JP3542155B2 - 光磁気記録媒体及び光磁気記録再生装置 - Google Patents

光磁気記録媒体及び光磁気記録再生装置 Download PDF

Info

Publication number
JP3542155B2
JP3542155B2 JP00721394A JP721394A JP3542155B2 JP 3542155 B2 JP3542155 B2 JP 3542155B2 JP 00721394 A JP00721394 A JP 00721394A JP 721394 A JP721394 A JP 721394A JP 3542155 B2 JP3542155 B2 JP 3542155B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic field
recording
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00721394A
Other languages
English (en)
Other versions
JPH07220318A (ja
Inventor
博之 粟野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP00721394A priority Critical patent/JP3542155B2/ja
Publication of JPH07220318A publication Critical patent/JPH07220318A/ja
Application granted granted Critical
Publication of JP3542155B2 publication Critical patent/JP3542155B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、光スポット径よりも小さな記録マークを安定に形成することができる光磁気記録方法、光磁気記録媒体及び光磁気記録再生装置に関する。
【0002】
【従来の技術】
光磁気記録は、情報の記録・再生・消去が可能な記録方式である。磁性体からなる光磁気記録媒体に情報記録用レーザー光をスポット照射すると、記録媒体上に局部的に温度上昇した部分ができる。温度上昇した記録媒体の部分は保磁力が低下しているため、外部から磁界を印加することにより、この低保磁力部分の磁化だけを反転させることができる。このように、記録媒体を局部的に加熱して記録媒体に低保磁力部分を発生させ、その部分の磁化を外部磁界によって反転させるのが光磁気記録の原理である。
【0003】
磁化を反転させるための磁界は、記録媒体の広範囲な領域に一様に印加する。したがって、記録マーク径となる光磁気記録媒体の保磁力低下部分の大きさは、レーザー光照射時にできる記録媒体上の温度プロファイルに強く依存する。この温度プロファイルは、光磁気記録媒体の熱構造とレーザー光の波長によって決まる。
【0004】
【発明が解決しようとする課題】
前記光磁気記録において高密度記録を達成するための微小マーク記録には、光スポットの中心部分すなわち温度プロファイルの高温部分を利用している。そして、光磁気記録媒体の保磁力を低下させるために高出力のレーザーを照射するので記録位置近傍における記録媒体の温度分布の勾配は緩やかになり、この温度勾配に依存する保磁力の分布の勾配も緩やかなものになるので、光の波長の半分以下の微小磁区を安定に記録する上で不利であった。
【0005】
すなわち、従来の微小磁区記録の場合、光磁気記録媒体の広い領域に一様磁界が印加されており、情報記録用レーザー光の温度プロファイル高温部の制御が困難であるために、レーザースポットの高温部の径の変動とともに記録磁区の大きさが容易に変化してしまうという問題があった。
【0006】
また、レーザースポットで加熱された部分が冷却する過程で保磁力の温度勾配の緩やかな媒体では記録磁区の大きさが拡大してしまい、光の波長の半分以下の微小磁区を安定に形成することができないという問題もあった。
本発明の目的は、使用するレーザー光の波長の半分以下の大きさの微小マークを安定に記録することができる光磁気記録媒体及び光磁気記録再生装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明では、従来の一様磁界印加を局部磁界印加に変更することにより前記目的を達成する。以下、この局部磁界の発生方法について詳しく述べる。
本発明の光磁気記録媒体は図1に示すような断面構造を有し、局部磁界を発生させるために、情報記録用磁性層1の基板から遠い側に非磁性中間層2を介して情報記録用磁性層1よりも記録温度が低く磁化の大きな局部磁界発生用磁性層3を設けてある。ここで、磁性層の記録温度とは、記録の際、所定の外部磁界(図1の場合、外部磁界発生用磁石23によって発生される外部磁界22)の影響下において磁性層に外部磁界と同一方向の磁区が形成される温度のことである。したがって、情報記録用磁性層1及び局部磁界発生用磁性層3の記録温度をそれぞれTw1及びTw3とすると、Tw1>Tw3である。また、情報記録用磁性層1の保磁力14と局部磁界発生用磁性層3の保磁力15は図8に示すような温度依存性を有し、情報記録用磁性層の保磁力14の方が局部磁界発生用磁性層の保磁力15より急峻な温度勾配を有する。
【0008】
外部磁界発生用磁石23によって外部記録磁界22を印加した状態でレンズ14によって収束した記録用レーザー光20を光磁気記録媒体の領域21にスポット照射したとき、図9に図示するように温度Tw1の等温線16及び温度Tw3の等温線18が形成されたとする。
図10は、横軸に図9の温度プロファイルの最高温度の部分50から光磁気記録媒体の進行方向への距離rをとり、縦軸に温度T及び保磁力Hcをとって、温度分布及び保磁力Hcの分布を示したものである。図10(a)は情報記録用磁性層に対するものであり、図10(b)は局部磁界発生用磁性層に対するものである。
【0009】
図のような温度プロファイルの時の磁壁を動かす力(磁壁抗磁力:Htotal )は、以下の式で表される。
total =Hb+Hd−(∂σ/∂r)・(1/2Ms)−(σ/2Msr)
ここで、Hbはバイアス磁界、Hdは磁壁に作用する反磁界、σは磁壁のエネルギー、Msは飽和磁化、rはドメイン半径である。
【0010】
Hc<Htotal の領域では磁壁を動かす力の方が保磁力よりも大きいため、磁壁は動き、ドメイン径は広がる。しかし、Hc=Htotal と両者が等しくなると、磁壁は動けなくなる。このようにして磁壁の移動は終了し、ドメイン径が決定される。以上のドメイン形成メカニズムは、B.G.Huth,IBM J.Res.Develop.18,100(1974) に報告されている。このHc=Htotal となった温度が前記した記録温度である。
【0011】
本発明の光磁気記録媒体によると情報記録用磁性層に微小磁区を安定して記録することが可能であるが、その記録のメカニズムは上記モデルによると大略以下の通りであると推測される。
初め、光スポットの中心の高温部分を利用する従来と同様の方法によって局部磁界発生用磁性層3に記録用レーザー光の波長の半分以下の記録ドメインを形成する。このとき、図10(b)に示すように、局部磁界発生用磁性層3の温度プロファイルTに従って曲線15及び47のようにHc及びHtotal が分布する。そして、Hc=Htotal となった交点51の半径rが局部磁界発生用磁性層3の記録ドメイン半径であり、図1に示す反転磁化9の大きさはこの様にして決まる。ここで、半径rは図9の温度Tw3の等温線18に相当している。
【0012】
反転磁化9の形成前には、図10(a)に実線48で示すようにHtotal が分布し、Hc=Htotal の交点が生じないため、情報記録用磁性層1には記録ドメインが形成されない。図9で説明すると、等温線16の内部の温度は記録温度Tw1以上であるが、領域の大きさが小さくて最小磁区半径に達していないため等温線16の内部の磁化は反転しない。しかし、局部磁界発生用磁性膜3に反転磁化9が生じると、この漏洩磁界のため半径r以内でHdが増加し、半径r以上ではHdが減少する。従って、Htotal は破線49のような分布に変化し、Hc=Htotal となる交点52が生じて半径rのドメインが形成される。半径rは半径rより大きくなることはない。
【0013】
微小磁区形成時に問題となるのはrが小さい領域での温度コントロールである。局部磁界発生用磁性層の場合、Hcの温度依存性は傾きが緩やかであるため、温度ゆらぎによってHc分布がゆらいだ場合、交点51の位置も大きく移動する。従って、局部磁界発生用磁性層3に一定サイズのドメインを形成することは困難になる。しかし、情報記録用磁性層1の場合、Hcの温度勾配が急なのでドメイン径の変動は小さい。換言すると、局部磁界発生用磁性層3に記録された磁区形状は冷却段階で変化しやすいが、情報記録用磁性層1に一度できた磁区は安定に記録される。
【0014】
情報記録用磁性層1単層に記録しようとすると、更に高い出力のレーザーを照射し、温度Tを高くしてHcのプロフィル14を全体的に下げてHtotal との交点を作る必要がある。するとHcのプロファイルは、図10(a)に示すHcのプロファイル14よりも勾配が緩やかになり、安定なドメイン記録にとって不利になる。しかし、本発明による光磁気記録媒体の構成では、単層膜の場合と異なり、低温で記録できるためHcの勾配は急なままであり、安定なドメイン記録が可能となる。
【0015】
このように、局部磁界発生用磁性層3に従来と同様の手法によって半径rの微小磁区を形成すると、その漏洩磁界によって情報記録用磁性層1にr以下の半径rを有する微小磁区が低温で書き込まれる。そして、情報記録用磁性層1に記録された半径rの微小磁区は、その後の冷却過程で局部磁界発生用磁性層の微小磁区の大きさが変化したとしても変化することなく安定に存在するため、情報記録用磁性層に微小磁区を安定して記録できるものと考えられる。
【0016】
これまで情報記録用磁性層と局部磁界発生用磁性層の間に非磁性中間層を介在させる例について説明してきたが、情報記録用磁性層1の記録温度よりも低い温度で情報記録用磁性層1と局部磁界発生用磁性層3の磁気的な結合(交換結合)を切断する磁性層で中間層2を構成してもよい。その場合、磁性中間層2のキュリー温度をTc2とするとき、次の関係を満たすようにする。
Tw1>Tc2>Tw3
【0017】
図2に、非磁性中間層に代えて磁性中間層2を使用する例を示す。レーザー光照射時の記録媒体の温度プロファイルが図9のようになった場合、温度Tc2の等温線17の内側の高温部で磁性中間層2は磁性を失い、あたかも非磁性層となる。このため、図2に示すように、Tc2以上の温度となる部分8では、局部磁界発生用磁性層3と情報記録用磁性層1の磁気的な結合が切断される。温度Tc2での情報記録用磁性層1の保磁力は一様印加磁界22よりも大きいが、局部磁界発生用磁性層3の保磁力は印加磁界22と同程度になる。したがって、局部磁界発生用磁性層3の磁化9は、外部磁界22によって反転する。この場合、温度Tw3以上Tc2以下の部分では局部磁界発生用磁性層3と情報記録用磁性層1とが磁気的に結合しているため、局部磁界発生用磁性層3の磁化が反転することはない。このように温度Tw3以上Tc2以下の部分で磁化が反転しない条件は、温度Tc2以下において以下の関係を満足することである。
【0018】
Hc3−Hex>0 かつ Hc1−Hex>0
ここで、Hc1、Hc3は各々磁性層1、3の保磁力、Hex〔=σ/(2Ms・t)〕は磁性層1と3の交換結合磁界、σは磁性層1と3の遷移金属のモーメントが互いに反平行になった場合の両層の界面にできる界面磁壁のエネルギー、Msは磁性層3の飽和磁化、tは磁性層3の膜厚である。σは、この交換結合膜のホール効果のヒステリシス曲線を測定した結果得られるダブルループにおける磁性層3のループのシフト量から見積もることができ、その計算方法はT.Kobayashi et.al.,Jpn.J.Appl.Phys.,20,2089(1981) に詳述されている。
【0019】
以上のような条件が満足された膜構成において、情報記録用磁性層に光の波長の半分以下の微小な記録マークを安定に記録することができる。
局部磁界発生用磁性層3の磁化が大きいために反転磁化9は、図1又は図2の下方に示したような漏洩磁界を情報記録用磁性層1に与える。この漏洩磁界は外部記録磁界22と同一方向であり、局所記録磁界となる。この局所記録磁界のため、情報記録用磁性層1は温度が記録温度Tw1に達していなくても磁化7が反転し、微小記録マークが記録できるわけである。
【0020】
磁性層3単層では交換結合力がないために記録マークは大きくなる、磁性層1には記録マークができない。しかし、本発明の膜構成にすることにより微小記録マークが形成できるわけである。
本発明の光磁気記録媒体に記録された記録マークを消去するには、図3に示されるように、外部磁界発生用磁石23によって消去磁界34を印加すればよい。消去磁界34によって、反転磁区7及び9の磁化は消去磁界34と同一方向の磁化38及び37となり初期状態に戻る。
【0021】
次に、本発明の光磁気記録媒体の幾つかの変形例及びその記録媒体による微小マークの記録再生方法について説明する。
局部磁界発生用磁性層3は、図4に示したように情報記録用磁性層1の基板側にあってもよい。また、局部磁界発生強磁性層3に再反転磁区39が現れるような垂直磁気異方性の小さな(5×10erg/cm以下)磁性層を利用すれば、K.Aratani et.al.,T.M.on Optical Data Strage,TuB3(1991)に記載されているような磁気超解像再生特性を兼ね備えることもできる。その場合、局部磁界発生用磁性層3には、反転磁化27とその中心に更に再反転磁区39が現れ、この再反転磁区39によって局部磁界が情報記録用磁性層1に与えられる。局部磁界発生用磁性層3は、再反転磁区の形成が容易になるように、フェリ磁性を示し、その補償温度が100℃であることが好ましい〔名古屋大学、高橋正彦の博士論文「光磁気記録の高密度化に関する研究」(1993年)参照〕。なお、情報記録用磁性層の記録温度をTw1、磁性中間層のキュリー温度をTc2’、局部磁界発生用磁性層の記録温度をTw3とするとき
Tw1>Tw3>Tc2’
の関係を満たすようにする。
【0022】
磁性中間層2は、記録の際には、温度がTc2以上の領域8で広範囲に渡って局部磁界発生用磁性層3と情報記録用磁性層1の交換結合力を切断する。照射レーザー光のエネルギーが小さな再生時には、中間層2は温度Tc2を超えている部分が少ないために交換結合切断部も狭く、再反転磁区39は現れないため、磁気超解像再生が可能になる。ここで、局部磁界発生用磁性層3には遷移金属の磁気モーメント量の多い希土類遷移金属合金、例えばGdFeTb、GdCo、GdFeCo等を用い、情報記録用磁性層1には希土類金属の磁気モーメント量の多い希土類遷移金属合金、例えばTbFeCo、TbDyFeCo、DyFeCo等を用いることが好ましい。
【0023】
図4に示した構成では、微小磁区記録のための磁性層1と3の切断温度(Tc2)と磁気超解像を起こさせるための磁性層1と3の切断温度(Tc4)が異なるため、これらを同時に満足する光磁気記録媒体の設計が困難である。そこで、自由度を増やすために図5に示すように、磁気超解像のための磁性中間層28と、微小磁区を形成するための磁性中間層2を別々に設けた構成とするのが好ましい。この場合、情報記録用磁性層1の記録温度をTw1、局部磁界発生用磁性層3の記録温度をTw3、磁性中間層2のキュリー温度をTc2、磁性層28の磁気超解像を発生させる温度をTc4とするとき、
Tw1>Tc2>Tw3>Tc4
の関係を満たすようにする。
【0024】
図5は再生時、磁気超解像が発生しているときの磁化の状態を示している。情報記録用磁性層1に記録された磁区45は、Tc4以上の温度となった磁性層28の部分(マスク領域)31によって局部磁界発生用磁性層3の磁化32と磁気的結合が切断され、磁化32は再生磁界36にしたがっている。すなわち、光のスポット内には、再生磁界36には影響されず情報記録用磁性層1の記録マークと交換結合している磁化35及び30を介して記録磁区4に結合した磁区33だけがあることとなり、磁気超解像が発生している。
【0025】
次に、図6に微小記録が行われているときの磁化状態を示す。磁性中間層2の温度Tc2を超えた部分8は磁化を失い、磁性層28の温度Tc4を超えた部分は更に広い領域31で磁化を失う。局部磁界発生用磁性層3では記録温度Tw3を超えた領域で磁化9が反転して、情報記録用磁性層1に図6の下方に示した漏洩磁界を与える。この漏洩磁界の局所記録磁界により情報記録用磁性層1の磁化7が反転して微小磁区記録が行われる。
【0026】
以上述べてきた記録方法は、孤立記録の場合である。次に、記録ピッチを詰めた場合の微小磁区記録について説明する。
図7(b)は、図1に示した光磁気記録媒体を用いて記録ピッチを詰めた状態を示す。この場合、局部磁界発生用磁性層3の反転磁区9が記録後も残留し、この反転磁区9による漏洩磁界と磁区40を挟んで次に記録された微小磁区の漏洩磁界が重ね合わされた状態で情報記録用磁性層1に印加されるため、図7(b)の下方に示すように、局部磁界とならない。このため、情報記録用磁性層1には長くつながった磁区7が形成されることになる。
【0027】
しかし、図7(a)に示すように、記録時にできた反転磁区9を再び反転させる初期化用磁性層12と、記録時に初期化用磁性層12と局部磁界発生用磁性層3との交換結合を切断する磁性層41を設けた構成とすると、記録ピッチを詰めることが可能となる。図7(a)には、情報記録用磁性層1と局部磁界発生用磁性層3の間に非磁性中間層2を介在させる例を示したが、非磁性中間層はキュリー温度Tc2の磁性中間層としてもよい。初期化用磁性層12は消去磁界34と同一方向の磁化を有し、この初期化用磁性層の磁化は情報記録及び消去の全工程にわたって変化を起こさない。磁性層41は、そのキュリー温度Tc5が、次の関係を満たすように選択する。
Tw1>Tc2≧Tc5>Tw3
【0028】
このような構成によると、記録時には、磁性層41の領域42が加熱されキュリー温度を越えて非磁性化されるため、初期化用磁性層12と局部磁界発生用磁性層3の磁気的結合が切断され、図1によって説明した原理によって記録用磁性層1に微小磁区7が記録される。そして、記録後の反転磁化9は光スポットの高温領域から外れると初期化用磁性層12の交換結合力によって矢印32で示すように再び初期化されるため、局部磁界発生用磁性層3中での反転磁化9は常に1ヶ所だけであり、図7(a)の下方に示すように、情報記録用磁性層1に印加される局部磁界も重ね合わされて広がることはない。したがって、情報記録用磁性層1に記録された微小磁区7の間の未記録部の磁区40も安定に存在できる。初期化用磁性層12のキュリー温度は出荷時に着磁された状態が記録時に変化しないよう十分高く、保磁力も温度Tw1で1kOe以上にしておく必要がある。
【0029】
また、ここで反転磁化9の直上には局所記録磁界が作用しているが、そのまわりには消去磁界が作用している。これは、仮に記録磁区7同志が重なりあっても磁区同志がつながることはなく、むしろ前の磁区を消すことになることを示している。
なお、図7(a)の情報記録用磁性層1の基板側にキュリー温度Tc6の磁気超解像再生用磁性層とキュリー温度Tc4の磁性中間層を、磁気超解像再生用磁性層、磁性中間層、情報記録用磁性層1の順に積層されるように付加することで磁気超解像再生も可能となる。その場合、各磁性層は、
Tc6>Tw1>Tc2≧Tc5>Tw3>Tc4
の条件を満たすように選択する。
【0030】
【作用】
本発明の光磁気記録方法によると、光磁気記録媒体に形成される記録マークの大きさは局部印加磁界の大きさによって決まるため、光スポットよりも小さな記録マークの形成が可能となる。
また、本発明の光磁気記録媒体によると、記録部分に局部的な記録磁界を印加することが可能となり、この局部磁界によって微小な記録マークを低温書き込みすることができる。
【0031】
局部磁界発生用磁性層に加えて磁気超解像発生用磁性層を付設すると磁気超解像再生が可能となる。更に、消去磁界と同一方向の磁化を有する初期化用磁性層を付設すると記録ピッチを詰めた記録が可能となり、光変調記録においても磁界変調記録のようなマークピッチを詰めた高密度記録が可能になる。
【0032】
【実施例】
以下、本発明の実施例について説明する。
〔実施例1〕
スパッタ法により、図1に示す構造の試料を作成した。作成条件は、到達真空度8×10−7Torr以下、スパッタガスはAr、ガス圧は5mTorr、投入電力は100W、スパッタリングレートは0.1〜0.3nm/secとした。
【0033】
UV樹脂でグルーブを形成したガラス基板上にまず窒化物を80nm形成し、その上に情報記録用磁性層1としてTb28Fe62Co10を25nm成膜する。この膜はフェリ磁性を示し、その補償温度は80℃、キュリー温度は230℃である。更に、この上に非磁性の窒化物層2を2nm積層し、局部磁界発生用磁性層3としてGd15TbFe69Co10を50nm成膜した。このGdTbFeCo層のキュリー温度は310℃程度である。保護膜として再びこの上に窒化物を80nm設けた。図8に、情報記録用磁性層1の保磁力の温度依存性14及び局部磁界発生用磁性層3の保磁力の温度依存性15を示す。
【0034】
記録再生は図11に示したような装置で行う。情報記録に際しては、コントロールユニット43によって制御されたレーザー光源44からのレーザー光を、偏光プリズム25、4分の1波長板26を通して、レンズ19によって前述の多層構造の光磁気ディスク24にスポット照射する。記録又は消去用の外部磁界は磁石23によって印加する。光磁気ディスク24の表面でのレーザー光のスポット径は約1.6μmであった。情報再生に際しては、同様にコントロールユニット43によって制御されたレーザー光源44からのレーザー光を光磁気ディスク24に照射する。光磁気ディスク24の記録磁区から反射されたレーザー光は、4分の1波長板26によって偏光面が回転され、偏光プリズム25で反射されて光検出器45で検出される。
【0035】
波長830nmの半導体レーザーを用い、NA0.55、線速4.2m/sec、パルス幅50nsecの条件で孤立記録を行い、波形観測を行った結果、0.2μm径以下の微小磁区が安定に記録できた。
なお、窒化物からなる非磁性中間層2に代えて、キュリー温度200℃のDyFeCo層を10nm形成した磁性中間層を用いても同様の微小磁区記録ができた。
【0036】
この場合、外部記録磁界22の強さが400Oeのとき、情報記録用磁性層1の記録温度Tw1は約210℃、局部磁界発生用磁性層3の記録温度Tw3は約180℃であり、磁性中間層2のキュリー温度は200℃であるから、Tw1>Tc2>Tw3の関係を満たす。
【0037】
〔実施例2〕
UV樹脂でグルーブを形成したガラス基板上に窒化物を80nm形成し、その上にキュリー温度400℃でフェリ磁性の補償温度は室温以下である局部磁界発生用磁性層Gd21Fe69Co10層3を50nm、キュリー温度(Tc2’)140℃のTbFe中間層を10nm、キュリー温度230℃の情報記録用Tb28Fe62Co10層1を25nm、窒化物を80nm成膜した。GdFeCoの垂直磁気異方性エネルギー定数は4×10erg/cmである。このGdFeCo単層膜に磁区を形成すると、Hbが100Oeと小さいときに逆磁区の形成が確認された。この構成は図4に相当する。
【0038】
本実施例の光磁気記録媒体に波長830nm、スポット径約1.6μmのレーザー光を用いて微小磁区記録を行ったところ、300nm径以下の微小磁区を安定に形成することができた。更に、磁気超解像を発生させてこれを再生することも可能であった。
本実施例の場合、外部記録磁界22の強さが100Oeのとき、情報記録用磁性層1の記録温度Tw1は約210℃、局部磁界発生用磁性層3の記録温度Tw3は約180℃であり、Tw1>Tw3>Tc2’の関係を満たす。
【0039】
〔実施例3〕
UV樹脂でグルーブを形成したガラス基板上に実施例1と同様のスパッタ条件で窒化物を80nm積層し、この上に局部磁界発生用磁性層3として記録温度約180℃のGdTbFeを50nm積層し、更にキュリー温度(Tc2)200℃のDyFeCo層2を5nm成膜する。この上にキュリー温度(Tc4)140℃のTbFe層28を8nm、更にこの上にキュリー温度230℃の情報記録用磁性層1としてTbFeCo層を25nm設けてから保護層窒化物80nmを成膜した。これは図5に示した構造に相当する。
【0040】
本実施例の光磁気記録媒体に波長830nm、スポット径約1.6μmのレーザー光を用いて微小磁区記録を行ったところ、200nm径以下の微小磁区を安定に形成することができた。磁気超解像再生も安定して行うことができた。
また、本実施例の場合、外部記録磁界22の強さが400Oeのとき、情報記録用磁性層1の記録温度Tw1は約210℃、局部磁界発生用磁性層3の記録温度Tw3は約180℃であって、Tw1>Tc2>Tw3>Tc4の関係を満たす。
【0041】
〔実施例4〕
図7(a)に示した構造の光磁気記録媒体を作製した。
UV樹脂でグルーブを形成したガラス基板上に実施例1と同様のスパッタ条件で窒化物を80nm積層し、この上に情報記録用磁性層1として実施例1で用いたのと同様のキュリー温度230℃のTbFeCo層を25nm積層し、更にキュリー温度(Tc2)200℃のDyFeCo層2を10nm設け、局部磁界発生用磁性層3としてキュリー温度310℃のGdTbFeCo層を50nm成膜する。再びこの上に、キュリー温度(Tc5)200℃のDyFeCo層41を10nm、キュリー温度400℃の初期化用Tb25Co75層12を50nm設け、窒化物からなる保護層を80nm成膜した。
【0042】
本実施例の場合、外部記録磁界22の強さが400Oeのとき、情報記録用磁性層1の記録温度Tw1は約210℃、局部磁界発生用磁性層3の記録温度Tw3は約180℃であって、Tw1>Tc2≧Tc5>Tw3の関係を満たす。
これは、図7(a)の中間層2としてDyFeCoからなる磁性中間層2を用いた膜構成であるが、孤立記録を行うと実施例1と同程度の0.2μmの微小磁区記録ができた。更に、0.3μm径の記録磁区の上に孤立間隔を1.6μmとして0.3μm径の磁区を記録して顕微鏡で観察したところ、磁区がつながらずに分離したままであることが分かった。比較のために初期化用磁性層TbCo12を設けない点以外は同一構造の記録膜を用意し、同様の隣接記録を行ったところ、記録磁区はつながっていた。
なお、中間層2として非磁性の窒化物を5nm積層した場合にも、同様の高密度記録が可能であった。
【0043】
【発明の効果】
本発明の光磁気記録方法によると、光スポットよりも小さな記録マークの形成が可能となる。
本発明の光磁気記録媒体によると、従来の光磁気記録用磁性層に局部磁界発生用磁性層を付加することにより、微小な記録マークを低温書き込みすることができる。また、マークピッチを詰めた微小マークの記録が可能となり、記録のクロストークを大幅に改善できる。
【図面の簡単な説明】
【図1】本発明の一実施例による光磁気記録媒体を用いた微小マーク形成の説明図。
【図2】磁性中間層を有する光磁気記録媒体への記録時の磁化分布を示す図。
【図3】消去時の外部磁界と記録膜内の磁化状態を示す図。
【図4】局部磁界発生用磁性層と情報記録用磁性層を逆に積層した実施例の記録時における記録膜内の磁化状態を示す図。
【図5】磁気超解像読み出し用磁性層を積層した実施例の説明図。
【図6】図5に示した光磁気記録媒体の記録時の磁化状態を示す図。
【図7】初期化用磁性層を設けた実施例の説明図。
【図8】局部磁界発生用磁性層と情報記録用磁性層の保磁力の温度依存性を示す図。
【図9】光照射時の記録媒体表面の温度プロファイルの一例を示す図。
【図10】Hc、Htotal 及び温度のドメイン半径依存性を説明する図。
【図11】光磁気記録再生装置の概略図。
【符号の説明】
1…情報記録用磁性層、2…中間層、3…局部磁界発生用磁性層、4,5,6…初期状態の磁化、7…記録磁化、2…初期化用磁性層、14…情報記録用磁性層1の保磁力の温度依存性、15…局部磁界発生用磁性層3の保磁力の温度依存性、16…温度Tw1の等温線、17…温度Tc2の等温線、18…温度Tw3の等温線、19…レンズ、20…レーザー光、22…外部記録磁界、23…記録消去用外部磁界発生磁石、24…光磁気ディスク、25…偏光プリズム、26…4分の1波長板、27…反転磁化、28…磁性層、31…マスク領域、34…消去磁界、36…再生磁界、39…再反転磁化、40…記録磁区間の磁化、41…交換結合制御層、43…コントロールユニット、44…レーザー光源、45…光検出器

Claims (8)

  1. 基板上に情報記録用磁性層と、磁性中間層と、局部磁界発生用磁性層とを順次積層して設けた光磁気記録用媒体であって、情報記録用磁性層及び局部磁界発生用磁性層に外部磁界発生用磁石によって発生される外部磁界のもとに磁区が形成される記録温度を各々Tw1及びTw3とし、磁性中間層のキュリー温度をTc2とするとき、
    Tw1>Tc2>Tw3
    の関係を有し、情報記録用磁性層の保磁力は局部磁界発生用磁性層の保磁力より急峻な温度勾配を有することを特徴とする光磁気記録媒体。
  2. 基板上に局部磁界発生用磁性層と、磁性中間層と、情報記録用磁性層とを順次積層して設けた光磁気記録用媒体であって、情報記録用磁性層及び局部磁界発生用磁性層に印加磁界を100Oe以下とした外部磁界のもとに磁区が形成される記録温度を各々Tw1及びTw3とし、磁性中間層のキュリー温度をTc2’とするとき、
    Tw1>Tw3>Tc2’
    の関係を有し、局部磁界発生用磁性層はフェリ磁性を示しその補償温度が100℃以下であり、情報記録用磁性層の保磁力は局部磁界発生用磁性層の保磁力より急峻な温度勾配を有することを特徴とする光磁気記録媒体。
  3. 基板上に局部磁界発生用磁性層と、第1の磁性中間層と、第2の磁性中間層と、情報記録用磁性層とを順次積層して設けた光磁気記録用媒体であって、情報記録用磁性層及び局部磁界発生用磁性層に外部磁界発生用磁石によって発生される外部磁界のもとに磁区が形成される記録温度を各々Tw1及びTw3とし、第1の磁性中間層及び第2の磁性中間層のキュリー温度を各々Tc2及びTc4とするとき、
    Tw1>Tc2>Tw3>Tc4
    の関係を有し、情報記録用磁性層の保磁力は局部磁界発生用磁性層の保磁力より急峻な温度勾配を有することを特徴とする光磁気記録媒体。
  4. 基板上に情報記録用磁性層と、非磁性中間層と、局部磁界発生用磁性層と、磁性中間層と、消去方向と同一方向の磁化を有する初期化用磁性層とを順次積層して設けた光磁気記録用媒体であって、情報記録用磁性層及び局部磁界発生用磁性層に外部磁界発生用磁石によって発生される外部磁界のもとに磁区が形成される記録温度を各々Tw1及びTw3とし、磁性中間層のキュリー温度をTc5とするとき、
    Tw1>Tc5>Tw3
    の関係を有し、情報記録用磁性層の保磁力は局部磁界発生用磁性層の保磁力より急峻な温度勾配を有することを特徴とする光磁気記録媒体。
  5. 基板上に情報記録用磁性層と、第1の磁性中間層と、局部磁界発生用磁性層と、第2の磁性中間層と、消去方向と同一方向の磁化を有する初期化用磁性層とを順次積層して設けた光磁気記録用媒体であって、情報記録用磁性層及び局部磁界発生用磁性層に外部磁界発生用磁石によって発生される外部磁界のもとに磁区が形成される記録温度を各々Tw1及びTw3、第1の磁性中間層のキュリー温度をTc2、第2の磁性中間層のキュリー温度をTc5とするとき、
    Tw1>Tc2≧Tc5>Tw3
    の関係を有し、情報記録用磁性層の保磁力は局部磁界発生用磁性層の保磁力より急峻な温度勾配を有することを特徴とする光磁気記録媒体。
  6. 基板上に磁気超解像再生用磁性層と、第1の磁性中間層と、情報記録用磁性層と、非磁性中間層と、局部磁界発生用磁性層と、第2の磁性中間層と、消去方向と同一方向の磁化を有する初期化用磁性層とを順次積層して設けた光磁気記録用媒体であって、情報記録用磁性層及び局部磁界発生用磁性層に外部磁界発生用磁石によって発生される外部磁界のもとに磁区が形成される記録温度を各々Tw1及びTw3とし、磁気超解像再生用磁性層のキュリー温度をTc6、第1の磁性中間層のキュリー温度をTc4、第2の磁性中間層のキュリー温度をTc5とするとき、
    Tc6>Tw1>Tc5>Tw3>Tc4
    の関係を有し、情報記録用磁性層の保磁力は局部磁界発生用磁性層の保磁力より急峻な温度勾配を有することを特徴とする光磁気記録媒体。
  7. 基板上に磁気超解像再生用磁性層と、第1の磁性中間層と、情報記録用磁性層と、第2の磁性中間層と、局部磁界発生用磁性層と、第3の磁性中間層と、消去方向と同一方向の磁化を有する初期化用磁性層とを順次積層して設けた光磁気記録用媒体であって、情報記録用磁性層及び局部磁界発生用磁性層に外部磁界発生用磁石によって発生される外部磁界のもとに磁区が形成される記録温度を各々Tw1及びTw3とし、磁気超解像再生用磁性層のキュリー温度をTc6、第1の磁性中間層のキュリー温度をTc4、第2の磁性中間層のキュリー温度をTc2、第3の磁性中間層のキュリー温度をTc5とするとき、
    Tc6>Tw1>Tc2≧Tc5>Tw3>Tc4
    の関係を有し、情報記録用磁性層の保磁力は局部磁界発生用磁性層の保磁力より急峻な温度勾配を有することを特徴とする光磁気記録媒体。
  8. 請求項のいずれか1項記載の光磁気記録媒体と、光源と、光源からの光線を光磁気記録媒体の表面に収束する手段と、光磁気記録媒体の光照射領域に磁界を印加する磁界印加手段と、光路中に挿入された偏光手段と、光検出器とを含むことを特徴とする光磁気記録再生装置。
JP00721394A 1994-01-26 1994-01-26 光磁気記録媒体及び光磁気記録再生装置 Expired - Fee Related JP3542155B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00721394A JP3542155B2 (ja) 1994-01-26 1994-01-26 光磁気記録媒体及び光磁気記録再生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00721394A JP3542155B2 (ja) 1994-01-26 1994-01-26 光磁気記録媒体及び光磁気記録再生装置

Publications (2)

Publication Number Publication Date
JPH07220318A JPH07220318A (ja) 1995-08-18
JP3542155B2 true JP3542155B2 (ja) 2004-07-14

Family

ID=11659728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00721394A Expired - Fee Related JP3542155B2 (ja) 1994-01-26 1994-01-26 光磁気記録媒体及び光磁気記録再生装置

Country Status (1)

Country Link
JP (1) JP3542155B2 (ja)

Also Published As

Publication number Publication date
JPH07220318A (ja) 1995-08-18

Similar Documents

Publication Publication Date Title
JP2910250B2 (ja) 光磁気記録媒体
JPH04123339A (ja) 高レベルのマージンが拡大したオーバーライト可能な光磁気記録媒体
JPH0954993A (ja) 光磁気記録媒体及び該媒体の情報再生方法
JPH04134741A (ja) 4層膜構造のオーバーライト可能な光磁気記録媒体
JP3786426B2 (ja) 光磁気記録媒体及びその再生方法
JP3585671B2 (ja) 光磁気記録媒体及びその再生方法
JPH0573981A (ja) パワーマージンが拡大されたオーバーライト可能な光磁気記録方法及びそれに使用される光磁気記録装置
JP2762445B2 (ja) 光磁気記録媒体の信号再生方法
JPH11110839A (ja) 光磁気記録媒体
JP3542155B2 (ja) 光磁気記録媒体及び光磁気記録再生装置
JPH04255941A (ja) 光磁気記録媒体
KR100531274B1 (ko) 광자기 디스크
KR100531275B1 (ko) 광자기 디스크
WO2002065465A1 (fr) Support d'enregistrement magneto-optique
JPH11328762A (ja) 光磁気記録媒体
JPH1139737A (ja) 光磁気記録媒体及びその記録再生方法
JP3666057B2 (ja) 光磁気記録再生方法およびこれに用いる光磁気記録媒体
JP3328989B2 (ja) 光磁気記録媒体
JPH11306607A (ja) 光磁気記録媒体及び再生方法
JPH04313833A (ja) 光磁気記録媒体およびそれを用いた光磁気記録再生方法
JP3075048B2 (ja) 光磁気記録媒体及びその再生方法
WO1991015013A1 (en) Magnetooptic recording medium, and method of magnetooptic recording and reproduction
JP2757560B2 (ja) 光磁気記録媒体
JPH11126384A (ja) 光磁気記録媒体及びその記録再生方法
JPH1166651A (ja) 光磁気記録媒体及びその再生方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees