JP3540701B2 - 酸素濃度測定装置及びそれを適用したプラント - Google Patents

酸素濃度測定装置及びそれを適用したプラント Download PDF

Info

Publication number
JP3540701B2
JP3540701B2 JP2000026520A JP2000026520A JP3540701B2 JP 3540701 B2 JP3540701 B2 JP 3540701B2 JP 2000026520 A JP2000026520 A JP 2000026520A JP 2000026520 A JP2000026520 A JP 2000026520A JP 3540701 B2 JP3540701 B2 JP 3540701B2
Authority
JP
Japan
Prior art keywords
lead
based metal
solid electrolyte
oxygen
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000026520A
Other languages
English (en)
Other versions
JP2001215212A (ja
Inventor
才雄 高橋
晃弘 山下
博 関本
実 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000026520A priority Critical patent/JP3540701B2/ja
Publication of JP2001215212A publication Critical patent/JP2001215212A/ja
Application granted granted Critical
Publication of JP3540701B2 publication Critical patent/JP3540701B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸素濃度測定装置に係り、更に詳しくは、少なくとも鉛を含有した鉛系金属に含まれる酸素濃度をオンラインで測定する酸素濃度測定装置及びそれを適用したプラントに関するものである。
【0002】
【従来の技術】
少なくとも鉛を含有した鉛系金属の循環ループや、鉛系金属を取扱うプラント等の設計及び製作を行なう場合、鉛系金属によって配管などの構造材(例えばステンレス綱、クロム・モリブデン合金等)が腐食される。この腐食の速度は、鉛系金属中のある酸素濃度において、著しく速くなる場合がある。
【0003】
このように、鉛系金属中の酸素濃度は、腐食の進行に影響を与える重要な指標であるために、従来は、鉛系金属を定期的にサンプリングし、サンプリングした試料から、化学的方法等を用いた酸素濃度測定装置により鉛系金属中の酸素濃度を測定している。
【0004】
【発明が解決しようとする課題】
しかしながら、このような従来の酸素濃度測定装置では、以下のような問題がある。
【0005】
すなわち、従来の酸素濃度測定装置は、循環ループやプラント等から鉛系金属を一旦サンプリングし、サンプリングした試料に含まれる酸素濃度を測定する、いわゆるオフライン測定であった。このため、サンプリング作業自体に手間を要するのみならず、測定結果を取得するまでに時間がかかるために、その間の腐食の進行を阻止することができないという問題があった。
【0006】
本発明はこのような事情に鑑みてなされたものであり、その第1の目的は、鉛系金属中に溶存する酸素濃度をオンラインで連続的に測定し、もって、鉛系金属中の酸素濃度をリアルタイムで把握することにより、必要な場合には迅速なる腐食防止対策を講じることが可能な酸素濃度測定装置を提供することにある。
【0007】
また、第2の目的は、このような酸素濃度測定装置を適用することによって、腐食の影響を低減し、もって、配管や機器等の耐用年数を延ばすことが可能なプラントを提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明では、以下のような手段を講じる。
【0009】
すなわち、請求項1の発明は、中空形状の固体電解質センサと、流路側電極および酸素ガス側電極とからなる一対の電極と、温度測定手段と、電位差測定手段と、酸素濃度演算手段とを備えている。固体電解質式センサは、内部に予め定めた圧力で比較基準となる酸素ガスを充填すると共に、外部に被検流体を流通させる流路を備え、流路内を流通する被検流体に含まれる酸素ガスの圧力と比較基準となる酸素ガスの圧力との差に応じて酸素ガス側と流路側との間に電位差を発生させる。流路側電極は、固体電解質式センサの流路側に設けられ、多孔質構造からなる。酸素ガス側電極は、固体電解質式センサの酸素ガス側に設けられ、多孔質構造からなる。温度測定手段は、固体電解質式センサの温度を測定する。電位差測定手段は、流路側電極と酸素ガス側電極との間の電位差を測定することによって固体電解質式センサによって発生された電位差を取得する。酸素濃度演算手段は、電位差測定手段によって取得された電位差と、温度測定手段によって測定された温度と、比較基準となる酸素ガスの圧力とに基づいて、被検流体に含まれる酸素ガスの濃度を演算する。
【0010】
従って、請求項1の発明の酸素濃度測定装置においては、以上のような手段を講じることにより、被検流体に含まれる酸素ガスの圧力と比較基準となる酸素ガスの圧力との差に応じて固体電解質式センサに発生した電位差を取得し、更に、この電位差と、固体電解質式センサの温度と、比較基準となる酸素ガスの圧力とに基づいて被検流体に含まれる酸素濃度を把握することが可能となる。
【0011】
請求項2の発明では、請求項1の発明の酸素濃度測定装置において、被検流体を、少なくとも鉛を含有した鉛系金属とする。
【0012】
従って、請求項2の発明の酸素濃度測定装置においては、以上のような手段を講じることにより、特に鉛系金属に含まれる酸素ガスの圧力と比較基準となる酸素ガスの圧力との差に応じた起電力を得ることができ、更にこの起電力から、鉛系金属に含まれる酸素濃度を把握することが可能となる。
【0013】
請求項3の発明では、請求項1の発明の酸素濃度測定装置において、少なくとも鉛を含有した鉛系金属をその内部に流通させる配管に備えられ、流路によって配管の一部を形成するようにするとともに、固体電解質式センサは、酸素ガス側と流路側との間の電位差を連続的に発生させる。
【0014】
従って、請求項3の発明の酸素濃度測定装置においては、以上のような手段を講じることにより、配管内を流通する鉛系金属に含まれる酸素ガスの圧力と比較基準となる酸素ガスの圧力との差に応じて固体電解質式センサに発生した電位差を連続的に取得することができる。したがって、取得した電位差を用いることにより、被検流体に含まれる酸素濃度を連続的に把握することが可能となる。
【0015】
請求項4の発明では、請求項1乃至3のうちいずれか1項の発明の酸素濃度測定装置を適用する。
【0016】
従って、請求項4の発明のプラントにおいては、以上のような手段を講じることにより、配管等を流通する鉛系金属に含まれる酸素濃度をリアルタイムで把握することができる。
【0017】
その結果、必要な場合には迅速なる腐食防止対策を講じることが可能なプラントを実現することが可能となる。
【0018】
【発明の実施の形態】
以下に、本発明の各実施の形態について図面を参照しながら説明する。
【0019】
(第1の実施の形態)
本発明の第1の実施の形態を図1を用いて説明する。
【0020】
図1は、第1の実施の形態に係る酸素濃度測定装置の全体構成の一例を示す断面図である。
【0021】
すなわち、本実施の形態に係る酸素濃度測定装置は、固体電解質式センサ1と、一対の電極2と、レファレンスガス充填部3と、レファレンスガス側電極リード線4と、鉛系金属側電極リード線5と、起電力測定器6と、レファレンスガス注入装置8と、レファレンスガス注入ノズル10と、熱電対12と、温度測定器14と、センサホルダ15と、取付け座16と、蓋17と、封着用セラミックス18と、取付けボルト20とを備えており、循環ループやプラント等の鉛系金属配管22の一部に直接挿入されることにより設置され、鉛系金属配管22内を流通する鉛系金属中に溶存する酸素濃度を取得する機能を備えている。
【0022】
この機能は、予め定めた圧力で、比較基準となる酸素ガスが充填されたレファレンスガス充填部3を備え、レファレンスガス充填部3に充填された酸素ガスと、鉛系金属中に含まれる酸素ガスの圧力との差に応じた起電力を発生する固体電解質式センサ1と、その起電力を測定し、測定された起電力から鉛系金属中に溶存する酸素濃度を算出する起電力測定器6によって実現される。
【0023】
固体電解質式センサ1は、その内部に、後述するレファレンスガス注入装置8により予め定めた圧力で酸素ガスが注入されたレファレンスガス充填部3を備えている。また、固体電解質式センサ1の下端部は、多孔質構造を有する電極2でコーティングしている。そして、図中の矢印に示すとおり、鉛系金属配管22内を流通する鉛系金属が、固体電解式センサ1の外部と接触する。
【0024】
固体電解質式センサ1の材質は、ZrO(酸化ジルコニウム)を主成分とし、第2成分としてMgO(酸化マグネシウム)、CaO(酸化カルシウム)、Y(酸化イットリウム)等を添加したものとする。
【0025】
固体電解質式センサ1は、鉛系金属配管22から導入された鉛系金属に含まれる酸素ガスの圧力と、固体電解質式センサ1の内部のレファレンスガス充填部3に充填された酸素ガスの圧力との差に応じて、固体電解質式センサ1を隔壁とした濃淡電池を形成し、下記に示すネルンストの原理に従って、起電力を発生させる。
【0026】
ネルンストの原理は、以下に示す式(1)で表される。
E=(R×T)/(4×F)×ln(P(基準)/P)…(1)
ここで、E:起電力(V)、R:ガス定数、T:絶対温度(K)、F:ファラデー定数(C/mol)、P(基準):レファレンスガスの酸素ガス分圧(atm)、P:鉛系金属に含まれる酸素ガス分圧(atm)。
【0027】
一対の電極2は、それぞれ固体電解質式センサ1のレファレンスガス充填部3および鉛系金属配管22側とに接続しており、上述したネルンストの原理に従って固体電解質式センサ1により発生した起電力に応じた電位が、レファレンスガス充填部3側と鉛系金属配管22側との電極2にそれぞれ生じる。一対の電極2には、レファレンスガス充填部3側にレファレンスガス側電極リード線4を、鉛系金属配管22側に鉛系金属側電極リード線5をそれぞれ接続している。
【0028】
レファレンスガス充填部3は、後述するレファレンスガス注入装置8により注入された酸素ガスをリファレンスガスとして保持する。
【0029】
レファレンスガス側電極リード線4は、固体電解質式センサ1の内部にあるレファレンスガス充填部3側の電極2と、後述する起電力測定器6とを接続している。また、鉛系金属側電極リード線5は、鉛系金属配管22側の電極2と、後述する起電力測定器6とを接続している。
【0030】
起電力測定器6は、レファレンスガス側電極リード線4と鉛系金属側電極リード線5とを介して、固体電解質式センサ1のレファレンスガス充填部3側の電位と鉛系金属配管22側の電位とをそれぞれ取得し、それらの電位差を起電力として取得する。そして、このように取得された起電力と、後述する温度測定器14によって測定された固体電解質式センサ1の温度の値とから、上述した(1)式に基づいて、鉛系金属に含まれている酸素ガス分圧Pを算出する。更に、この圧力Pを濃度に換算することによって、鉛系金属に含まれる酸素濃度を演算する。
【0031】
レファレンスガス注入装置8は、後述するレファレンスガス注入ノズル10を介して、予め定めた圧力で、レファレンスガス充填部3に、レファレンスガスである酸素ガスを注入する。
【0032】
レファレンスガス注入ノズル10は、レファレンスガス注入装置8から注入されるレファレンスガスである酸素ガスをレファレンスガス充填部3に導入するためのノズルである。
【0033】
熱電対12は、固体電解質式センサ1の内側に接触するように設けられ、固体電解質式センサ1の温度に応じて電位を発生し、その電位を後述する温度測定器14に出力する。
【0034】
温度測定器14は、熱電対12から出力された電位を演算して、固体電解質式センサ1の温度を取得する。
【0035】
センサホルダ15は、鉛系金属配管22の一部に設けられた取付け座16(後述する)に装着された固体電解質式センサ1の周りを囲むように設けたメッシュ状の部材であり、固体電解質式センサ1を保護するとともに、鉛系金属配管22内を流通する鉛系金属を固体電解質式センサ1の外側に接触可能としている。
【0036】
取付け座16は、鉛系金属配管22の一部に設けられ、固体電解質式センサ1を挿入し取付けるための開口部である。
【0037】
蓋17は、取付け座16の上部開口部を塞ぐためのものであり、蓋17の下面と固体電解質式センサ1の上端部とが接続されるようにしており、固体電解質式センサ1と一体化した構成としている。これによって、蓋17で取付け座16の上部開口部を塞ぐことによって、固体電解質式センサ1が取付け座16に装着されるようにしている。なお、蓋17には熱電対12、レファレンスガス注入ノズル10、レファレンスガス側電極リード線4、鉛系金属側電極リード線5のための貫通孔を適宜設けた構成としている。
【0038】
封着用セラミックス18は、固体電解質式センサ1を蓋17に固定するために固体電解質式センサ1の上部外周に設け、蓋17に固設した固定材であり、これにより、固体電解質式センサ1が、鉛系金属の流れにより生じる流体応力を受けても振動しないようにしている。
【0039】
取付けボルト20は、蓋17を取付け座16に固定する。
【0040】
このように、本実施の形態に係る酸素濃度測定装置は、鉛系金属配管22に設けられ、鉛系金属配管22内を流通する鉛系金属を直接的かつ連続的に固体電解質式センサ1の外部に接触させる構成としている。
【0041】
次に、以上のように構成した本実施の形態に係る酸素濃度測定装置の作用について説明する。
【0042】
鉛系金属配管22の一部に備えられた取付け座16に挿入されることによって、鉛系金属配管22に直接設けられた本実施の形態に係る酸素濃度測定装置は、固体電解質式センサ1の外表面が、鉛系金属配管22内を流通する鉛系金属によって接触される。
【0043】
一方、固体電解質式センサ1の内部のレファレンスガス充填部3には、レファレンスガス注入装置8によって、所定の圧力で注入されたレファレンスガスである酸素ガスが充填されている。
【0044】
鉛系金属が固体電解質式センサ1の外側に接触したときに、固体電解質式センサ1では、レファレンスガス充填部3に充填されている酸素ガスの圧力と、鉛系金属に含まれる酸素ガスの圧力との差に応じて、ネルンストの原理に基づいて一対の電極2に起電力が発生し、レファレンスガス側電極リード線4と鉛系金属側電極リード線5を介して起電力測定器6によって起電力が計測される。
【0045】
一方、熱電対12によって固体電解質式センサ1の温度に応じた電位が温度測定器14に出力され、更に温度測定器14では、出力された電位から、固体電解質式センサ1の温度に換算される。
【0046】
上述したようにして測定された起電力と、固体電解質式センサ1の温度の値とから、上述した(1)式を用いて、鉛系金属に含まれる酸素ガス分圧Pが算出される。更に、この圧力Pが濃度に換算することによって、鉛系金属に含まれる酸素濃度が算出される。
【0047】
すなわち、鉛系金属の流れに応じて得られる起電力を常時測定することによって、鉛系金属に含まれる酸素濃度が連続的に算出される。
【0048】
上述したように、本実施の形態に係る酸素濃度測定装置においては、上記のような作用により、鉛系金属中の酸素濃度を直接的かつ連続的に取得することができる。
【0049】
その結果、鉛系金属中の酸素濃度をリアルタイムで把握することが可能な酸素濃度測定装置を実現することが可能となる。
【0050】
鉛系金属中の酸素濃度は、配管等の腐食の進行速度に大きな影響を与える指標であることから、このように鉛系金属中の酸素濃度をリアルタイムで把握することが可能な酸素濃度測定装置を適用することによって、腐食の進行速度が速い酸素濃度に至った場合など必要な場合には、迅速なる腐食防止対策を講じることが可能となる。
【0051】
また、このような酸素濃度測定装置を適用することによって、腐食の影響を低減し、配管や機器等の耐用年数を延ばすことができるプラントを実現することが可能となる。
【0052】
(第2の実施の形態)
本発明の第2の実施の形態を図2を用いて説明する。
【0053】
図2は、第2の実施の形態に係る酸素濃度測定装置の全体構成の一例を示す断面図である。
【0054】
第2の実施の形態に係る酸素濃度測定装置は、第1の実施の形態に係る酸素濃度測定装置の鉛系金属側電極リード線5を省略し、鉛系金属側電極24と、鉛系金属側電極リード線26とを付加した構成としており、更に、取付け座16を導電体で形成している。その他の構成は第1の実施の形態と同一である。
【0055】
よって、ここでは、第1の実施の形態と同一の部分については、図2において図1中の符号と同一符号で示すとともにその説明を省略し、以下に異なる部分についてのみ述べる。
【0056】
鉛系金属側電極24は、片端が取付け座16と、他端が鉛系金属側電極リード線26とそれぞれ電気的に接続している。
【0057】
鉛系金属側電極リード線26は、鉛系金属側電極24と起電力測定器6とを電気的に接続しており、鉛系金属側電極24の電位を起電力測定器6に出力する。
【0058】
次に、以上のように構成した本実施の形態に係る酸素濃度測定装置の作用について説明する。
【0059】
本実施の形態において、鉛系金属側電極24における電位は、固体電解質式センサ1の鉛系金属配管22側の電位と等しくなる。更に、鉛系金属側電極24における電位が、鉛系金属側電極リード線26を介して起電力測定器6に出力される。
【0060】
一方、起電力測定器6には、レファレンスガス側電極リード線4を介して、レファレンスガス充填部3側の電位も出力され、レファレンスガス充填部3側の電位と鉛系金属側電極24における電位とから電位差、すなわち、固体電解質式センサ1に発生した起電力が算出される。
【0061】
このように算出された起電力から、第1の実施の形態で説明したものと同様の方法で、鉛系金属に含まれる酸素ガスの濃度が算出される。
【0062】
よって、第2の実施の形態においても、第1の実施の形態と同様の作用効果を得ることができる。
【0063】
なお、第2の実施の形態において、一対の電極2の鉛金属側を削除しても第1の実施の形態と同様の作用効果を得ることができる。
【0064】
以上、本発明の好適な実施の形態について、添付図面を参照しながら説明したが、本発明はかかる構成に限定されない。特許請求の範囲に記載された技術的思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の技術的範囲に属するものと了解される。
【0065】
【発明の効果】
以上説明したように、本発明によれば、鉛系金属中に溶存する酸素濃度をオンラインで連続的に測定することができる。
【0066】
以上により、鉛系金属中の酸素濃度をリアルタイムで把握するとともに、必要な場合には迅速なる腐食防止対策を講じることが可能な酸素濃度測定装置を実現することができる。また、このような酸素濃度測定装置を適用することによって、腐食の影響を低減し、もって、配管や機器等の耐用年数を延ばすことが可能なプラントを実現することができる。
【図面の簡単な説明】
【図1】第1の実施の形態に係る酸素濃度測定装置の全体構成の一例を示す断面図。
【図2】第2の実施の形態に係る酸素濃度測定装置の全体構成の一例を示す断面図。
【符号の説明】
1…固体電解質式センサ、
2…電極、
3…レファレンスガス充填部、
4…レファレンスガス側電極リード線、
5…鉛系金属側電極リード線、
6…起電力測定器、
8…レファレンスガス注入装置、
10…レファレンスガス注入ノズル、
12…熱電対、
14…温度測定器、
15…センサホルダ、
16…取付け座、
17…蓋、
18…封着用セラミックス、
20…ボルト、
22…鉛系金属配管、
24…鉛系金属側電極、
26…鉛系金属側電極リード線。

Claims (4)

  1. 内部に予め定めた圧力で比較基準となる酸素ガスを充填すると共に、外部に被検流体を流通させる流路を備え、前記流路内を流通する被検流体に含まれる酸素ガスの圧力と前記比較基準となる酸素ガスの圧力との差に応じて前記酸素ガス側と前記流路側との間に電位差を発生させる中空形状の固体電解質式センサと、
    前記固体電解質式センサの流路側に設けられ、多孔質構造からなる流路側電極と、
    前記固体電解質式センサの酸素ガス側に設けられ、多孔質構造からなる酸素ガス側電極と、
    前記固体電解質式センサの温度を測定する温度測定手段と、
    前記流路側電極と前記酸素ガス側電極との間の電位差を測定することによって前記固体電解質式センサによって発生された電位差を取得する電位差測定手段と、
    前記電位差測定手段によって取得された電位差と、前記温度測定手段によって測定された温度と、前記比較基準となる酸素ガスの圧力とに基づいて、前記被検流体に含まれる酸素ガスの濃度を演算する酸素濃度演算手段と
    を備えたことを特徴とする酸素濃度測定装置。
  2. 請求項1に記載の酸素濃度測定装置において、
    前記被検流体を、少なくとも鉛を含有した鉛系金属としたことを特徴とする酸素濃度測定装置。
  3. 請求項1に記載の酸素濃度測定装置において、
    少なくとも鉛を含有した鉛系金属をその内部に流通させる配管に備えられ、前記流路によって前記配管の一部を形成するようにするとともに、前記固体電解質式センサは、前記酸素ガス側と前記流路側との間の電位差を連続的に発生させるようにしたことを特徴とする酸素濃度測定装置。
  4. 請求項1乃至3のうちいずれか1項に記載の酸素濃度測定装置を適用したことを特徴とするプラント。
JP2000026520A 2000-02-03 2000-02-03 酸素濃度測定装置及びそれを適用したプラント Expired - Lifetime JP3540701B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000026520A JP3540701B2 (ja) 2000-02-03 2000-02-03 酸素濃度測定装置及びそれを適用したプラント

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000026520A JP3540701B2 (ja) 2000-02-03 2000-02-03 酸素濃度測定装置及びそれを適用したプラント

Publications (2)

Publication Number Publication Date
JP2001215212A JP2001215212A (ja) 2001-08-10
JP3540701B2 true JP3540701B2 (ja) 2004-07-07

Family

ID=18552244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000026520A Expired - Lifetime JP3540701B2 (ja) 2000-02-03 2000-02-03 酸素濃度測定装置及びそれを適用したプラント

Country Status (1)

Country Link
JP (1) JP3540701B2 (ja)

Also Published As

Publication number Publication date
JP2001215212A (ja) 2001-08-10

Similar Documents

Publication Publication Date Title
US8152978B2 (en) Apparatus and method for measuring hydrogen concentration in molten metals
US10598629B2 (en) Sensor and measurement method for measuring hydrogen content in metal melt
US5439579A (en) Sensor probe for measuring hydrogen concentration in molten metal
CA1040264A (en) Solid state sensor for anhydrides
EP0562801B1 (en) Oxygen measuring probe
US3661749A (en) Apparatus for measuring in a continuous manner the oxygen in a molten metal
US5596134A (en) Continuous oxygen content monitor
JP3540701B2 (ja) 酸素濃度測定装置及びそれを適用したプラント
JPS60187854A (ja) 酸素濃度測定装置
JPH0829375A (ja) 溶融金属中の水素溶解量測定用センサ
JP4620503B2 (ja) 酸素濃度センサ
JP3878875B2 (ja) 酸素濃度計
RU2489711C1 (ru) Твердоэлектролитный датчик для измерения концентрации кислорода в газах и металлических расплавах
JPH06273374A (ja) 溶融金属中の水素溶解量測定用センサプローブ及び水素濃度測定方法
JP2578542B2 (ja) 溶融金属中の水素溶解量測定用センサプローブ
JPH0835947A (ja) 溶融金属中の水素溶解量測定用センサ
Chen et al. Study on Polarization Parameters of Micro Dissolved Oxygen Sensor
JP2530076B2 (ja) 溶融金属中の水素溶解量測定用センサプロ―ブ及びその使用方法
JP2878603B2 (ja) 溶融金属中の水素溶解量測定用センサ
JP4030074B2 (ja) 溶融金属における酸素量の連続測定方法及び装置
JPH07119730B2 (ja) 溶融金属中の水素溶解量測定用センサプローブ
KR100484707B1 (ko) 전기화학적측정을수행하기위한장치
CA1045205A (en) Solid state sensor for anhydrides
JP2578543B2 (ja) 溶融金属中の水素溶解量測定用センサプローブ及びその使用方法
JPH0720083A (ja) 溶融金属中の水素溶解量測定用センサプローブ

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

R151 Written notification of patent or utility model registration

Ref document number: 3540701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term