JP3544598B2 - 2端子スイッチング素子を有する配線基板 - Google Patents

2端子スイッチング素子を有する配線基板 Download PDF

Info

Publication number
JP3544598B2
JP3544598B2 JP17149996A JP17149996A JP3544598B2 JP 3544598 B2 JP3544598 B2 JP 3544598B2 JP 17149996 A JP17149996 A JP 17149996A JP 17149996 A JP17149996 A JP 17149996A JP 3544598 B2 JP3544598 B2 JP 3544598B2
Authority
JP
Japan
Prior art keywords
wiring
liquid crystal
layer
signal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17149996A
Other languages
English (en)
Other versions
JPH1020345A (ja
Inventor
稔章 福山
正浩 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP17149996A priority Critical patent/JP3544598B2/ja
Publication of JPH1020345A publication Critical patent/JPH1020345A/ja
Application granted granted Critical
Publication of JP3544598B2 publication Critical patent/JP3544598B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アクティブマトリクス駆動方式を用いた表示装置に好適に用いられる2端子スイッチング素子を有する配線基板に関する。
【0002】
【従来の技術】
液晶表示装置は、消費電力が低く、かつ薄形で軽量であることから、様々な電子機器の表示装置として用いられる。たとえば液晶表示装置は、パーソナルコンピュータおよびワードプロセッサの表示装置として用いられる。また、オフィスオートメーション用の端末表示装置、テレビジョンの表示装置としても用いられる。近年、この液晶表示装置において、表示される表示画像の高画質化および表示容量の増大が求められている。
【0003】
上述した機器の表示装置に用いられる液晶表示装置は、いわゆるマトリクス形表示を行う。マトリクス形表示を行う液晶表示装置は、表示画像を表示する表示画面に複数の画素がマトリクス状に配置されて構成される。該装置では、各画素の表示状態を個別的に切換えて、任意の図形である表示画像を表示させる。該装置において表示容量を増大させるには、表示画面を構成する画素の数を増加させる。
【0004】
このような液晶表示装置として、電圧平均化法を用いた単純マトリクス駆動方式の液晶表示装置が挙げられる。該駆動方式の液晶表示装置は、その一方表面に複数の帯状の表示電極が予め定める間隔をあけて平行に形成された一対の基板部材で液晶層を挟持した構成を有する。該基板部材は、表示電極が形成された一方表面を対向させ、かつ帯状の表示電極が互いに直交するように配置される。この液晶表示装置の画素は、該装置を基板部材の一方表面の法線方向から見たときに、各基板部材の表示電極が重なる部分に形成される。
【0005】
単純マトリクス駆動方式の液晶表示装置において表示容量を増大させるには、帯状の表示電極の数を増加させる必要がある。限られた面積の表示可能領域に対して表示電極を増加させると、各表示電極の幅が狭くなる。これによって、表示電極を伝送される電気信号に歪みが生じたり、該信号が与えられるべき画素以外の画素に該信号が漏出することがある。ゆえに、該装置における表示のコントラスト比が低下し、所望のコントラスト比が得られなくなる。このように単純マトリクス駆動方式の装置は、画素の数が極めて多い大容量表示には適さない。
【0006】
大容量表示を行うことができるマトリクス形表示の液晶表示装置の駆動方式としてアクティブマトリクス駆動方式が挙げられる。アクティブマトリクス駆動方式の液晶表示装置では、マトリクス状に配列された各画素にスイッチング素子を設け、画素と信号を伝送する信号配線とをスイッチング素子を介して接続し、該信号を個別的に画素に供給/遮断させる。スイッチング素子としては、たとえば3端子素子である薄膜トランジスタ(Thin Film Transistor;以後、「TFT」と略称する)、および2端子非線形素子である金属−絶縁体−金属(Metal−Insulator−Metal;以後、「MIM」と略称する)素子が挙げられる。該駆動方式は、ツイステッドネマティック(Twisted Nematic;以後、「TN」と略称する)形、スーパーツイステッドネマティック(Super Twisted Nematic;以後、「STN」と略称する)形およびゲストホスト(以後、「GH」と略称する)形の液晶表示装置の駆動方式として用いられる。
【0007】
これらアクティブマトリクス駆動方式の液晶表示装置は、たとえば携帯用情報端末機器に用いられる。この機器では、高解像度で大容量表示を行うことができる液晶表示装置が求められている。該装置において、解像度および表示容量を増大させるには、従来の液晶表示装置と比較して画素数を増加させ、かつ画素間隔を小さくする必要がある。このためには、信号配線の長さを延ばし、かつその幅を狭くする必要がある。さらに単一の信号配線にスイッチング素子を介して接続される画素の数が増加する。
【0008】
信号配線の幅を狭くすると、一般的に配線抵抗が大きくなり、信号配線に印加される電気信号が、配線の信号入力端である一方端部から離れるほど減衰し歪む。また、信号配線にはタンタル(Ta)が用いられることが多い。タンタルは、他の配線材料と比較すると比抵抗値が大きい。ゆえに、信号配線の長さを長くすると、信号配線の電気信号入力端から遠ざかるほど、印加された電気信号が減衰する。したがって、信号配線の信号入力端近傍に接続される画素には、減衰のない電気信号が与えられるけれども、入力端から遠ざかる位置で接続される画素には、減衰した電気信号が与えられる。
【0009】
ゆえに、信号配線の信号入力端近傍の画素は、電気信号のオン/オフ比が充分あり白色表示と黒色表示におけるコントラストの比率が高くなるけれども、該入力端から遠い位置で接続される画素ではコントラスト比が低下する。これによって、同一の信号配線に接続された画素の列において、電気信号入力端に近い方の画素から遠い方の画素に向かってコントラスト比が低下するグラデーションが発生する。このようなグラデーションは、表示装置の表示の点灯ムラとなる。
【0010】
このような問題を解決するための第1の従来技術として、信号配線を異なる導電体材料から成る積層構造とした液晶表示装置が挙げられる。アクティブマトリクス駆動方式を用いたTN形の反射形液晶表示装置の構成を、以下に説明する。該装置はいわゆるXGAの画素配列を有する。各画素は、白色表示および黒色表示のいずれか一方の表示状態を個別的にとり、表示装置全体としてモノクロ表示を行う。
【0011】
当該液晶表示装置では、液晶パネルをはさんで一対の偏光板が設けられる。各偏光板の透過軸は、相互に直交する。一対の偏光板のうちいずれか一方の偏光板の液晶パネルとは反対側には、反射板が設けられる。液晶パネルは、一対の基板部材間にTN形の液晶層が挟持された構成を有する。
【0012】
一方基板部材は、一対の基板部材のうち反射板側の基板部材である。この一方基板部材では、透光性を有した絶縁性のガラス基板の液晶層側の一方表面に、液晶表示装置の画素と同数の画素電極が互いに直交する水平および垂直方向H,Vに沿って行列状に配置される。以後、水平方向Xに沿って直線状に配列される1群の構成要素を「行」と称する。また、垂直方向Yに沿って直線状に配列される1群の構成要素を「列」と称する。また該基板には、画素電極に信号を伝送する信号配線、および画素配線と信号配線とを個別的に接続するスイッチング素子が設けられる。信号配線を伝送される電気信号は、スイッチング素子を介して各画素電極に個別的に供給または遮断される。
【0013】
図13は、スイッチング素子としてMIM素子を用いた一方基板部材1の1画素分の構成を示す部分平面図である。一方基板部材1は、基板3、画素電極5、信号配線6、およびMIM素子7を含んで構成される。
【0014】
画素と同数の画素電極5は、基板3の液晶層側の一方表面に、水平および垂直方向H,Vに沿って行列状に配置される。信号配線6は、画素の行または列と同数用意され、隣接する画素電極5の行または列の間に介在されて互いに平行に配設される。画素電極5と信号配線6とは、MIM素子7を介してだけ電気的に接続される。基板3の一方表面には、画素電極5、信号配線6、およびMIM素子7を覆って図示しない配向膜が形成される。
【0015】
図14は、スイッチング素子としてTFTを用いた一方基板部材11の1画素分の構成を示す部分平面図である。一方基板部材11は、基板13、画素電極15、信号配線16,17、およびTFT18を含んで構成される。TFT18をスイッチング素子とするとき、信号配線16,17は2種類用意され、それぞれ異なる電気信号を伝送する。
【0016】
画素と同数の画素電極15は、透光性を有する絶縁性の基板13の液晶層側の一方表面上に、水平および垂直方向H,Vに沿って行列状に配置される。信号配線16,17は画素の行および列とそれぞれ同数用意され、隣接する画素電極15の行および列の間に介在されて互いに平行に配設される。信号配線16,17は、TFT18のゲート電極19およびソース電極20にそれぞれ接続される。画素電極15と信号配線16,17とは、スイッチング素子であるTFT18を介してだけ電気的に接続される。基板13の一方表面には、画素電極5、信号配線16,17、およびTFT18を覆って、図示しない配向膜が形成される。
【0017】
図15は、信号配線6,16のC−C断面図である。信号配線6,16は、上層配線21を下層配線22を覆った2層の積層構造を有する。上層配線21は、信号配線6,16を外部から電気的に遮断する絶縁被膜を陽極酸化法を用いて形成するために、タンタルで形成される。下層配線22は、信号配線6,16全体の配線抵抗を低下させるために、タンタルよりも比抵抗値の小さいアルミニウムで形成される。
【0018】
他方基板部材は、透光性を有する絶縁性のガラス基板の液晶層側の一方表面に、透光性を有する複数の対向電極が、各画素電極5,15に対向するように配列された構成を有する。また、該基板の一方表面には、対向電極に与えられる電気信号を伝送する信号配線が形成される。該基板の一方表面にもまた、対向電極を覆って配向膜が設けられる。一方および他方基板部材は、各基板の各電極が形成された一方表面が対向するように、かつ信号配線6,16と他方基板部材の信号配線とが互いに直交するように配置されて、液晶層を挟持する。
【0019】
TN形の液晶層では、該層内の電界の有無に応じて層内での液晶分子配列が変化する。該液晶層の旋光性は、層内に所定の電界が発生すると失われる。該装置では、液晶パネルの液晶層における旋光性の有無を、画素電極5および対向電極間に印加する電圧を変化させて切換える。
【0020】
液晶層には、他方基板部材側の他方偏光板の透過軸と略平行な方向に偏光する光だけが入射される。電界が生じておらず液晶層が旋光性を有するとき、入射光は偏光方向が90度換えられた後に出射し、一方基板部材側の一方偏光板を通過して、反射板で反射する。反射光は、再度他方偏光板、液晶層、および一方偏光板を通過した後に装置から出射する。このとき画素の表示状態は白色表示となる。また、電界が生じて旋光性が失われるとき、一方偏光板を通過した入射光は偏光方向を保ったまま液晶層から出射するので、他方偏光板を通過することができない。このとき画素の表示状態は黒色表示となる。
【0021】
上述した単体アルミニウムは、タンタルよりも比抵抗値の小さい他の金属と比較して、スパッタリング法によって薄膜を成膜するときのターゲットが安価である。また、形成された薄膜をフォトリソグラフィ法を用いエッチングするとき、湿式法でのエッチング液が安価でありパターニングが容易である。ゆえに、信号配線6,16の下層配線は、単体アルミニウムで形成されることが多い。
【0022】
ところが、アルミニウム単体の金属層は、エレクトロマイグレーションと称される物質移動現象が生じることが知られている。この物質移動現象によって、アルミニウム単体の金属層から構成される下層配線22には、ヒロックおよびボイドが生じることがある。ヒロックとは配線表面の凹凸であり、ボイドとは配線に生じる穴を示す。下層配線22にヒロックおよびボイドが発生しているとき、配線22に重畳されて形成される上層配線21が下層配線22を完全に覆うことができなくなる。
【0023】
たとえば、ヒロックが生じているとき、図16(A)に示すように上層配線21の導電体層の中に下層配線22のヒロックである凸部25が貫通し、外部に露出する。また、下層配線22にボイドが生じているとき、図17(A)に示すように下層配線22のボイドに応じて上層配線21にも凹部26が生じ、その部分で上層配線21の膜厚が極めて薄くなる。一方基板部材1,11の製造工程では、信号配線6,16形成後も画素電極5,15およびスイッチング素子7,18の形成の為に、該基板部材に対するパターニング処理が複数回繰返される。このパターニング処理においてエッチング処理を行うとき、凸部25および凹部26近傍からエッチング液が下部電極22内に侵食し、下層配線22をエッチングしてしまうことがある。これによって、図16(B)および図17(B)に示すように、エッチング処理後に下層配線22に空洞28,29が生じる。さらにエッチング処理が繰返されると、空洞28,29にさらにエッチング液が侵入して下層配線22を侵食し、侵食される領域が増大する。
【0024】
このような空洞28,29が生じると、その部分で信号配線6,16の配線抵抗が増大し、点灯ムラの原因となる。さらに、空洞が拡大すれば、信号配線6,16の断線の原因となる。さらに、ヒロックおよびボイドが発生すると、下層配線22が上層配線21で完全に周囲の構成要素と電気的に絶縁されないので、スイッチング素子7,18を介さずに、下層配線22から画素電極5,15に対し電気信号が直接漏出すことがある。
【0025】
本件出願人は、特開平3−137622号公開公報において、TFTをスイッチング素子とする配線基板に関し、ヒロックおよびボイドによって生じるエッチング液の侵食を最小限に抑えるための技術を提案している。本公報のアクティブマトリクス基板では、下層配線を配線の延設方向に対して斜めになるように切断して、不連続な複数の導電体に分割する。上層配線は、これら複数の導電体を連続的に覆うように一体的に形成される。分割された下層配線の一部分にヒロックおよびボイドが生じてエッチング液に侵食されても、その侵食をヒロックおよびボイドが生じた導電体だけに止まる。該基板では下層配線のヒロックおよびボイドの発生自体は防止されていない。ゆえに、ヒロックまたはボイドが生じれば、その部分で下層配線が侵食されて、配線の比抵抗値が増大する。
【0026】
また本件出願人は、特開平3−118520号公開公報において、前述した液晶表示装置の一方基板部材11として用いられる薄膜トランジスタアレイにおいて、エレクトロマイグレーションの防止に関する技術を提案している。この薄膜トランジスタアレイのゲートバス配線は、エレクトロマイグレーションが生じにくいアルミニウムを含む合金で形成される下部ゲート配線を、該合金以外の導電体材料で形成される上部ゲート配線で覆う構成を有する。
【0027】
【発明が解決しようとする課題】
上述した薄膜トランジスタアレイでは、基板上にTFTのゲート電極に電気信号を供給するゲートバス信号配線、およびソース電極に電気信号を供給する信号配線とが、絶縁層を介在し相互に直交するように形成される。これら配線は絶縁層によって個々に電気的に絶縁されるけれども、配線の交差部分で信号配線に絶縁体層が挟持される構造が生じる。ゆえに、該交差部分に付加容量が生じて電気信号の伝達を阻害する。
【0028】
また前述したように、液晶表示装置では、表示画面が明るい表示が求められている。明るい表示を行うには、開口率を向上させて、表示画面から出射する光の光量を増大させる必要がある。開口率とは、表示装置の表示可能領域の面積に対する光透過可能な領域の面積の比率である。該アレイを液晶表示装置の一方基板部材とするとき、MIM素子を用いた一方配線基板1と比較して、該部材に形成される配線数が増加する。信号配線およびTFTは光を遮断する金属材料で実現されるので、その分だけ開口率が低下する。したがって、該アレイを反射型の液晶表示装置の一方配線基板としたとき、表示画面の明るさが低下する。
【0029】
さらにまた、TFTはMIM素子と比較して構成が複雑であり、製造工程の工程数が多い。ゆえに、TFTの製造コストはMIM素子の製造コストと比較して大きい。またTFTの製造工程には、たとえば化学気相成長法を用いる工程であるような基板部材を高温に加熱する工程が含まれる。ゆえに、薄膜トランジスタアレイの基板として、高熱処理において歪みおよび変形を生じさせない材料を選ぶ必要がある。このような基板材料は、一般的に高価である。
【0030】
本発明の目的は、比抵抗値が小さく、かつヒロックおよびボイドの発生を防止することができる信号配線を有する2端子スイッチング素子を有する配線基板を提供することである。
【0032】
【課題を解決するための手段】
本発明は、絶縁性基板上に配置される複数の電極と、
該基板上に配置され、各電極に供給されるべき電気信号が与えられる複数の信号配線と、
該信号配線に与えられた電気信号を、各電極に個別的に供給/遮断する複数の2端子スイッチング素子とを有する2端子スイッチング素子を有する配線基板であって、
前記各信号配線は、予め定める幅を有する第1配線と、第1配線よりも大きな幅を有し、第1配線の上に重畳して形成されるタンタル系金属で構成された第2配線とを有し、
第1配線は、第1導電体層と、該第1導電体層と第2配線との間に介在される第2導電体層とが積層されて形成され、
第1導電体層は、厚さが約50nmであり、比抵抗値が第2配線を構成するタンタル系金属の比抵抗値よりも小さいアルミニウムで構成され、
第2導電体層は、厚さが約100nmであり、比抵抗値が第2配線を構成するタンタル系金属の比抵抗値よりも小さいモリブデンで構成されたことを特徴とする2端子スイッチング素子を有する配線基板である。
本発明に従えば、配線基板は絶縁性基板上に複数の個別電極、信号配線、および2端子スイッチング素子が形成された構成を有する。各信号配線と各個別電極とは、2端子スイッチング素子を介して電気的に接続される。信号配線の数は個別電極よりも少なく、単一の信号配線には複数の個別電極が接続される。各信号配線には、接続された複数の個別電極に供給されるべき電気信号が与えられる。2端子スイッチング素子は、たとえば2端子非線形素子であるMIM素子であり、個別電極毎に用意される。該素子は、信号配線を伝送される電気信号を、各個別的に個別的に供給/遮断する。これによって、同一信号配線に電気的に接続された一群の個別電極のうち、一部の個別電極だけに同一の電気信号が与えられる。
各信号配線は、第1配線と第2配線とが、少なくとも一部分が重畳して形成される。さらに、下層の第1配線は複数の導電体層が積層された積層構造を有する。この配線基板を液晶表示装置の基板部材として用いたとき、TFTをスイッチング素子とする基板部材と比較して、装置の開口率を向上させて、明るい表示を得ることができる。
第1配線は、第1および第2導電体層を積層して構成される。第1導電体層は、単体アルミニウム(Al)で構成される。第2導電体層は、単体アルミニウム以外の導電体材料であって、第2配線の導電体材料であるタンタル系金属よりも比抵抗値が小さい材料であるモリブデンで構成される。さらに、第2配線を構成するタンタル系金属の比抵抗値は、アルミニウムの比抵抗値よりも大きい。このように第1配線は、第2配線のタンタル系金属より比抵抗値が小さい導電体材料の層が2層積層されて形成される。ゆえに、第1配線全体の比抵抗値は、第2配線の比抵抗値よりも小さいと見なすことができる。ゆえに、上述した構成を有する信号配線の配線抵抗値は、第2配線の導電体材料であるタンタル系金属だけで形成された同一形状の信号配線の配線抵抗値よりも小さくなる。したがって、該信号配線を伝送される電気信号の減衰および歪みの発生を防止することができる。
単体アルミニウムは比抵抗値が小さく電気伝導率が高いので、信号配線の配線抵抗を低減させることができる。しかしながら、単体アルミニウムの配線は、いわゆるエレクトロマイグレーションに起因する形状変化が生じ易い。
第2配線は、下層の第1配線上に第2配線の導電体材料の薄膜を積層し、該薄膜をパターニングして形成される。単体アルミニウムに上述した形状変化が生じ、第1配線に形状変化が生じると、その配線上に積層されて形成される薄膜の形状も変化し、その部分で該薄膜の膜厚が極めて薄くなったり、該薄膜が露出することがある。該薄膜に対してエッチング処理を施すと、第1配線に形状変化が生じた部分で該薄膜を越えて第1配線までエッチング液が侵入し、第1配線がエッチングされて損傷することがある。第1配線が損傷すると、その損傷部分において信号配線の配線抵抗値が増大する。ゆえに、該信号配線で伝送される電気信号の減衰および歪みの原因となる。
単体アルミニウムの配線に別の材料の薄膜を積層すると、エレクトロマイグレーションに起因する形状変化を防止することができる。この薄膜材料としては、導電体材料を用い、該導電体材料の薄膜を単体アルミニウムの配線に積層すると、第1配線と第2配線とが各配線表面全体で電気的に接続される。
上述した構成の第1配線では、エレクトロマイグレーションに起因する第1配線の形状変化を防止することができる。また、たとえ形状変化が生じたとしても、その変化部分が第2導電体層を貫通して第2配線に至ることが困難である。ゆえに該形状変化が第2配線に影響を与えない。したがって、該形状変化に起因する製造工程内における第1配線の損傷を防止して、信号配線の配線抵抗値の増大、および信号配線の断線を防止することができる。
【0033】
本発明は、前記第1配線と第2配線との重畳部分の幅は、少なくとも1μm以上であることを特徴とする。
本発明に従えば、配線基板において、第2配線は第1配線と少なくとも1部分が重畳されて形成される。この重畳部分の幅は、少なくとも1μm以上である。また第2配線が第1配線を完全に覆うように形成すると、第1配線から直接個別電極に電気信号が漏出ることを防止することができる。
上述した配線基板は、たとえばアクティブマトリクス駆動方式の液晶表示装置の配線基板部材として用いられる。この配線基板部材では、開口率を増加させるために、透光性を有しない信号配線の幅をできるだけ狭くすることが好ましい。信号配線の幅を狭くすると、一般的に信号配線の比抵抗値が増大する。第1および第2配線から成る信号配線の配線抵抗値は、第1および第2配線の重畳部分の幅が広くなるほど低減する。ゆえに、開口率を増加させかつ信号配線の比抵抗値を低減させるには、信号配線ができるだけ広い幅の重畳部分を有していることが好ましい。
第1および第2配線は、絶縁性基板上に成膜された導電性材料の薄膜の所望の部分を、配線形状と同等な形状のフォトレジスト層で覆い、該薄膜の該層で覆われない残余の部分をエッチング処理によって除去して形成される。このエッチング処理、フォトレジスト層を形成するフォトリソグラフィ処理では、1μm以下の微細加工が困難である。
このような理由から、信号配線の重畳部分の幅は、少なくとも1μm以上であることが好ましい。
【0034】
本発明は、前記2端子スイッチング素子は、前記信号配線と電気的に接続され一体的に形成される第1電極と、前記画素電極と電気的に接続される第2電極と、第1および第2電極間に介在される絶縁体層とが積層されて形成される2端子非線形素子であることを特徴とする。
本発明に従えば、2端子スイッチング素子は、第1および第2素子電極が絶縁体層を介在して積層される構成を有する。第1および第2素子電極は、たとえば金属である導電体材料で形成される。信号配線は第1素子電極と一体的に形成されて電気的に接続される。また各個別電極は、第2素子電極と電気的に接続される。このような構成を有する2端子非線形素子は、いわゆる金属−絶縁体−金属(MIM)素子である。
また、前記第2配線の導電性材料は、単体タンタルおよびタンタル金属化合物であるタンタル系金属で実現される。第1素子電極は信号配線と一体的に形成されるので、該電極は少なくともタンタル系金属の単層構造、またはタンタル系金属とアルミニウム系金属との積層構造で形成される。この電極の表面には、タンタル系金属が露出する。
タンタル系金属の薄膜層に対して陽極酸化法を用いた酸化処理を施すと、その表面に酸化タンタル(TaOx)から成る陽極酸化膜が形成される。該陽極酸化膜は、絶縁体層として作用する。酸化タンタル(TaOx)の陽極酸化膜は、一般的に不純物の混入が少なく絶縁性が高い。また該陽極酸化膜の膜厚は、陽極酸化での化成電圧の値を変化させることによって、容易に調整することができる。
ゆえに、第1素子電極がMIM素子の下部電極であるとき、その上に積層される絶縁体層を、酸化タンタル(TaOx)の陽極酸化膜で構成することができる。また、該絶縁体層を得るための陽極酸化処理において、信号配線の表面も共に陽極酸化される。これによって、MIM素子の絶縁体層を形成する処理と同時に、信号配線を被膜する絶縁体膜を形成することができる。このような絶縁体膜で信号配線を被膜して絶縁すると、信号配線から直接個別電極に電気信号が漏出すことを防止することができる。
【0035】
【発明の実施の形態】
図1は、本発明の一実施例である液晶表示装置61の簡略化した構成を示す断面図である。図2は、液晶表示装置61の外観を示す正面図である。液晶表示装置61は、アクティブマトリクス駆動方式であってTN形の反射形液晶表示装置である。また装置61はモノクロ表示を行う。
【0036】
装置61の表示画面の表示可能領域内には、水平方向Hに沿って1024個ずつおよび垂直方向Vに沿って768個ずつ(1024×768)個の画素が行列状に配置される。このような画素配列は、XGAの画素配列と称される。前述した図1の断面図は、この図2の液晶表示装置61のA−A断面図にあたる。
【0037】
各画素は、表示画面内でそれぞれ白色表示および黒色表示のいずれか一方の表示状態を取る。白色表示は、装置61内を光が透過可能な状態であり、表示画面から光が出射された状態である。黒色表示は、表示画面から出射されるべき光が遮断された状態である。装置61は、表示状態が個別的に切換えられた画素を組合せて、表示画面に所望の画像を目視表示させる。
【0038】
液晶表示装置61は、液晶パネル63を一対の偏光板64,65で挟持した構成を有する。偏光板64,65は、装置61の法線方向Uから見て、その透過軸が相互に直交するように配置される。また、偏光板65の液晶パネル63とは反対側には、図示しない反射板が設けられる。液晶表示装置61は、偏光板64側を光の入射面および出射面である表示画面とする。液晶パネル63は、後述する基板部材67,68によって液晶層69が挟持された構成を有する。液晶層69は、たとえばネマティック形の液晶材料によって形成される。
【0039】
図3は、図1の液晶表示装置61の液晶パネル63の反射板および偏光板65側の基板部材67の詳細な構成を示す部分平面図である。図4は、図3の基板部材67のB−B断面図である。図1、図3および図4を併せて説明する。
【0040】
基板部材67は、基板71、画素電極73、信号配線74、MIM素子75、および配向膜76を含んで構成される。基板71は、透光性を有した絶縁性の基板材料で形成される。基板71の液晶層69側の一方表面72に、後述する所定の配置で画素電極73、信号配線74およびMIM素子75が形成される。さらに、基板71の一方表面72側に、各構成要素73〜75を覆うように配向膜76が形成されて、基板部材67が形成される。基板部材67は、基板71の一方表面72側が液晶層69と接するようにして配置される。
【0041】
基板71は、透光性および絶縁性を有する。このような基板71は、たとえばコーニング社製#7059のフュージョンパイレックスガラスで実現される。また、基板71の一方表面72全面に絶縁性を有するベースコート膜を成膜し、そのベースコート膜上に各構成要素73〜75を形成するようにしてもよい。ベースコート膜は、たとえば絶縁性材料である酸化タンタル(TaO)で実現される。基板71の一方表面72にベースコート膜を形成すると、基板部材67の製造中において、基板71からの不純物が上述した構成要素73〜75に混入して各構成要素を汚染することを防止することができる。また、液晶層69への不純物の混入を防ぐこともできる。これによって、各構成要素73〜75、特にMIM素子75の素子特性を良好とすることができる。また、液晶の劣化を防ぐことができるので、電圧保持率を良好に保つことができる。
【0042】
画素電極73は、液晶表示装置61の画素の数と同数だけ用意される。これら画素電極73は、基板71の一方表面72に水平方向Hおよび垂直方向Vに沿ってそれぞれ平行に、マトリクス状に配列される。以後、水平方向Hに沿って直線上に配列される1群の構成要素を「行」と称する。また、垂直方向Vに沿って直線上に配列される1群の構成要素を「列」と称する。画素電極73は、透光性を有する導電性材料で実現される。透光性を有する導電性材料としては、錫−インジウム酸化物(Indium Tin Oxide;ITO)が挙げられる。
【0043】
信号配線74は、画素電極73の列の数と同数だけ形成される。各信号配線74は、画素電極73の各列と平行に、基板71の一方端部から他方端部までにわたって延設される。また各信号配線74は相互に平行に間隔をあけて配列される。隣接する2本の信号配線74の間には、1列分の画素電極73が介在される。
【0044】
信号配線74は、上層配線78と下層配線79とが重畳された積層構造を有する。上層配線78および下層配線79は、それぞれ配線抵抗の小さい導電性材料で実現される。また、下層配線79を形成する導電性材料は、上層配線78を形成する導電性材料よりも比抵抗値の小さい導電性材料を用いることが好ましい。該装置61では、上層配線78の導電性材料として、タンタル(Ta)が用いられる。下層配線79の導電性材料は、タンタルよりも比抵抗値が小さいアルミニウム化合物が用いられる。このアルミニウム化合物として、アルミニウム(Al)にケイ素(Si)を添加した混合材料(Al−Si)が挙げられる。この混合材料(Al−Si)のケイ素の添加比率は8wt%であり、該混合材料の比抵抗値は、4.8μΩ・cmである。以後、物質αと物質βとから成る混合材料を(α−β)混合材料と称する。
【0045】
また、下層配線79の配線幅は、5〜10μmであることが好ましい。かつ、上層配線78と下層配線79とは、重なり合う重畳部分の幅W1が1μm以上であることが好ましい。さらに、上層配線78は下層配線79を完全に覆い、下層配線79を外界から完全に遮断することが好ましい。本実施形態の配線基板67では、下層配線79の幅を8μm、上層配線78の幅を18μmとし、かつ上層配線と下層配線79との長手方向の中心線が法線方向Uから見て一致するように形成される。これによって、上層配線78は、下層配線79よりも配線の幅方向において両側に5μmずつ大きく形成され、下層配線79を覆うことができる。また、重畳部分の幅W1は下層配線79の配線幅に等しく、8μmである。
【0046】
MIM素子75は、画素電極73と同数用意される。MIM素子75は、各列の画素電極73と該列に隣接する信号配線74とを個別的に電気的に接続する。MIM素子75は、下部電極81、絶縁体層82、および上部電極83が下から順に積層されて形成される。下部電極81は、信号配線74と電気的に接続される。上部電極83は、画素電極73と電気的に接続される。
【0047】
MIM素子75はスイッチング素子であり、信号配線74を介して伝送される電気信号を各電極73毎に個別的に供給または遮断する。MIM素子75は、入力信号の電圧値が小さいときに抵抗値が大きくなり、また入力信号の電圧値が液晶を駆動させるのに充分な大きさを有するときには抵抗値が小さくなる非線形の電流−電圧特性を有する。MIM素子75をスイッチング素子として用いたアクティブマトリクス駆動方式は、このMIM素子75の非線形電流−電圧特性を信号配線74から画素電極73に与えられるべき信号の供給/遮断のスイッチングに応用したものである。
【0048】
また、下部電極81は、上層部85および下層部86が重畳された積層構造を有する。上層部85は下層部86を覆い、外界から遮断するように形成される。また、上層部85は、信号配線74の上層配線78と電気的に接続される。下層部86は、信号配線74の下層配線79と電気的に接続される。上層部85と下層部86との材質、形状および導電性材料の比抵抗値に関する関係は、上層配線78および下層配線79における関係と等しい。本実施形態の装置61では、上層部85および下層部86は、上層配線78および下層配線79とそれぞれ同一の導電性材料で一体的に形成される。
【0049】
ゆえに、下部電極81の上層部85は、たとえばタンタル(Ta)で実現される。下部電極81の下層部86は、(Al−Si)混合材料で実現される。また、絶縁体層82は、たとえば酸化タンタル(TaO)で実現される。上部電極83は、チタン(Ti)で実現される。
【0050】
配向膜76は、上述した構造を有する画素電極73、信号配線74、およびMIM素子75を覆う。配向膜76の表面には、液晶分子の分子軸を予め定める一方向である配向処理方向に揃える配向処理が施される。配向処理には、たとえば斜方蒸着法およびラビング法が用いられる。
【0051】
図5は、液晶表示装置61の液晶パネル63の表示画面側の基板部材68の詳細な構成を示す部分平面図である。図1と図5とを併せて説明する。
【0052】
基板部材68は、基板91、対向電極93、および配向膜94を含んで構成される。基板91は、透光性を有する絶縁性の基板であり、基板部材67の基板71と同様の材料で形成される。この基板91の液晶層69側の一方表面92上に複数の帯状の対向電極93が形成される。さらに一方表面92上には、各対向電極93を覆うように配向膜94が形成される。この配向膜94の表面は、基板部材67の配向膜76の配向処理方向と直交する予め定める配向処理方向に沿って、前述した手法の配向処理が施される。
【0053】
各対向電極93は、基板部材67の画素電極73のうち同一行に属する1群の画素電極73と対向する領域に設けられるべき電極と、該電極に走査信号を伝送する走査信号配線とが一体化されたものである。各対向電極93は画素電極73の行の数と同数用意され、液晶パネル63を法線方向Uから見たときに画素電極73の各行と対向する位置に形成される。該位置において、各対向電極93は、それぞれ基板91の水平方向Hの一方端部から他方端部まで直線状に延設される。対向電極93の延設方向は、信号配線74の延設方向と法線方向Uから見て直交する。また各対向電極93は、垂直方向Vに沿って予め定める間隔をあけて相互に平行に配列される。対向電極93は、透光性を有する導電性材料で形成される。該材料としては、たとえば錫−インジウム酸化物(ITO)が挙げられる。
【0054】
再び図2を参照する。基板部材67の垂直方向Vの一方端部97には、複数の端子98が設けられる。各端子98は、それぞれ信号配線74と電気的に接続される。また、基板部材68の水平方向Hの一方端部99には、複数の端子100が設けられる。各端子100は、それぞれ対向電極93と電気的に接続される。端子98,100は、該装置61と信号配線74および対向電極93に対し所望の電気信号を印加する装置とを接続するためのものである。
【0055】
再び、図1を参照する。液晶パネル63のセルは、上述した構成を有する基板部材67,68を、基板71,91の一方表面72,92側を互いに対向させ、予め定める間隔をあけて貼合わせて形成される。予め定める間隔は、たとえば5μmである。この間隔は、たとえば基板部材67,68の周囲を封止するシール材によって保持される。このとき、各基板部材67,68は、信号配線74の延設方向と対向電極93の延設方向とが、法線方向Uから見て直交するように配置される。さらに、配向膜76,94の配向方向を示すラビング軸は、それぞれ上述したように基板部材67,68が配置されたときに法線方向Uから見て相互に直交する。このように形成されたセルの間隙に上述した液晶材料から成る液晶を注入して、液晶パネル63を形成する。この液晶パネル63における単一画素の領域96を、図2、図3および図5に示す。
【0056】
本実施形態の液晶表示装置61は、スイッチング素子として非線形2端子素子であるMIM素子75を用い、該素子の素子抵抗の非線形性を利用する装置である。このような装置では、2端子素子の素子容量が、該素子が属する画素の液晶層の液晶容量と比較して大きくなると、該画素の電極73,93間に電圧を印加するとき、該画素以外の電極との間にも電圧が印加されることがある。これによって、たとえば画像のコントラストが低下するクロストークが発生する不都合が生じることがある。このクロストークを防止するためには、2端子素子にMIM素子を用いたとき、素子容量と液晶容量との比を1:10とすることが好ましい。このような容量比を有するMIM素子75を用いたとき、各画素において良好な素子特性を得ることができる。
【0057】
再び図1を参照する。液晶層69内の液晶分子101の長軸である液晶分子軸102のうち、基板部材67に最近接する液晶分子101aの液晶分子軸102aは、基板部材67の配向膜76の配向処理方向を示すラビング軸と一致する。また該液晶分子軸102のうち、基板部材68に最近接する液晶分子101bの液晶分子軸102bは、基板部材68の配向膜94のラビング軸と一致する。配向膜76,94のラビング軸は法線方向Uから見て相互に直交するので、液晶分子101a,101bの液晶分子軸102a,102bもまた法線方向Uから見て相互に直交する。これによって、液晶層69内の液晶分子のツイスト角は90°に調整される。
【0058】
ネマティック型の液晶材料から成る液晶層69内の液晶分子101の分子配列は、液晶層69内の電界の有無に応じて変化する。液晶層69内の電界の有無は、各画素単位で、液晶層69を挟持する電極73,93間に印加される電圧を変化させることによって切換えられる。
【0059】
たとえば任意の画素の領域96内の画素電極73および対向電極93間に予め定める電圧が印加されていないとき、液晶層69内には電界が発生しない。このとき、領域96内の電極73,93に挟持された部分の液晶層内の液晶分子101の分子配列は、配向膜76,94の配向処理方向によって規定される。このとき、液晶分子101の液晶分子軸は基板部材67,68の一方表面に略平行であり、そのツイスト角が90°に保たれる。ゆえに、この状態において画素内に入射した光は、各液晶分子101の液晶分子軸に沿って伝播され、偏光方向が90°曲げられた後に出射される。
【0060】
また、領域96内の画素電極73および対向電極93間に予め定める電圧が印加されると、両電極間73,93間に電界が生じる。このとき、領域96内の液晶層69内の各液晶分子101の分子配列は、発生した電界の電界方向によって規定される。このとき、各液晶分子101の液晶分子軸102は発生する電界の電界方向に沿い、基板部材67,68の面と略直交する。これによって、液晶層69の旋光性が失われる。ゆえに、この状態において該画素の液晶層69に入射した光は、偏光方向を保ったまま出射される。このように、画素電極73および対向電極93間に印加する電圧を調整することによって、両電極73,93間に介在される液晶層69内の液晶分子101の配列を変化させ、液晶層69における旋光性の有無を切換える。
【0061】
前述したように、液晶パネル63を挟持する偏光板64,65の各透過軸は、互いに直交する。また、偏光板64の透過軸と基板68の配向膜94のラビング軸とは平行である。また、偏光板65と基板部材67の配向膜76のラビング軸とは平行である。
【0062】
ゆえに、電極73,93間に予め定める電圧が印加されないとき、偏光板64を介して液晶パネル63に入射された入射光は、偏光方向が90°曲げられて液晶パネル63から出射し、偏光板65を通過して反射板で反射される。この反射光は、再び偏光板65を通過し、液晶パネル63で偏光方向が再度90°曲げられた後、偏光板64を通過して出射される。これによって、この状態にある画素の表示状態は、白色表示となる。また、電極73,93間に予め定める電圧が印加されるとき、偏光板64を介して入射された入射光は、偏光方向を保ったまま液晶パネル63を通過し、偏光板65に至る。この入射光の偏光方向は、偏光板64の透過軸の方向と一致するので、該入射光は、偏光板65を通過することができない。ゆえに、この状態において、該画素は黒色表示の表示状態となる。このように、液晶表示装置61では、各画素の電極73,93間に印加する電圧を変化させることによって、各画素の表示状態を切換えて表示を行う。
【0063】
反射形の液晶表示装置61は、上述したように外部から該装置61に入射した入射光を、液晶層69通過後に反射板で反射させた反射光によって表示を行わせる。ゆえに、いわゆる透過形の液晶表示装置で必要とされる光源がない。したがって、該装置の消費電力を低下させることができると共に、装置の薄形軽量化が可能となる。このような液晶表示装置は、たとえば携帯情報端末の表示装置として使用することが期待されている。特に、この用途の表示装置としては、いわゆるペーパホワイトと称される表示画面が明るい反射形の液晶表示装置であって、解像度が高くかつ大容量表示を行うことができる装置が適している。
【0064】
図6は、図1の液晶表示装置の液晶パネル63の基板部材67の製造方法を説明するための段階的な断面図である。以下に、基板部材67の製造工程を説明する。
【0065】
先ず、基板71の一方表面72に信号配線74の下層配線79および下部電極81の下層部86の導電性材料である(Al−Si)混合材料の薄膜をスパッタリング法を用いて成膜する。該薄膜の膜厚は、約200nmである。次いで、該薄膜上にフォトリソグラフィ法を用いて、信号配線74の下層配線79および下部電極81の下層部86と同様の形状を有するフォトレジスト膜のマスクを形成する。続いて、表面が該マスクで覆われた基板71に対しエッチング処理を施し、下層配線79および下部電極81の下層部86を形成する。
【0066】
上述したフォトリソグラフィ処理およびエッチング処理を総称してパターニング処理とも称する。フォトリソグラフィ処理では、先ず、加工対象となる所望の材質の薄膜上にフォトレジストの薄膜を形成する。この薄膜に、加工対象の薄膜の材料で形成されるべき配線パターンに適合したマスクを重ねて露光し、現像する。これによって、フォトレジストの感光性に応じて、感光した部分および感光しない部分のいずれか一方の部分だけが除去される。所望の材料の薄膜上には、フォトレジストの残余の部分が配線パターンと同様の形状で残され、該薄膜を覆う。このように、配線パターンと一致したフォトレジスト膜のマスクで覆われた所望の材質の薄膜に対しエッチング処理を施すと、フォトレジスト膜のマスクで覆われていない部分だけがエッチングされて除去される。これによって、該薄膜が加工され、所望の材質の材料で形成される配線パターンが形成される。エッチング処理が終了すると、フォトレジスト膜は予め定める化学処理で除去される。
【0067】
次いで、基板71の一方表面72に、下層配線79および下部電極81の下層部86を覆って、上層配線78および下部電極81の上層部85を構成する材料となる導電性材料の薄膜を、スパッタリング法を用いて成膜する。該導電性材料には、たとえばタンタル(Ta)が用いられる。タンタルの薄膜は、たとえば窒素を2mol%〜10mol%含有するタンタルの焼結体ターゲットを用いたDCスパッタリング法を用いて形成される。該薄膜の膜厚は、たとえば300nmである。次いで、成膜された導電体薄膜にパターニング処理を施して、上層配線78および下部電極81の上層部85とほぼ同様の形状を有する導電体層106を形成する。このようにして形成された基板部材を、図6(A)に示す。
【0068】
たとえば、導電性材料がタンタル(Ta)であるとき、該導電性材料の薄膜は、CF および酸素(O )の混合ガスを用いたドライエッチング法を用いてエッチングされる。また、タンタルの薄膜のエッチング処理には、ドライエッチング法の他に、弗硝酸であるエッチング液を用いたウエットエッチング法を用いてもよい。ウエットエッチング法は、ドライエッチング法と比較して、エッチング処理での処理速度が向上する。ゆえに、該基板の製造のスループットを向上させることができる。
【0069】
続いて、導電体層106の表面を陽極酸化法を用いて酸化する。これによって、導電体層106の表面部分が酸化され、予め定める膜厚の酸化物層が形成される。タンタルの酸化物である酸化タンタル(TaO )は絶縁体材料である。これによって、導電体層106の表面の酸化物層は、絶縁体層として機能する。また、導電体層106の酸化されない残余の部分が、上層配線78および下部電極81の上層部85となる。この上層配線78および下層配線79から成る信号配線74の表面は、絶縁体の該酸化物層で覆われて外部から電気的に遮断される。また、上層部85および下層部86から成る下部電極81の表面に該酸化物から成る絶縁体層82が形成される。絶縁体層82および信号配線74を覆う絶縁体層の膜厚は、たとえば約60nmである。このように形成された基板部材を図6(B)に示す。
【0070】
たとえば、導電体層106がタンタル(Ta)で形成されるとき、陽極酸化法に用いられる電解液には、1%酒石酸アンモニウム溶液が用いられる。また、処理温度を25℃とする。さらに、陽極酸化される面積に対し、化成電流を単位面積あたり0.18mA/cm とし、化成電圧を31Vとする。
【0071】
陽極酸化法を用いて導電体層を陽極酸化させて酸化物層を形成するとき、酸化物層の厚みは化成電圧に比例する。絶縁体層は、その膜厚が厚くなるほど電気的耐性が高くなるので、静電気に起因する絶縁破壊が生じにくくなる。ゆえに、該絶縁破壊を防止するには、絶縁体層の膜厚を厚くすることが好ましい。しかしながら、絶縁体層の膜厚を厚くすると、MIM素子75における素子の電圧−電流特性が悪化する。ゆえに、本実施形態のMIM素子75では、酸化物層である絶縁体層の厚みを約60nmとすることが好ましい。
【0072】
続いて、基板71の一方表面72上に、信号配線74および絶縁体層82を覆って上部電極83の形成する導電性材料の薄膜を形成し、該薄膜に対してパターニング処理を施す。これによって、上部電極83が絶縁体層82の上に積層されて形成される。これによって、下部電極81、絶縁体層82、および上部電極83が積層されて形成されるMIM素子75が形成される。MIM素子75が形成された基板部材を、図6(C)に示す。
【0073】
続いて、基板71の一方表面72に信号配線74およびMIM素子75を覆って、画素電極73の導電性材料の薄膜を形成し、該薄膜に対してパターニング処理を施す。これによって、基板71の一方表面72に画素電極73が形成される。このとき、画素電極73の一部は、MIM素子75の上部電極83の端部に重畳されるように形成される。これによって、上部電極83と画素電極73とが電気的に接続される。このように形成された基板部材を、図6(D)に示す。
【0074】
最後に、基板71の一方表面72に、画素電極73、信号配線74およびMIM素子75を覆うように配向膜76の材料から成る薄膜を形成し、該薄膜の表面にラビング処理を施す。これによって、配向膜76が形成される。このような一連の処理動作によって、図3に示す基板部材67が形成される。
【0075】
このように形成された配線基板67の信号配線74は、たとえば第1の従来技術の液晶表示装置の一方基板部材に形成されるタンタル(Ta)である上層配線78の絶縁体材料だけで形成された信号配線と比較して、配線抵抗を低減させることができる。また、この積層構造を有する信号配線において、下層配線79を単体アルミニウム(Al)によって形成したときと比較して、エレクトロマイグレーションに起因するボイドおよびヒロックの発生を防止することができる。
【0076】
図7は、上述した基板部材61の比較対象例である一方基板部材の製造工程を説明するための段階的な断面図である。一方基板部材は、前述した第1の従来技術であるアクティブマトリクス駆動方式のTN形の反射形液晶表示装置の液晶パネルの反射板側の基板部材である。該基板部材は本実施形態の基板部材67と類似の構成を有し、同一の構成要素には同一の符号を付し、説明は省略する。該基板部材の製造工程を以下に説明する。該製造工程は、図6に示す本実施形態の基板部材67と類似の工程を有し、同一の工程の詳細な説明は省略する。
【0077】
先ず最初に、透光性を有する絶縁性の基板71の一方表面に、スパッタリング法によってタンタル(Ta)の薄膜を成膜し、該薄膜に対してパターニング処理を施す。これによって、信号配線108および下部電極109とほぼ同形の導電体層106が形成される。この状態を図7(A)に示す。次いで、導電体層106の表面を陽極酸化法によって酸化して、酸化タンタル(TaO)から成る絶縁体層82および信号配線108を覆う絶縁被膜が形成される。導電体層106の酸化されない残余の部分が、信号配線108および下部電極109となる。この状態を図7(B)に示す。
【0078】
続いて、この基板71の一方表面にチタン(Ti)の薄膜を形成し、該薄膜に対してパターニング処理を施して、上部電極83を形成する。この状態を図7(C)に示す。これによって、MIM素子75が基板71上に形成される。さらに、該一方表面上に錫−インジウム酸化物(ITO)の薄膜を成膜し、該薄膜に対してパターニング処理を施して、画素電極73を形成する。この状態を図7(D)に示す。最後に、該一方表面に図示しない配向膜を形成して、一方基板部材が形成される。
【0079】
本実施形態の基板部材67の製造工程と比較対象例である一方基板部材の製造工程とを比較すると、本実施形態の製造工程は、比較対象例の製造工程に、下層配線79および下部電極の下層部86を製造する工程が付加されたものであることが解る。このように、基板部材67の製造工程は、従来の基板部材の製造工程に単一工程を増加させるだけで実現することができる。また付加される工程も、薄膜形成およびパターニング処理を行う工程であり、実施が容易である。
【0080】
本実施形態の液晶表示装置61の信号配線74の下層配線79の導電性材料には、アルミニウムを含み、その比抵抗値が上層配線78の導電性材料の比抵抗値よりも小さい材料が選ばれる。上層配線78および下層配線79の導電性材料としては、タンタル(Ta)および(Al−Si)混合材料以外の導電性材料を用いてもよい。
【0081】
タンタル(Ta)は、その比抵抗値が他の金属と比べて比較的小さく、配線抵抗が小さい。さらに、タンタルは陽極酸化法を用いて酸化タンタル(TaO)からなる均一な絶縁体層を容易に形成することができる。ゆえに、タンタル系の金属材料を上層配線78の導電性材料に選ぶことが好ましい。このタンタル系の金属としては、単体タンタルの他に、窒素含有率が2mol%〜10mol%である窒化タンタル(TaN)が用いられる。
【0082】
また、下層配線79の導電性材料は、上層配線78の導電性材料よりも比抵抗値が小さいものであれば、上述した(Al−Si)混合材料以外のアルミニウムを含む混合材料を用いてもよい。このような混合材料として、たとえば(Al−Si−Cu)混合材料,(Al−Mg)混合材料,(Al−Mg−Si)混合材料,(Al−Ti)混合材料,(Al−Ti−Si)混合材料,(Al−Mn)混合材料,(Al−Mn−Si)混合材料,(Al−Zn)混合材料,(Al−Zn−Si)混合材料,(Al−Mo)混合材料,(Al−Mo−Si)混合材料であるような合金が挙げられる。これらの混合材料で形成される配線は単体アルミニウムで形成される配線の特長点と同じ特長点を有し、かつエレクトロマイグレーションを防止することができる。
【0083】
このような混合材料のうち、(Al−Si)混合材料は、陽極酸化法による酸化処理が施されると、(Al −SiO )で形成される絶縁被膜が形成される。ゆえに、たとえば上層配線78にクラックが生じ、下層配線79の表面が暴露するときでも、絶縁体層82を形成する陽極酸化処理時に該下層配線79に絶縁被膜が形成される。ゆえに、このクラックに起因する画素電極73への電流漏れを防止することができる。したがって、上述した混合材料のうちで、(Al−Si)混合材料を用いることが好ましい。
【0084】
さらにまた、上述した信号配線74の上層配線78と下層配線79との重畳される部分の幅W1は、1μm以上となるように設定される。この理由としては、以下の2点が挙げられる。第1の理由としては、配線基板67の製造工程において行われるパターニング処理に用いられる装置の解像能力が1μm以上であることが挙げられる。たとえば、現行のレジスト塗布装置、ステッパー露光機および現像装置の解像度の限界は、2μmである。たとえば露光機における解像能力はパターニングに用いられる光に起因し、これ以上に向上させることは困難である。ゆえに、1μm以下の幅を有する配線であるような精密な構成をパターニング処理で得ることは困難である。
【0085】
第2の理由としては、上述した重畳部分の幅が1μm以下であるとき、信号配線74の抵抗値を低減させる効果が小さいことが挙げられる。表1は、下層配線79の配線幅を変化させたときの各信号配線74の配線抵抗を示す。
【0086】
【表1】
Figure 0003544598
【0087】
上述した表1の各条件における信号配線74の配線抵抗Rの値は、以下の式で求められる。
【0088】
【数1】
Figure 0003544598
【0089】
上式において、配線の長さLは、153.6mmとする。上層配線78の配線幅WTaは、18μmとする。上層配線78の層厚さtTaは、3300Åとする。また、上層配線78の導電性材料は、タンタルとする。タンタルの比抵抗値ρTaは、160μΩ・cmである。下層配線79の配線幅WAlは、8μmとする。下層配線79の層厚さtAlは、2000Åとする。下層配線79の導電性材料は、比抵抗値ρSiが4.8μΩ・cmである(Al−Si)混合材料とする。信号配線74における上層配線78および下層配線79の重畳部分の幅Wlは、信号配線74の下層配線79の配線幅と一致する。
【0090】
表1に示すように、重畳部分の幅W1を増加させると信号配線74の配線抵抗Rが低減する。また、重畳部分の幅W1が1μm以下であるとき、信号配線74の配線抵抗が20kΩ以上になり、下層配線79が形成されていない状態と近くなる。ゆえに、重畳部分W1の幅が1μm以上であることが好ましい。
【0091】
本実施形態の液晶表示装置61では、上層配線78の配線幅を18μmとし、下層配線79の配線幅を8μmとしている。このとき、信号配線74の配線抵抗Rは、表1から約4kΩであることが判る。ゆえに、下層配線79を形成しないでタンタルから成る上層配線78だけで信号配線74を形成するときと比較して、配線抵抗が約(1/10)まで低減されていることが判る。
【0092】
このように形成された信号配線74を用いた基板部材67を含む液晶表示装置61では、信号配線74の電気信号の入力端近傍からその反対側の端部に至るまでの信号減衰がほとんど生じなかった。ゆえに、液晶表示装置61におけるグラデーションの発生を防止することができた。
【0093】
本発明の第2実施形態である液晶表示装置を、以下に説明する。本実施形態の液晶表示装置は、第1実施形態の液晶表示装置61と同様の構成を有し、同一の構成要素には同一の符号を付し、説明は省略する。本実施形態の液晶表示装置では、反射板側の基板部材67の信号配線74の下層配線が異なる導電性材料から成る複数の導電体層が積層した積層構造を有する。
【0094】
液晶表示装置は、アクティブマトリクス駆動方式であってTN形の反射形液晶表示装置である。該装置は、液晶パネル63を偏光板64,65で挟持した構成を有する。また、液晶パネル63は、液晶層69を一対の基板部材67,68で挟持した構成を有する。反射板側の基板部材67の信号配線74の下層配線は、2種類の導電性材料からなる第1および第2導電体層の積層構造を有する。
【0095】
これら導電体層のうち、第1導電体層の導電体材料には、単体アルミニウム(Al)が用いられる。第2導電体層の導電体材料には、上層配線78の導電体材料よりも比抵抗値が小さい導電体材料が用いられる。本実施形態では、第2導電体層の導電体材料として、単体モリブデン(Mo)を用いる。また、単体モリブデンの比抵抗値は、18℃において、4.7μΩ・cmである。単体タンタルの比抵抗値は、18℃において、14.7μΩ・cmである。ゆえに、単体モリブデンの比抵抗値は、単体タンタルの比抵抗値よりも小さい。
【0096】
第2導電体層112は、第1導電体層111の上に重畳されて第1導電体層の少なくとも上側表面を覆う。上層配線78は、第1および第2導電体層111,112から成る下層配線113を覆うように形成される。また、MIM素子75の下部電極81の下層部もまた第1および第2導電体層の積層構造を有する。下部電極81の上層部85は、第1および第2導電体層111,112の積層構造を有する下層部114を覆うように形成される。
【0097】
図8は、上述した液晶表示装置の液晶パネル63の基板部材67の製造工程を説明するための各過程における段階的な部分断面図である。この部分断面図は、図6の部分断面図と類似の構成を有する。また、該基板部材の製造工程は、基板部材67の製造工程と類似の工程を有し、同一の動作に関して詳細な説明を省略する。
【0098】
先ず、基板71の一方表面72上に第1導電体層111の導電体材料の薄膜を形成する。続いて、該薄膜上に第2導電体層の導電体材料の薄膜を積層して形成する。第1導電体層111の導電体材料としては、単体アルミニウム(Al)が用いられる。第2導電体層112の導電体材料としては、単体モリブデン(Mo)が用いられる。第1導電体層の導電体材料の薄膜の膜厚は、50nmである。第2導電体層の導電体材料の薄膜の膜厚は100nmである。これら各導電体材料の薄膜は、たとえばインライン形のスパッタリング装置を用いたスパッタリング処理を基板71に対して施して、連続して形成される。
【0099】
次いで、第2導電体層の導電体材料の薄膜上に、下層配線113および下部電極81の下層部114の形状に対応したフォトレジスト層のマスクをフォトリソグラフィ法によって形成する。下層配線113および下層部114の形状は、第1実施形態の基板部材67の下層配線79および下部電極の下層部86の形状と一致する。続いて、マスクが形成された該基板部材の各薄膜に対し、エッチング処理を施す。このエッチング処理では、単体アルミニウム薄膜および単体モリブデン薄膜を同時にエッチングすることができるエッチング手法が用いられる。これによって、第1導電体層111および第2導電体層112の積層構造で形成される下層配線113および下部電極81の下層部114が形成される。このようにして、形成された基板部材を図8(A)に示す。
【0100】
続いて、下層配線113および下層部114が形成された基板71の一方表面72上に、たとえばタンタルである導電体材料の薄膜を形成し、該薄膜に対してパターニング処理を施す。これによって、タンタルから成る導電体層106を形成する。このように形成された基板部材を、図8(B)に示す。
【0101】
続いて、導電体層106に対して陽極酸化法を用いた酸化処理を施す。これによって、導電体層106の表面が酸化されて絶縁体層82となり、酸化されない残余の部分が上層配線78および下部電極81の上層部85となる。これによって、信号配線74および下部電極81が形成される。このように形成された基板部材を、図8(C)に示す。
【0102】
続いて、たとえばチタン(Ti)から成る上部電極83および錫−インジウム酸化物(ITO)から成る画素電極73を、第1実施形態の基板部材67の製造工程における製法と同様の手法で形成する。これによって、基板71の一方表面に画素電極73、信号配線74およびMIM素子75が形成される。このように形成された基板部材を、図8(D)に示す。
【0103】
さらに、この基板部材の一方表面上に各構成要素73〜75を覆うように配向膜76の膜材料の薄膜を形成し、該薄膜の表面にラビング処理を施して、配向膜76を形成する。このような一連の処理工程によって、液晶パネル63の反射板側の基板部材が形成される。
【0104】
本実施形態の信号配線74の下層配線113は、単体アルミニウムで実現される第1導電体層の上に、他の導電体材料から成る第2導電体層が積層された構造を有する。この下層配線113は、第1および第2導電体層を2回以上積層した複数回の構造を有していてもよい。また、積層される導電体材料の導電体層を2種類以上としてもよい。たとえば、単体アルミニウム(Al)、単体モリブデン(Mo)、単体クロム(Cr)から成る導電体層を順次的に積層した積層構造を有していてもよい。このとき、下層配線79の最上層であって、上層配線78と接する導電体層は、単体アルミニウム(Al)で形成される導電体層以外の導電体層とする。
【0105】
このように、単体アルミニウム(Al)の導電体層と上層配線78との間に少なくとも1層の別の導電体材料の導電体層を介在させると、アルミニウム単体の導電体層表面にエレクトロマイグレーションに起因して生じるヒロックおよびボイドの影響が、上層配線78に至ることを防止することができる。たとえば、ヒロックで生じた凸部が上層配線78を突抜けることを防止することができる。
【0106】
アルミニウム以外の導電体材料で形成される第2導電体層の導電体材料には、上層配線78の導電体材料の比抵抗値よりも比抵抗値の小さい材料が用いられる。表2は、単体金属材料の18℃における比抵抗値を示す。
【0107】
【表2】
Figure 0003544598
【0108】
第2導電体層112の導電体材料としては、比抵抗値ができるだけ小さい材料が用いられることが好ましい。ゆえに、たとえば金(Au)および銀(Ag)を用いることが好ましい。しかしながら、金(Au)、銀(Ag)および白金(Pt)は原材料の価格が高く、基板部材67の製造コストの増加の原因となる。また、銅(Cu)、クロム(Cr)、コバルト(Co)およびカドミウム(Cd)は、取扱いが困難である。ゆえに、モリブデン(Mo)を第2導電体層112の導電体材料とすることが好ましい。
【0109】
また、モリブデンは、上述した単体金属の中でエッチング性が優れていて、第1導電体層111のアルミニウムとのエッチングの選択性を取ることができる。たとえば、単体モリブデンの薄膜のエッチング処理において、単体アルミニウムの薄膜のためのエッチング液よりも弱いエッチング液を使用することによって、アルミニウムの第1導電体層111にオーバーハングが発生することを防止することができる。また、単体モリブデンの薄膜は、単体アルミニウムの薄膜のエッチング液と同じエッチング液を用いてエッチングすることができるので、各薄膜に単一のウエットエッチング処理を施して、第1導電体層および第2導電体層111,112を同時に形成することができる。ゆえに、製造工程において、各導電体層111,112を個別的にエッチングする必要がなくなり、製造工程が簡略化される。
【0110】
さらにまた、第2導電体層112の導電体材料は、比抵抗値は、上層配線78の導電体材料の比抵抗値よりも小さい材料であれば、上述した単体金属以外の各種の材料を用いることができる。たとえば、用いることができる導電体材料として、MoSi ,WSi ,TaSi ,TiSi ,TiNである化合物が挙げられる。また、(Al−Cu)混合材料,(Al−Ti−W)混合材料,(Sn−Cr)混合材料,(Sn−Cu−Cr)混合材料,(Pb−Cr)混合材料,(Pb−Cu−Cr)混合材料,(Au−Pd−Ti)混合材料が挙げられる。さらにこの導電体材料としては、第1実施形態において下層配線79の導電体材料とされたアルミニウムを含む混合材料が用いられてもよい。
【0111】
上述した積層構造を有する下層配線113を含む信号配線74の下層配線113と上層配線78との重畳部分の幅W1は、1μm以上であることが好ましい。表3は、下層配線113の配線幅を変化させたときの信号配線74の配線抵抗Rを示す。
【0112】
【表3】
Figure 0003544598
【0113】
上述した表3の配線抵抗は、前述した式(1)〜式(3)を用いて計算して求めた。このとき、式(1)〜式(3)の各パラメータの値は、第1実施形態の基板部材67の信号配線74における配線抵抗Rの計算と同じ値とする。また、下層配線79の導電体材料の比抵抗値の値は、単体アルミニウムと単体モリブデンとの積層構造の配線の比抵抗値に置換える。該比抵抗値(ρ・Mo)は、4.4μΩ・cmとする。
【0114】
表3に示すように、下層配線113の幅、すなわち上層配線78と下層配線113との重畳部分の幅W1が1μm未満であるとき、信号配線74の配線抵抗Rは20kΩ以上あり、低抵抗化の効果が小さい。本実施形態の下層配線113は、配線幅が8μmである。このとき、信号配線74の配線抵抗Rは3.8kΩまで低減される。ゆえに、下層配線113が形成されないで、上層配線78だけで信号配線74を形成したときと比較して、配線抵抗を約(1/10)に低減させることができる。
【0115】
上述した製造工程に示すように、単体アルミニウムと単体モリブデンとの導電体層の積層構造で下層配線113を形成するとき、第1導電体層と第2導電体層111,112は、各導電体層111,112の導電体材料の薄膜を積層して形成した後に、一括して同じエッチング手法を用いてエッチングして形成することができる。
【0116】
上述した他の導電体材料を用いて第2導電体層112を形成するとき、第2導電体層の導電体材料のエッチング手法と、第1導電体層の導電体材料のエッチング手法とが異なることがある。このときには、各導電体層111,112を個別的に成膜し、パターニング処理して各導電体層111,112を形成する。
【0117】
第2導電体層のエッチング液のエッチング強さが第1導電体層の導電体材料のエッチング液のエッチング強さよりも大きいと、第1導電体層111にオーバーハングが生じることがある。このようなオーバーハングが生じると、該導電体層の配線抵抗に狂いが生じ、全体として信号配線74の配線抵抗が設計値と一致しなくなる。したがって、第2導電体層112の導電体材料は、第1導電体層111の導電体材料のエッチング液のエッチング強さと同等、またはそれよりも弱いエッチング強さのエッチング液で、エッチングすることが可能な導電体材料を用いることが好ましい。
【0118】
本発明の第3実施形態である液晶表示装置を、以下に説明する。本実施形態の液晶表示装置は、第1実施形態の液晶表示装置と類似の構成を有し、同一の構成要素には同一の符号を付し、説明は省略する。液晶表示装置61は、アクティブマトリクス駆動方式であってTN形の反射形液晶表示装置である。該液晶表示装置は、液晶パネル63を偏光板64,65で挟持した構成を有する。また、液晶パネル63は、液晶層69を基板部材116および基板部材68で挟持した構成を有する。
【0119】
図9は、基板部材116の詳細な構成を示す部分平面図である。該基板部材116は、第1実施形態の基板部材67と類似の構成を有し、同一の構成要素には同一の符号を付し、詳細な説明は省略する。基板部材116は、透光性を有する絶縁性基板71の一方表面72上に、画素電極73、信号配線74およびMIM素子75が予め定める配列で配置され、該構成要素73〜75を覆って配向膜76が形成された構成を有する。信号配線74は、上層配線78および下層配線79を重畳した積層構造を有する。
【0120】
MIM素子75は、下部電極117、絶縁体層82、および上部電極83が、この順で下から順に積層された構造を有する。下部電極117は、信号配線74の上部配線78だけと一体的に形成され、電気的に接続される。ゆえに、この下部電極117は、第1実施形態の下部電極81と比較して、信号配線74の下層配線79と同一の導電性材料から成る下層部86が存在しない。この下部電極117は、上層配線78と同じ導電性材料だけから構成される。
【0121】
第1実施形態のMIM素子75では、その製造工程において、下部電極81の上層部85になるべき導電体層106にピンホールが生じているとき、陽極酸化処理時に、絶縁体層82に下層部86から不純物が混入することがある。本実施形態のMIM素子75の下部電極117は、単体タンタル(Ta)だけで形成されるので、該下部電極117の材料となる導電体層にピンホールが生じていても、陽極酸化処理時に絶縁体層82に不純物が混入することを防止することができる。
【0122】
本実施形態では、信号配線74の下層配線79は、たとえばアルミニウムの混合材料で実現される。また、この下層配線79は、単体アルミニウム(Al)と他の導電性材料との積層構造を有していてもよい。
【0123】
上述した第1〜第3実施形態の液晶表示装置は、反射形の液晶表示装置である。本実施形態の液晶表示装置は、偏光板65側に取付けられる反射板を取外し、該反射板の代わりに光源を設けると、透過形の液晶表示装置として用いることができる。このようなMIM素子75をスイッチング素子としたアクティブマトリクス駆動方式の液晶表示装置は、薄膜トランジスタ(TFT)をスイッチング素子とした液晶表示装置よりも開口率が大きい。ゆえに、透過形および反射形の液晶表示装置として、より明るい表示を実現することができる。
【0124】
さらに、上述した第1〜第3実施形態の液晶表示装置は、TN形の液晶表示装置としたけれども、本実施形態の画素電極73、信号配線74およびMIM素子75は、GH形の液晶表示装置の各構成要素としても用いることができる。
【0125】
図10は、本発明の第4実施形態である相転移型GH形の液晶表示装置131の構成を示す部分断面図である。装置131は(480×320)個の画素が行列状に配置されるいわゆるH−VGAの画素配列を有し、カラー表示を行う。GH形の液晶表示装置では、封入される液晶に添加した2色性色素の吸収係数の異方性を利用して表示を行う。
【0126】
装置131は、一対の基板部材132,133でp形色素を添加したコレステリック液晶から成る液晶層134を挟持した構成を有する。基板部材132,133の各構成要素は、その数以外において第1実施形態の基板部材67,68に類似の構成を有し、同一の構成要素には同一の符号を付し、詳細な説明は省略する。
【0127】
図11は、液晶表示装置131の一方基板部材132の詳細な構成を示す部分平面図である。以後、図10および図11を併せて説明する。
【0128】
透光性を有する絶縁性基板71の一方表面72上には、画素の列の数と同数の信号配線74が水平方向Hに沿って予め定める間隔をあけて相互に平行であって、各配線の長手方向が垂直方向Vと平行に配設される。信号配線74は、上層配線78および下層配線79を重畳した積層構造を有する。各信号配線にはそれぞれ、画素の行の数と同数のMIM素子75が、画素の領域96に1つずつ配置される。信号配線74およびMIM素子75上には、該構成要素74,75を覆うように有機絶縁層142が形成される。
【0129】
画素電極は有機絶縁層142上に重畳され、信号配線74と電気的に絶縁されて、行列状に配置される。画素電極75aとMIM素子75の上部電極83とは、有機絶縁層142に設けられたスルーホール145を介して電気的に接続される。さらに、基板71の一方表面72には、各構成要素73,74,75aを覆うように、予め定める配向方向に配向処理が成された配向膜が形成される。
【0130】
GH形の液晶表示装置では、画素電極75aが反射板を兼ねる。画素電極75aは、たとえば金属材料である反射率の大きい導電体材料の薄膜を有機絶縁層142の一方表面146に成膜し、該薄膜に対してパターニング処理を施して製造される。有機絶縁層142の一方表面146には、図11の部分平面図において実線の大小の円を用いて示す凹凸が形成される。画素電極75aは有機絶縁層142の一方表面146上に成膜された導電性薄膜から形成されるので、同様の凹凸を有する。これによって、該電極75aにおける光の反射効率が向上される。ゆえに、画素電極75aの一方表面は高反射率を有する拡散反射面となり、装置131の表示の輝度およびコントラスト比が向上される。
【0131】
図12は、液晶表示装置131の他方基板部材133の詳細な構成を示す部分平面図である。以後、図10および図12を併せて説明する。
【0132】
他方基板部材133は、透光性を有する絶縁性基板91の液晶層134側の一方表面92に、法線方向Uから見て、帯状の対向電極93が基板部材132の信号配線74が延びる方向と直交する方向に沿って複数形成される。基板91の一方表面92と対向電極93との間には、各画素単位で色の異なるカラーフィルタであって、画素の画素配列と同等の配列状態で配列されたカラーフィルタ153が介在される。また、該一方表面は、各構成要素93,153を覆うように成膜され、予め定める配向方向に配向処理が成された配向膜94によって覆われる。
【0133】
再び図10を参照する。GH形の液晶表示装置では、液晶層134内に2色性色素が混入される。この2色性色素の色素分子はたとえば棒状構造を有し、その長軸である色素分子軸が液晶分子軸と平行になるように配列する。さらに、p形の2色性色素は、色素分子軸にほぼ平行な吸収軸を有し、該分子軸に平行な方向に偏光する光を強く吸収し、それに垂直な方向に偏光する光を殆ど吸収しない吸収特性を有する。
【0134】
液晶表示装置131の各画素は、該画素の電極75a,93間に挟持される液晶層134内に生じる電界の有無に応じて、光を透過する有色状態と光を遮断する無色状態とに切換えられる。該電界の有無は、電極75a,93間に予め定める電圧が印加されるか否かによって切換え制御される。
【0135】
画素の液晶層134内の電界が発生しないとき、液晶分子および色素分子は液晶層134内で基板71,91の一方表面72,92だけに平行に不規則に配列される。ゆえに、液晶層内に入射された光は色素分子に吸収され、光を遮断する無色状態となる。液晶層内に電界が発生すると、各分子軸が電界方向に沿い、基板71,91の一方表面72,92に対してほぼ垂直となるように配列される。ゆえに、液晶層134内に他方基板部材133側から入射した光は、液晶層134を通過し、反射板を兼ねる画素電極75a表面に反射して、再び液晶層134および他方基板部材133を通過して出射される。これによって、画素は光を透過する有色状態となる。
【0136】
TN形の液晶表示装置では、一方基板部材側の偏光板の透過軸と略平行な方向に偏光する光だけが液晶層に入射され、残余の光は偏光板に吸収される。ゆえに、TN形の反射形液晶表示装置では、一般的に光の反射率が50%以下に低下する。これによって、表示画面の明るさが低下して、所望とする明るさ未満になることがある。相転移GH形の液晶表示装置では偏光板が用いられないので、有色表示を行う画素では、画素に入射される光をほぼ100%出射させることができる。したがって,さらに明るい表示を実現することができる。
【0137】
さらにまた、上述した構成を有する信号配線74は、液晶表示装置の基板部材に限らず、他の用途に用いられる基板部材の信号配線として用いることができる。特に、このような構造を有する信号配線74およびMIM素子75を有する基板部材は、信号配線74の配線抵抗が高くなる構造の基板部材において用いることが好ましい。配線抵抗が高い配線構造としては、たとえば配線幅が狭い構造、配線の厚みが薄い構造および配線長さが長い構造であることが挙げられる。このような配線構造を有する配線では、配線の信号入力端部から反対側の端部に至るまでに入力された電気信号の減衰が発生することが考えられる。上述した構造を有する信号配線であれば、この減衰の発生を低減させることができる。
【0140】
【発明の効果】
以上のように本発明によれば、配線基板の信号配線には、複数の個別電極が2端子スイッチング素子を介して接続される。該信号配線は、第1配線と、アルミニウムよりも比抵抗値が大きい導電体材料であるタンタル系金属で構成される第2配線との積層構造を有する。また、第1配線は、単体アルミニウムで構成される第1導電体層と、モリブデンからなる第2導電体層とを、第2配線と接触する最外層が第2導電体層となるように積層して構成される。第1配線の第2導電体層の導電体材料であるモリブデンの比抵抗値は、第2配線の導電体材料であるタンタル系金属の比抵抗値よりも小さい。
【0141】
これによって、上述した配線基板の信号配線と同様に、該配線の配線抵抗値を低減させ、該信号配線を伝送される電気信号の減衰および歪みを防止することができる。また第1導電体層におけるエレクトロマイグレーションに起因する形状変化の影響が第2配線に与えられることを防止して、与えないようにすることができる。配線基板の製造工程において第1配線に損傷が生じることを防止することができる。さらに、該配線基板を液晶表示装置の基板部材とすると、装置の開口率を向上させて、明るい表示を行う装置を実現することができる。
【0142】
また本発明によれば、信号配線における第1および第2配線の重畳部分の幅は1μm以上である。これによって、一般的なパターニング処理で各配線を形成することができる。また信号配線を極力細くしたときにも、信号配線の比抵抗値を第2配線の導電体材料だけで形成された配線よりも低減させることができる。
【0143】
また本発明によれば、信号配線の第2配線は、タンタル系金属で実現されるので、第2配線とMIM素子の下部電極とを一体的に同時に形成することができる。またMIM素子の絶縁体層を形成するときに、第2配線を絶縁する絶縁被膜を同時に形成することができる。ゆえに、信号配線から個別電極に直接電気信号が漏出すことを防止することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態である液晶表示装置61の構成を示す断面図である。
【図2】液晶表示装置61の正面図である。
【図3】液晶表示装置61の液晶パネル63の反射板側の基板部材67の詳細な構成を示す平面図である。
【図4】基板部材67のB−B断面図である。
【図5】液晶表示装置61の液晶パネル63の偏光板64側の基板部材68の詳細な構成を示す平面図である。
【図6】基板部材67の製造工程を説明するための段階的な部分断面図である。
【図7】比較対象例である第1の従来技術の液晶表示装置の液晶パネルの反射板側の基板部材の製造工程を説明するための段階的な部分断面図である。
【図8】本発明の第2実施形態である液晶表示装置の液晶パネル63の反射板側の基板部材67の製造工程を説明するための段階的な部分断面図である。
【図9】本発明の第3実施形態である液晶表示装置の液晶パネル63の反射板側の基板部材67の詳細な構成を示す部分平面図である。
【図10】本発明の第4実施形態である液晶表示装置131の構成を示す断面図である。
【図11】液晶表示装置131の基板部材132の詳細な構成を示す部分平面図である。
【図12】液晶表示装置131の表示画面側の基板部材133の詳細な構成を示す部分平面図である。
【図13】第1の従来技術である液晶表示装置の液晶パネルにおいて、スイッチング素子にMIM素子を用いた反射板側の一方基板部材1の構成を詳細に説明するための部分平面図である。
【図14】第1の従来技術である液晶表示装置の液晶パネルにおいて、スイッチング素子にTFTを用いた偏光板側の一方基板部材11の構成を詳細に説明するための部分平面図である。
【図15】一方基板部材1,11の信号配線6,16の詳細な構成を説明するための断面図である。
【図16】第1の従来技術の液晶表示装置において、信号配線6,16の下層配線22に生じるヒロックの凸部25を示す部分断面図、および凸部25が生じた下層配線22を含む一方基板部材1,11にエッチング処理を施した状態を示す部分断面図である。
【図17】第1の従来技術の液晶表示装置において、信号配線6,16の下層配線22に生じるボイドの凹部26を示す部分断面図、および凹部26が生じた下層配線22を含む一方基板部材1,11にエッチング処理を施した状態を示す部分断面図である。
【符号の説明】
61,131 液晶表示装置
67,68;116;132,133 基板部材
71 基板
73 画素電極
74 信号配線
75 MIM素子
78 上層配線
79,113 下層配線
111 第1導電体層
112 第2導電体層

Claims (3)

  1. 絶縁性基板上に配置される複数の電極と、
    該基板上に配置され、各電極に供給されるべき電気信号が与えられる複数の信号配線と、
    該信号配線に与えられた電気信号を、各電極に個別的に供給/遮断する複数の2端子スイッチング素子とを有する2端子スイッチング素子を有する配線基板であって、
    前記各信号配線は、予め定める幅を有する第1配線と、第1配線よりも大きな幅を有し、第1配線の上に重畳して形成されるタンタル系金属で構成された第2配線とを有し、
    第1配線は、第1導電体層と、該第1導電体層と第2配線との間に介在される第2導電体層とが積層されて形成され、
    第1導電体層は、厚さが約50nmであり、比抵抗値が第2配線を構成するタンタル系金属の比抵抗値よりも小さいアルミニウムで構成され、
    第2導電体層は、厚さが約100nmであり、比抵抗値が第2配線を構成するタンタル系金属の比抵抗値よりも小さいモリブデンで構成されたことを特徴とする2端子スイッチング素子を有する配線基板。
  2. 前記第1配線と第2配線との重畳部分の幅は、少なくとも1μm以上であることを特徴とする請求項1記載の2端子スイッチング素子を有する配線基板。
  3. 前記2端子スイッチング素子は、前記信号配線と電気的に接続され一体的に形成される第1電極と、前記画素電極と電気的に接続される第2電極と、第1および第2電極間に介在される絶縁体層とが積層されて形成される2端子非線形素子であることを特徴とする請求項1記載の2端子スイッチング素子を有する配線基板。
JP17149996A 1996-07-01 1996-07-01 2端子スイッチング素子を有する配線基板 Expired - Fee Related JP3544598B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17149996A JP3544598B2 (ja) 1996-07-01 1996-07-01 2端子スイッチング素子を有する配線基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17149996A JP3544598B2 (ja) 1996-07-01 1996-07-01 2端子スイッチング素子を有する配線基板

Publications (2)

Publication Number Publication Date
JPH1020345A JPH1020345A (ja) 1998-01-23
JP3544598B2 true JP3544598B2 (ja) 2004-07-21

Family

ID=15924241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17149996A Expired - Fee Related JP3544598B2 (ja) 1996-07-01 1996-07-01 2端子スイッチング素子を有する配線基板

Country Status (1)

Country Link
JP (1) JP3544598B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057240A (ja) * 2003-07-23 2005-03-03 Seiko Epson Corp 薄膜半導体素子、及び薄膜半導体素子の製造方法

Also Published As

Publication number Publication date
JPH1020345A (ja) 1998-01-23

Similar Documents

Publication Publication Date Title
US7414682B2 (en) Liquid crystal display unit and production method thereof
US5719647A (en) Reflective type liquid crystal display apparatus having ESD protecting MIM beneath each reflective electrode
TWI223121B (en) Active matrix addressing liquid-crystal display device
JPH11242238A (ja) 反射型液晶表示装置とその製造方法、ならびに回路基板の製造方法
WO2000020918A1 (fr) Dispositif a cristaux liquides et appareil electronique
KR20060051017A (ko) 반투과형 액정표시장치 및 그 제조 방법
JP2000122093A (ja) 反射型液晶表示装置
JPH06250210A (ja) 液晶表示装置およびその製造方法
JP3636192B2 (ja) 液晶装置及び電子機器
JP3831028B2 (ja) 液晶表示装置
JP3544598B2 (ja) 2端子スイッチング素子を有する配線基板
JP4712402B2 (ja) 下部表示板及び下部表示板を含む液晶表示装置およびその製造方法
JP2000250065A (ja) 液晶画像表示装置および画像表示装置用半導体装置の製造方法
JP2004109797A (ja) 半透過型液晶表示装置
KR20030051258A (ko) 액정표시장치
US5859678A (en) Two-terminal nonlinear element and method for fabricating the same
JP3323423B2 (ja) 液晶表示パネル
JP4419414B2 (ja) 半透過型液晶表示装置
JP2003043508A (ja) 液晶表示装置
JPH10282907A (ja) 電極基板
JPH1039322A (ja) 液晶表示素子
JP3603974B2 (ja) 配線基板および表示装置
JP2001194681A6 (ja) 液晶装置および電子機器
JP3498797B2 (ja) 非線形素子を備えた素子基板およびその製造方法並びにその素子基板を用いた電気光学装置
JP3108600B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees