553512B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば半導体ウエハ、LCD(液晶ディスプレイ)等の面状の被処理体を熱処理するための熱処理装置及び熱処理方法に関する。
【0002】
【従来の技術】
例えば半導体デバイスの製造においては、半導体ウエハの酸化・拡散処理、CVD処理等が行われる。
特に、最近においては、0.4μmから0.2μmへと半導体デバイスのデザインルールの微細化が進み、また、半導体ウエハについても8インチから12インチへと大径化が進み、このような大面積の極薄膜形成技術に対応すべく急速熱処理装置の開発が緊急の課題となっている。
【0003】
具体的に説明すると、半導体ウエハのプロセス処理では、サーマルバジェット(熱履歴)を小さくすることが必須の条件であり、例えば50〜100Åのドーピング処理、ゲート酸化膜やキャパシター絶縁膜の極薄膜形成においては、急速熱処理すなわち短時間で熱処理を行うことが不可欠である。
また、例えばPN接合を0.1μm以下と浅くして、低抵抗化を図り、任意形状表面への接合形成を可能にするためには、接合時の膜劣化や結晶欠陥の発生を防止する必要があるが、PN接合の活性領域が狭いために急速短時間で熱処理を行うことが必要である。
【0004】
また、例えばLOCOS酸化膜の形成においては、隣接するLOCOS酸化膜の圧縮応力が熱サイクルによる相乗効果で拡大し、表面電位の変動、リーク電流、耐圧等の信頼性の低減が生じやすいが、これを防止するためには急速熱処理により熱サイクルを低減することが必要である。
また、例えば高誘電体材料を使用してキャパシター絶縁膜を形成する場合に、メタルオキサイド(Ta 等)、ポリイミド(パッシベーション膜)の成膜を可能にするメタル成膜とドーピングができる複合プロセス処理が可能なシステムが必要とされるに至った。
【0005】
そして、半導体ウエハの径が8インチから12インチへと大径化しつつある現状においては、半導体ウエハの中央部と周辺部との温度差を小さくして均一に急速熱処理ができ、半導体ウエハに生じやすいスリップ、歪、ソリの低減化を図り、半導体デバイスの製作上不都合が生じないようにする必要がある。
【0006】
【発明が解決しようとする課題】
しかし、従来の縦型のバッチ処理型熱処理装置においては、石英製のウエハボートに積層収納された半導体ウエハを取り囲むように筒状の発熱源を配置して、半導体ウエハの周辺部から中央部に向かって加熱するようにしているため、半導体ウエハを急速に加熱しようとすると、半導体ウエハの中央部と周辺部との間に大きな温度勾配が生じて、均一な熱処理ができない問題があった。
そこで、本発明の目的は、面状の被処理体の全面を均一な温度で急速に加熱処理することができる熱処理装置及び熱処理方法を提供することにある。
【0007】
【課題を解決するための手段】
以上の目的を達成するため、本発明の熱処理装置においては、面状の被処理体の処理面に対向するよう配置した、複数の発熱体よりなる直線状発熱体が並列に配置されてなる面状発熱源と、前記複数の直線状発熱体を、前記面状の被処理体の直線状発熱体位置に対応する部分の温度検出信号に基づいて加熱制御する加熱制御部と、前記被処理体を、面状発熱源とを対向した状態で、その中心を軸として回転させる回転機構とを備え、
前記面状発熱源の直線状発熱体の並列ピッチは、面状発熱源の中央部から周辺部に向かうに従って粗から密になるよう構成されていることを特徴とする。
また、前記面状発熱源は、中心に対して左右対称に配列されていることを特徴とする。
また、前記加熱制御部は、前記複数の直線状発熱体を別個独立に温度制御することを特徴とする。
また、前記加熱制御部は、前記複数の直線状発熱体を組合わせて複数のグループを形成して、該グループごとに温度制御することを特徴とする。
【0008】
また、面状の被処理体の処理面に対向するよう配置した、複数の発熱体よりなる直線状発熱体が並列に配置されてなる面状発熱源と、前記複数の直線状発熱体を、前記面状の被処理体の直線状発熱体位置に対応する部分の温度検出信号に基づいて加熱制御する加熱制御部と、前記被処理体を、面状発熱源とを対向した状態で、その中心を軸として回転させる回転機構とを備えた熱処理装置を用いて行う熱処理方法であって、前記並列に配置された同一方向に伸びる隣接する2本の直線状発熱体については、互いに磁束を打ち消す方向に電流を流して熱処理を行うことを特徴とする。
【0009】
本発明では、面状の被処理体の処理面に対向するよう面状発熱源を配置するので、面状発熱源からの放射熱が被処理体の全面に垂直に入射するようになる。しかも、面状発熱源が複数の直線状発熱体を並列に配置してなり、被処理体の直線状発熱体位置に対応する部分の温度検出信号に基づいて、複数の直線状発熱体を加熱制御する加熱制御部を設けるので、被処理体の全面を高い精度で均一に加熱処理することができる。
また、面状発熱源の直線状発熱体の並列ピッチを面状発熱源の中央部から周辺部に向かうに従って粗から密になるよう構成することにより、また面状発熱源を中心に対して左右対称に配列することにより、被処理体の周辺部における放熱を抑制して均一に加熱することが可能となる。
また、加熱制御部が複数の直線状発熱体を別個独立に温度制御することにより、被処理体の直線状発熱体位置に対応する部分を独立して温度制御できるため、被処理体の全面を高い精度で均一に加熱処理することができる。
また、複数の直線状発熱体を組合わせて複数のグループを形成し、このグループごとに加熱制御部が温度制御することにより、被処理体の各グループ位置に対応する部分を独立して温度制御できるため、被処理体の全面を高い精度で均一に加熱処理することができる。
【0010】
また、並列に配置された同一方向に伸びる隣接する2本の直線状発熱体については、互いに磁束を打ち消す方向に電流を流して熱処理を行うことにより、各直線状発熱体から発生する電磁力が相殺されるため、電磁力による悪影響を防止することができる。
【0011】
【発明の実施の形態】
以下、本発明の実施例を説明する。なお、以下の実施例は面状の被処理体として半導体ウエハを使用した例であるが、本発明においては、半導体ウエハに限定されることはなく、例えばLCD等のようにその他の面状の被処理体を用いることもできる。
【0012】
〔実施例1〕
本実施例では、特に、半導体ウエハの酸化・拡散処理を行う場合に好適な熱処理装置について説明する。図1は本実施例に係る熱処理装置の概略図であり、図2および図3は面状発熱源の直線状発熱体の概略図である。
1は面状の被処理体である半導体ウエハ、2は面状発熱源、25は加熱制御部、3はウエハ保持具、4は保温材、5は移動機構である。ウエハ保持具3の周縁部に一体的に形成されている例えば3〜4個の保持突起31が半導体ウエハ1の処理面11とは反対の裏面に当接し、これにより半導体ウエハ1をウエハ保持具3上に保持している。
【0013】
このウエハ保持具3は、例えば高純度炭化ケイ素(SiC)等のように耐熱性が優れ、かつ、汚染の少ない材料により構成することが好ましい。特に、高純度炭化ケイ素(SiC)は石英(SiO)よりも耐熱性が優れており、約1200℃の高温にも十分に耐えることができるので、酸化・拡散処理用の材料として好適なものである。
【0014】
面状発熱源2は、半導体ウエハ1の処理面に対向するよう例えば直上部において保温材4の上部内壁に固定配置されている。なお、この面状発熱源2は、図1のように半導体ウエハ1の直上に配置してもよいし、あるいは半導体ウエハ1の処理面11を下方にしてその直下に配置してもよい。
そして、図2および図3に示すように、複数の直線状発熱体21が並列に配列されて構成されている。22は保持部材であり、例えば高純度炭化ケイ素(SiC)等により構成されている。
【0015】
同一方向に伸びる隣接する2本の直線状発熱体については、電磁力による悪影響を防止する観点から、互いに磁束を打ち消す方向に電流を流すようにすることが好ましい。
また、直線状発熱体21の並列配置のピッチは、半導体ウエハ1の周辺部における放熱を抑制して均一に加熱する観点から、面状発熱源2の中央部から周辺部に向かうに従って粗から密になるようにすることが好ましい。また、同様の観点から、面状発熱源2の中心に対して左右対称に配列することが好ましい。
【0016】
各直線状発熱体21には熱電対等からなる温度センサー26が設けられており、これらの温度センサー26は加熱制御部25に接続されている。加熱制御部25は、温度センサー26からの信号に基づいて、各直線状発熱体21の温度を独立に制御することができるものである。
なお、直線状発熱体21のすべてをまったく別個独立に温度制御してもよいし、あるいは適宜のものを組合せて複数のグループを形成してグループごとに制御するようにしてもよい。
また、温度センサー26により面状発熱源2の各直線状発熱体21の温度を検出する代わりに、放射温度計を用いて半導体ウエハ1の直線状発熱体21ごとの温度を直接測定するようにし、この検出信号に基づいて加熱制御部25により温度制御を行ってもよい。
【0017】
直線状発熱体21は、図4に示すように、一方向のみならず、縦横に交差する状態に配置してもよい。なお、直線状発熱体21の交差部分は相互に電気的に絶縁されている。
【0018】
面状発熱源2と半導体ウエハ1との最短離間距離Lは、装置を小型化する観点からは短い方がよいが、大面積の半導体ウエハ1の全面を均一な温度で加熱する観点からは長い方がよい。具体的には、両条件をある程度満足し得る距離、例えば50〜150mm程度とされる。
ここで「最短離間距離」とは、半導体ウエハ1の接近が停止されて静止した状態でプロセス処理されるときの所定位置から面状発熱源2までの距離をいう。
【0019】
面状発熱源2の各直線状発熱体21は、例えば二ケイ化モリブデン(MoSi)、炭化ケイ素(SiC)、グラファイト(C)、鉄(Fe)とクロム(Cr)とアルミニウム(Al)の合金線であるカンタル(商品名)線等の抵抗発熱体を用いて構成することができる。
例えば二ケイ化モリブデン(MoSi)は、単線として使用することができ、カンタル線はコイルとして使用することができる。特に、二ケイ化モリブデン(MoSi)は約1800℃の高温にも十分に耐えることができるので、酸化・拡散処理の材料としては好適である。特に、汚染の少ない材料としては、高純度炭化ケイ素(SiC)、グラファイト(C)の表面を炭化ケイ素(SiC)で被覆したもの等が挙げられる。
【0020】
この面状発熱源2の直線状発熱体21により構成される発熱面の外径は半導体ウエハ1の外径の2倍以上であることが好ましい。このような条件を満たす面状発熱源2によれば、半導体ウエハ1の中央部と周辺部との間の温度差を十分に小さくすることができ、半導体ウエハ1の処理面11の全面をさらに均一な温度で熱処理することができる。
【0021】
面状発熱源2の発熱面は、半導体ウエハ1と平行に配置されることが好ましい。また、面状発熱源2の発熱面は、全体が一様な平面であってもよいし、周辺部が半導体ウエハ1に接近する方向に湾曲していてもよい。面状発熱源2の温度は、半導体ウエハ1の最高使用温度よりも100〜300℃高いことが好ましい。
【0022】
また、図5に示すように、面状発熱源2と半導体ウエハ1との間に面状の均熱部材23を配置するようにしてもよい。この均熱部材23は、面状発熱源2に発熱ムラが存在する場合にこの発熱ムラを解消して半導体ウエハ1に向かう放射熱を十分に垂直方向に制御するものである。
また、均熱部材23を例えば高純度炭化ケイ素(SiC)等のように汚染の少ない材料により構成し、さらにこの均熱部材23により面状発熱源2を処理空間から完全に隔離することにより、面状発熱源2が汚染の原因となる重金属を含む材料により構成されている場合にも、当該重金属による汚染を有効に防止することができる。
【0023】
この均熱部材23は半導体ウエハ1の処理面11に対向するよう配置され、その外径は面状発熱源2の場合と同様に半導体ウエハ1の外径の2倍以上であることが好ましい。
また、この均熱部材23は、その中央部の肉厚が周辺部の肉厚より厚いことが好ましい。このような肉厚とすることにより、半導体ウエハ1の周辺部の熱放散を少なくして中央部と周辺部との間の温度の均一性をさらに高めることができる。
また、この均熱部材23は、その周辺部が半導体ウエハ1に接近する方向に湾曲する形態としてもよい。このような湾曲した周辺部を有することにより、半導体ウエハ1の周辺部の熱放散を少なくして中央部と周辺部との温度差を小さくすることができる。
【0024】
図1の移動機構5は、ウエハ保持具3を面状発熱源2に対して急速に接近移動させ、次いで急速に後退移動させるものであり、モータ51と、駆動軸52と、駆動アーム53とにより構成されている。モータ51は駆動軸52に連結されていて、モータ51により駆動軸52が回転制御される。駆動軸52にはネジが設けられており、このネジを介して駆動アーム53の一端と螺合されている。駆動アーム53の他端は後述するモータ61を介してウエハ保持具3に連結されている。
【0025】
モータ51が駆動軸52を回転させると、この駆動軸52に設けられたネジの作用により駆動アーム53が上昇または下降移動し、この駆動アーム53の移動に伴ってウエハ保持具3が上昇または下降移動する。従って、モータ51の回転を制御回路により制御することにより、ウエハ保持具3の上昇速度または下降速度を適宜調整することができる。ウエハ保持具3の移動距離は例えば300〜600mm程度であり、移動速度は50〜200mm/sec以上の急速とするのが好ましい。
【0026】
図6は、酸化・拡散処理における熱処理モードの一例を示し、面状発熱源2の温度を例えば1300℃の一定温度とした状態で、窒素ガス(N)を流しながら、半導体ウエハ1の温度が室温から約500℃に到達するように、例えば200mm/secの上昇速度でウエハ保持具11を上昇移動させる。半導体ウエハ1の温度が約500℃に到達したら、さらに半導体ウエハ1の温度が約1200℃に到達するように、例えば100mm/secの上昇速度でウエハ保持具3をさらに上昇移動させる。
【0027】
半導体ウエハ1の温度が約1200℃に到達したら、ウエハ保持具3を当該位置に固定した状態で、窒素ガスの供給を停止し、次いで酸素ガス(O)を供給しながら、酸化・拡散処理を行う。酸化・拡散処理が終了したら、上記の工程を逆の順番で繰返すことにより、半導体ウエハ1の温度を室温まで冷却する。
【0028】
半導体ウエハ1の酸化・拡散処理中は、回転機構6により半導体ウエハ1がその中心を軸として回転移動される。回転機構6において、モータ61は半導体ウエハ1をウエハ保持具3と共に回転するものである。
【0029】
図1の保温材4は、例えばアルミナセラミックスからなり、半導体ウエハ1の移動方向に沿って適正な温度勾配をもたせるために、下部に向かうに従って肉厚が薄くなっている。すなわち、下部に至るほど保温効果を少なくしている。保温材4の下端部には、熱処理の終了後に半導体ウエハ1を急速に冷却するための冷却手段(図示省略)を設けることが好ましい。
【0030】
冷却手段としては、アンモニア、二硫化イオウ、水等の冷媒を用いることができる。冷媒の潜熱を利用して例えば300〜400℃の温度に冷却する。保温材4の内径は、半導体ウエハの温度を考慮して定めることが好ましいが、例えば半導体ウエハが8インチの場合には、その2倍の400〜500mmφ程度が好ましい。
【0031】
図1の7は処理容器であり、例えば石英(SiO)等により形成することができる。この処理容器7は下端に開口を有する筒状の形態を有しており、ウエハ保持具3および半導体ウエハ1を面状発熱源2および保温材4から隔離して半導体ウエハ1の雰囲気を外部から分離するものである。
【0032】
図1の8はガス導入管であり、その一端が処理容器7の下部から外部に突出し、その他端が処理容器7の内部において上方に伸長して半導体ウエハ1の斜め上方に位置されている。このガス導入管8は、処理容器7に対して例えばOリングをネジにより締め付けることにより気密に固定されている。
【0033】
図1の9はガス排出管であり、処理容器7の下部において処理容器7の内外を貫通するように設けられている。移動機構5によってウエハ保持具3が上昇し、半導体ウエハ1が完全に処理容器7内に収納された状態で、処理容器7がすべて密閉された状態となるようにしている。
【0034】
ガス導入管8から処理容器7内にプロセスガスを導入し、面状発熱源2による放射熱によって処理容器7内の温度を酸化・拡散処理に必要な所定温度にする。処理容器7内の温度は、面状発熱源2からの距離が一定であれば、一定の温度となるので、半導体ウエハ1の最高位置(静止位置)をあらかじめ設定しておくことにより、酸化・拡散処理に必要な所定温度(例えば1200℃)とすることができる。半導体ウエハ1は、加熱下でのプロセスガスの反応により酸化・拡散処理がなされる。
【0035】
このような熱処理装置によれば、面状発熱源2よりの放射熱が、図7において矢印で示すように、半導体ウエハ1の処理面(上面)11にほぼ垂直に向かうようになるため、半導体ウエハ1の外径が例えば12インチと大面積であってもその処理面11の全体にわたって均一な温度で加熱することができ、しかも、半導体ウエハ1と面状発熱源2とを相対的に急速に接近させるので急速加熱が可能となる。
【0036】
その結果、半導体ウエハ1にスリップ、歪、ソリ等が生ぜず、信頼性の高い熱処理が可能となり、また、最近の半導体デバイスのデザインルールの微細化、半導体ウエハの大径化に対応した急速熱処理が可能となる。
【0037】
従って、例えば50〜100Åのドーピング処理、ゲート酸化膜やキャパシター絶縁膜の極薄膜形成、0.1μm以下の浅いPN接合の形成、LOCOS酸化膜の形成、高誘電体材料を使用したキャパシター絶縁膜の形成等の種々の熱処理において、著しく優れた効果を発揮する。
【0038】
半導体ウエハ1と面状発熱源2とを相対的に急速に接近させる場合、面状発熱源2を固定して半導体ウエハ1を上昇させてもよいし、半導体ウエハ1を固定配置して面状発熱源2を下降させるようにしてもよい。
相対的な接近速度は、半導体ウエハ1の処理面11の温度の上昇速度が例えば20℃/sec以上、特に、100℃/sec以上となるような速度であることが好ましい。具体的な接近速度としては、例えば50〜200mm/sec以上が好ましい。
【0039】
なお、半導体ウエハ1と面状発熱源2とを相対的に急速に接近させて当該半導体ウエハ1を加熱するに際して、半導体ウエハ1と面状発熱源2との最短離間距離Lの設定値を変更することにより、温度の異なる複数の熱処理を行うこともできる。すなわち、半導体ウエハ1と面状発熱源2との最短離間距離Lを変更することにより、半導体ウエハ1の加熱温度の最高値を所望値に設定することができるので、例えば温度1200℃程度の高温処理や温度500℃程度の低温処理を適宜選択して行うことができ、複合プロセス処理が可能となる。
【0040】
〔実施例2〕
本実施例では、特に、半導体ウエハのCVD処理を行う場合に好適な熱処理装置について説明する。
図8は、当該熱処理装置の概略を示し、ウエハ保持具3、移動機構5、回転機構6は、図1に示した実施例1と同様の構成である。
【0041】
面状発熱源2は、その周辺部が半導体ウエハ1に接近する方向に湾曲した形態を有している。通常半導体ウエハ1の中央部よりも周辺部が放熱効果が大きいが、このように面状発熱源2の周辺部を半導体ウエハ1に接近する方向に湾曲させることにより半導体ウエハ1の周辺部の放熱を抑制することができ、半導体ウエハ1の全面の温度をさらに均一化することができる。保温材4の上部内壁は、面状発熱源2の湾曲した周辺部を受容し得る形態となっている。
【0042】
処理容器7は、外管71と内管72とを備えた二重管構造になっており、外管71は、石英(SiO)等の耐熱性材料からなり、上端が閉塞され、下端に開口を有する円筒状の形態である。内管72は、上端および下端の両端に開口を有する円筒状の形態を有し、外管71内に間隔をおいて同心円状に配置されている。
【0043】
内管72の上部開口から上昇したガスは、内管72と外管71との間の間隙を介して系外へ排出されるようになっている。外管71および内管72の下端開口には、例えばステンレス等よりなるマニホールド73が係合され、このマニホールド73に外管71および内管72が保持されている。このマニホールド73は基台(図示省略)に固定されている。
【0044】
外管71の下端部およびマニホールド73の上部開口端部には、それぞれ環状のフランジ71Aおよび73Aが設けられ、フランジ71A,73A間には弾性部材よりなるOリング74が配置され、両者の間が気密封止されている。内管72の下端部は、マニホールド73の内壁の中段より内方へ突出させて形成した保持部75により保持されている。
【0045】
マニホールド73の下段の一側には、上方の熱処理部に向けて屈曲された例えば石英からなる第1のガス導入管76がシール部材(図示省略)を介して貫通しており、処理容器7内に成膜用ガス、例えばジクロルシラン(SiHCl)ガスが供給されるようになっている。この第1のガス導入管76は、ガス供給源(図示省略)に接続されている。
【0046】
マニホールド73の下段の他側には、上方の熱処理部に向けて屈曲された例えば石英からなる第2のガス導入管77がシール部材(図示省略)を介して貫通しており、処理容器7内に成膜用ガス、例えばアンモニア(NH)ガスが供給されるようになっている。この第2のガス導入管77は、ガス供給源に接続されている。
【0047】
マニホールド73の上段には、真空ポンプ(図示省略)等の排気系に接続された排気管78が接続されており、内管72と外管71との間の間隙を流下する処理済ガスを系外に排出し、処理容器7内を所定の圧力の減圧雰囲気に設定し得るようになっている。
マニホールド73の下端開口部には、例えばステンレス等よりなる円盤状のキャップ部79が、弾性部材よりなるOリング80を介して気密封止可能に着脱自在に取付けられている。
【0048】
このキャップ部79のほぼ中心部には、例えば磁気シールにより気密な状態で回転可能な回転軸62が貫通している。この回転軸62はウエハ保持具3の回転軸であって、その下端部には、これを所定の速度でもって回転させるためのモータ61が接続されている。
このモータ61は、移動機構5の駆動アーム53に固定されており、駆動アーム53の昇降により、キャップ部79と回転軸62とが一体的に昇降して、ウエハ保持具3をロード、アンロードするようになっている。
【0049】
図8の熱処理装置を用いたCVD処理の一例を説明すると、まず、移動機構5によりウエハ保持具3を下降させてアンロードにする。ウエハ保持具3に1枚の半導体ウエハ1を保持する。次いで、面状発熱源2を駆動して発熱させ、ウエハ保持具3の最高位置の雰囲気を例えば700℃の均熱状態にする。
【0050】
移動機構5により、ウエハ保持具3を上昇させて処理容器7内にロードし、処理容器7の内部温度を例えば700℃に維持する。処理容器7内を所定の真空状態まで排気した後、回転機構6により、ウエハ保持具3を回転させてその上に保持された半導体ウエハ1を一体的に回転する。
【0051】
同時に、第1のガス導入管76から成膜用ガス例えばジクロルシラン(SiHCl)ガスを供給し、第2のガス導入管77から成膜用ガス例えばアンモニア(NH)ガスを供給する。
【0052】
供給された成膜用ガスは、処理容器7内を上昇し、半導体ウエハ1の上方から半導体ウエハ1に対して均等に供給される。処理容器7内は、排気管78を介して排気され、0.1〜0.5Torrの範囲内、例えば0.5Torrになるように圧力が制御され、所定時間成膜処理を行う。
【0053】
このようにして成膜処理が終了すると、次の半導体ウエハの成膜処理に移るべく、処理容器7内の処理ガスをN等の不活性ガスと置換するとともに、内部圧力を常圧まで高め、その後、移動機構5によりウエハ保持具3を下降させて、ウエハ保持具3および処理済の半導体ウエハ1を処理容器7から取り出す。
処理容器7からアンロードされたウエハ保持具3上の処理済の半導体ウエハ1は、未処理の半導体ウエハと交換され、再度前述と同様にして処理容器7内にロードされ、成膜処理がなされる。
〔実施例3〕
図8に示した熱処理装置において、ウエハ保持具3を固定して、面状発熱源2を昇降させるようにしてもよい。また、処理済の半導体ウエハ1を取り出す際には、まず、面状発熱源2と保温材4と外管71とを上昇させ、次いで、内管72を上昇させるようにすることが好ましい。
【0054】
このようにウエハ保持具3を固定する場合には、半導体ウエハ1が受ける機械的衝撃力が少なくなるので、半導体ウエハ1上の薄膜にダメージを与えないようにすることができ、また、マニホールド73を移動させる必要がないことから、装置の構成を簡単にすることができる。
【0055】
以上、本発明を実施例に基づいて説明したが、本発明の熱処理装置は、常圧のプロセス、減圧プロセス、真空プロセスのいずれにも適用することができる。
また、面状の被処理体としては、円型の半導体ウエハに限定されず、LCD等角型のその他の面状の被処理体であってもよい。
また、面状発熱源を下方に配置し、その上方に半導体ウエハを配置するようにしてもよい。
【発明の効果】
以上説明したように、本発明によれば、面状の被処理体の全面を均一な温度で急速に加熱処理することができる。
【図面の簡単な説明】
【図1】実施例1に係る熱処理装置の説明図である。
【図2】面状発熱源の具体的形態の一例を示す横断平面図である。
【図3】面状発熱源の具体的形態の一例を示す縦断正面図である。
【図4】面状発熱源の具体的形態の他の例を示す横断平面図である。
【図5】実施例1の変形例に係る熱処理装置の要部の説明図である。
【図6】半導体ウエハの酸化・拡散処理における熱処理モードの一例を示す説明図である。
【図7】面状発熱源による作用効果の説明図である。
【図8】実施例2に係る熱処理装置の説明図である。
【符号の説明】
1 半導体ウエハ
2 面状発熱源
21 直線状発熱体
25 加熱制御部
26 温度センサー
3 ウエハ保持具
5 移動機構
6 回転機構
7 処理容器
79 キャップ部

Claims (5)

  1. 面状の被処理体の処理面に対向するよう配置した、複数の発熱体よりなる直線状発熱体が並列に配置されてなる面状発熱源と、
    前記複数の直線状発熱体を、前記面状の被処理体の直線状発熱体位置に対応する部分の温度検出信号に基づいて加熱制御する加熱制御部と、
    前記被処理体を、面状発熱源とを対向した状態で、その中心を軸として回転させる回転機構とを備え、
    前記面状発熱源の直線状発熱体の並列ピッチは、面状発熱源の中央部から周辺部に向かうに従って粗から密になるよう構成されていることを特徴とする熱処理装置。
  2. 前記面状発熱源は、中心に対して左右対称に配列されていることを特徴とする請求項1に記載の熱処理装置。
  3. 前記加熱制御部は、前記複数の直線状発熱体を別個独立に温度制御することを特徴とする請求項1または2記載の熱処理装置。
  4. 前記加熱制御部は、前記複数の直線状発熱体を組合わせて複数のグループを形成して、該グループごとに温度制御することを特徴とする請求項1または2記載の熱処理装置。
  5. 面状の被処理体の処理面に対向するよう配置した、複数の発熱体よりなる直線状発熱体が並列に配置されてなる面状発熱源と、
    前記複数の直線状発熱体を、前記面状の被処理体の直線状発熱体位置に対応する部分の温度検出信号に基づいて加熱制御する加熱制御部と、
    前記被処理体を、面状発熱源とを対向した状態で、その中心を軸として回転させる回転機構とを備えた熱処理装置を用いて行う熱処理方法であって、
    前記並列に配置された同一方向に伸びる隣接する2本の直線状発熱体については、互いに磁束を打ち消す方向に電流を流して熱処理を行うことを特徴とする熱処理方法。
JP2001039172A 2001-02-15 2001-02-15 熱処理装置及び熱処理方法 Expired - Fee Related JP3553512B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001039172A JP3553512B2 (ja) 2001-02-15 2001-02-15 熱処理装置及び熱処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001039172A JP3553512B2 (ja) 2001-02-15 2001-02-15 熱処理装置及び熱処理方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22969691A Division JP3451097B2 (ja) 1991-08-16 1991-08-16 熱処理装置

Publications (2)

Publication Number Publication Date
JP2001291711A JP2001291711A (ja) 2001-10-19
JP3553512B2 true JP3553512B2 (ja) 2004-08-11

Family

ID=18902023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001039172A Expired - Fee Related JP3553512B2 (ja) 2001-02-15 2001-02-15 熱処理装置及び熱処理方法

Country Status (1)

Country Link
JP (1) JP3553512B2 (ja)

Also Published As

Publication number Publication date
JP2001291711A (ja) 2001-10-19

Similar Documents

Publication Publication Date Title
US5536918A (en) Heat treatment apparatus utilizing flat heating elements for treating semiconductor wafers
US11222796B2 (en) Substrate processing apparatus
US6891131B2 (en) Thermal processing system
US5651670A (en) Heat treatment method and apparatus thereof
WO2001080291A1 (en) Methods and apparatus for thermally processing wafers
TW584920B (en) Heat treatment device and heat treatment method
US5662469A (en) Heat treatment method
JPH05121342A (ja) 熱処理装置
JP3138304B2 (ja) 熱処理装置
JP3179806B2 (ja) 熱処理方法および熱処理装置
JP3553512B2 (ja) 熱処理装置及び熱処理方法
JP3451097B2 (ja) 熱処理装置
JP3464005B2 (ja) 熱処理方法
JP2001291710A (ja) 熱処理装置及び熱処理方法
JP3281018B2 (ja) 熱処理方法
JP3126455B2 (ja) 熱処理装置
JP3151022B2 (ja) 熱処理装置
JP3119706B2 (ja) 熱処理装置および熱処理方法
JP3182532B2 (ja) 熱処理装置
JPH0547691A (ja) 熱処理装置
JPH0547615A (ja) 半導体ウエハ
JP2001284341A (ja) 熱処理方法
JP3119708B2 (ja) 熱処理装置および熱処理方法
JPH05144758A (ja) 熱処理装置
US20060243385A1 (en) Device for producing electroconductive passages in a semiconductor wafer by means of thermomigration

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040428

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees