JP3546613B2 - 回路基板 - Google Patents

回路基板 Download PDF

Info

Publication number
JP3546613B2
JP3546613B2 JP28385396A JP28385396A JP3546613B2 JP 3546613 B2 JP3546613 B2 JP 3546613B2 JP 28385396 A JP28385396 A JP 28385396A JP 28385396 A JP28385396 A JP 28385396A JP 3546613 B2 JP3546613 B2 JP 3546613B2
Authority
JP
Japan
Prior art keywords
bus
synchronous
address
memory
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28385396A
Other languages
English (en)
Other versions
JPH10124210A (ja
Inventor
雅也 梅村
英樹 大坂
俊次 武隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28385396A priority Critical patent/JP3546613B2/ja
Priority to US08/874,721 priority patent/US6125419A/en
Publication of JPH10124210A publication Critical patent/JPH10124210A/ja
Application granted granted Critical
Publication of JP3546613B2 publication Critical patent/JP3546613B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dram (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バスシステム、特に情報処理装置の同期式制御に用いるバスシステム及び回路基板に関する。
【0002】
【従来の技術】
同期メモリ及び同期式メモリシステムに関する規格として、IEEE1596.4のSyncLinkがある。以下に、この規格が適用された同期式メモリシステムについて図面を参照して説明する。図23はSyncLinkが適用された同期式メモリシステムの概略構成図である。
【0003】
SyncLinkが適用された同期式メモリシステムは、図23に示すように、複数の同期RAM104a#1〜104a#n(以下、単に同期RAM104aともいう)と、同期RAM104aへのデータの書き込みや読み出しを制御するメモリコントローラ101aと、アドレスバス105aと、データバス106aとを備えて構成される。
【0004】
アドレスバス105aは、メモリコントローラ101aの出力バッファ1012aから出力されたアドレス、コマンド、ライトデータや、同期用クロック信号を、同期RAM104aの入力バッファ1042aに入力するためのものであり、アドレス、コマンド及びライトデータを扱うバス線と、同期用クロック信号を扱う同期用クロック線とからなる。
【0005】
データバス106aは、同期RAM104aの出力バッファ1044aから出力されたリードデータをメモリコントローラ101aの入力バッファ1014aに入力するためのものである。
【0006】
アドレスバス105aは、メモリコントローラ101aに対する各同期RAM104aの序列を昇順(#1〜#nの順)としている。一方、データバス106aは、メモリコントローラ101aに対する各同期RAM104aの序列を降順(#n〜#1の順)としている。このようにすることで、メモリコントローラ101a及び同期RAM104a間のアドレスバス105aのバス長と、メモリコントローラ101a及び同期RAM104a間のデータバス106aのバス長との総和が、全ての同期RAM104a#1〜104a#nについて略等しくなるようにしている。
【0007】
上記構成のSyncLinkが適用された同期式メモリシステムでは、同期RAM104aは、メモリコントローラ101aからアドレスバス105aの同期用クロック線上に出力された同期用クロックを契機として、メモリコントローラ101aからアドレスバス105aのバス線上に出力されたアドレス、コマンド及びライトデータをラッチする。これにより、アドレス、コマンド及びライトデータの同期転送を実現している。また、メモリコントローラ101a及び同期RAM104a間のアドレスバス105aのバス長と、メモリコントローラ101a及び同期RAM104a間のデータバス106aのバス長との総和が、全ての同期RAM104a#1〜104a#nについて略等しくなるようにすることにより、メモリコントローラ101aの各同期RAM104aに対するメモリアクセスレイテンシを略一定にすることができる。
【0008】
【発明が解決しようとする課題】
しかしながら、上記構成の同期式メモリシステムでは、同期RAM104aの数を増やすと、アドレスバス105a及びデータバス106aのバス長が長くなるので、各バスにおける信号の伝搬時間が長くなり、結果として、メモリコントローラ101aの各同期RAM104aに対するメモリアクセスレイテンシが長くなるという問題がある。
【0009】
尚、各バスにおける伝搬時間を短縮するために、メモリコントローラ101a及び同期RAM104aの出力バッファ1012aの電流駆動能力を高める方法が考えられる。しかしながら、この方法では、バス上での反射によるリンギングノイズが増加するため、期待される程の短縮効果は得られない。むしろ、電流駆動能力を高めることは、出力バッファの面積拡大に伴うチップダイの肥大化を招き、さらに、電流量増大に伴う電磁界放射ノイズの増加から新たなる対策手段が必要となるため、好ましくない。
【0010】
ところで、SyncLinkでは、同期RAMの容量を増設した場合の同期式メモリシステムも提案している。この同期式メモリシステムでは、図24に示すように、アドレスバス105b及びデータバス106bからなるバス系統に同期RAM104b#1〜104b#nを接続し、アドレスバス105c及びデータバス106cからなるバス系統に同期RAM104c#1〜104c#nを接続している。このように、バス系統を2系統設けることにより、各バスに接続する同期RAM数を減らすことができ、これにより、各バスのバス長を短くすることができる。しかしながら、メモリコントローラ101bに、アドレスバス105b、105cに各々対応する出力バッファ1012b、1012cと、データバス106b、106cに各々対応する入力バッファ1014b、1014cとを設けなければならず、これにより、メモリコントローラ101bが大きくなり、また、ピン数も増加するという問題がある。
【0011】
本発明は、上記事情に基づいてなされたものであり、バスマスタのピン数を増加させることなく、バスマスタ及び当該バスマスタに支配される複数のバススレーブ各々間の信号転送時間を略一定に保ちながら短縮することができるバスシステム及び回路基板を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決するために、本発明のバスシステムは、複数のバススレーブと、前記複数のバススレーブを制御するバスマスタと、前記バスマスタから出力された信号を前記バススレーブに入力するための第一バスと、前記バススレーブから出力された信号を前記バスマスタに入力するための第二バスと、を備えるバスシステムであって、
前記第一バス及び第二バス各々は、前記バスマスタに接続された幹線と、前記幹線に接続された、各々に少なくとも一つのバススレーブが接続された複数の支線と、を有し、
前記バススレーブは、前記第一バス及び第二バスの対応する前記支線に、当該バススレーブ及び前記バスマスタ間の第一バスの長さと、当該バススレーブ及び前記バスマスタ間の第二バスの長さとの総和が、全ての前記バススレーブについて略等しくなるように接続されていることを特徴とする。
【0013】
ここで、前記第一バスは、前記バスマスタから出力された信号が、前記第一バスの前記幹線及び前記複数の支線の接続点で、反射波を生じさせないように、インピーダンスの整合が図られていることが好ましい。
【0014】
また、前記第二バスは、前記複数のバススレーブから出力された信号が前記バスマスタに入力した際に生じた反射波が、前記第二バスの幹線と前記第二バスの前記複数の支線との接続点で、再びを反射波を生じさせないように、インピーダンスの整合が図られていることが好ましい。
【0015】
尚、前記複数のバススレーブ各々を布線を介して対応する前記支線に接続する場合、前記布線及び当該布線に接続された前記支線は、当該布線に接続された前記バススレーブから出力された信号、あるいは当該バススレーブで発生した反射波が、当該布線と当該支線との接続点で反射波を生じさせないように、インピーダンスの整合が図られていることが好ましい。
【0016】
また、前記支線の終端には、当該支線の特性インピーダンスと略等しいインピーダンスを有する整合負荷が接続されていることが好ましい。
【0017】
本発明の回路基板は、複数のバススレーブと、前記複数のバススレーブを制御するバスマスタとが搭載され、且つ前記バスマスタから出力された信号を前記バススレーブに入力するための第一バスと、前記バススレーブから出力された信号を前記バスマスタに入力するための第二バスとが形成された回路基板であって、
前記バスマスタは、略中央部に配置されており、
前記複数のバススレーブは、前記バスマスタを中心として略左右対称となるように2つに振り分けて配置されており、
前記第一バスは、前記バスマスタを中心として左側に配置された前記バススレーブ各々に接続する第一支線と、前記バスマスタを中心として右側に配置された前記バススレーブ各々に接続する第二支線と、一方の端部が前記バスマスタに接続され、他方の端部が前記第一支線及び前記第二支線に接続された第一幹線とを有し、且つ前記第一支線及び前記第二支線が前記バスマスタを中心として略左右対称に形成されており、
前記第二バスは、前記バスマスタを中心として左側に配置された前記バススレーブ各々に、前記第一支線とは逆順で接続する第三支線と、前記バスマスタを中心として右側に配置された前記バススレーブ各々に、前記第二支線とは逆順で接続する第四支線と、一方の端部が前記バスマスタに接続され、他方の端部が前記第三支線及び前記第四支線に接続された第二幹線とを有し、且つ前記第三支線及び前記第四支線が前記バスマスタを中心として略左右対称に形成されていることを特徴とする。
【0018】
【発明の実施の形態】
以下に、本発明の第一実施形態について図面を参照して説明する。
【0019】
図1は本発明の第一実施形態である同期式メモリシステムの概略構成図、図2は図1に示す同期RAMの概略ブロック図である。
【0020】
本実施形態の同期式メモリシステムは、図1に示すように、偶数個の同期RAM4a#1〜4a#n(以下、単に同期RAM4aともいう)と、同期RAM4aへのデータの書き込みや読み出しを制御するメモリコントローラ1aと、アドレス・コマンド・クロック・ライトデータバス5aと、リードデータバス6aと、を備えて構成される。
【0021】
メモリコントローラ1aは、出力バッファ12aから、同期RAM4aの書き込み・読み出し動作を制御するためのアドレス、コマンド及びライトデータと、同期用クロック信号とを出力する。また、同期RAM4aが出力したリードデータを入力バッファ14aで受信する。
【0022】
同期メモリ4aは、図2に示すように、アドレス、コマンド、ライトデータ、そして同期用クロックを受信する入力バッファ42aと、リードデータを出力する出力バッファ44aと、図示していないが、メモリセル、センスアンプ、シーケンサ等からなるメモリ部とを有する。同期RAM4aは、受信した同期用クロックを契機として、アドレス、コマンド及びライトデータをラッチする。そして、ラッチしたアドレス及びコマンドに従い、ラッチしたライトデータのメモリセルへの書き込みや、メモリセルから当該アドレスのデータの読み出しを行う。
【0023】
アドレス・コマンド・クロック・ライトデータバス5aは、メモリコントローラ1aの出力バッファ12aから出力されたアドレス、コマンド、ライトデータや、同期用クロック信号を、同期RAM4aの入力バッファ42aに入力するためのものである。また、アドレス・コマンド・クロック・ライトデータバス5aは、図1に示すように、分岐点Dで幹線51aが2つの支線52a、54aに分岐しており、支線52aには奇数番目の同期RAM4a#i(i=1、3、・・・n−1)が、そして支線54aには偶数番目の同期RAM4a#j(j=2、4、・・・n)が、略等間隔で各々布線56aを介して接続されている。このようにすることで、支線52a及び支線54aの長さを略等しくしている。
【0024】
リードデータバス6aは、同期RAM4aの出力バッファ44aから出力されたリードデータをメモリコントローラ1aの入力バッファ14aに入力するためのものである。リードデータバス6aも、アドレス・コマンド・クロック・ライトデータバス5aと同様に、分岐点Eで幹線61aが2つの支線62a、64aに分岐しており、支線62aには奇数番目の同期RAM4a#i(i=1、3、・・・n−1)が、そして支線64aには偶数番目の同期RAM4a#j(j=2、4、・・・n)が、略等間隔で各々布線66aを介して接続されている。このようにすることで、支線62a及び支線64aの長さを略等しくしている。
【0025】
アドレス・コマンド・クロック・ライトデータバス5aの支線52a、54aは、メモリコントローラ1aに対する同期RAM4aの序列を昇順(支線52aについては#1、#3、・・・#n−1の順、支線54aについては#2、#4、・・・#nの順)としている。一方、リードデータバス6aの支線62a、64aは、メモリコントローラ1aに対する同期RAM4aの序列を降順(支線62aについては#n−1、#n−3、・・・#1の順、支線64aについては#n、#n−2、・・・#2の順)としている。上述したように、アドレス・コマンド・クロック・ライトデータバス5aの支線52a及び支線54aの長さを略等しくすると共に、リードデータバス6aの支線62a及び支線64aの長さを略等しくしているので、このようにすることにより、メモリコントローラ1a及び同期RAM4a間のアドレス・コマンド・クロック・ライトデータバス5aのバス長と、メモリコントローラ1a及び同期RAM4a間のリードデータバス6aのバス長との総和が、全ての同期RAM4a#1〜4a#nについて略等しくなるようにしている。
【0026】
本実施形態の同期式メモリシステムでは、同期RAM4aは、メモリコントローラ1aからアドレス・コマンド・クロック・ライトデータバス5a上に出力された同期用クロックを契機として、メモリコントローラ1aからアドレス・コマンド・クロック・ライトデータバス5a上に出力されたアドレス、コマンド及びライトデータをラッチする。これにより、アドレス、コマンド及びライトデータの同期転送を実現している。
【0027】
また、メモリコントローラ1a及び同期RAM4a間のアドレス・コマンド・クロック・ライトデータバス5aのバス長と、メモリコントローラ1a及び同期RAM4a間のリードデータバス6aのバス長との総和が、全ての同期RAM4a#1〜4a#nについて略等しくなるようにすることにより、メモリコントローラ1aの出力バッファ12aがアドレス及びリードを示すコマンドを出力してから、メモリコントローラ1aの入力バッファ14aが当該アドレスのデータを受信するまでのメモリアクセスレイテンシを、全ての同期RAM4a#1〜4a#nについて略一定にすることができる。
【0028】
さらに、アドレス・コマンド・クロック・ライトデータバス5a及びリードデータバス6a各々を、図1に示すように、2つの支線に分岐して、一方の支線に奇数番目の同期RAM4aを接続し、他方の支線に偶数番目の同期RAM4aを接続したことにより、メモリコントローラ1a及び同期RAM4a間におけるアドレス・コマンド・クロック・ライトデータバス5a、リードデータバス6aの最長バス長を、図23に示す従来の同期メモリシステムに比べて、略半分に短縮することができる。これにより、メモリコントローラ1aの各同期RAM4aに対するメモリアクセスレイテンシを短縮することができる。また、図24に示す従来の同期メモリシステムと異なり、2つのアドレス・コマンド・クロック・ライトデータバスに各々対応する2つの出力バッファと、2つのデータバスに各々対応する2つ入力バッファとを、メモリコントローラに設ける必要がない。したがって、メモリコントローラが大きくなるのを防ぐことができ、また、メモリコントローラのピン数が増加するのを防ぐことができる。
【0029】
次に、本実施形態のアドレス・コマンド・クロック・ライトデータバス5aの具体的な構成について図面を参照して説明する。
【0030】
図3は図1に示すアドレス・コマンド・クロック・ライトデータバスの概略構成図、図4は図3のA部拡大図、図5は図3のB部拡大図である。
【0031】
本実施形態のアドレス・コマンド・クロック・ライトデータバス5aには、印刷回路基板の配線パターンが用いられる。配線パターンの特性インピーダンスは、主に寄生容量によるものであり、その値は、基板の材質、構造、配線パターンの幅や、当該パターンとグランド、あるいは電源ラインとの距離等に依存する。通常、40〜100Ω程度である。
【0032】
本実施形態では、図3及び図4に示すように、幹線51aとして、特性インピーダンスZsが40Ωの配線パターンを用いている。また、図3乃至図5に示すように、支線52a、54aとして、特性インピーダンスZmが80Ωの配線パターンを用い、支線52a、54aの終端各々を抵抗値Rtが80Ωの終端抵抗59aを介してラインVttに接続している。さらに、図3乃び図5に示すように、布線56aとして、特性インピーダンスZskが80Ωの配線パターンを用い、各布線56aを抵抗値Rmが40Ωの整合抵抗58aを介して対応する支線52a、54aに接続している。
【0033】
次に、本実施形態のアドレス・コマンド・クロック・ライトデータバス5aの分岐点Dでの電気特性、支線52a、54a及び布線56aの接続点での電気特性、および支線52a、54aの終端での電気特性について説明する。
【0034】
先ず、分岐点Dでの電気特性について説明する。
【0035】
本実施形態のアドレス・コマンド・クロック・ライトデータバス5aでは、幹線51aとして特性インピーダンスZsが40Ωの配線パターンを用い、支線52a、54aとして特性インピーダンスZmが80Ωの配線パターンを用いている。したがって、幹線51aの特性インピーダンスZsと、支線52a、54aの合成特性インピーダンスZm/2とが一致しているので、分岐点Dでのインピーダンス整合を図ることができ、これにより、メモリコントローラ1aの出力バッファ12aから出力された電気信号が分岐点Dで不要な反射波を発生させるのを抑制することができる。尚、上述したように、配線パターンの特性インピーダンスは、配線パターンの幅や、当該パターンとグランド、あるいは電源ラインとの距離等に依存している。このため、パターン設計によっては、幹線51aの特性インピーダンスZsと、支線52a、54aの合成特性インピーダンスZm/2とを一致させることができないことも考えられる。このような場合、幹線51aと分岐点Dとの間に、支線52a、54aの合成特性インピーダンスZm/2と幹線51aの特性インピーダンスZsとの差分を補う整合抵抗を挿入することにより、分岐点Dでのインピーダンス整合を図ることができる。
【0036】
次に、支線52a、54a及び布線56aの接続点での電気特性について説明する。
【0037】
本実施形態のアドレス・コマンド・クロック・ライトデータバス5aでは、布線56aとして、特性インピーダンスZskが80Ωの配線パターンを用い、各布線56aを抵抗値Rmが40Ωの整合抵抗58aを介して対応する支線52a、54aに接続している。ここで、支線52a、54aの特性インピーダンスZmは80Ωなので、布線56aの特性インピーダンスZskは、布線56a側から見たときに、見かけ上、2つに分岐する支線52a、54aの合成特性インピーダンスZm/2と、整合抵抗58aの抵抗値Rmとの合成特性インピーダンスZm/2+Rmと一致している。したがって、本実施形態によれば、支線52a、54aと布線56aとの接続点でのインピーダンス整合を図ることができる。
【0038】
メモリコントローラ1aの出力バッファ12aから出力された電気信号は、同期RAM4aの入力バッファ42aに到達すると、入力バッファ42aと布線56aとの接点で、特性インピーダンスの相違によって反射を生じ、この反射波は、支線52a、54aと布線56aとの接続点に到達する。しかし、本実施形態では、この接続点でのインピーダンス整合が図られているので、当該反射波が前記接続点で更に反射波を発生させるのを抑制することができる。これにより、布線56a及び同期RAM4aの接点と、当該布線56a及び当該布線56aに接続された支線52a、54aの接続点とで、反射波が交互に繰り返し発生し、入力バッファ42aに入力される電気信号の振幅が段階的に上昇するのを防止することができる。したがって、入力バッファ42aに入力される電気信号の電位確定時間を短縮することができるので、同期メモリ4aへのメモリアクセスレイテンシを短縮することができる。
【0039】
また、整合抵抗58aにより布線56aに流入する電流量を低減することができ、これにより、急峻な大電流の変動が抑制され、EMC等の不要な電磁界放射ノイズを低減することができる。さらに、整合抵抗58aは、布線56aとして用いられた配線パターンの寄生容量及び同期RAM4aの寄生容量との間でRC回路を構成する。このRC回路の時定数は、通常、前記アドレス・コマンド・クロック・ライトデータバス5a上を伝搬する信号のバスサイクルより短く、且つ当該信号の立上がり及び下がり時間より長いので、入力バッファ42aに、メモリコントローラ1aの出力バッファ12aから出力された電気信号の波形を反映した滑らかな波形の電気信号を入力することができる。
【0040】
次に、支線52a、54aの終端での電気特性について説明する。
【0041】
本実施形態のアドレス・コマンド・クロック・ライトデータバス5aでは、支線52a、54aの終端各々を抵抗値Rtが80Ωの終端抵抗59aを介してラインVttに接続している。したがって、支線52a、54aの特性インピーダンスZmと、終端抵抗59aの抵抗値Rtとが一致しているので、支線52a、54aの終端各々でのインピーダンス整合を図ることができ、これにより、支線52a、54aの終端に到達した電気信号や反射波を終端抵抗59aに吸収させることができる。
【0042】
次に、本実施形態のリードデータバス6aの具体的な構成について図面を参照して説明する。
【0043】
図6は図1に示すリードデータバスの概略構成図、図7は図6のC部拡大図、図8は図6のD部拡大図である。
【0044】
本実施形態のリードデータバス6aも、アドレス・コマンド・クロック・ライトデータバス5aと同様に、印刷回路基板の配線パターンが用いられる。上述したように、配線パターンの特性インピーダンスは、通常、40〜100Ω程度であるが、本実施形態では、図6及び図7に示すように、幹線61aとして特性インピーダンスZuが50Ωの配線パターンを、そして支線62a、64aとして特性インピーダンスZrが50Ωの配線パターンを用い、幹線61aと分岐点Eとの間に抵抗値Rmrが25Ωの整合抵抗を挿入している。また、図6及び図8に示すように、支線62a、64aの終端各々を抵抗値Rkが50Ωの終端抵抗69aを介してラインVttに接続している。さらに、布線66aとして、特性インピーダンスZsrが80Ωの配線パターンを用い、各布線66aを抵抗値Rrが55Ωの整合抵抗68aを介して対応する支線62a、64aに接続している。
【0045】
次に、本実施形態のリードデータバス6aの支線62a、64a及び布線66aの接続点での電気特性、分岐点Eでの電気特性、および支線62a、64aの終端での電気特性について説明する。
【0046】
先ず、支線62a、64a及び布線66aの接続点での電気特性について説明する。
【0047】
本実施形態のリードデータバス6aでは、布線66aとして、特性インピーダンスZsrが80Ωの配線パターンを用い、各布線66aを抵抗値Rrが55Ωの整合抵抗68aを介して対応する支線62a、64aに接続している。ここで、支線62a、64aの特性インピーダンスZrは50Ωなので、布線66aの特性インピーダンスZsrは、布線66a側から見たときに、見かけ上、2つに分岐する支線62a、64aの合成インピーダンスZr/2と、整合抵抗68aとの合成インピーダンスZr/2+Rrと一致している。
【0048】
したがって、本実施形態によれば、支線62a、64aと布線66aとの接続点でのインピーダンス整合を図ることができ、これにより、同期RAM4aの出力バッファ44aから出力された電気信号が接続点Eに到達した際に、不要な反射波が発生するのを抑制することができる。
【0049】
また、整合抵抗68aにより、同期RAM4aの出力バッファ44aから布線66aを介して支線62a、64aに流量する電流量を低減することができる。これにより、急峻な大電流の変動が抑制され、EMC等の不要な電磁界放射ノイズを低減することができる。
【0050】
次に、分岐点Eでの電気特性について説明する。
【0051】
本実施形態のリードデータバス6aでは、幹線61aとして特性インピーダンスZuが50Ωの配線パターンを、そして支線62a、64aとして特性インピーダンスZrが50Ωの配線パターンを用い、幹線61aと分岐点Eとの間に抵抗値Rmrが25Ωの整合抵抗を挿入している。したがって、幹線61aの特性インピーダンスZuと、支線62a、64aの合成インピーダンスZr/2及び整合抵抗67aの合成インピーダンスZr/2+Rmrが一致しているので、分岐点Eでのインピーダンス整合を図ることができる。
【0052】
同期RAM4aの出力バッファ44aから出力された電気信号は、メモリコントローラ1aの入力バッファ14aに到達すると、入力バッファ14aと幹線61aとの接点で、特性インピーダンスの相違によって反射を生じ、この反射波は、分岐点Eに到達する。しかし、本実施形態では、この分岐点Eでのインピーダンス整合が図られているので、当該反射波が分岐点Eで更に反射波を発生させるのを抑制することができる。これにより、入力バッファ146a及び幹線61aの接点と、分岐点Eとで、反射波が交互に繰り返し発生し、入力バッファ14aに入力される電気信号の振幅が段階的に上昇するのを防止することができる。したがって、入力バッファ14aに入力される電気信号の電位確定時間を短縮することができるので、メモリアクセスレイテンシを短縮することができる。
【0053】
また、整合抵抗67aにより幹線61aに流入する電流量を低減することができ、これにより、急峻な大電流の変動が抑制され、EMC等の不要な電磁界放射ノイズを低減することができる。さらに、整合抵抗67aは、幹線61aとして用いられた配線パターンの寄生容量及びメモリコントローラ1aの入力バッファ14aの寄生容量との間でRC回路を構成する。このRC回路の時定数は、通常、前記リードデータバス6a上を伝搬する信号のバスサイクルより短く、且つ当該信号の立上がり及び下がり時間より長いので、入力バッファ14aに、同期RAM4aの出力バッファ44aから出力された電気信号の波形を反映した滑らかな波形の電気信号を入力することができる。
【0054】
尚、分岐点に整合抵抗を挿入する代わりに、配線パターン設計によって、幹線61aの特性インピーダンスZuと、支線62a、64aの合成インピーダンスZr/2とを一致させて、分岐点Eでのインピーダンス整合を図るようにしてもよい。
【0055】
次に、支線62a、64aの終端での電気特性について説明する。
【0056】
本実施形態のリードデータバス6aでは、支線62a、64aの終端各々を抵抗値Rkが50Ωの終端抵抗69aを介してラインVttに接続している。したがって、支線62a、64aの特性インピーダンスZrと、終端抵抗69aの抵抗値Rkとが一致しているので、支線62a、64aの終端各々でのインピーダンス整合を図ることができ、これにより、支線62a、64aの終端に到達した電気信号や反射波を終端抵抗69aに吸収させることができる。
【0057】
本実施形態の同期式メモリシステムを動作させた際に、電気信号が各バス上をどの様に伝搬するかについて、図面を参照して説明する。
【0058】
図9は本実施形態の動作を説明するためのタイミング図である。図9において、91は、同期RAM4aの入力バッファ42aが同期用クロックを契機としてラッチするアドレス、コマンド及びライトデータの受信タイミングを示している。また、92は、同期RAM4aの出力バッファ44aから出力されるリードデータの出力タイミングを示している。
【0059】
図9に示す例では、同期RAM4aの入力バッファ42aは、アドレス及びリードコマンドからなるリード要求を受信した後、続けてアドレス、ライトコマンド及びライトデータからなるライト要求を受信している。一方、同期RAM4aの出力バッファ44aは、入力バッファ42aがリードコマンドを受信した後、3サイクル後にリードデータを出力している。すなわち、同期RAM4aは、リード要求の動作が完結しないうちにライト要求を受信している。これにより、同期メモリシステムのリード要求及びライト要求のパイプライン化を図っている。尚、同期RAM4aは、続けて受信したライト要求をメモリ部のデータバッファで一時的に蓄え、メモリセルが書き込み可能になり次第書き込みを行う。
【0060】
本実施形態が図9に示すリード要求を行った場合、リード要求及び当該要求によって読み出されたリードデータの伝搬波形は図10のようになる。
【0061】
図10は、図9に示すリード要求を行った場合の各位置でのリード要求及びリードデータの伝搬波形を示す図である。図10において、93はリード要求の伝搬波形を示しており、実線はメモリコントローラ1aの入力バッファ12aでの伝搬波形、1点鎖線は同期RAM4a#1、4a#2の入力バッファ42aでの伝搬波形、そして2点鎖線は同期RAM4a#n−1、4a#nの入力バッファ42aでの伝搬波形を示している。94はリードデータの伝搬波形を示しており、1点鎖線は同期RAM4a#1、4a#2の出力バッファ44aから出力されたリードデータの当該出力バッファ44aでの伝搬波形、2点鎖線は同期RAM4a#n−1、4a#nの出力バッファ44aから出力されたリードデータの当該出力バッファ44aでの伝搬波形を示している。95はメモリコントローラ1aの入力バッファ14aに入力されたリードデータの伝搬波形を示しており、1点鎖線は同期RAM4a#1、4a#2から出力されたリードデータの伝搬波形、2点鎖線は同期RAM4a#n−1、4a#nから出力されたリードデータの伝搬波形を示している。尚、図10において横軸は時間を表している。
【0062】
メモリコントローラ1aの出力バッファ12aから出力されるリード要求の振幅は出力バッファ12aの内部インピーダンスと終端抵抗59aとの分割抵抗比によって定まる。このため、リード要求の振幅は、アドレス・コマンド・クロック・ライトデータバス5a上の位置にかかわらず略一定である。尚、アドレス・コマンド・クロック・ライトデータバス5aを形成する配線パターンのインピーダンスは、主に寄生容量によるものであるため、振幅にほとんど影響しない。同期メモリ4aの入力バッファ42aに到達したリード要求は、図10の93に示すように、当該入力バッファ42a及び布線56aの寄生容量と整合抵抗58aからなるRC回路の時定数に従って滑らかな立ち上がり、降下を示す。同期RAM4a#n−1、4a#nの入力バッファ42aに到達するリード要求は、図10の93に示すように、アドレス・コマンド・クロック・ライトデータバス5a上での伝搬遅延により、同期RAM41a#1、4a#2に到達するリード要求よりも、多少遅れて到達する。
【0063】
同期RAM4aは、リードデータをメモリコントローラ1aから出力されたリード要求を受信した順番で出力バッファ44aから出力する。したがって、図10の94に示すように、同期RAM4a#n−1、4a#nの出力バッファ44aから出力されるリードデータは、同期RAM41a#1、4a#2の出力バッファ44aから出力されるリードデータよりも、多少遅れて出力される。
【0064】
メモリコントローラ1aの入力バッファ14aに入力されるリードデータの振幅は、図10の95に示すように、同期RAM4aの出力バッファ44aの内部インピーダンス及び整合抵抗68aの和と、終端抵抗69aとの分割抵抗比に従い圧縮される。また、リードデータバス6aでは、メモリコントローラ1aに対する同期RAM4aの位置関係がアドレス・コマンド・クロック・ライトデータバス5aの場合と逆転するので、メモリコントローラ1aの入力バッファ14aに到達する各同期メモリ4aからのリードデータは、図10の95に示すように、略同時期に到達する。また、メモリコントローラ1aの入力バッファ14aに到達したリードデータは、入力バッファ14a及び幹線61aの寄生容量と、整合抵抗67aからなるRC回路の時定数に従い、滑らかな立ち上がり、降下を示す。
【0065】
本実施形態では、図10に示すように、アドレス・コマンド・クロック・ライトデータバス5aを伝搬する信号の振幅は、コントローラ12aの出力バッファ12aの内部インピーダンス及び2つの終端抵抗59aとの分割抵抗比に従い決定される。一方、リードデータバス6aを伝搬する信号の振幅は、同期RAM4aの出力バッファ44aの内部インピーダンス及び整合抵抗68aの和と、2つの終端抵抗69aとの分割抵抗比に従い決定される。したがって、上記分割抵抗比が適当な値となるように、整合抵抗58a、68aの値及び終端抵抗59a、69aの値を設定することにより、アドレス・コマンド・クロック・ライトデータバス5a及びリードデータ6a間で、異なるバスインタフェースの規格に合わせた信号振幅を得ることができる。
【0066】
但し、整合抵抗58a、68aの値及び終端抵抗59a、69aの値は、アドレス・コマンド・クロック・ライトデータバス5a及びリードデータバス6aを構成する配線パターンの特性インピーダンスによって定まる。したがって、上記分割抵抗比が適当な値となるように、整合抵抗58a、68aの値及び終端抵抗59a、69aの値を設定するためには、上記配線パターンの特性インピーダンスを適当な値に設定する必要がある。この場合、整合抵抗58a、68aが適当な値となるように、布線56a、66aを構成する配線パターンの特性インピーダンスを変えるのがよい。
【0067】
次に、本実施形態の同期式メモリシステムが実装された印刷回路基板について図面を参照して説明する。
【0068】
図11は本実施形態の同期式メモリシステムが実装されたメモリライザカードの概略構成図、図12は図11に示すメモリライザカードの部分概略拡大図である。
【0069】
図11に示すメモリライザカード7aでは、メモリコントローラ1aが中央に配置されている。そして、奇数番目の同期RAM4a#1〜4a#7と、偶数番目の同期RAM4a#2〜4a#8とが、メモリコントローラ1aを中心として左右対称な位置に、且つ各同期RAM4aが等間隔で配置されている。また、各同期RAM4aはメモリコントローラ1aからメモリライザカード7aの長手方向の端部に向けて序列が昇順(奇数番目の同期RAM4aでは、#1、#3・・・#7の順、偶数番目の同期RAM4aでは、#2、#4・・・#8の順)となるように、配置されている。
【0070】
メモリライザカード7aには、本実施形態の同期メモリシステムを情報処理装置に電気的に接続するための導体コンタクトパッド71が形成されている。導体コンタクトパッド71は、ライザカード7aを情報処理装置のコネクタに嵌合することにより電気的に接続される。また、導体コンタクトパッド71は、配線パターンを介して、メモリコントローラ1aの情報処理装置とのインターフェース16に接続されている。
【0071】
メモリライザカード7aには、アドレス・コマンド・クロック・ライトデータバス5aを構成する配線パターンと、リードデータバス6aを構成する配線パターンと、が形成されている。
【0072】
アドレス・コマンド・クロック・ライトデータバス5aの幹線51aを構成する配線パターンは、一端がメモリコントローラ1aの出力バッファ12aに接続され、他端がメモリコントローラ5aの近傍でアドレス・コマンド・クロック・ライトデータバス5aの支線52a、54aに接続されている。支線52a、54aは、幹線51aに接続されたメモリコントローラ1aの近傍からメモリライザカード7aの長手方向の端部へ向けて延びている。支線52aを構成する配線パターンには、奇数番目の同期RAM4a#1〜4a#7の入力バッファ42aが各々整合抵抗58aを介して接続され、支線54aを構成する配線パターンには、偶数番目の同期RAM4a#2〜4a#8の入力バッファ42aが各々整合抵抗58aを介して接続されている。これにより、図11に示すように、支線52a、54aに接続される同期RAM4aのメモリコントローラ1aに対する序列が、昇順(支線52aについては#1、#3、・・・#7の順、支線54aについては#2、#4、・・・#8の順)となるようにしている。尚、支線52a、54aの終端には、各々メモリライザカード7aの長手方向の端部において、終端抵抗59aが接続される。
【0073】
リードデータバス6aの幹線61aを構成する配線パターンは、一端がメモリコントローラ1aの入力バッファ14aに接続され、他端がメモリコントローラ5aの近傍で整合抵抗67aを介してリードデータバス6aの支線62a、64aに接続されている。支線62a、64aは、幹線61aに接続されたメモリコントローラ1aの近傍からメモリライザカード7aの長手方向の端部へ向けて延び、当該端部で折り返して再びメモリコントローラ1aへ向けて延びている。支線62aを構成する配線パターンの終端からメモリライザカード7aの長手方向の端部にかけての部分には、奇数番目の同期RAM4a#1〜4a#7の出力バッファ44aが各々整合抵抗68aを介して接続されている。また、支線64aを構成する配線パターンの終端からメモリライザカード7aの長手方向の端部にかけての部分には、偶数番目の同期RAM4a#2〜4a#8の出力バッファ44aが各々整合抵抗68aを介して接続されている。これにより、図11に示すように、支線62a、64aに接続される同期RAM4aのメモリコントローラ1aに対する序列が、降順(支線62aについては#7、#5、・・・#1の順、支線64aについては#8、#6、・・・#2の順)となるようにしている。尚、支線62a、64aの終端には、各々メモリコントローラ1aの近傍において、終端抵抗69aが接続される。
【0074】
次に、メモリライザカード7aについて詳しく説明する。
【0075】
メモリライザカード7aは、内側に形成された電源層及びグランド層と、これ等の層上に形成された2層の信号層とを有する多層基板である。2層の信号層のうち、電源層又はグランド層いずれかに近い側の信号層(以下、内層という)の特性インピーダンスは40〜50Ω前後であり、遠い側の信号層(以下、外層という)の特性インピーダンスは80〜100Ω前後である。このように、メモリライザカードは、2つの異なる特性インピーダンスの信号層を有するので、この2つの信号層を選択的に用いることにより、メモリコントローラ1a及び各同期RAM4a間のバス等長配線を実現することができる。
【0076】
図11に示す例では、幹線51aとして特性インピーダンス40Ωの幅広の内層配線パターンを用い、支線52a、54aとして特性インピーダンス80Ωの外層配線パターンを用いて、アドレス・コマンド・クロック・ライトデータバス5aを形成している。また、幹線61a、支線62a、64aとして特性インピーダンス50Ωの内層配線パターンを用いて、リードデータバス6aを形成している。尚、アドレス・コマンド・クロック・ライトデータバス5a及びリードデータバス6aは、図11では、1本の線で示しているが、実際には、図12に示すように、複数の信号線で構成されている。そして、整合抵抗58a、67a、68a及び終端抵抗59a、69aは、各信号線毎に設けられている。また、図11に示すメモリライザカード7aでは、図12に示すように、リードデータバス6aが導体コンタクトパッド71及びメモリコントローラ1aの接続線と干渉しないように、当該接続線に外層配線パターンを用いている。
【0077】
本実施形態の同期式メモリシステムが実装されたメモリライザカードとしては、図13に示すような、本実施形態の同期式メモリシステムを2系統搭載したメモリライザボード7bも考えられる。また、本実施形態の同期式メモリシステムが実装された回路基板としては、メモリライザカードの他に、メモリコントローラの搭載されたメモリモジュール等も考えられる。
【0078】
次に、本発明の第二実施形態について図面を参照して説明する。
【0079】
図14は本発明の第二実施形態である同期式メモリシステムの概略構成図、図15は図14に示すシンクロナスDRAMの概略ブロック図である。
【0080】
本実施形態の同期式メモリシステムは、図14に示すように、偶数個のシンクロナスDRAM4b#1〜4b#n(以下、単に同期RAM4bともいう)と、シンクロナスDRAM4bへのデータの書き込みや読み出しを制御するメモリコントローラ1bと、アドレス・コマンド・クロックバス5bと、リードデータ・ライトデータバス6bと、を備えて構成される。
【0081】
メモリコントローラ1bは、シンクロナスDRAM4bの書き込み・読み出し動作を制御するためのアドレス、コマンド及び同期用クロックを、出力バッファ12bから出力する。また、シンクロナスDRAM4bに書き込むライトデータ及び同期用クロックを、出力バッファ12cから出力する。さらに、シンクロナスDRAM4bが出力したリードデータを入力バッファ14bで受信する。
【0082】
シンクロナスDRAM4bは、図15に示すように、アドレス、コマンド及び同期用クロックを受信する入力バッファ42bと、ライトデータ及び同期用クロックを受信する入力バッファ42cと、リードデータを出力する出力バッファ44bと、図示していないが、メモリセル、センスアンプ、シーケンサ等からなるメモリ部と、を有する。シンクロナスDRAM4bは、アドレス・コマンド・クロックバス5b上の同期用クロックを契機としてアドレス及びリードコマンドをラッチする。そしてラッチしたアドレス及びリードコマンドに従い、当該アドレスのリードデータを読み出して出力バッファ44bから出力する。また、アドレス・コマンド・クロックバス5b上の同期用クロックを契機としてアドレス及びライトコマンドをラッチする。そしてラッチしたアドレス及びライトコマンドに従い、リードデータ・ライトデータバス6b上の同期用クロックを契機としてラッチしたライトデータを、当該アドレスに書き込む。このシンクロナスDRAM4bは、従来より用いられているシンクロナスDRAMと同様である。
【0083】
アドレス・コマンド・クロックバス5bは、メモリコントローラ1bの出力バッファ12bから出力されたアドレス及びコマンドを、シンクロナスDRAM4bの入力バッファ42bに入力するためのものである。また、アドレス・コマンド・クロックバス5bは、図14に示すように、分岐点Fで幹線51bが2つの支線52b、54bに分岐しており、支線52bには奇数番目のシンクロナスDRAM4b#i(i=1、3、・・・n−1)が、そして支線54bには偶数番目のシンクロナスDRAM4b#j(j=2、4、・・・n)が、略等間隔で各々布線56bを介して接続されている。このようにすることで、支線52b及び支線54bの長さを略等しくしている。
【0084】
リードデータ・ライトデータバス6bは、メモリコントローラ1aの出力バッファ12cから出力されたアドレス及びコマンドを、シンクロナスDRAM4bの入力バッファ42cに入力すると共に、シンクロナスDRAM4bの出力バッファ44bから出力されたリードデータをメモリコントローラ1bの入力バッファ14bに入力するためのものである。リードデータ・ライトデータバス6bも、アドレス・コマンド・クロックバス5bと同様に、分岐点Gで幹線61bが2つの支線62b、64bに分岐しており、支線62bには奇数番目のシンクロナスDRAM4b#i(i=1、3、・・・n−1)が、そして支線64bには偶数番目のシンクロナスDRAM4b#j(j=2、4、・・・n)が、略等間隔で各々布線66bを介して接続されている。このようにすることで、支線62b及び支線64bの長さを略等しくしている。
【0085】
アドレス・コマンド・クロックバス5bの支線52b、54bは、メモリコントローラ1bに対するシンクロナスDRAM4bの序列を昇順(支線52bについては#1、#3、・・・#n−1の順、支線54bについては#2、#4、・・・#nの順)としている。一方、リードデータ・ライトデータバス6bの支線62b、64bは、メモリコントローラ1bに対するシンクロナスDRAM4bの序列を降順(支線62bについては#n−1、#n−3、・・・#1の順、支線64bについては#n、#n−2、・・・#2の順)としている。上述したように、アドレス・コマンド・クロックバス5bの支線52b及び支線54bの長さを略等しくすると共に、リードデータ・ライトデータバス6bの支線62b及び支線64bの長さを略等しくしているので、このようにすることにより、メモリコントローラ1b及びシンクロナスDRAM4b間のアドレス・コマンド・クロックバス5bのバス長と、メモリコントローラ1b及びシンクロナスDRAM4b間のリードデータ・ライトデータバス6bのバス長との総和が、全てのシンクロナスDRAM4b#1〜4b#nについて略等しくなるようにしている。
【0086】
本実施形態の同期式メモリシステムでは、シンクロナスDRAM4bは、メモリコントローラ1bからアドレス・コマンド・クロックバス5b上に出力されたアドレス及びライトコマンドをラッチする。そして、メモリコントローラ1bからリードデータ・ライトデータバス6b上に出力された同期用クロックを契機として、メモリコントローラ1aからリードデータ・ライトデータバス6b上に出力されたライトデータをラッチする。これにより、ライトデータの同期転送を実現している。
【0087】
また、メモリコントローラ1b及びシンクロナスDRAM4b間のアドレス・コマンド・クロックバス5bのバス長と、メモリコントローラ1b及びシンクロナスDRAM4b間のリードデータ・ライトデータバス6aのバス長との総和が、全てのシンクロナスDRAM4b#1〜4b#nについて略等しくなるようにしている。これにより、メモリコントローラ1bの出力バッファ12bがアドレス及びリードを示すコマンドを出力してから、メモリコントローラ1bの入力バッファ14bが当該アドレスのデータを受信するまでのメモリアクセスレイテンシを、全てのシンクロナスDRAM4b#1〜4b#nについて略一定にすることができる。
【0088】
さらに、アドレス・コマンド・クロックバス5b及びリードデータ・ライトデータバス6b各々を、図14に示すように、2つの支線に分岐して、一方の支線に奇数番目のシンクロナスDRAM4bを接続し、他方の支線に偶数番目のシンクロナスDRAM4bを接続したことにより、メモリコントローラ1b及びシンクロナスDRAM4b間におけるアドレス・コマンド・クロックバス5b、リードデータ・ライトデータバス6bの最長バス長を、図23に示す従来の同期メモリシステムに比べて、略半分に短縮することができる。これにより、メモリコントローラ1bの各シンクロナスDRAM4bに対するメモリアクセスレイテンシを短縮することができる。また、図24に示す従来の同期メモリシステムと異なり、2つのアドレス・コマンドバスに各々対応する2つの出力バッファと、2つのリードデータ・ライトデータバスに各々対応する2つの入力バッファ及び出力バッファとを、メモリコントローラに設ける必要がない。したがって、メモリコントローラが大きくなるのを防ぐことができ、また、メモリコントローラのピン数が増加するのを防ぐことができる。
【0089】
さらに、本実施形態では、同期メモリとして、従来より用いられているシンクロナスDRAMを利用しているので、部品の共通化・低価格化を図ることができる。
【0090】
次に、本実施形態のアドレス・コマンド・クロックバス5b及びリードデータ・ライトデータバス6bの具体的な構成について図面を参照して説明する。
【0091】
図16は図14に示すアドレス・コマンドバスの概略構成図、図17は図14に示すリードデータ・ライトデータバスの概略構成図である。
【0092】
図16に示す本実施形態のアドレス・コマンド・クロックバス5bの構成は、図3に示す第一実施形態のアドレス・コマンド・クロック・ライトデータバス5aのものと基本的に同様である。すなわち、幹線51bとして、特性インピーダンスZsが40Ωの配線パターンを用いている。また、支線52b、54bとして、特性インピーダンスZmが80Ωの配線パターンを用い、支線52b、54bの終端各々を抵抗値Rtが80Ωの終端抵抗59bを介してラインVttに接続している。さらに、布線56bとして、特性インピーダンスZskが80Ωの配線パターンを用い、各布線56bを抵抗値Rmが40Ωの整合抵抗58bを介して対応する支線52b、54bに接続している。
【0093】
このようにすることで、第一実施形態のアドレス・コマンド・クロック・ライトデータバス5aと同様の効果を得ることができる。たとえば、分岐点Fでのインピーダンス整合を図ることができ、メモリコントローラ1bの出力バッファ12bから出力された電気信号が分岐点Dに到達した際に、不要な反射波が発生するのを抑制することができる。また、支線52b、54bと布線56bとの接続点でのインピーダンス整合を図ることができる。これにより、布線56b及びシンクロナスDRAM4bの接点と、当該布線56b及び当該布線56bに接続された支線52b、54bの接続点とで、反射波が交互に繰り返し発生することを防止できる。この結果、入力バッファ42bに入力される電気信号の振幅が段階的に上昇することによるシンクロナスDRAM4bの誤動作を防止できる。さらに、支線52b、54bの終端各々でのインピーダンス整合を図ることができ、これにより、支線52b、54bの終端に到達した電気信号や反射波を終端抵抗59bに吸収させることができる。
【0094】
図17に示す本実施形態のリードデータ・ライトデータバス6bの構成は、図6に示す第一実施形態のリードデータバス6aのものと基本的に同様である。すなわち、幹線61bとして特性インピーダンスZuが50Ωの配線パターンを、そして支線62b、64bとして特性インピーダンスZrが50Ωの配線パターンを用い、幹線61bと分岐点Gとの間に抵抗値Rmrが25Ωの整合抵抗67bを挿入している。また、支線62b、64bの終端各々を抵抗値Rkが50Ωの終端抵抗69bを介してラインVttに接続している。さらに、布線66bとして、特性インピーダンスZsrが80Ωの配線パターンを用い、各布線66bを抵抗値Rrが55Ωの整合抵抗68bを介して対応する支線62b、64bに接続している。
【0095】
このようにすることで、第一実施形態のリードデータバス6aと同様の効果を得ることができる。たとえば、支線62b、64bと布線66bとの接続点でのインピーダンス整合を図ることができ、これにより、シンクロナスDRAM4bの出力バッファ44bから出力された電気信号が接続点で不要に反射するのを抑制することができる。また、分岐点Gでのインピーダンス整合を図ることができる。これにより、入力バッファ14b及び幹線61bの接点と分岐点Eとで、反射波が交互に繰り返し発生することを防止できる。この結果、入力バッファ14bに入力される電気信号の振幅が段階的に上昇することによるメモリコントローラ1bの誤動作を防止できる。さらに、支線62b、64bの終端各々でのインピーダンス整合を図ることができ、これにより、支線62b、64bの終端に到達した電気信号や反射波を終端抵抗69bに吸収させることができる。
【0096】
本実施形態の同期式メモリシステムを動作させた際に、電気信号が各バス上をどの様に伝搬するかについて、図面を参照して説明する。
【0097】
図18は本実施形態の動作を説明するためのタイミング図である。図18において、181は、シンクロナスDRAM4bの入力バッファ42bがラッチするアドレス及びコマンドの受信タイミングを示している。また、182は、シンクロナスDRAM4bの入力バッファ42cがラッチするライトデータの受信タイミング、およびシンクロナスDRAM4bの出力バッファ44bから出力されるリードデータの出力タイミングを示している。
【0098】
図18に示す例では、シンクロナスDRAM4bの入力バッファ42bは、アドレス及びライトコマンドからなるライト要求を受信した後、続けてアドレス及びリードコマンドからなるリード要求を受信している。一方、シンクロナスDRAM4bの入力バッファ42cは、入力バッファ42bでのライトコマンドの受信と略同時期にライトデータの受信を開始している。すなわち、シンクロナスDRAM4aは、ライト要求の動作が完結しないうちにリード要求を受信している。また、シンクロナスDRAM4bの出力バッファ44bは、入力バッファ42bがリードコマンドを受信した後、3サイクル後にリードデータを出力している。尚、シンクロナスDRAM4aは、続けて受信したリード要求をメモリ部のデータバッファで一時的に蓄え、メモリセルが読み出し可能になり次第読み出しを行う。
【0099】
本実施形態が図18に示すリード要求を行った場合、リード要求及び当該要求によって読み出されたリードデータの伝搬波形は図19のようになる。
【0100】
図19は、図18に示すリード要求を行った場合の各位置でのリード要求及びリードデータの伝搬波形を示す図である。図19において、193はリード要求の伝搬波形を示しており、実線はメモリコントローラ1bの出力バッファ12bでの伝搬波形、1点鎖線はシンクロナスDRAM4b#1、4b#2の入力バッファ42bでの伝搬波形、そして2点鎖線はシンクロナスDRAM4b#n−1、4b#nの入力バッファ42bでの伝搬波形を示している。194はリードデータの伝搬波形を示しており、1点鎖線はシンクロナスDRAM4b#1、4b#2の出力バッファ44bから出力されたリードデータの当該出力バッファ44bでの伝搬波形、2点鎖線はシンクロナスDRAM4b#n−1、4b#nの出力バッファ44bから出力されたリードデータの当該出力バッファ44bでの伝搬波形を示している。195はメモリコントローラ1bの入力バッファ14bに入力されたリードデータの伝搬波形を示しており、1点鎖線はシンクロナスDRAM4b#1、4b#2から出力されたリードデータの伝搬波形、2点鎖線はシンクロナスDRAM4b#n−1、4b#nから出力されたリードデータの伝搬波形を示している。尚、図19において横軸は時間を表している。
【0101】
メモリコントローラ1bの出力バッファ12bから出力されるリード要求の振幅は出力バッファ12bの内部インピーダンスと終端抵抗59bとの分割抵抗比によって定まる。このため、リード要求の振幅は、アドレス・コマンド・クロックバス5b上の位置にかかわらず略一定である。シンクロナスDRAM4bの入力バッファ42bに到達したリード要求は、図19の193に示すように、当該入力バッファ42b及び布線56bの寄生容量と整合抵抗58bからなるRC回路の時定数に従って滑らかな立ち上がり、降下を示す。シンクロナスDRAM4b#n−1、4a#nの入力バッファ42bに到達するリード要求は、図19の193に示すように、アドレス・コマンド・クロックバス5b上での伝搬遅延により、シンクロナスDRAM41b#1、4b#2に到達するリード要求よりも、多少遅れて到達する。
【0102】
シンクロナスDRAM4bは、メモリコントローラ1bから出力されたリード要求を受信した順番でリードデータを出力バッファ44bから出力する。したがって、図19の194に示すように、シンクロナスDRAM4b#n−1、4b#nの出力バッファ44bから出力されるリードデータは、シンクロナスDRAM4b#1、4b#2の出力バッファ44bから出力されるリードデータよりも、多少遅れて出力される。
【0103】
メモリコントローラ1bの入力バッファ14bに入力されるリードデータの振幅は、図19の195に示すように、シンクロナスDRAM4bの出力バッファ44bの内部インピーダンス及び整合抵抗68bの和と、終端抵抗69bとの分割抵抗比に従い圧縮される。また、リードデータ・ライトデータバス6bでは、メモリコントローラ1bに対するシンクロナスDRAM4bの位置関係がアドレス・コマンド・クロックバス5bの場合と逆転するので、メモリコントローラ1bの入力バッファ14bに到達する各シンクロナスDRAM4bからのリードデータは、図19の195に示すように、略同時期に到達する。また、メモリコントローラ1bの入力バッファ14bに到達したリードデータは、入力バッファ14b及び幹線61bの寄生容量と、整合抵抗67bからなるRC回路の時定数に従い、滑らかな立ち上がり、降下を示す。
【0104】
本実施形態が図18に示すライト要求を行った場合、ライト要求及びライトデータの伝搬波形は図20のようになる。
【0105】
図20は、図18に示すライト要求を行った場合の各位置でのライト要求及びライトデータの伝搬波形を示す図である。図20において、201はライト要求の伝搬波形を示しており、実線はメモリコントローラ1bの出力バッファ12bでの伝搬波形、1点鎖線はシンクロナスDRAM4b#1、4b#2の入力バッファ42bでの伝搬波形、そして2点鎖線はシンクロナスDRAM4b#n−1、4b#nの入力バッファ42bでの伝搬波形を示している。202はライトデータの伝搬波形を示しており、実線はメモリコントローラ1bの出力バッファ12cでの伝搬波形、1点鎖線はシンクロナスDRAM4b#1、4b#2の入力バッファ42cでの伝搬波形、2点鎖線はシンクロナスDRAM4b#n−1、4b#nの入力バッファ42cでの伝搬波形を示している。尚、図20において横軸は時間を表している。
【0106】
メモリコントローラ1bの出力バッファ12bから出力されるライト要求の振幅は出力バッファ12bの内部インピーダンスと終端抵抗59bとの分割抵抗比によって定まる。このため、リード要求の振幅は、アドレス・コマンド・クロックバス5b上の位置にかかわらず略一定である。シンクロナスDRAM4bの入力バッファ42bに到達したライト要求は、図20の201に示すように、当該入力バッファ42b及び布線56bの寄生容量と整合抵抗58bからなるRC回路の時定数に従って滑らかな立ち上がり、降下を示す。シンクロナスDRAM4b#n−1、4b#nの入力バッファ42bに到達するライト要求は、図20の201に示すように、アドレス・コマンド・クロックバス5b上での伝搬遅延により、シンクロナスDRAM4b#1、4b#2に到達するライト要求よりも、多少遅れて到達する。
【0107】
メモリコントローラ1bの出力バッファ12cから出力され、シンクロナスDRAM4bの入力バッファ42cに入力されるライトデータの振幅は、図20の202に示すように、メモリコントローラ1bの出力バッファ12cの内部インピーダンス及び整合抵抗67bの和と、2つの終端抵抗69bとの分割抵抗比に従い圧縮される。シンクロナスDRAM4bの入力バッファ42cに到達したライトデータは、図20の202に示すように、当該入力バッファ42c及び布線66bの寄生容量と整合抵抗68bからなるRC回路の時定数に従って滑らかな立ち上がり、降下を示す。シンクロナスDRAM4b#1、4b#2の入力バッファ42cに到達するライトデータは、図20の201に示すように、リードデータ・ライトデータバス6b上での伝搬遅延により、シンクロナスDRAM4b#n−1、4b#nに到達するライトデータよりも、多少遅れて到達する。
【0108】
本実施形態では、図19及び図20に示すように、アドレス・コマンド・クロックバス5bを伝搬する信号の振幅は、メモリコントローラ1bの出力バッファ12bの内部インピーダンス及び2つの終端抵抗59bとの分割抵抗比に従い決定される。一方、リードデータ・ライトデータバス6bを伝搬する信号の振幅は、シンクロナスDRAM4bの出力バッファ44bの内部インピーダンス及び整合抵抗68bの和と、2つの終端抵抗69bとの分割抵抗比に従い決定される。したがって、上記分割抵抗比が適当な値となるように、整合抵抗58b、68bの値及び終端抵抗59b、69bの値を設定することにより、アドレス・コマンド・クロックバス5b及びリードデータ・ライトデータバス6b間で、異なるバスインタフェースの規格に合わせた信号振幅を得ることができる。たとえば、アドレス・コマンド信号を、従来のターミネーテッドLV−TTLで定義された信号電位でシンクロナスDRAM4bの入力バッファ42bに入力することができ、また、リードデータ信号を、シンクロナスDRAMの(米)EIA/JEDECでの標準規格であるSSTL(Stub Series Terminated Transiever Logic) で定義された信号電位でメモリコントローラ1bの入力バッファ14bに入力することができる。
【0109】
但し、整合抵抗58b、68bの値及び終端抵抗59b、69bの値は、アドレス・コマンド・クロックバス5b及びリードデータ・ライトデータバス6bを構成する配線パターンの特性インピーダンスによって定まる.したがって、上記分割抵抗比が適当な値となるように、整合抵抗58b、68bの値及び終端抵抗59b、69bの値を設定するためには、上記配線パターンの特性インピーダンスを適当な値に設定する必要がある。この場合、整合抵抗58b、68bが適当な値となるように、布線56b、66bを構成する配線パターンの特性インピーダンスを変えるのがよい。
【0110】
本発明は、本発明は上記の各実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。たとえば、上記の各実施形態では、リードデータバス又はリードデータ・ライトデータバスの幹線側から見たときに分岐点で整合がとれるように、幹線及び分岐点間に整合抵抗を挿入したものについて説明した。しかしながら、本発明はこれに限定されるものではない。分岐点及び幹線間、分岐点及び各支線間に、それぞれ適当な整合抵抗を挿入することにより、幹線側から見たときのみならず、支線側から見たときにも分岐点で整合がとれるようにしてもよい。
【0111】
図21に一例を示す。図21は、第二実施形態のリードデータ・ライトデータバス6bにおいて、分岐点G及び幹線61b間、分岐点G及び各支線62b、64b間に、それぞれ適当な整合抵抗を挿入した例を示す。図21に示す例では、幹線61bとして特性インピーダンスZuが80Ωの配線パターンを用い、支線62b、64bとして特性インピーダンスZrが80Ωの配線パターンを用いている。そして、分岐点Gと幹線61bとの間に抵抗値Rs1が26.6Ωの整合抵抗67cを挿入し、分岐点Gと支線62bとの間及び分岐点Gと支線64bとの間に抵抗値Rs2が26.6Ωの整合抵抗67dを各々挿入している。このようにすることで、幹線61bの特性インピーダンス(Zu=80Ω)と、支線62b、64b及び整合抵抗67c、67dの合成インピーダンス
(Rs1+(Zr+Rs2)/2=79.9Ω)
とを略一致させることができ、幹線61bから見たときに分岐点G’で整合させることができる。また、支線62bの特性インピーダンス(Zr=80Ω)と、幹線61b、支線64b及び整合抵抗67c、67dの合成インピーダンス
(Rs2+(Zu+Zr+Rs1+Rs2)/2=79.9Ω)
とを略一致させることができ、支線62bから見たときに分岐点Gで整合させることができる。支線64bから見たときも同様である。
【0112】
尚、以下に示すように、整合抵抗67cの抵抗値Rs1は(式1)で、また、整合抵抗67dの抵抗値Rs2は(式2)で求めることができる。
【0113】
Rs1=Zr2/(4Zu−Zr)・・・(式1)
Rs2=Zs(4Zu−3Zr)/(4Zu−Zr)・・・(式2)
図22に別の例を示す。図22では、第二実施形態のリードデータ・ライトデータバス6bにおいて、幹線61bの特性インピーダンスZuを37.5Ω、支線62b、64bの特性インピーダンスZrを50Ω、分岐点Gと支線62bとの間及び分岐点Gと支線64bとの間に挿入する整合抵抗67cの抵抗値Rs2を25Ωに設定して、整合抵抗67cの抵抗値Rs1=0で整合がとれるようにした例を示す。このようにすることで、分岐点Gでの整合を保ちながら、整合抵抗67cを省略している。
【0114】
また、上記の各実施形態では、アドレス・コマンド・クロック・ライトデータバスやリードデータバス等を2つの支線に分岐したものについて説明したが、本発明はこれに限定されるものではなく、バスを複数の支線に分岐したものであればよい。
【0115】
さらに、上記の各実施形態では、バス上を伝搬して送られてくるアドレス・コマンド信号やライトデータ信号を、これ等の信号と同じようにしてバス上を伝搬して送られてくる同期用クロックを契機としてラッチするソースクロック同期方式を用いたものについて説明している。しかしながら、本発明の同期式メモリシステムは、メモリコントローラ及メモリの全てに同相のクロックが給電されても動作する。すなわち、従来の情報処理装置に見られる同相のクロックにより定義されるバスサイクルに従っても同期動作する。
【0116】
また、上記の各実施形態では、メモリコントローラによって複数のメモリを同期制御する同期式メモリシステムについて説明したが、本発明はバスマスタによって複数のバススレーブを同期制御するバスシステムであれば、様々な用途に適用することができる。
【0117】
次に、図25,26,27,28を用いて本発明の第3の実施形態を説明する。
【0118】
本発明の実施の形態では、図25,図26のメインライン312bの特性インピーダンスの実効値は図28に示す通り、スタブを介して接続されるメモリ素子の寄生負荷容量CLや接続されるスタブ間隔(図28の横軸に示す)により小さくなる。図25において、316bのRmrは、ある条件における312bの特性インピーダンスZrの実効値28Ωにあわせて28Ωとしている。同様に終端抵抗315のRtも28Ωとしている。図のようにメインライン312bは一端に28Ωの抵抗316bを他端に28Ωの終端抵抗315bを接続する。スタブは314bの整合抵抗Rrを介して接続されている。この314bの整合抵抗Rrは、特性インピーダンスZrの実効値(Zreff)と整合を取るため、
Rr=Zsr−(Zreff)÷2
の式から導出される66Ωである。
【0119】
この構成で、メインライン312bにおける伝搬波形の信号振幅は、メモリコントローラであるLSI1dの出力ドライバ2d2のソースインピーダンスRsrcと抵抗316bのRmrの和と、終端抵抗Rtの直列抵抗回路における分割抵抗比から導出される。ソースインピーダンスRsrcは6(min)Ω〜12(typ)Ω〜24(max)Ωと製造ばらつきを受ける。
【0120】
Rsrc=6Ωとすると信号振幅は
Vdd×Rt÷(Rsrc+Rmr+Rt)
からおおむね、1.49vとなる。SSTLで規定されるVin=825〜660mvであるから、SSTLのVinに対して十分なノイズマージンを有する。即ち、本構成ではいずれのメモリ素子41bにもSSTL互換の伝搬波が到達する。
【0121】
メモリコントローラであるLSI1dの出力ドライバ2d2の駆動電流Idrvは、
Idrv=Vtt÷(Rsrc+Rmr+Rt)≒24mA
となる。
【0122】
この駆動電流値は、一般的なCMOS LSIの出力バッファの最大駆動電流値におおむね等しく、本発明の第3の実施の形態において、一般的なCMOS LSIの適用が可能であることを示している。
【0123】
次に、図26における図25との差異を示す。
【0124】
図26において、抵抗316bの抵抗値Rmrは52Ωである。メインライン312bの特性インピーダンスZrの実効インピーダンスZreffと、スタブ311bのZrについて、Zr=Rmr+ZreffからRmrを導出している。このRmrによりメインライン312bとスタブ311bの接続点におけるインピーダンスの整合をとっている。
【0125】
図27に図25、図26に示したバスを実装したメモリライザーカードを示す。図中、メモリライザカードの中心に配されたメモリコントローラ1dの上下にはメモリ素子41bが配され、メモリコントローラ1dとメモリ素子41bの間に、左からアドレス,コマンド,コントロール,クロックのバスと、データバスとが配線されている。図中、これらバスは簡単の為、1本ずつの描画となっている。図に示したメモリコントローラ1dと上側のメモリ素子41bの間のバスについて説明する。メモリコントローラ1dの2b1から出力されたアドレス,コマンド,コントロール,クロックのバスには、整合抵抗214bを介してメモリ素子41bが接続される。メモリライザカードの上端部で終端抵抗215bに接続される。本構成は図25の構成に倣っている。データバスはメモリコントローラ1dの近傍に配された終端抵抗315bに端を発する。データバスには整合抵抗314bを介してメモリ素子41bが接続され、上端部にいたり折り返してメモリコントローラ1dの近傍で整合抵抗316bを介してメモリコントローラ1dに接続される。図の下部は上記説明のバスとメモリ素子の配置をメモリコントローラ1dを中心に線対称で実現している。よって、説明は割愛する。
【0126】
図25,26に示した実効インピーダンスZreffについて、メモリ素子の寄生負荷容量や接続されるスタブの間隔の関係を図28に示す。一般にメインラインの特性インピーダンスZ0は印刷回路基板の金属導体と絶縁フィルムの構造距離と物性から決定される。図中、特性インピーダンスは80Ωとしている。
【0127】
特性インピーダンスZ0の実効値と寄生容量の関係は、或るスタブ間隔におけるスタブの容量をCとすると、
Figure 0003546613
【0128】
で示される。
【0129】
よって、図に示すとおり、CLが7,10,15pFと増加するとZeffは小さくなる。またCLの次元は[pF/1ヶ]で表され、接続されるスタブの間隔は[1ヶ/m]であるから、単位長さあたりのCLは間隔が詰まるほど大きくなり、Zeffは小さくなる。よって、図中、Zeffは左端に向かって降下している。この図に示すように、スタブ間隔と、メモリの寄生容量によってZreffが変化するので、実際の値からZreffを求め、Rmr、Rtを求めればよい。
【0130】
次に、図29,30,31,32,33を用いて本発明の第4の実施形態を説明する。
【0131】
図29と先に説明した本発明の第3の実施の形態との差異を説明する。図29では、メモリ素子41bはいずれもメインライン312bに直に接続される構成となっている。即ちメモリ素子41bが半田付けされる印刷回路基板の金属パターンいわゆるフットパターンをメインライン312bの印刷回路配線がつづっていく構成である。本構成においても、本発明の第3の実施の形態に示した図28の関係に従い、メインライン312bの特性インピーダンスZrの実効値は小さくなる。よって、終端抵抗Rt315b,整合抵抗Rmr316bは本発明の第3の実施の形態と同じ原理で決定された数値となる。よって、本発明の第3の実施の形態に示した信号振幅が、本発明の第4の実施形態のメモリ素子41bに入力され、SSTL互換を実現している。本構成により、本発明の第3の実施例での整合抵抗314bが省略される。
【0132】
図30は図29に示したメインライン312bを本発明の第2の実施の形態へ適用した構成を示している。終端抵抗315bはメインラインの特性インピーダンスZrの実効値に合わせている。整合抵抗の位置の抵抗316bは本構成では52Ωである。整合抵抗であれば66Ω近辺の数値が妥当であるが、52Ω前後まで小さくした。本構成で、メモリコントローラであるLSI 1dがバスマスタの時には、メインライン312b上の信号振幅は拡大され、ほぼ800mVとなり、ノイズマージンの拡大が期待できる。また、SSTLとの互換性が維持できる。
【0133】
図31は図29に示した印刷回路基板上の回路配線を実現したメモリライザカードの概略構成を示している。本発明の第3の実施の形態での図27との差異を示す。
【0134】
図中、メモリライザカードの中心に配されたメモリコントローラ1dの上下にはメモリ素子が配され、メモリコントローラ1dとメモリ素子の間に、左からアドレス,コマンド,コントロール,クロックのバスと、データバスが配線されている。図中、これらバスは簡単の為、1本ずつの描画となっている。図に示したメモリコントローラ1dと上側のメモリ素子の間のバスについて説明する。メモリコントローラ1dの2b1から出力されたアドレス,コマンド,コントロール,クロックのバスには、直接メモリ素子42bが接続されるよう印刷回路配線がメモリ素子42bが半田付けされたフットプリントをつづっている。メモリライザカードの上端部で終端抵抗215に接続される。
【0135】
図32に本発明の第4の実施の形態を適用したメモリモジュール(DIMM:デュアルインラインメモリモジュール)の概略構成を示している。図中、70はメモリモジュール、42はメモリ素子で同期DRAM、72はアドレスバッファ、73はクロックバッファ、215e,215fが終端抵抗、216e,216fが抵抗、416がメモリシステム側のアドレス,コマンド,コントロール,クロックのバスとの間に挿入された整合抵抗である。図中、アドレスバッファ72からメモリモジュール70上のメモリ素子の間のアドレス,コマンド,コントロール,クロックのバスの概略が示されている。アドレスバッファ72から出た信号線は抵抗216eを介してビアホールに至る。ビアホールで信号線は表面と裏面に分岐している。表面の信号線はそのまま立ち上がり5つのメモリ素子42に接続されて終端抵抗215eに至る。ビアホールから分岐した裏面の信号線は同様に4つのメモリ素子42に接続されて終端抵抗215eに至る。いずれのメモリ素子42は、抵抗216eと終端抵抗215eの直列抵抗回路における分割抵抗比から導出される信号振幅の電気信号を入力とする。
【0136】
同様に、アドレスバッファ72から出た信号線は抵抗216fを介してビアホールに至る。ビアホールで信号線は表面と裏面に分岐している。表面の信号線はそのまま立ち上がり左右2つに分岐する。分岐した先で左に4つのメモリ素子42に接続されて終端抵抗215fに至り、右に5つのメモリ素子42に接続されて終端抵抗215fに至る。ビアホールから分岐した裏面の信号線はそのまま立ち上がり左右2つに分岐する。分岐した先で左に5つのメモリ素子42に接続されて終端抵抗215fに至り、右に4つのメモリ素子42に接続されて終端抵抗215fに至る。いずれのメモリ素子42は、抵抗216fと終端抵抗215fの直列抵抗回路における分割抵抗比から導出される信号振幅の電気信号を入力とする。
【0137】
図33に本発明の実施の形態に示したメモリシステムの搭載される情報処理装置の概略を示す。
【0138】
情報処理装置は、CPU4台とメモリコントローラが接続されたマルチプロセッサバスと、メモリコントローラにグラフィックとI/Oコントローラを接続するI/Oバスから構成される。本発明のメモリシステムは図中のメモリコントローラと同期DRAM(SDRAM)からなる。メモリコントローラとグラフィックの間には特別なバスを持つ。これによりI/Oバスのプロトコル変換のオーバヘッドや、バスの混雑度に関係なくデータが転送できるので、メモリシステムからグラフィックに対し高速なデータ転送を実現している。
【0139】
本発明のメモリシステムでインピーダンスの整合がとれたメモリシステムバスが実現できることで、メモリシステムの高速動作が期待できる。特に、本構成に適用することで、グラフィックの他、マルチプロセッサ構成のCPU4台に対して高速なデータ供給を実現する。
【0140】
【発明の効果】
以上説明したように、本発明によれば、バスマスタのピン数を増加させることなく、バスマスタ及び当該バスマスタに支配される複数のバススレーブ各々間の信号転送時間を略一定に保ちながら短縮することができる。
【0141】
また、伝送線路と終端抵抗の整合が図れ、接続位置での不整合による信号の不要な反射を抑える事が出来る。これにより、ノイズの少ない信号の伝送が可能となる。
【0142】
また、伝送線路と接続されるノードの整合が図れ、接続位置での不整合による信号の不要な反射を抑える事が出来る。これにより、ノイズの少ない信号の伝送が可能となる。
【0143】
また、終端抵抗が減るほか、信号を出力するLSIの駆動電流量を低減することができ、電流駆動能力の低いCMOS LSIの適用が可能となる。
【0144】
また、前記電流量でSSTL互換の信号振幅を得ることが出来、SSTL対応のLSIの部品が利用できる。
【0145】
また、従来、個々のメモリ素子に必要だった整合抵抗なしに、SSTLのメモリモジュールが実現できる。
【0146】
また、従来の伝送線路の両端で終端する形のSSTLの回路においても、整合抵抗を省略したSSTLのメモリモジュールが実現できる。
【図面の簡単な説明】
【図1】本発明の第一実施形態である同期式メモリシステムの概略構成図である。
【図2】図1に示す同期RAMの概略ブロック図である。
【図3】図1に示すアドレス・コマンド・クロック・ライトデータバスの概略構成図である。
【図4】図3のA部拡大図である。
【図5】図5は図3のB部拡大図である。
【図6】図1に示すデータバスの概略構成図である。
【図7】図6のC部拡大図である。
【図8】図6のD部拡大図である。
【図9】第一実施形態の動作を説明するためのタイミング図である。
【図10】図9に示すリード要求を行った場合の各位置でのリード要求及びリードデータの伝搬波形を示す図である。
【図11】第一実施形態の同期式メモリシステムが実装されたメモリライザカードの概略構成図である。
【図12】図11に示すメモリライザカードの部分概略拡大図である。
【図13】第一実施形態の同期式メモリシステムが2系統実装されたメモリライザカードの概略構成図である。
【図14】本発明の第二実施形態である同期式メモリシステムの概略構成図である。
【図15】図14に示すシンクロナスDRAMの概略ブロック図である。
【図16】図14に示すアドレス・コマンド・クロックバスの概略構成図である。
【図17】図14に示すリードデータ・ライトデータバスの概略構成図である。
【図18】第二実施形態の動作を説明するためのタイミング図である。
【図19】図18に示すリード要求を行った場合の各位置でのリード要求及びリードデータの伝搬波形を示す図である。
【図20】図18に示すライト要求を行った場合の各位置でのライト要求及びライトデータの伝搬波形を示す図である。
【図21】分岐点での整合抵抗の配置の変形例を示す図である。
【図22】分岐点での整合抵抗の配置の変形例を示す図である。
【図23】SyncLinkが適用された同期式メモリシステムの概略構成図である。
【図24】SyncLinkが適用された同期式メモリシステムの容量増設時の構成を示す図である。
【図25】本発明の第三実施形態である同期式メモリシステムのリードデータ・ライトデータバスの概略構成図である。
【図26】第三実施形態である同期式メモリシステムにおけるリードデータ・ライトデータバスの他の概略構成図である。
【図27】第三実施形態の同期式メモリシステムが実装されたメモリライザカードの概略構成を示す図である。
【図28】第三実施形態のバスの負荷容量の変化による特性インピーダンスの変化を示す図である。
【図29】本発明の第四実施形態である同期式メモリシステムのリードデータ・ライトデータバスの概略構成図である。
【図30】第四実施形態の同期式メモリシステムにおけるリードデータ・ライトデータバスの他の概略構成図である。
【図31】第四実施形態の同期式メモリシステムが実装されたメモリライザカードの概略構成を示す図である。
【図32】第四実施形態の同期式メモリシステムに用いられるメモリモジュールの概略構成を示す図である。
【図33】本発明の実施の形態の同期式メモリシステムを搭載した情報処理装置の概略構成を示す図である。
【符号の説明】
1a、1b…メモリコントローラ
4a…同期RAM
4b…シンクロナスDRAM
5a…アドレス・コマンド・クロック・ライトデータバス
5b…アドレス・コマンド・クロックバス
6a…リードデータバス
6b…リードデータ・ライトデータバス
7a、7b…メモリライザカード
12a、12b、12c、42a、42b、42c…入力バッファ
14a、14b、44a、44b…出力バッファ
16…インターフェース
51a、51b、61a、61b…幹線
52a、52b、54a、54b、62a、62b、64a、64b…支線
56a、56b、66a、66b…布線
58a、58b、67a、67c、67d、68b、68a、68b 整合抵抗59a、59b、69a、69b…終端抵抗
71…導体コンタクトパッド。

Claims (4)

  1. 複数のノードの第一のLSIと、第二のLSIと、前記第二のLSIから出力された信号を前記複数のノードの第一のLSIに入力するための第一の伝送線路と、前記複数のノードの第一のLSIから出力された信号を前記第二のLSIに入力するための第二の伝送線路と、を備える回路基板であって、
    各ノードの第一のLSIは、前記各ノードの第一のLSIと前記第二のLSIの間の前記第一の伝送線路の長さと前記各ノードの第一のLSIと前記第二のLSIの間の前記第二の伝送線路の長さとの総和が、全てのノードの第一のLSIについて等しくなるように、前記第一の伝送線路及び前記第二の伝送線路に接続され、
    前記第二の伝送路の一端は、抵抗値Rttの終端抵抗により終端され、
    前記第二の伝送線路の他端は、抵抗の抵抗を介して、前記第二のLSIに接続され
    前記第二の伝送線路には前記抵抗値Rttと前記抵抗値Rと前記第二のLSI抵抗Rsの直列抵抗回路における分割抵抗比から一意に決まる信号振幅が伝搬し、前記信号振幅が所定の値に等しいか大きくなるように前記抵抗値Rttの前記終端抵抗前記抵抗値の前記抵抗を組み合わせたことを特徴とする回路基板。
  2. 前記抵抗値Rttは、前記第二の伝送路の特性インピーダンスZ(=sqrt(L÷C))、前記各ノードの寄生容量CLによって、
    Rtt=Z×sqrt(C÷(C+CL))
    から導出されることを特徴とする請求項1記載の回路基板。
  3. 前記各ノードの第一のLSIは、特性インピーダンスZsの伝送路と抵抗値Rmの整合抵抗を介して、前記第二の伝送線路に接続され、
    前記抵抗値Rmは、
    Rm=Zs−Z×sqrt(C÷(C+CL))÷2
    ないし
    Rm=Zs−Rtt÷2
    から導出されることを特徴とする請求項1記載の回路基板。
  4. 前記第二のLSIがアドレスバッファないしクロックバッファであり、
    前記ノードの第一のLSIがメモリ素子であることを特徴とする請求項1から3のいずれかに記載の回路基板
JP28385396A 1996-06-13 1996-10-25 回路基板 Expired - Fee Related JP3546613B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28385396A JP3546613B2 (ja) 1996-10-25 1996-10-25 回路基板
US08/874,721 US6125419A (en) 1996-06-13 1997-06-13 Bus system, printed circuit board, signal transmission line, series circuit and memory module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28385396A JP3546613B2 (ja) 1996-10-25 1996-10-25 回路基板

Publications (2)

Publication Number Publication Date
JPH10124210A JPH10124210A (ja) 1998-05-15
JP3546613B2 true JP3546613B2 (ja) 2004-07-28

Family

ID=17671024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28385396A Expired - Fee Related JP3546613B2 (ja) 1996-06-13 1996-10-25 回路基板

Country Status (1)

Country Link
JP (1) JP3546613B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002007201A (ja) * 2000-06-21 2002-01-11 Nec Corp メモリシステム、メモリインターフェース及びメモリチップ
US6675272B2 (en) 2001-04-24 2004-01-06 Rambus Inc. Method and apparatus for coordinating memory operations among diversely-located memory components
JP4173970B2 (ja) * 2002-03-19 2008-10-29 株式会社ルネサステクノロジ メモリシステム及びメモリモジュール
JP3886425B2 (ja) 2002-07-29 2007-02-28 エルピーダメモリ株式会社 メモリモジュール及びメモリシステム
US20050289284A1 (en) * 2004-06-24 2005-12-29 Ge Chang High speed memory modules

Also Published As

Publication number Publication date
JPH10124210A (ja) 1998-05-15

Similar Documents

Publication Publication Date Title
US6125419A (en) Bus system, printed circuit board, signal transmission line, series circuit and memory module
JP3820843B2 (ja) 方向性結合式メモリモジュール
US10949339B2 (en) Memory module with controlled byte-wise buffers
JP3880286B2 (ja) 方向性結合式メモリシステム
JP3455040B2 (ja) ソースクロック同期式メモリシステムおよびメモリユニット
US6937494B2 (en) Memory module, memory chip, and memory system
US20030184345A1 (en) Signal transmission system
US6812741B2 (en) Bidirectional signal transmission circuit and bus system
US7778042B2 (en) Memory system having point-to-point (PTP) and point-to-two-point (PTTP) links between devices
KR100375147B1 (ko) 회로모듈
JPH11149772A (ja) 同期ダイナミック・ランダム・アクセス・メモリ・サブシステム
JP2003108512A (ja) データバス配線方法、メモリシステム及びメモリモジュール基板
JP3546613B2 (ja) 回路基板
JP3886425B2 (ja) メモリモジュール及びメモリシステム
CN100456275C (zh) 存储器命令和地址总线拓扑、存储器系统及方法
JP4173970B2 (ja) メモリシステム及びメモリモジュール
JP3344685B2 (ja) バスシステム及び回路基板
US8031504B2 (en) Motherboard and memory device thereof
EP1678622B1 (en) Circulator chain memory command and address bus topology
TW536669B (en) High-speed memory device, socket mounting structure for mounting a high-speed memory device and mounting method of mounting high-speed memory device
JPH11330394A (ja) メモリ装置
JP3757973B2 (ja) 信号伝送装置
JP3543541B2 (ja) 信号伝送装置
JP3250486B2 (ja) 半導体装置
JP2022021534A (ja) プリント配線板及び情報処理装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees